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We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical
expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a
weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the
dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb
potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the
studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations,
concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity
are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical
temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is
shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive
to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of
excitons is addressed.
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I. INTRODUCTION

The Bose-Einstein condensation (BEC) and superfluidity
of dipolar (indirect) excitons, formed by electrons and holes,
spatially separated in two parallel two-dimensional (2D) layers
of semiconductor, were proposed [1] and recent progress on
BEC of semiconductor dipolar excitons was reviewed [2,3].
Due to relatively large exciton binding energies in novel 2D
semiconductors, the BEC and superfluidity of dipolar excitons
in double layers of transition-metal dichalcogenides (TMDCs)
was studied [4–6].

Phosphorene, an atom-thick layer of black phosphorus [7]
that does have a natural band gap, has aroused considerable in-
terest currently. It has been shown that monolayer phosphorene
is an relatively unexplored two-dimensional semiconductor
with a high hole mobility and exhibits unique many-electron
effects [8]. In particular, first-principles calculations have
predicted unusual strong anisotropy for the in-plane thermal
conductivity in these materials [9]. Among the intriguing band
structure features found are large excitonic binding energy
[10,11], prominent anisotropic electron and hole effective
masses, and carrier mobility [12–16]. Recently the exciton
binding energy for direct excitons in monolayer black phos-
phorus placed on a SiO2 substrate was obtained experimentally
by polarization-resolved photoluminescence measurements at
room temperature [17]. External perpendicular electric fields
[18] and mechanical strain [19,20] have been applied to
demonstrate that the electronic properties of phosphorene
may be significantly modified. According to Refs. [11,17],
excitons and highly anisotropic optical responses of few-layer
black phosphorous may be possible. Specifically, phosphorene
absorbs light polarized along its armchair direction and is
transparent to light polarized along the zigzag direction.
Consequently, phosphorene may be employed as a viable linear
polarizers. Also the interest in these recently fabricated 2D

phosphorene crystals has been growing because they have
displayed potential for applications in electronics including
field effect transistors [21].

This paper explores the way in which the anisotropy of
phosphorene is capable of affecting superfluidity in a double-
layer structure. While it is important to mention that whereas
the exciton binding energy was calculated using density
functional theory (DFT) and quasiparticle self-consistent GW
methods for direct excitons in suspended few-layer black phos-
phorus [11], here we apply an analytical approach for indirect
excitons in a phosphorene double layer. In our model, electrons
and holes are confined to two separated parallel phosphorene
layers which are embedded in a dielectric medium. We have
taken screening of the interaction between an electron and
hole through the Keldysh potential [22]. The dilute system of
dipolar excitons forms a weakly interacting Bose gas, which
can be treated in the Bogoliubov approximation [23]. The
anisotropic dispersion relation for the single dipolar exciton
in a phosphorene double layer results in the angle-dependent
spectrum of collective excitations with the angle-dependent
sound velocity, which causes the dependence of the critical
velocity for the superfluidity on the direction of motion of
dipolar excitons. While the concentrations of the normal and
superfluid components for the BCS-type fermionic superfluid
with the anisotropic order parameter do not depend on the
direction of motion of the Cooper pairs [24], we obtain
the concentrations of the normal and superfluid components
for dipolar excitons in a phosphorene double layer to be
dependent on the directions of motion of excitons. Therefore,
the mean-field temperature of the superfluidity for dipolar
excitons in a phosphorene double layer also depends on the
direction of motion of the dipolar excitons. At some fixed
temperatures, the motion of dipolar excitons in some directions
is superfluid, while in other directions is dissipative. This
effect makes superfluidity of dipolar excitons in a phosphorene
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double layer to be different from other 2D semiconductors, due
to high anisotropy of the dispersion relations for the charge
carriers in phosphorene. The calculations have been performed
for both the Keldysh and Coulomb potentials, describing the
interactions between the charge carriers. Such approach allows
us to analyze the influence of the screening effects on the
properties of a weakly interacting Bose gas of dipolar excitons
in a phosphorene double layer. We also study the dependence
of the binding energy, the sound velocity, and the mean-field
temperature of the superfluidity for dipolar excitons on the
electron and hole effective masses.

The paper is organized in the following way. In Sec. II,
the energy spectrum and wave functions for a single dipolar
exciton in a phosphorene double layer are obtained, and
the dipolar exciton effective masses and binding energies
are calculated. The angle-dependent spectrum of collective
excitations and the sound velocity for the dilute weakly
interacting Bose gas of dipolar excitons in the Bogoliubov
approximation are derived in Sec. III. In Sec. IV, the con-
centrations of the normal and superfluid components and the
mean-field critical temperature of superfluidity are obtained.
The proposed experiment to study the superfluidity of dipolar
excitons in different directions of motion of dipolar excitons
is discussed in Sec. V. The discussion of the results and
conclusions follows in Sec. VI.

II. THEORETICAL MODEL

In the system under consideration in this paper, electrons
are confined in a 2D phosphorene monolayer, while an equal
number of positive holes are located in a parallel phosphorene
monolayer at a distance D away. The system of the charge
carriers in two parallel phosphorene layers is treated as a
two-dimensional system without interlayer hopping. In this
system, the electron-hole recombination due to the tunneling of
electrons and holes between different phosphorene monolayers
is suppressed by the dielectric barrier with the dielectric
constant εd that separates the phosphorene monolayers. There-
fore, the dipolar excitons, formed by electrons and holes,
located in two different phosphorene monolayers, have a
longer lifetime than the direct excitons. The electron and hole
via electromagnetic interaction V (reh), where reh is distance
between the electron and hole, could form a bound state, i.e.,
an exciton, in three-dimensional (3D) space. Therefore, to
determine the binding energy of the exciton one must solve a
two-body problem in restricted 3D space. However, if one
projects the electron position vector onto the phosphorene
plane with holes and replaces the relative coordinate vector
reh by its projection r on this plane, the potential V (reh)
may be expressed as V (reh) = V (

√
r2 + D2), where r is

the relative distance between the hole and the projection of
the electron position vector onto the phosphorene plane with
holes. A schematic illustration of the exciton is presented in
Fig. 1. By introducing in-plane coordinates r1 = (x1,y1) and
r2 = (x2,y2) for the electron and the projection vector of the
hole, respectively, so that r = r1 − r2, one can describe the
exciton by employing a two-body 2D Schrödinger equation
with potential V (

√
r2 + D2). In this way, we have reduced the

restricted 3D two-body problem to a 2D two-body problem on
a phosphorene layer with the holes.

FIG. 1. Schematic illustration of a dipolar exciton consisting of a
spatially separated electron and hole in a phosphorene double layer.

A. Hamiltonian for an electron-hole pair in a phosphorene
double layer

Within the framework of our model the coordinate vectors
of the electron and hole may be replaced by their 2D
projections onto the plane of one phosphorene layer. These in-
plane coordinates r1 = (x1,y1) and r2 = (x2,y2) for an electron
and a hole, respectively, will be used in our description. We
assume that at low momentum p = (px,py), i.e., near the �

point, the single electron and hole energy spectrum ε
(0)
l (p) is

given by

ε
(0)
l (p) = p2

x

2ml
x

+ p2
y

2ml
y

, l = e, h, (1)

where ml
x and ml

y are the electron/hole effective masses along
the x and y directions, respectively. We assume that the OX

and OY axes correspond to the armchair and zigzag directions
in a phosphorene monolayer, respectively.

The model Hamiltonian within the effective mass approxi-
mation for a single electron-hole pair in a phosphorene double
layer is given by

Ĥ0 = − h̄2

2me
x

∂2

∂x2
1

− h̄2

2me
y

∂2

∂y2
1

− h̄2

2mh
x

∂2

∂x2
2

− h̄2

2mh
y

∂2

∂y2
2

+V (
√

r2 + D2), (2)

where V (
√

r2 + D2) is the potential energy for electron-hole
pair attraction, when the electron and hole are located in two
different 2D planes. Following the standard procedure [25] for
the separation of the relative motion of the electron-hole pair
from their center-of-mass motion one can introduce variables
for the center of mass of an electron-hole pair R = (X,Y ) and
the relative motion of an electron and a hole r = (x,y), as X =
(me

xx1 + mh
xx2)/(me

x + mh
x), Y = (me

xy1 + mh
xy2)/(me

x + mh
x),

x = x1 − x2 ,y = y1 − y2, r2 = x2 + y2. The Schrödinger
equation with Hamiltonian (2) has the form Ĥ0�(r1,r2) =
E�(r1,r2), where �(r1,r2) and E are the eigenfunction and
eigenenergy. One can write �(r1,r2) in the form �(r1,r2) =
�(R,r) = eiP·R/h̄ϕ(r), where P = (Px,Py) is the momentum
for the center of mass of the electron-hole pair and ϕ(r) is
the wave function for the electron-hole pair, given by the 2D
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Schrödinger equation:[
− h̄2

2μx

∂2

∂x2
− h̄2

2μy

∂2

∂y2
+V (

√
r2+D2)

]
ϕ(x,y) = Eϕ(x,y),

(3)

where E is the eigenenergy of the electron-hole pair in a

phosphorene double layer, and μx = me
xm

h
x

me
x+mh

x
and μy = me

ym
h
y

me
y+mh

y

are the reduced masses, relating to the relative motion of an
electron-hole pair in the x and y directions, respectively.

B. Electron-hole interaction in a phosphorene double layer

The electromagnetic interaction in a thin layer of material
has a nontrivial form due to screening [22,26]. Whereas the
electron and hole are interacting via the Coulomb potential,
in phosphorene the electron-hole interaction is affected by
screening which causes the electron-hole attraction to be
described by the Keldysh potential [22]. This potential has
been widely used to describe the electron-hole interaction in
TMDC [27–31] and phosphorene [14,15,32] monolayers. The
Keldysh potential has the form [14]

V (reh) = − πke2

(ε1 + ε2)ρ0

[
H0

(
reh

ρ0

)
− Y0

(
reh

ρ0

)]
, (4)

where reh is the distance between the electron and hole located
in the different parallel planes, k = 9 × 109N × m2/C2,
H0(x) and Y0(x) are Struve and Bessel functions of the
second kind of order ν = 0, respectively, ε1 and ε2 denote the
background dielectric constants of the dielectrics, surrounding
the phosphorene layer, and the screening length ρ0 is defined
by ρ0 = 2πζ/[(ε1 + ε2)/2], where ζ = 4.1 Å [14]. Assuming
that the dielectric between two phosphorene monolayers is
the same as substrate material with dielectric constant εd ,
we set ε1 = ε2 = εd . The screening length ρ0 determines the
boundary between two different behaviors for the potential
due to a nonlocal macroscopic screening. For large separation
between the electron and hole, i.e., reh � ρ0 , the potential has
the three-dimensional Coulomb tail. On the other hand, for
small reh � ρ0 distances it becomes a logarithmic Coulomb
potential of interaction between two point charges in 2D.
A crossover between these two regimes takes place around
distance ρ0.

Making use of reh = √
r2 + D2 in Eq. (4) and assuming

that r � D, one can expand Eq. (4) as a Taylor series in terms
of (r/D)2. By limiting ourselves to the first order with respect
to (r/D)2, we obtain

V (r) = −V0 + γ r2, (5)

with

V0 = πke2

(ε1 + ε2)ρ0

[
H0

(
D

ρ0

)
− Y0

(
D

ρ0

)]
,

(6)

γ = − πke2

2(ε1 + ε2)ρ2
0D

[
H−1

(
D

ρ0

)
− Y−1

(
D

ρ0

)]
,

where H−1( D
ρ0

) and Y−1( D
ρ0

) are Struve and Bessel functions of
the second kind of order ν = −1, respectively.

To illustrate the screening effect of the Keldysh interaction
let us use for the electron-hole interaction the Coulomb

potential. The potential energy of the electron-hole attraction
in this case is V (r) = −ke2/(εd

√
r2 + D2). Assuming r � D

and retaining only the first two terms of the Taylor series, one
obtains the same form for a potential as Eq. (5) but with the
following expressions for V0 and γ :

V0 = ke2

εdD
, γ = ke2

2εdD3
. (7)

Replacement of V (
√

r2 + D2) in Eq. (3) by the potential (5)
allows us to reduce the problem of an indirect exciton formed
between two layers to an exactly solvable two-body problem
as is demonstrated in the next subsection.

C. Wave function and binding energy of an exciton

Substituting (5) with parameters (6) for the Keldysh
potential or (7) for the Coulomb potential into Eq. (3) and using
r2 = x2 + y2, one obtains an equation which has the form
of the Schrödinger equation for a 2D anisotropic harmonic
oscillator. This equation allows us to separate the x and y

variables and can be reduced to two independent Schrödinger
equations for 1D harmonic oscillators, i.e.,

− h̄2

2μx

d2

dx2
ψ(x) + γ x2ψ(x) =

(
Ex + V0

2

)
ψ(x),

(8)

− h̄2

2μy

d2

dy2
ψ(y) + γy2ψ(y) =

(
Ey + V0

2

)
ψ(y),

which have eigenfunctions given by [25]:

ψn(x) = 1

π1/4a
1/2
x

1√
2nn!

e−x2/(2a2
x )Hn

(
x

ax

)
,

(9)

ψm(y) = 1

π1/4a
1/2
y

1√
2mm!

e−y2/(2a2
y )Hm

(
y

ay

)
,

where n = 0,1,2,3, . . . and m = 0,1,2,3, . . . are the quan-
tum numbers, Hn(ξ ) are Hermite polynomials, and ax =
(h̄/

√
2μxγ )

1/2
and ay = (h̄/

√
2μyγ )

1/2
, respectively. The

corresponding eigenenergies for the 1D harmonic oscillators
are given by [25]

Exn = −V0

2
+ h̄

√
2γ

μx

(
n + 1

2

)
, n = 0,1,2, . . . ,

Eym = −V0

2
+ h̄

√
2γ

μy

(
m + 1

2

)
, m = 0,1,2, . . . . (10)

Thus, the energy spectrum Enm of an electron and hole
comprising a dipolar exciton in a phosphorene double layer,
described by Eq. (3), is

Enm = Exn + Eym = −V0 + h̄

√
2γ

μx

(
n + 1

2

)

+h̄

√
2γ

μy

(
m + 1

2

)
, n = 0,1,2, . . . ; m = 0,1,2, . . . ,

(11)
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while the wave function ϕnm(x,y) for the relative motion of
an electron and a hole in a dipolar exciton in a phosphorene
double layer, described by Eq. (3), is given by

ϕnm(x,y) = ψn(x)ψm(y), (12)

where ψn(x) and ψm(y) are defined by Eq. (9). The corre-
sponding binding energy is

B = −E00 = V0 − h̄

√
γ

2μx

− h̄

√
γ

2μy

= V0 − h̄

√
γ

2μ0
.

(13)

In Eq. (13) μ0 = μxμy

(
√

μx+√
μy )2 is “the reduced mass of the

exciton reduced masses.” Setting μx = μy = μ̃ corresponding
to an isotropic system, we have μ0 = μ̃/4.

We consider the phosphorene monolayers to be separated
by h-BN insulating layers. In addition we assume h-BN
insulating layers to be placed on the top and on the bottom
of the phosphorene double layer. For this insulator εd = 4.89
is the effective dielectric constant, defined as εd =

√
ε⊥√

ε‖
[4], where ε⊥ = 6.71 and ε‖ = 3.56 are the components
of the dielectric tensor for h-BN [33]. Since the thickness
of a h-BN monolayer is given by c1 = 3.33 Å [4], the
interlayer separation D is presented as D = NLc1, where
NL is the number of h-BN monolayers, placed between
two phosphorene monolayers. Let us mention that h-BN
monolayers are characterized by relatively small density of the
defects of their crystal structure, which allowed us to measure
the quantum Hall effect in the few-layer black phosphorus
sandwiched between two h-BN flakes [34].

One can obtain the square of the in-plane gyration radius rX

of a dipolar exciton, which is the average squared projection of
the electron-hole separation onto the plane of a phosphorene
monolayer [4], as

r2
X =

∫
ϕ∗

00(x,y)r2ϕ00(x,y)d2r = 1

ax

√
π

∫ ∞

−∞
x2e

− r2

a2
x dx

+ 1

ay

√
π

∫ ∞

−∞
y2e

− y2

a2
y dy = a2

x + a2
y

2
. (14)

We emphasize that the Taylor series expansion of the
electron-hole attraction potential to first order in (r/D)2

presented in Eq. (5) is valid if the inequality 〈r2〉 = r2
X =

(a2
x + a2

y)/2 � D2 is satisfied, where ax and ay are defined
above. Consequently, one finds that h̄/(2

√
2μ0γ ) � D2. The

latter inequality holds for D � D0. For the Coulomb potential
D0 = h̄2εd/(4ke2μ0). If μx = μy = μ̃ for the isotropic sys-
tem, we have D0 = h̄2εd/(ke2μ̃). For the Keldysh potential,
one has to use Eq. (6) for γ and solve the following
transcendental equation:

D3
0 = − h̄2(ε1 + ε2)ρ2

0

4πke2μ0
[
H−1

(
D0
ρ0

) − Y−1
(

D0
ρ0

)] . (15)

The values of D0 for the Keldysh and Coulomb potentials
depends on μ0, therefore, on the effective masses of the
electron and hole. Here and below in our calculations we use
effective masses for electron and hole from Refs. [35–38].
The results, reported in these four papers, were performed by
using the first-principles calculations. The different functionals

TABLE I. Value for D0 for the Keldysh and Coulomb potentials
for different sets of masses for electron and hole from Refs. [35–38].

[35] [36] [37] [38]

Keldysh potential D0 (Å) 1.0 0.98 0.9 0.9
Coulomb potential D0 (Å) 14.7 14.4 12.2 12.3

for the correlation energy and setting parameters for the
hopping lead to some difference in their results, such as
geometry structures. The lattice constants in the four papers
do not coincide with each other, and this can cause the
difference in the band curvatures and effective masses. The
latter motivates us to use in calculations the different sets of
masses from Refs. [35–38] that allows us to understand the
dependence of the binding energy, the sound velocity, and the
mean-field temperature of the superfluidity on effective masses
of electrons and holes.

The values of D0 for the Keldysh potential, obtained by
solving Eq. (15), and the Coulomb potential for the sets
of the masses from Refs. [35–38], respectively, are given
in Table I. As can be seen in Table I, the characteristic
value of D0 entering the condition D � D0 of validity of
the first-order Taylor expansion of the electron-hole attraction
potential, given by Eq. (5), is about one order of magnitude
smaller for the Keldysh potential than for the Coulomb
potential. Therefore, the first-order Taylor expansion can be
valid for smaller interlayer separations D for the Keldysh
potential than for the Coulomb potential. Thus, the validity
of the harmonic oscillator approximation of the Keldysh
potential is more reasonable. This is due to the fact that
the Keldysh potential describes the screening, which makes
the Keldysh potential more short-range than the Coulomb
potential. Therefore, the harmonic oscillator approximation
of the electron-hole attraction potential, given by Eq. (5),
can be valid for a smaller number NL of h-BN insulating
layers between two phosphorene monolayers for the Keldysh
potential than for the Coulomb potential. According to Table I,
for both potentials D0 is not sensitive to the choice of
the set of effective electron and hole masses. Comparisons
of the Keldysh and Coulomb interaction potentials for an
electron-hole pair and their approximations using harmonic
oscillator potentials obtained from a Taylor series expansion
are presented in Fig. 2. According to Fig. 2, the Keldysh
potential is weaker than the Coulomb potential at small
projections r of the electron-hole distance on the phosphorene
monolayer plane, while both potentials become closer to each
other as r increases, demonstrating almost no difference at
r � 25 Å.

For the number NL = 7 of h-BN monolayers, placed
between two phosphorene monolayers, the binding energies
of dipolar excitons, calculated for the sets of the masses from
Refs. [35–38] by using Eq. (13), are given by 28.2 meV,
29.6 meV, 37.6 meV, and 37.2 meV. Let us mention that the
maximal dipolar exciton binding energy was obtained for the
set of masses taken from Ref. [38]. The dipolar exciton binding
energy increases when the reduced mass μ0 of the exciton
reduced masses increases. The reduced mass μ0 for the sets
of the masses from Refs. [35–38] is presented in Table II. One
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FIG. 2. The Keldysh and Coulomb electron-hole potentials in a
phosphorene double layer and their approximations by the harmonic
oscillator potential. The calculations were performed for the number
NL = 7 of h-BN monolayers, placed between two phosphorene
monolayers, and polarizability from Ref. [14].

can conclude that while D0 is not sensitive to the choice of the
set of effective electron and hole masses, the binding energy
of indirect exciton depends on the exciton reduced mass μ0,
which is defined by the effective electron and hole masses.

It is worthy of note that the energy spectrum of the center
of mass of an electron-hole pair ε0(P) may be expressed as

ε0(P) = P 2
x

2Mx

+ P 2
y

2My

, (16)

where Mx = me
x + mh

x and My = me
y + mh

y are the effective
exciton masses, relating to the motion of an electron-hole cen-
ter of mass in the x and y directions, respectively. Substituting
the polar coordinate for the momentum Px = P cos � and
Py = P sin � into Eq. (16), we obtain

ε0(P) = ε0(P,�) = P 2

2M0(�)
, (17)

where M0(�) is the effective angle-dependent exciton mass in
a phosphorene double layer, given by

M0(�) =
[

cos2 �

Mx

+ sin2 �

My

]−1

. (18)

TABLE II. The critical temperatures under the assumption about
the soundlike spectrum of collective excitations for different sets of
masses from Refs. [35–38]. The phosphorene layers are separated by
7 layers of h-BN. μ0 and MxMy are expressed in units of free electron
mass m0 and m2

0, respectively.

[35] [36] [37] [38]

μ0 (×10−2m0) 3.99 4.11 4.84 4.79
Coulomb potential Tc (K) 182 192 174 172
Keldysh potential Tc (K) 115 121 109 107
MxMy (×m2

0) 1.67 1.23 2.24 2.39

III. COLLECTIVE EXCITATIONS FOR DIPOLAR
EXCITONS IN A PHOSPHORENE DOUBLE LAYER

We now turn our attention to a dilute distribution of
electrons and holes in a pair of parallel phosphorene layers
spatially separated by a dielectric, when nr2

X � 1, where n is
the concentration for dipolar excitons. In this limit, the dipolar
excitons are formed by electron-hole pairs with the electrons
and holes spatially separated in two different phosphorene
layers.

The distinction between excitons, which are not elementary
but composite bosons [39], and bosons is caused by exchange
effects [2]. At large interlayer separations D, the exchange
effects in the exciton-exciton interactions in a phosphorene
double layer can be neglected, since the exchange interactions
in a spatially separated electron-hole system in a double layer
are suppressed due to the low tunneling probability, caused by
the shielding of the dipole-dipole interaction by the insulating
barrier [6,40]. Therefore, we treat the dilute system of dipolar
excitons in a phosphorene double layer as a weakly interacting
Bose gas.

The model Hamiltonian Ĥ of the 2D interacting dipolar
excitons is given by

Ĥ =
∑

P

ε0(P,�)a†
PaP + g

S

∑
P1P2P3

a
†
P1

a
†
P2

aP3aP1+P2−P3 ,

(19)

where a
†
P and aP are Bose creation and annihilation operators

for dipolar excitons with momentum P, S is a normalization
area for the system, ε0(P,�) is the angular-dependent energy
spectrum of noninteracting dipolar excitons, given by Eq. (17),
and g is a coupling constant for the interaction between two
dipolar excitons.

We expect that at T = 0 K almost all dipolar excitons
condense into a BEC. One can treat this weakly interacting
gas of dipolar excitons within the Bogoliubov approximation
[23,41]. The Bogoliubov approximation for a weakly inter-
acting Bose gas allows us to diagonalize the many-particle
Hamiltonian, replacing the product of four operators in the
interaction term by the product of two operators. This is
justified under the assumption that most of the particles belong
to the BEC, and only the interactions between the condensate
and noncondensate particles are taken into account, while the
interactions between noncondensate particles are neglected.
The condensate operators are replaced by numbers [23], and
the resulting Hamiltonian is quadratic with respect to the cre-
ation and annihilation operators. Employing the Bogoliubov
approximation [41], we obtain the chemical potential μ of the
entire exciton system by minimizing Ĥ0 − μN̂ with respect to
the 2D concentration n, where N̂ denotes the number operator.
The latter one is

N̂ =
∑

k

a
†
PaP, (20)

while H0 is the Hamiltonian describing the particles in the
condensate with zero momentum P = 0. The minimization
of Ĥ0 − μN̂ with respect to the number of excitons N = Sn

results in the standard expression [23,41]

μ = gn. (21)
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Following the procedure presented in Ref. [42], the inter-
action parameters for the exciton-exciton interaction in very
dilute systems could be obtained assuming the exciton-exciton
dipole-dipole repulsion exists only at distances between
excitons greater than distance from the exciton to the classical
turning point. The distance between two excitons cannot be
less than this distance, which is determined by the conditions
reflecting the fact that the energy of two excitons cannot exceed
the doubled chemical potential μ of the system [42], i.e.,

U (R0) ≈ 2μ. (22)

In Eq. (22) U (R0) is the potential of interaction between two
dipolar excitons at the distance R0, where R0 corresponds to the
distance between two dipolar excitons at their classical turning
point. The latter approximation under the assumption of the
single-particle picture, along with Eq. (21), is reasonable for a
weakly interacting Bose gas of dipolar excitons. Additionally,
the exciton-exciton interaction is weak due to their relatively
large spatial separation in a dilute limit.

For our model we investigate the formation of dipolar
excitons in a phosphorene double layer with the use of the

Keldysh and Coulomb interactions. Therefore, it is reasonable
to adopt the general approach for treating collective excitations
of dipolar excitons. If the distance between two dipolar
excitons is R and the electron and hole of one dipolar
exciton interact with the electron and hole of the other dipolar
exciton, it is straightforward to show that the exciton-exciton
interaction U (R) has the form

U (R) = 2V (R) − 2V

(
R

√
1 + D2

R2

)
, (23)

where V (R) represents the interaction potential between two
electrons or two holes in the same phosphorene monolayer.
We can assume the potential V (R) to be given by either the
Keldysh potential (4) or the Coulomb potential.

In a very dilute system of dipolar excitons and, therefore,
D � R, one may expand the second term in Eq. (23) in terms
of (D/R)2, and by retaining only the first-order terms with
respect to (D/R)2, one finally obtains

U (R) =
⎧⎨
⎩

πke2D2

2εdρ2
0 R

[
Y−1

(
R
ρ0

) − H−1(y)
(

R
ρ0

)]
, for the Keldysh potential,

ke2D2

εdR3 , for the Coulomb potential.
(24)

Following the procedure presented in Ref. [42], one can obtain the coupling constant for the exciton-exciton interaction:

g = 2π

∫ ∞

R0

RdR U (R). (25)

Substituting Eq. (24) into Eq. (25), one obtains the exciton-exciton coupling constant g as follows:

g =
⎧⎨
⎩

2π2ke2D2

2εdρ0

[
H0

(
R0
ρ0

) − Y0
(

R0
ρ0

)]
, for the Keldysh potential,

2πke2D2

εdR0
, for the Coulomb potential.

(26)

Combining Eqs. (22), (24), and (26), for the Keldysh
potential we obtain the following equation for R0:

4πnρ2
0y[H0(y) − Y0(y)] = −[H−1(y) − Y−1(y)], (27)

where y = R0/ρ0.
Combining Eqs. (22), (24), and (26), we obtain the

following expression for R0 in the case of the Coulomb
potential:

R0 = 1

2
√

πn
. (28)

From Eqs. (28), (26), and (21), one obtains the exciton-
exciton coupling constant g for the Coulomb potential:

g = 4πke2D2√πn

εd

. (29)

The coupling constant g and the distance R0 between two
dipolar excitons at the classical turning point for the Keldysh
and Coulomb potentials for a phosphorene double layer as
functions of the exciton concentration are represented in Fig. 3.
According to Fig. 3, R0 decreases with the increase of the
exciton concentration n. While for the Coulomb potential R0

is slightly larger than for the Keldysh potential, the difference
is very small. As shown in Fig. 3, the coupling constant
g is larger for the Coulomb potential than for the Keldysh
potential, because the interaction between the charge carriers,
interacting via the Keldysh potential, is suppressed by the

FIG. 3. The coupling constant g and the distance R0 between two
dipolar excitons at the classical turning point for the Keldysh and
Coulomb potentials for a phosphorene double layer as functions of
the exciton concentration. The number of h-BN monolayers between
the phosphorene monolayers is NL = 7.
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screening effects. The difference between g for the Keldysh
and Coulomb potentials increases as the exciton concentration
n increases.

The many-particle Hamiltonian of dipolar excitons in a
phosphorene double layer given by Eq. (19) is standard for a
weakly interacting Bose gas with the only difference being
that the single-particle energy spectrum of noninteracting
excitons is angular dependent due to the orientation variation
of the exciton effective mass. Whereas the first term in
Eq. (19) which is responsible for the single-particle kinetic
energy is angular dependent, the second interaction term in
Eq. (19) does not depend on an angle because the dipole-dipole
repulsion between excitons does not depend on an angle.
Therefore, for a weakly interacting gas of dipolar excitons in a
phosphorene double layer, in the framework of the Bogoliubov
approximation, we could apply exactly the same procedure
which has been adapted for a standard weakly interacting Bose
gas [23,41], but taking into account the angular dependence
of a single-particle energy spectrum of dipolar excitons.
Therefore, the Hamiltonian Ĥcol of the collective excitations
in the Bogoliubov approximation for the weakly interacting
gas of dipolar excitons in phosphorene is given by

Ĥcol =
∑

P �=0,�

ε(P,�)α†
PαP, (30)

where α
†
jP and αjP are the creation and annihilation Bose

operators for the quasiparticles with the energy dispersion
corresponding to the angular-dependent spectrum of the
collective excitations ε(P,�), described by

ε(P,�) = {[ε0(P,�) + μ]2 − μ2}1/2. (31)

Equation (31) is based on a well-known result obtained in
the Bogoliubov approximation [23,41]. However, in our case
the single-particle energy ε0(P,�) depends on the angle �

because the Hamiltonian is itself angle dependent. We note
that the exciton-exciton interaction term does not depend on
�. Therefore, in the spectrum of collective excitations ε(P,�)
the angular dependence enters only through the single-particle
energy ε0(P,�).

In the limit of small momenta P , when ε0(P,�) � gn, we
expand the spectrum of collective excitations ε(P,�) up to

first order with respect to the momentum P and obtain the
sound mode of the collective excitations ε(P,�) = cS(�)P ,
where cS(�) is the angular-dependent sound velocity, given by

cS(�) =
√

gn

M0(�)
. (32)

The asymmetry of the electron and hole dispersion in
phosphorene is reflected in the angular dependence of the
sound velocity through the angular dependence of the effective
exciton mass. The angular dependence of the sound velocity
for the Keldysh and Coulomb potentials is presented in Fig. 4,
where it is demonstrated that the exciton sound velocity is
maximal at � = 0 and � = π and minimal at � = π/2.
As follows from comparison of Fig. 4(a) with Fig. 4(b),
at the same parameters, the sound velocity cS(�) is greater
in the case of Coulomb potential for the interaction between
the charge carriers than for the Keldysh potential, because
the Keldysh potential implies the screening effects, which
make the interaction between the carriers weaker. According
to Fig. 4, the sound velocity depends on the effective electron
and hole masses. However, the sound velocities are coincident
at all angles � for two sets of masses from Refs. [37,38],
correspondingly. Since at low momenta the soundlike energy
spectrum of collective excitations in the dipolar exciton
system in a phosphorene double layer satisfies to the Landau
criterion for superfluidity, the dipolar exciton superfluidity in a
phosphorene double layer is possible. Let us mention that the
exciton concentration, used for the calculations, represented
in Fig. 4 and below, corresponds by an order of magnitude to
the experimental values [43,44].

We emphasize that above we considered the BEC of indirect
excitons in an infinite 2D system only at zero temperature.
The reason for this is that in an infinite 2D system, BEC
does not exist at finite temperatures. Furthermore, the critical
temperature for BEC of a finite 2D system is reduced as the
size of the system is increased.

IV. SUPERFLUIDITY OF DIPOLAR EXCITONS IN A
PHOSPHORENE DOUBLE LAYER

Since at small momenta the energy spectrum of the
quasiparticles for a weakly interacting gas of dipolar excitons

FIG. 4. The angular dependence of the sound velocity. (a) The interaction between the carriers is described by the Keldysh potential. (b)
The interaction between the carriers is described by the Coulomb potential. The calculations were performed for the exciton concentration
n = 2 × 1016 m−2 and the number NL = 7 of h-BN monolayers, placed between two phosphorene monolayers.
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is soundlike, this means that the system satisfies the Landau
criterion for superfluidity [23,41]. The critical exciton velocity
for superfluidity is angular dependent, and it is given by
vc(�) = cS(�), because the quasiparticles are created at veloc-
ities above the angle-dependent velocity of sound. According
to Fig. 4, the critical exciton velocity for superfluidity has
maximum at � = 0 and � = π and a minimum at � = π/2.
Therefore, as shown in Fig. 4(a), if the excitons move with the
velocities in the range of approximately between 8 × 103 m/s
and 3.4 × 104 m/s, the superfluity is present for the angles at
the edges of the angle range between � = 0 and � = π , while
the superfluidity is absent at the center of this angle range.

Let us now consider the system at nonzero temperatures.
The density of the superfluid component ρs(T ) is defined as
ρs(T ) = ρ − ρn(T ), where ρ is the total 2D density of the
system and ρn(T ) is the density of the normal component.
We define the normal component density ρn(T ) in the usual
way [45]. Suppose that the excitonic system moves with a
velocity u, which means that the superfluid component moves
with the velocity u. At nonzero temperatures T dissipating
quasiparticles will appear in this system. Since their density
is small at low temperatures, one may assume that the gas of
quasiparticles is an ideal Bose gas. To calculate the superfluid
component density, we define the total mass current J for a
Bose gas of quasiparticles in the frame of reference where the
superfluid component is at rest, by

J = s

∫
d2P

(2πh̄)2
Pf [ε(P,�) − Pu]. (33)

In Eq. (33) f [ε(P,�)] = {exp [ε(P,�)/(kBT )] − 1}−1 is the
Bose-Einstein distribution function for quasiparticles with the
angle-dependent dispersion ε(P,�), s = 4 is the spin degen-
eracy factor, and kB is the Boltzmann constant. Expanding the
integrand of Eq. (33) in terms of Pu/(kBT ) and restricting
ourselves by the first-order term, we obtain

J = − s

kBT

∫
d2P

(2πh̄)2
P(Pu)

∂f [ε(P,�)]

∂ε(P,�)
. (34)

The normal density ρn in the anisotropic system has tensor
form [24]. We define the tensor elements for the normal
component density ρ

(ij )
n (T ) by

Ji = ρ(ij )
n (T )uj , (35)

where i and j denote either the x or y component of the
vectors. Assuming that the vector u ↑↑ OX (↑↑ denotes that
u is parallel to the OX axis and has the same direction as the
OX axis), we have u = ux i and P = Px i + Pyj. Therefore, we
obtain

P · u = Pxux,

P(P · u) = P 2
x ux i + PxPyuxj, (36)

where i and j are unit vectors in the x and y directions,
respectively. Upon substituting Eq. (36) into Eq. (34), one
obtains

Jx = − s

kBT

∫ ∞

0
dP

P 3

(2πh̄)2

∫ 2π

0
d�

∂f [ε(P,�)]

∂ε(P,�)
cos2 �ux.

(37)

Using the definition of the density for the normal component
from Eq. (35), we obtain

ρ(xx)
n (T ) = s

kBT

∫ ∞

0
dP

P 3

(2πh̄)2

∫ 2π

0
d�

× exp [ε(P,�)/(kBT )]

{exp [ε(P,�)/(kBT )] − 1}2 cos2 �.

(38)

Substitution of Eq. (36) into Eq. (34) gives

Jy = − s

kBT

∫
d2P

(2πh̄)2
PxPy

∂f [ε(P,�)]

∂ε(P,�)
ux

= s

kBT

∫ ∞

0
dP

P 3

(2πh̄)2

×
∫ 2π

0
d�

exp [ε(P,�)/(kBT )]

{exp [ε(P,�)/(kBT )] − 1}2 cos � sin �ux

= 0. (39)

The integral in Eq. (39) equals zero, since the integral over
the angle � over the period of the function results in zero.
Therefore, one obtains ρ

(xy)
n = 0.

Now assuming the vector u ↑↑ OY , we obtain analogously
the following relations:

ρ(yy)
n (T ) = s

kBT

∫ ∞

0
dP

P 3

(2πh̄)2

×
∫ 2π

0
d�

exp [ε(P,�)/(kBT )]

{exp [ε(P,�)/(kBT )] − 1}2 sin2 �,

ρ(yx)
n (T ) = 0. (40)

By defining the tensor of the concentration of the normal
component as the linear response of the flow of quasiparticles
on the external velocity as n

(ij )
n = ρ

(ij )
n /Mi , one obtains

n(xx)
n (T ) = s

kBMxT

∫ ∞

0
dP

P 3

(2πh̄)2

×
∫ 2π

0
d�

exp [ε(P,�)/(kBT )]

{exp [ε(P,�)/(kBT )] − 1}2 cos2 �,

n(xy)
n (T ) = 0,

n(yy)
n (T ) = s

kBMyT

∫ ∞

0
dP

P 3

(2πh̄)2

×
∫ 2π

0
d�

exp [ε(P,�)/(kBT )]

{exp [ε(P,�)/(kBT )] − 1}2 sin2 �,

n(yx)
n (T ) = 0. (41)

The linear response of the flow of quasiparticles Jqp with
respect to the external velocity at any angle measured from
the OX direction is given in terms of the angle-dependent
concentration for the normal component ñn(�,T ) as

|Jqp| = ∣∣n(xx)
n (T )ux i + n(yy)

n (T )uyj
∣∣

=
√[

n
(xx)
n (T )

]2
u2 cos2 � + [

n
(yy)
n (T )

]2
u2 sin2 �

= ñ(�,T )u, (42)
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where the concentration of the normal component ñn(�,T ) is

ñn(�,T ) =
√[

n
(xx)
n (T )

]2
cos2 � + [

n
(yy)
n (T )

]2
sin2 �. (43)

From Eq. (43) it follows that n(xx)
n = ñn(� = 0) and n

(yy)
n = ñn(� = π

2 ).
Equation (43) can be rewritten in the following form:

ñn(�,T ) =
√[

n
(xx)
n (T )

]2 + [
n

(yy)
n (T )

]2

2
+

([
n

(xx)
n (T )

]2 − [
n

(yy)
n (T )

]2)
cos(2�)

2
. (44)

We define the angle-dependent concentration of the super-
fluid component ñs(�,T ) by

ñs(�,T ) = n − ñn(�,T ), (45)

where n is the total concentration of the dipolar excitons. The
mean-field critical temperature Tc(�) of the phase transition
related to the occurrence of superfluidity in the direction with
the angle � relative to the x direction is determined by the
condition

ñn(�,Tc(�)) = n. (46)

A. Superfluidity for the soundlike spectrum of collective
excitations

For small momenta, substituting the sound spectrum of
collective excitations ε(P,�) = cS(�)P with the angular-
dependent sound velocity cS(�), given by Eq. (32), into
Eq. (41), we obtain

n(xx)
n (T ) = 2s(kBT )3ζ (3)

(πh̄)2Mx

∫ 2π

0

cos2 �

c4
S(�)

d�

= 2s(kBT )3ζ (3)

(πh̄gn)2Mx

∫ 2π

0

cos2 �(
cos2 �

Mx
+ sin2 �

My

)2 d�,

n(xy)
n (T ) = 0,

n(yy)
n (T ) = 2s(kBT )3ζ (3)

(πh̄)2My

∫ 2π

0

sin2 �

c4
S(�)

d�

= 2s(kBT )3ζ (3)

(πh̄gn)2My

∫ 2π

0

sin2 �(
cos2 �

Mx
+ sin2 �

My

)2 d�,

n(yx)
n (T ) = 0, (47)

where ζ (z) is the Riemann zeta function [ζ (3) � 1.202].
The integrals in Eq. (47) can be evaluated analytically and

the results are the following [46]:∫ 2π

0

cos2 �(
cos2 �

Mx
+ sin2 �

My

)2 d� = πMx

√
MxMy,

∫ 2π

0

sin2 �(
cos2 �

Mx
+ sin2 �

My

)2 d� = πMy

√
MxMy. (48)

Substituting (48) into Eq. (47), one obtains

n(xx)
n (T ) = n(yy)

n (T ) = 2ζ (3)s(kBT )3
√

MxMy

π (h̄gn)2
,

n(xy)
n (T ) = n(yx)

n (T ) = 0. (49)

Note that for the anisotropic superfluid, formed by paired
fermions, the relation n(xx)

n (T ) = n
(yy)
n (T ) is also valid [24].

Under the assumption of the sound spectrum of collective
excitations using Eq. (49), implying n(xx)

n (T ) = n
(yy)
n (T ),

one obtains from Eq. (43) the concentration of the normal
component ñn(T ) as

ñn(T ) = n(xx)
n (T ) = n(yy)

n (T ) = 2ζ (3)s(kBT )3
√

MxMy

π (h̄gn)2
.

(50)

Therefore, in case of the soundlike spectrum of collective
excitations, the concentration of the superfluid component
ñs(T ) is given by

ñs(T ) = n − 2ζ (3)s(kBT )3
√

MxMy

π (h̄gn)2
. (51)

It follows from Eqs. (50) and (51) that for the soundlike
spectrum of collective excitations, the concentrations of the
normal and superfluid components do not depend on an angle.

For the soundlike spectrum of collective excitations, the
mean-field critical temperature Tc can be obtained by substi-
tuting Eq. (50) into the condition ñn(Tc) = n as follows:

Tc =
(

π (h̄g)2

2ζ (3)s
√

MxMy

)1/3
n

kB

. (52)

It follows from Eq. (52) that under the assumption about the
soundlike spectrum of collective excitations, the mean-field
critical temperature Tc does not depend on an angle. The
mean-field critical temperature of the superfluidity Tc for the
Keldysh and Coulomb potentials for the soundlike spectrum of
collective excitations obtained by using Eq. (52) as a function
of the interlayer separation D is presented in Fig. 5. The
calculations are performed for the sets of effective electron
and hole masses from Refs. [35–38]. Comparing Figs. 5(a)
with 5(b), one concludes that at the same parameters, the
critical temperature for the superfluidity Tc(�) is much larger
for the Coulomb potential than for the Keldysh potential,
because the sound velocity for the Coulomb potential is larger
than for the Keldysh potential due to the screening effects,
implied by the Keldysh potential. However, for both potentials
the mean-field critical temperature for superfluidity shows
similar dependence on the electron and hole effective masses.

As demonstrated in Table II, the critical temperature for the
superfluidity Tc decreases when MxMy increases. Therefore,
Tc is sensitive to the electron and hole effective masses.
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FIG. 5. The mean-field critical temperature for superfluidity Tc of dipolar excitons in a phosphorene double layer as a function of the
interlayer separation D, assuming the soundlike spectrum of collective excitations. (a) The interaction between the carriers is described
by the Keldysh potential. (b) The interaction between the carriers is described by the Coulomb potential. The exciton concentration is
n = 2 × 1012 cm−2.

Assuming the soundlike spectrum of collective excitations,
the mean-field critical temperature of the superfluidity Tc

obtained by using Eq. (52) as a function of the exciton
concentration n and the interlayer separation D is presented
in Fig. 6. While the calculations presented in Fig. 6 were
performed for the Coulomb potential, one can obtain a
similar behavior for the mean-field critical temperature of the
superfluidity by employing the Keldysh potential. According
to Figs. 5 and 6, the mean-field critical temperature of the
superfluidity Tc is an increasing function of the exciton
concentration n and the interlayer separation D.

B. Superfluidity when the spectrum of collective excitations is
given by Eq. (31)

Beyond the assumption of the soundlike spectrum, sub-
stituting Eq. (31) for the spectrum of collective excitations
into Eq. (41), and using Eq. (44), we obtain the mean-field

FIG. 6. The critical temperature for superfluidity Tc of dipolar
excitons in a phosphorene double layer as a function of the exciton
concentration n and the interlayer separation D, assuming the
soundlike spectrum of collective excitations. The calculations are
performed for the Coulomb potential. The set of masses is taken from
Ref. [37].

critical temperature of the superfluidity Tc(�), by solving
numerically Eq. (46). Since in this case n(xx)

n (T ) �= n
(yy)
n (T ),

the mean-field critical temperature of the superfluidity Tc(�)
is angular dependent. The angular dependence of critical
temperature Tc(�) for the Keldysh and Coulomb potentials
for different exciton concentrations, calculated by solution
of transcendental equation (46), is presented in Fig. 7.
According to Fig. 7, the mean-field critical temperature of
the superfluidity Tc(�) is an increasing function of the exciton
concentration n. According to Fig. 7, the critical temperature of
the superfluidity is maximal at � = 0 and � = π and minimal
at � = π/2.

As follows from comparison of Figs. 7(a) with 7(b), at the
same parameters, the mean-field critical temperature for the
superfluidity Tc(�) is greater when one considers the Coulomb
potential for the interaction between the charge carriers than
for the Keldysh potential, because the sound velocity for the
Coulomb potential is greater than for the Keldysh potential
due to the screening effects, taken into account by the Keldysh
potential.

It is interesting to mention that the ratio of the maximal
critical temperature T (max)

c = Tc(0) to the minimal critical
temperature T (min)

c = Tc(π/2), T (max)
c /T (min)

c , in the cases of
both the Keldysh and Coulomb interactions between the charge
carriers decreases from 3.55 to 2.69 for the Keldysh potential,
and from 3.29 to 2.64 for the Coulomb potential, when the
density of exciton increases from n = 2 × 1011 cm−2 to n =
3 × 1012 cm−2. One concludes that the angular dependence
of the mean-field critical temperature Tc decreases when the
exciton concentration increases.

At the fixed exciton concentration n, at the temperatures
below T (min)

c , exciton superfluidity exists at any direction of
exciton motion with any angle � relative to the armchair
direction, while at the temperatures above T (max)

c , exciton
superfluidity is absent at any direction of exciton motion
with any angle �. At the fixed exciton concentration n, at
the temperatures in the range T (min)

c < T < T (max)
c , exciton

superfluidity exists only for the directions of exciton motion
with the angles in the ranges 0 < � < �c1(T ) and �c2(T ) <

� < π , while the superfluidity is absent for the directions
of exciton motion with the angles in the range �c1(T ) < � <
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FIG. 7. The angular dependence of the critical temperature for superfluidity Tc(�) of dipolar excitons in a phosphorene double layer for
different exciton concentrations. (a) The interaction between the carriers is described by the Keldysh potential. (b) The interaction between the
carriers is described by the Coulomb potential. The number of h-BN monolayers between the phosphorene monolayers is NL = 7. The set of
masses is taken from Ref. [37].

�c2(T ). The critical angles of superfluidity �c1(T ) and �c2(T )
correspond in Fig. 7 to the left and right crossing points of the
horizontal line at the temperature T with the curve at the fixed
exciton concentration n, respectively.

Let us mention that the critical temperature for the superflu-
idity for a BCS-like fermionic superfluid with the anisotropic
order parameter does not depend on the direction of motion of
Cooper pairs because in this case n(xx)

n (T ) = n
(yy)
n (T ) [24].

Let us mention that we chose to use the set of masses from
Ref. [37], because this set results in higher exciton binding
energy. We used the number of h-BN monolayers between the
phosphorene monolayers NL = 7 for Figs. 4 and 7, because
higher NL corresponds to higher interlayer separation D,
which results in higher critical exciton velocity of superfluidity
equal to the sound velocity cS(�) and higher mean-field critical
temperature of the superfluidity Tc(�).

According to Eq. (44), the angular-dependent concentra-
tion of the normal component ñn(�,T ) for 0 � � � π/2
increases with � if n

(yy)
n (T ) > n(xx)

n (T ) and decreases with
� if n

(yy)
n (T ) < n(xx)

n (T ). Therefore, at n
(yy)
n (T ) > n(xx)

n (T ) the
superfluidity can exist only if � < �c(T ), while at n

(yy)
n (T ) <

n(xx)
n (T ) the superfluidity can exist only if � > �c(T ), where

�c(T ) is the critical angle of the occurrence of superfluidity.
For a chosen temperature, the critical angle �c(T ), which

corresponds to the occurrence of superfluidity, is given by the
condition

ñn(�c(T ),T ) = n. (53)

Substituting Eq. (44) into Eq, (53), one obtains a closed-form
analytic expression for �c(T ) as

�c(T ) = 1

2
arccos

[
2n2 − ([

n(xx)
n (T )

]2 + [
n

(yy)
n (T )

]2)[
n

(xx)
n (T )

]2 − [
n

(yy)
n (T )

]2

]
.

(54)

V. PROPOSED EXPERIMENT TO OBSERVE THE
ANGULAR-DEPENDENT SUPERFLUIDITY OF DIPOLAR

EXCITONS IN A PHOSPHORENE DOUBLE LAYER

The angular-dependent superfluidity in a phosphorene
double layer may be observed in electron-hole Coulomb drag
experiments. The Coulomb attraction between electrons and
holes can introduce a Coulomb drag that is a process in

spatially separated conductors, which enables a current to flow
in one of the layers to induce a voltage drop in the other
one. In the case when the adjacent layer is part of a closed
electrical circuit, an induced current flows. The experimental
observation of exciton condensation and perfect Coulomb drag
was claimed recently for spatially separated electrons and
holes in GaAs/AlGaAs coupled quantum wells in the presence
of high magnetic field perpendicular to the quantum wells
[47]. A steady transport current of electrons driven through
one quantum well was accompanied by an equal current of
holes in another. In Ref. [48], the authors discussed the drag of
holes by electrons in a semiconductor-insulator-semiconductor
structure. The prediction was that for two conducting layers
separated by an insulator there will be a drag of carriers in one
layer due to the direct Coulomb attraction with the carriers in
the other layer. The Coulomb drag effect in the electron-hole
double-layer BCS system was also analyzed in Refs. [49,50].
If the external potential difference is applied to one of the
layers, it will produce an electric current. The current in an
adjacent layer will be initiated as a result of the correlations
between electrons and holes at temperatures below the critical
one. Consequently, the Coulomb drag effect was explored
for semiconductor coupled quantum wells in a number of
theoretical and experimental studies [51–60]. The Coulomb
drag effect in two coaxial nanotubes was studied in Ref. [61].
The experimental and theoretical achievements in Coulomb
drag effect have been reviewed in Ref. [62].

We propose to study experimentally the angular-dependent
superfluidity of dipolar excitons in a phosphorene double layer
by applying a voltage difference for current flowing in one
layer in a chosen direction at a chosen angle � relative to
the armchair direction and measuring the drag current in the
same direction in another layer. This drag current in another
layer in the same direction as the current in the first layer
will be initiated by the electron-hole Coulomb drag effect
due to electron-hole attraction. The measurement of the drag
current in an adjacent layer for a certain direction with the
corresponding � will indicate the existence of superfluidity
in this direction. Due to the angular dependence of the sound
velocity, the critical exciton velocity for superfluidity depends
on an angle. Therefore, for certain exciton velocities, there are
the angle ranges which correspond to the superfluid exciton
flow, and other angle ranges which correspond to the normal
exciton flow. This can be applied as a working principle for
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switchers, controlling the exciton flows in different directions
of exciton motion, caused by the Coulomb drag effect.

VI. DISCUSSION AND CONCLUSIONS

We note that for dipolar excitons in isotropic 2D materials,
such as gapped graphene and TMDCs, as discussed in
Refs. [40,63] and [6], respectively, the spectrum of collective
excitations and the sound velocity do not depend on the angular
orientation with respect to a particular axis of the crystal
lattice. Also, the normal and superfluid concentrations and
the mean-field critical temperature for superfluidity do not
depend on the direction of exciton flow. For the anisotropic
phosphorene double layer, the spectrum of collective excita-
tions and the sound velocity depend on the angle made with
the armchair direction in monolayer phosphorene, as shown
in Fig. 4. Furthermore, for dipolar excitons in double-layer
phosphorene, the normal and superfluid concentrations have
a tensor form whose components depend on the direction
of the exciton flow. The elements of these tensors are not
equal to each other, as pointed out in Sec. IV B. Also, for
double-layer phosphorene, the mean-field critical temperature
of superfluidity depends on the direction of exciton flow,
as demonstrated in Fig. 7. These unique properties of an
exciton superfluid in a phosphorene double layer are due to
the anisotropy of the electron and hole energy band structures
in a phosphorene monolayer.

It is worth observing that if the condition r � D is not
satisfied, the dipolar exciton binding energies will be larger
than those given by Eq. (13). In this case, the harmonic
oscillator approximation cannot be used. According to Fig. 2,
for a larger r the magnitude of the harmonic oscillator
potentials is smaller than that for the corresponding Keldysh
or Coulomb potential. Therefore, the electron-hole attraction
would be weaker under the harmonic oscillator potential which
results in larger binding energies for the exact potential.
However, the results for the collective properties of dipolar
excitons, such as the spectrum of collective excitations, sound
velocity, the normal and superfluid concentrations, as well as
the mean-field critical temperature of superfluidity will not be
affected when the condition r � D is not satisfied since this
situation was not used for deriving and calculating numerically
the collective properties of dipolar excitons.

In summary, the influence of the anisotropy of the dis-
persion relation of dipolar excitons in a double layer of
phosphorene on the excitonic BEC and directional super-
fluidity has been investigated. The analytical expressions
for the single dipolar exciton energy spectrum and wave
functions have been derived. The angle-dependent spectrum
of collective excitations and sound velocity have been derived.
It is predicted that a weakly interacting gas of dipolar excitons
in a double layer of black phosphorus exhibits superfluidity at
low temperatures due to the dipole-dipole repulsion between
the dipolar excitons. It is concluded that the anisotropy
of the energy band structure in a phosphorene causes the
critical velocity of the superfluidity to depend on the direction
of motion of dipolar excitons. It is demonstrated that the
dependence of the concentrations of the normal and superfluid
components and the mean-field critical temperatures for
superfluidity on the direction of motion of dipolar excitons
occurs beyond the soundlike approximation for the spectrum of
collective excitations. Therefore, the directional superfluidity
of dipolar excitons in a phosphorene double layer is possible.
Moreover, the presented results, obtained for both Keldysh and
Coulomb potentials, describing the interactions between the
charge carriers allow us to study the influence of the screening
effects on the dipolar exciton binding energy, exciton-exciton
interaction, the spectrum of collective excitations, and the
critical temperature of superfluidity for a weakly interacting
Bose gas of dipolar excitons in a phosphorene double layer.
It is important to mention that the binding energy of dipolar
excitons and mean-field critical temperature for superfluidity
are sensitive to the electron and hole effective masses. In
addition, the possibilities of the experimental observation of
the superfluidity for various directions of motion of excitons
were briefly discussed.

Our analytical and numerical results will provide mo-
tivation for future experimental and theoretical investiga-
tions on excitonic BEC and superfluidity for double-layer
phosphorene.
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