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Quantum magnetic phases near the magnetic saturation of triangular-lattice antiferromagnets with XXZ
anisotropy have been attracting renewed interest since it has been suggested that a nontrivial coplanar phase, called
the π -coplanar or � phase, could be stabilized by quantum effects in a certain range of anisotropy parameter J/Jz

besides the well-known 0-coplanar (known also as V ) and umbrella phases. Recently, Sellmann et al. [Phys. Rev.
B 91, 081104(R) (2015)] claimed that the π -coplanar phase is absent for S = 1/2 from an exact-diagonalization
analysis in the sector of the Hilbert space with only three down-spins (three magnons). We first reconsider
and improve this analysis by taking into account several low-lying eigenvalues and the associated eigenstates
as a function of J/Jz and by sensibly increasing the system sizes (up to 1296 spins). A careful identification
analysis shows that the lowest eigenstate is a chirally antisymmetric combination of finite-size umbrella states
for J/Jz � 2.218 while it corresponds to a coplanar phase for J/Jz � 2.218. However, we demonstrate that the
distinction between 0-coplanar and π -coplanar phases in the latter region is fundamentally impossible from the
symmetry-preserving finite-size calculations with fixed magnon number. Therefore, we also perform a cluster
mean-field plus scaling analysis for small spins S � 3/2. The obtained results, together with the previous large-S
analysis, indicate that the π -coplanar phase exists for any S except for the classical limit (S → ∞) and the
existence range in J/Jz is largest in the most quantum case of S = 1/2.

DOI: 10.1103/PhysRevB.96.014431

I. INTRODUCTION

A strong magnetic field applied to a magnet forces the
intrinsic spin moments to align along the field direction. Once
the magnetic saturation is reached, the many-body state is
given by a simple direct product of local maximum spin
(Sz = S) states (if the system is invariant under the spin
rotation about the field axis, say, the z axis). Therefore,
quantum-mechanical fluctuations are rather small in magnets
near the saturation, compared to zero magnetic field. However,
in strongly frustrated magnets, there can be a large number
of possible magnetization processes that experience different
magnetic phases but merge into the same saturated state as
the magnetic field increases. This means that the energies of
many different magnetic states are nearly degenerate in the
vicinity of the saturation. Because of this, even small quantum
fluctuations near the saturation could play a significant role
in giving rise to exotic quantum phenomena, such as the
spin nematic phase [1–4], multi-q phases [5,6], and nontrivial
quantum criticality [7,8].

In this context of research, triangular-lattice antiferromag-
nets (TLAFs) have a long history as a promising model
system for studying the interplay among frustration, quantum
fluctuations, and magnetic fields [9,10]. Recent advances in
experiments have allowed for preparing a variety of quasi-
two-dimensional (quasi-2D) TLAF materials and accessing
their magnetic properties in strong magnetic fields up to
the saturation field Hs [11–19]. Since the seminal work by
Kawamura and Miyashita [20], it has been known that the sim-

plest model of TLAFs with isotropic Heisenberg interactions
possesses an accidental continuous degeneracy of the classical
ground state for finite magnetic fields. Past theoretical efforts
have established that quantum (or thermal) fluctuations lift
the classical degeneracy and select a magnetization process
whose magnetization curve exhibits a plateau at one-third of
the saturation magnetization [20–26]. However, such a one-
third magnetization plateau has been actually observed only
in a few TLAF materials [11,27,28]. In real TLAF materials,
one has to take into account some extra complexities such as
Dzyaloshinskii-Moriya interaction, longer-range interactions,
and some sort of anisotropy (single ion, spin exchange, spatial,
etc.), which make further complications in determining the
ground-state magnetic phase.

For instance, the layered TLAF materials such as
Ba3CoSb2O9 [11–13,16–18] and Ba3CoNb2O9 [14,15] pos-
sess XXZ-type anisotropy in the spin-exchange interactions
on each layer. The interactions between the spins on the single
layer are modeled by the following XXZ Hamiltonian:
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i ,Ŝz
i ) is the spin operator with spin S

at site i of the triangular lattice and the sum
∑

〈i,j〉 runs
over nearest-neighbor sites. The triangular-lattice XXZ model
under a strong longitudinal magnetic field,

Ĥext = −H
∑

i

Ŝz
i , (2)
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FIG. 1. Three magnetic phases predicted for the quantum trian-
gular XXZ model in the presence of strong magnetic fields. (a) Spin
moments on three sublattices A, B, and C in each phase are illustrated.
(b) Schematic representation of the suggested phase diagram [29,30]
in the vicinity of the saturation field Hs = 3(J + 2Jz)S.

has recently received increasing attention since the latest
theoretical studies [29,30] indicated the possibility for the
emergence of a new magnetic phase, named the π -coplanar
or � phase, for J > Jz > 0.

In Ref. [29], some of the current authors determined the
ground-state phase diagram of the spin-1/2 XXZ model (1)
on the triangular lattice as a function of the XXZ anisotropy
J/Jz and the field strength H with the use of the numerical
cluster mean-field plus scaling (CMF+S) method. For strong
magnetic fields, it was found that three different magnetic
phases appear depending on the value of J/Jz: the so-called
0-coplanar or V phase for small J/Jz, the umbrella phase for
large J/Jz, and the π -coplanar or � phase in the intermediate
region (see Fig. 1). Whereas the former two already exist in
the classical counterpart of the model [31], the latter emerges
due to quantum-mechanical effects [29]. The critical values
of the anisotropy J/Jz at the phase transitions right below
the saturation [H = Hs − 0+ with Hs = 3(J + 2Jz)S; see
Fig. 1(b)] were estimated as

(J/Jz)c1 = 1.588

(J/Jz)c2 = 2.220 (3)

within the CMF+S calculations for S = 1/2 [29]. For large
spin values S � 1, Starykh et al. [30] estimated (J/Jz)c1 and
(J/Jz)c2 based on the dilute Bose-gas expansion formalism,
in which magnetic states in the vicinity of the saturation are
described as Bose-Einstein condensations (BECs) of dilute
magnons via the Holstein-Primakoff transformation [32,33].
The values of (J/Jz)c1 and (J/Jz)c2 were determined at leading
order in 1/S as

(J/Jz)c1 ≈ (1 − 0.45/S)−1

≈ 1 + 0.45/S,

(J/Jz)c2 ≈ (1 − 0.53/S)−1

≈ 1 + 0.53/S, (4)

for large S.

More recently, in Ref. [34], some of the current authors
calculated a quantitatively precise result for the coplanar-
umbrella transition point at H = Hs − 0+ for arbitrary S,
by treating the 1/S series exactly within the dilute Bose-gas
framework [35]. This approach, however, makes it technically
difficult to address the distinction between the 0-coplanar
and π -coplanar states [32,34]. The transition point between
the (unspecified) coplanar and umbrella phases, denoted
by (J/Jz)c2∗ , is obtained as (J/Jz)c2∗ = 2.218 for S = 1/2,
which is in excellent agreement with the π -coplanar/umbrella
boundary given by the CMF+S calculation [(J/Jz)c2 = 2.220;
Eq. (3)].

The existence of the π -coplanar phase, however, is still
under discussion in the case of small S, especially for S =
1/2. Sellmann et al. performed an exact diagonalization (ED)
analysis of Eq. (1) with S = 1/2 in the three-magnon sector
(i.e., near the saturation) [36] to reexamine the existence of
the π -coplanar phase predicted in the CMF+S study [29].
Although they found three different parameter ranges of J/Jz

with different lowest eigenstates for N = 108 spins or less,
the intermediate region appeared to vanish when the ED data
were extrapolated to the limit of infinite system size, N → ∞.
From this result, the authors of Ref. [36] concluded that the “π -
coplanar” phase is absent for S = 1/2 in the thermodynamic
limit. This clearly contradicts the CMF+S result [29] in which
the π -coplanar region in the phase diagram gets wider as the
cluster size increases. However, it should be noted that the
conclusion by Sellmann et al. relies on their speculation that
the spurious phase that disappears in the thermodynamic limit
would be the π -coplanar phase.

Finally, on the experimental side, Susuki et al. have found
that the spin-1/2 XXZ TLAF Ba3CoSb2O9 has exhibited a
magnetization anomaly at a strong transverse magnetic field
H ≈ 0.7Hs [13]. This nontrivial anomaly has been thought
to be due to the phase transition between the 0-coplanar and
π -coplanar phases in the first report. However, its cause was
later shown to be a first-order phase transition induced by small
but nonvanishing interlayer coupling [16,25,37].

In this paper, we perform an ED and CMF+S study on
the triangular-lattice XXZ model (1) in longitudinal magnetic
fields (2) to establish the magnetic phases that appear in
the vicinity of the saturation field for small S � 3/2. The
results also give a resolution to the contradiction between the
CMF+S analysis [29] and the argument by Sellmann et al. [36]
regarding the existence of the π -coplanar phase. We carry out
the ED calculations of model (1) at S = 1/2 on finite-size
clusters of N spins with periodic boundary condition. We
mainly focus on the sector of the Hilbert space with only three
down-spins (

∑
i Ŝ

z
i = N/2 − 3) as in Ref. [36] but consider

clusters of much larger size up to N = 1296. Several low-lying
eigenvalues of the Hamiltonian are numerically computed
together with the lowest eigenvalue as a function of the
XXZ anisotropy parameter J/Jz. Moreover, we characterize
each eigenstate according to the translational and point-group
symmetries, and make further identification by calculating
the overlap (inner product) with the finite-size coherent-state
description of the candidate magnetic states (0-coplanar, π -
coplanar, and umbrella states).

Our ED analysis provides the following results: First, we
confirm the presence of three different J/Jz ranges separated
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by two level crossings of the lowest and first-excited states
for relatively small N , which was found by Sellmann et al.,
and that the intermediate region actually vanishes when N

exceeds a certain size. Second, however, the lowest eigenstate
that disappears in the thermodynamic limit is not the finite-
size π -coplanar state, contrary to Sellmann et al.’s speculation
[36], but actually a chirally symmetric superposition of finite-
size umbrella states. Third, the large-J/Jz region is occupied
by a chirally antisymmetric superposition of umbrella states.
Last and most important, in the small-J/Jz region (J/Jz �
2.218 at N → ∞) the lowest level is doubly degenerate and
its eigenstates correspond to a coplanar state. However, none
of the available information allows us to distinguish the π -
coplanar state from the 0-coplanar state. Although we point
out that the third and fourth low-lying eigenstates are crucial
to lift the degeneracy, the distinction between the 0-coplanar
and π -coplanar states is actually difficult since the third and
fourth energy levels quickly approach each other as N → ∞.
The above-mentioned ED results deny the claim in Ref. [36]
regarding the nonexistence of the π -coplanar phase for S =
1/2 and indicate the difficulty in distinguishing between the
0-coplanar and π -coplanar states in the symmetry-preserving
finite-size calculations.

Furthermore, in order to complement the CMF+S study for
S = 1/2 in Ref. [29], we also perform the CMF+S analysis for
S = 1 and S = 3/2. In the CMF+S approach, the symmetry
of the system is broken by self-consistent mean fields even on
finite-size clusters, which enables us to distinguish between the
0-coplanar and π -coplanar states. The results for the transition
points (J/Jz)c1 and (J/Jz)c2 just below the saturation field
are extrapolated to the limit of infinite cluster size. Taking
into consideration the results for S = 1 and S = 3/2 and the
previous S = 1/2 result [Eq. (3)], we can see that the values
of (J/Jz)c1 and (J/Jz)c2 are naturally approaching the 1/S

estimation [30] given in Eq. (4) as S increases. This strengthens
our statement that the π -coplanar phase exists even for small
S down to 1/2 and, moreover, the parameter (J/Jz) window
to realize the π -coplanar phase is wider for smaller S.

The paper is organized as follows. In Sec. II, we present
the ED calculations for S = 1/2 on two series of clusters
with different shapes. We show the level crossing between
four low-lying eigenvalues and discuss the correspondence
between the finite-size eigenstates and the expected magnetic
phases in the thermodynamic limit. In Sec. III, some details
about the CMF+S calculations for S > 1/2 and the results
for S = 1 and S = 3/2 are given. Section IV is devoted to
summary and conclusions.

II. EXACT DIAGONALIZATION ANALYSIS FOR S = 1/2

We first perform an ED analysis of the triangular-lattice
spin-1/2 XXZ model (1) on finite-size clusters of N spins. We
impose the periodic boundary condition defined by Ŝr i+T 1,2 =
Ŝi (r i is the coordinates of site i) with the vectors

T 1 = lu1 + mu2 and T 2 = −mu1 + (l + m)u2, (5)

where u1 = (1,0) and u2 = (1/2,
√

3/2) [38]. To avoid the
cluster shape dependence of the conclusion, we employ two
series of clusters identified by (l,m) = (3p,0) and (l,m) =
(2p, − p), respectively, with p = 1,2, . . . , which are both

FIG. 2. Two series of clusters that are considered in the present
ED analysis.

compatible with the expected three-sublattice magnetic orders.
The size of the clusters is given by N = l2 + lm + m2 for
both series, and specifically N = 9,36,81,144, . . . and N =
3,12,27,48, . . ., respectively (see Fig. 2). Unless specifically
stated otherwise, the maximum size used in the calculations is
N = 1296 for the former series and N = 1200 for the latter.
The data for N � 12 are not shown since the size is too small.

Both series possess the point-group symmetry under the
transformations whose generators are the planar rotations
R2π/3 and Rπ of angles 2π/3 and π , respectively, and the
axial reflection σx with respect to u1, as well as the translational
symmetry TN . Thus the space group is GN = TN � C6v , which
has 12N elements. Here, we mainly focus on the three-magnon
sector of the Hilbert space where only three spins are down
and the others are all up (

∑
i Ŝ

z
i = N/2 − 3) as in Ref. [36].

Thus the Hamiltonian matrix naively consists of NC3 × NC3

components. For efficient calculations, we further divide
the matrix into blocks of smaller dimensions according to
the space-group symmetry and numerically diagonalize each
block matrix.

A. Coherent-state description

Before showing the results of our ED calculations, we
consider the coherent-state description of the candidate mag-
netic phases (0-coplanar, π -coplanar, and umbrella states).
Note that for strong fields one can exclude other phases from
consideration, according to the dilute Bose-gas expansion
[32,34]. When the system size N increases with a fixed number
of magnons n, the density of magnons, n/N , goes to zero.
Consequently, the corresponding magnetic field H approaches
the saturation field Hs . In such a situation with dilute magnons,
the magnetic order can be described by the Bose-Einstein
condensation of magnons [32,33]. The umbrella state is given
by single BEC with either momentum k = Q = (4π/3,0) or
− Q. The two options (± Q) reflect the degeneracy with respect
to the chirality. On the other hand, a double BEC with both
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TABLE I. Irreducible representations (irreps) of low-lying states
characterizing the (a) 0-coplanar, (b) π -coplanar, and (c) umbrella
phases, in each sector of n magnons. The symbols �1−4 are defined
in Eq. (10).

(a) 0-coplanar order (m = 2,3, . . .)

n 1 m

irreps �1,�2 �1,�2,�3

(b) π -coplanar order (m = 1,2, . . .)

n 1 2m 2m + 1
irreps �1,�2 �1,�2,�3 �1,�2,�4

(c) Umbrella order (m = 0,1, . . .)

n 3m + 1 3m + 2 3m + 3
irreps �1,�2 �1,�2 �3,�4

momenta k = Q and k = − Q corresponds to coplanar states.
The 0-coplanar and π -coplanar states are characterized by
the relative phase φ between the condensates with k = ± Q:
φ = 0, 2π/3, or 4π/3 for 0-coplanar, and φ = π , 5π/3, or
π/3 for π -coplanar. The three options for each reflect the
remaining Z3 symmetry with respect to the exchange of the
three sublattices of the triangular lattice, A, B, and C, in Fig. 1.

In the regime of low magnon densities, n/N → 0, the
magnetic orders may be described by the coherent states of
dilute magnons:

|0-coplanar〉φ0 ∝ exp[−λ(ÔQ + e−iφ0Ô− Q)]|sat〉,
|π -coplanar〉φ0 ∝ exp[−λ(ÔQ − e−iφ0Ô− Q)]|sat〉, (6)

|umbrella〉± ∝ exp(−λÔ± Q)|sat〉,
where φ0 = 0, 2π/3, or 4π/3; λ is, in general, a complex
number; and |sat〉 is the magnetically saturated state given by
a direct product of local spin-up states. The magnon “creation”
operators ÔQ and Ô− Q are given by

Ô± Q = 1

N

∑

i

Ŝ−
i e±i Q·r i (7)

in the spin language. Therefore, in the sector of n magnons, the
states corresponding to each magnetic order should be given
by

|0-coplanar〉(n)
φ0

∝ (eiφ0/2ÔQ + e−iφ0/2Ô− Q)n|sat〉,
|π -coplanar〉(n)

φ0
∝ (eiφ0/2ÔQ − e−iφ0/2Ô− Q)n|sat〉,

|umbrella〉(n)
± ∝ Ôn

± Q|sat〉, (8)

for N → ∞.
The operators ÔQ and Ô− Q are transformed by the point-

group symmetry transformations as

R2π/3 : ÔQ → ÔQ and Ô− Q → Ô− Q,

Rπ : ÔQ → Ô− Q and Ô− Q → ÔQ,

σx : ÔQ → ÔQ and Ô− Q → Ô− Q . (9)

From Eqs. (8) and (9), the irreducible representations (irreps)
characterizing each magnetic order are listed in Table I. Here,

FIG. 3. The low-lying eigenenergies of the three-magnon sector
for N = 36 as a function of J/Jz. We plot the eigenenergies of the
��1 , ��2 , and ��3 states measured from that of ��4 . The lower panel
is the enlarged view showing the energy difference between ��3 and
��4 . In the shaded region marked by the double-headed arrow, the
��3 state has the lowest energy.

�1–�4 are defined by

�1 = [k = Q,R2π/3 = 1,σx = 1],

�2 = [k = − Q,R2π/3 = 1,σx = 1],

�3 = [k = 0,R2π/3 = 1,Rπ = 1,σx = 1],

�4 = [k = 0,R2π/3 = 1,Rπ = −1,σx = 1]. (10)

As seen from Table I, the three magnetic orders of interest
are distinguishable by the irreps only in the sectors of n =
2m + 1 magnons (m = 1,2, . . .), of which we mainly focus
on the minimum one, n = 3 (

∑
i Ŝ

z
i = N/2 − 3). Since the

calculation cost grows quickly with the magnon number n, we
push the analysis to n = 5,7 only for several values of J/Jz.

B. Low-lying eigenstates in the three-magnon sector

In Fig. 3, we show the four low-lying eigenenergies for
N = 36 in the three-magnon sector (n = 3 or

∑
i Ŝ

z
i = N/2 −

3) as a function of J/Jz. The higher eigenstates are clearly
separated from them. Thus, the four low-lying eigenstates are
possible candidates for quasidegenerate joint states [38]. Each
eigenstate is labeled by the irreps given in Eq. (10), e.g., ��1 .
Note that ��1 and ��2 are completely degenerate since the
system has a trivial inversion symmetry of the wave vector,
k ↔ −k. On the other hand, ��3 and ��4 are not degenerate,
but the energy difference is much smaller than that between
��1,2 and ��3,4 .

When the anisotropy parameter J/Jz is increased from
easy axis to easy plane, the lowest eigenstate is changed
from the degenerate ��1,2 to ��3 , then to ��4 through
two eigenenergy crossings. However, as the system size N
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FIG. 4. Same as in Fig. 3, but for N = 324. There is no J/Jz

range where the �3 state has the lowest energy.

increases, the range where ��3 has the lowest energy shrinks
and it disappears at N � 324, in the case of the cluster series
of N = 36,81, . . . ,1296. In Fig. 4, we show the eigenenergy
diagram for N = 324. Moreover, in the case of the cluster
series of N = 27,48, . . . ,1200, there is no window where
��3 has the lowest energy even at N = 27. The eigenenergy-
crossing points are summarized in Fig. 5. In either case of
the two cluster series, the degenerate ��1,2 state is the lowest
eigenstate for J/Jz � 2.218 while the ��4 is the lowest for
J/Jz � 2.218 in the thermodynamic limit.

FIG. 5. Lowest eigenstate diagram of 1/N versus J/Jz. The
eigenenergy-crossing points between the ��1,2 and ��4 states
(marked by the circles), between the ��1,2 and ��3 states (diamonds),
and between the ��3 and ��4 states (inverted triangles) are shown.
The boundary lines are just a guide for the eye. The left (right)
panel shows the data for the series of N = 36,81, . . . ,1296 (N =
27,48, . . . ,1200).

C. Identification of the low-lying eigenstates

In Ref. [36], Sellmann et al. supposed that the ��1,2 , ��3 ,
and ��4 states corresponded to the 0-coplanar, π -coplanar,
and umbrella orders, respectively, and thus concluded that the
π -coplanar phase was not stabilized as the ground state in
the thermodynamic limit for S = 1/2. However, it should be
noted that their argument lacked a precise identification of
the eigenstates. In the following, we identify each low-lying
eigenstate on the basis of the space-group symmetry (10) and,
more crucially, by calculating the overlap with the coherent
states (8) of the expected magnetic orders. Note that a similar
identification approach based on the coherent-state description
of long-range orders has been used for the study of a
multiple-spin-exchange model and has successfully identified
the emergence of a spin nematic order [39].

From Eq. (8), the finite-size 0-coplanar, π -coplanar, and
umbrella states are given in the three-magnon (n = 3) sector
by

|0-coplanar〉(3)
φ0

∝ 3eiφ0/2|�∗
�1

〉 + 3e−iφ0/2|�∗
�2

〉
+ cos(3φ0/2)|�∗

�3
〉

|π -coplanar〉(3)
φ0

∝ 3eiφ0/2|�∗
�1

〉 − 3e−iφ0/2|�∗
�2

〉
− cos(3φ0/2)|�∗

�4
〉

|umbrella〉(3)
± ∝ |�∗

�3
〉 ± |�∗

�4
〉, (11)

where

|�∗
�1

〉 ≡ Ô2
QÔ− Q|sat〉,

|�∗
�2

〉 ≡ ÔQÔ2
− Q|sat〉,

|�∗
�3

〉 ≡ (
Ô3

Q + Ô3
− Q

)|sat〉,
|�∗

�4
〉 ≡ (

Ô3
Q − Ô3

− Q

)|sat〉. (12)

The subscript �m indicates the irrep characterizing the state
�∗

�m
, which can be easily obtained from Eq. (9).

Since the symmetry is not spontaneously broken in finite-
size systems, the eigenstates of the Hamiltonian (1) must
belong to one of the irreps of the space group GN = TN � C6v .
Therefore, for example, the finite-size umbrella state appears
only in the form of the chirally symmetric combination

|umbrella〉(3)
+ + |umbrella〉(3)

− ∝ |�∗
�3

〉
or the chirally antisymmetric combination

|umbrella〉(3)
+ − |umbrella〉(3)

− ∝ |�∗
�4

〉.
In a similar fashion, the Z3 symmetry with respect to φ0 in
the finite-size 0-coplanar (respectively π -coplanar) state is not
broken for finite N , and the basis symmetry-preserving states
�∗

�1
, �∗

�2
, and �∗

�3
(respectively �∗

�1
, �∗

�2
, and �∗

�4
) appear as

separate eigenstates.
From the correspondence of the symmetry property, it can

be naturally expected that the eigenstates calculated by the
exact diagonalization, ��1−4 in Sec. II B, correspond to �∗

�1−4

of Eq. (12) in the thermodynamic limit, i.e., |��m
〉 → |�∗

�m
〉

(N → ∞; m = 1,2,3,4). We confirm this expectation by
numerically calculating the overlap (inner product) between
|��m

〉 and the corresponding |�∗
�m

〉 as a function of 1/N .
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FIG. 6. Overlaps between ��m
and �∗

�m
as a function of 1/N

at J/Jz = 1. The top and bottom panels show the data for the
series N = 36,81, . . . ,1296 and N = 27,48, . . . ,1200, respectively.
All data seem to approach 1 as N → ∞.

Figure 6 shows an example of the results. The overlaps
〈��m

|�∗
�m

〉/Z�m
, whereZ�m

≡
√

〈��m
|��m

〉〈�∗
�m

|�∗
�m

〉 is the
normalization factor, approach 1 as N → ∞ as expected for
all m = 1,2,3,4.

Having the above facts in mind, let us look again at the
results of Figs. 3, 4, and 5:

(i) There is no J/Jz range where the ��3 state has the
lowest energy in the thermodynamic limit as shown in Fig. 5,
which, however, does not necessarily mean the absence of the
π -coplanar phase for S = 1/2. This is because ��3 is not the π -
coplanar state but the chirally symmetric combination of finite-
size umbrella states (unlike the interpretation of Ref. [36]).

(ii) The double degeneracy of the lowest-energy eigen-
states ��1 and ��2 in the region of J/Jz � 2.218 (N → ∞)
should correspond to a coplanar phase according to Eq. (11),
although one cannot identify only from the lowest eigenstate
which is the ground state at the thermodynamic limit, the
0-coplanar or π -coplanar state.

(iii) For J/Jz � 2.218, the lowest eigenstate is ��4 ,
which is the chirally antisymmetric combination of finite-size
umbrella states. Therefore, the threshold value J/Jz ≈ 2.218

FIG. 7. The energy-crossing point around J/Jz ∼ 1 between the
eigenstates ��3 and ��4 as a function of 1/N . The circles and inverted
triangles show the data for the series N = 36,81, . . . ,1296 and N =
27,48, . . . ,1200, respectively.

may indicate the coplanar-umbrella transition point just below
the saturation field. The value is indeed in good agreement
with the semianalytical value (J/Jz)c2∗ = 2.218 of the dilute
Bose-gas expansion for the coplanar-umbrella transition point
[34].

D. 0-coplanar or π -coplanar

As seen from the discussion of Sec. II C, only the
consideration of the lowest eigenstate is not sufficient to
determine which state is selected as the ground state in the
region of J/Jz � 2.218, 0-coplanar or π -coplanar, because
the degenerate eigenstates ��1,2 are common for general
coplanar orders [see Eq. (11)]. Hence, one needs to take higher
eigenstates into consideration.

As seen in the ED data of Fig. 4, the energy of ��4 is
smaller than that of ��3 for J/Jz � 1.03 while it is opposite
for 1.03 � J/Jz � 2.2. This feature does not depend on the
system size or the cluster shape (see Fig. 7). According to
Eq. (11), if the eigenstates ��1,2 and ��3 (respectively ��1,2

and ��4 ) collapse to the ground state in the thermodynamic
limit, the 0-coplanar (respectively π -coplanar) ground state
would be formed as a result of the spontaneous U (1) × Z3

symmetry breaking. Therefore, naively considering the ED
data, one might conclude that the π -coplanar phase emerges
for 0 < J/Jz � 1.03 while the 0-coplanar phase is stabilized
for 1.03 � J/Jz � 2.22.

However, this conclusion is in clear contrast with the widely
accepted consensus that the ground state of the quantum
isotropic Heisenberg model (J/Jz = 1) on the triangular
lattice exhibits the 0-coplanar (V ) magnetic order for strong
magnetic fields [21]. This discrepancy can be understood in the
following way. In the ED calculations, we consider a sector of
the Hilbert space with a fixed number of magnons (n = 3 in this
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FIG. 8. (a) Log-log plots of the eigenenergy differences between
��1,2 and ��4 (circles) and between ��3 and ��4 (inverted triangles)
as a function of the system size N . The slope of each pair of the two
neighboring data points are shown in (b) for the former and (c) for the
latter as a function of 1/N . The right-hand panel of (a) is the schematic
diagram of the energy levels in the range 0 < J/Jz � 1.03. We show
the data at J/Jz = 0.5 for the cluster series N = 27,48, . . . ,1200 as
an example.

paper). Therefore, the “thermodynamic limit” N → ∞ means
the “dilute-magnon limit” n/N → 0 (i.e., H → Hs − 0+)
at the same time. It should be recalled that in such a limit
the 0-coplanar, �-coplanar, and umbrella states become all
degenerate and merge into the saturated state at H = Hs .
Thus, the finite-size ED analysis can distinguish between the
0-coplanar and π -coplanar states only when the merging of
the two states as H → Hs − 0+ is slower than the collapse of
the basis eigenstates in each state ({��1,2 , ��3} or {��1,2 , ��4})
to the ground state as N → ∞.

In Fig. 8, we show a typical example of the finite-size
scaling of the eigenenergy differences between ��1,2 and ��4

and between ��3 and ��4 . The energy of the eigenstate ��4

approaches the lowest ��1,2 level, and the difference goes
to zero as ∼N−α with α ≈ 1.0–1.3, which seems slightly
faster than the Nambu-Goldstone mode expected to collapse as
∼N−1. However, at the same time, the ��3 level also collapses
into the ground state. More importantly, the merging of ��3

into ��4 is much faster (∼N−3) than the collapse of ��4

and ��1,2 . This means that it is fundamentally impossible
to distinguish between the 0-coplanar and π -coplanar states
from the finite-size eigenstates with a fixed number of
magnons.

E. Analysis with a fixed density of magnons

As seen above, the finite-size ED analysis with a fixed
number of magnons is inadequate for discussing the relative
angles among the three sublattice moments in coplanar states.

The point is that both 0-coplanar and π -coplanar states merge
into the saturated state as n/N → 0 (H → Hs − 0+) and
become indistinguishable from each other. One may avoid this
issue by fixing the density of magnons, n/N , instead of the
number of magnons, n, when taking the thermodynamic limit
N → ∞. In the magnetic phases supposed here (0-coplanar,
π -coplanar, or umbrella), the finite-size gap of the Nambu-
Goldstone mode (linear in the wavelength) is expected to
scale as ∼N−1/2 at fixed magnon density [38]. Therefore,
the magnetic phase that appears in the thermodynamic limit
is determined by the finite-size eigenstates that collapse into
the ground state faster than N−1/2. Each candidate magnetic
order is identified by the eigenstates with the irreps listed in
Table I.

In order to take the thermodynamic limit at a fixed
magnon density, it is required to perform the ED calculations
with different values of magnon number n; however, the
computable system size decreases rapidly as n increases.
Moreover, according to the irreps listed in Table I, only the
Hilbert-space sector with an odd number of magnons n =
2m + 1 (m = 1,2, . . .) can distinguish between the 0-coplanar
and π -coplanar states. Therefore, we consider the magnon
numbers n = 3, 5, and 7 and the cluster series N = 27,48, . . ..
The maximum system size computed in the present work for
n = 7 is N = 108, and thus we take a small but fixed magnon
density, namely, n/N = 7/108 ≈ 0.065. According to Table I,
the 0-coplanar (respectively π -coplanar) state is expected to be
formed in the thermodynamic limit when the ��3 (respectively
��4 ) state collapses into the lowest ��1,2 state faster than N−1/2

and is separated from the ��4 (respectively ��3 ) state in a
distinguishable fashion.

In Fig. 9, we show the size dependence of the eigenenergies
of the ��3 and ��4 states measured from that of the lowest
eigenstate ��1,2 at J/Jz = 0.5 (as an example) for n = 3, 5,
and 7, respectively. The system size N can take only specific
values. Therefore, we employ the following interpolation
scheme in order to fix the magnon density to n/N = 7/108 ≈
0.065 for n = 3 and 5: Using the log-log plots shown in
Fig. 9, we perform a linear least-squares fitting for the data
of the three system sizes neighboring N = n/0.065, that is,
N = 28,48,75 for n = 3 and N = 48,75,108 for n = 5. From
the fitting functions, we obtain the interpolation values of the
eigenenergy differences that correspond to the magnon density
n/N = 0.065. The same procedure is also performed for other
values of J/Jz.

In Fig. 10, we show the size dependence of the eigenen-
ergies of the ��3 and ��4 states measured from that of the
lowest eigenstate ��1,2 at J/Jz = 0.5, 1, and 2, after refining
the data such that the magnon density is fixed to n/N = 0.065.
Contrary to expectation, we find no clear splitting of the ��3

and ��4 levels for any case, although it should, in principle, be
possible to distinguish between 0-coplanar and π -coplanar
states from the analysis with a fixed magnon density as
mentioned above. This might be attributed to the fact that
the number of magnons n � 7 and, correspondingly, the size
of the system N � 108 are still too small to see a clear
separation of the ��3 and ��4 levels; also, we might have to
reconsider more carefully the mechanism which leads to the
generation of the symmetry-broken state in the thermodynamic
limit.
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FIG. 9. Log-log plots of the eigenenergies of ��3 (circles) and
��4 (diamonds) measured from that of the lowest eigenstate ��1,2 as
a function of the system size N at J/Jz = 0.5. We show the data for
different magnon numbers (n = 3, 5, and 7). The lines for n = 3 (n =
5) are linear fitting functions of the N = 27,48,75 (N = 48,75,108)
data for each data series. The vertical dashed lines mark the point at
which the magnon density n/N = 7/108 ≈ 0.065.

Surprisingly, even for the isotropic Heisenberg model
(J/Jz = 1), although it is widely believed that the 0-coplanar
phase is formed for strong magnetic fields, one cannot
rigorously specify the coplanar phase, 0 or π , from the “exact”
calculations for finite-size systems at the stage of the current
numerical capabilities. Further developments of computer
performance and numerical techniques are anticipated to solve
this open fundamental problem regarding the spontaneous
symmetry breaking in frustrated systems.

III. CLUSTER MEAN-FIELD THEORY WITH
CLUSTER-SIZE SCALING FOR S � 3/2

We found out in Sec. II that it is difficult to address the
issue of the distinction between the 0-coplanar and π -coplanar
states by using the symmetry-preserving ED analysis on finite
systems. In the case of analytical studies with the dilute
Bose-gas expansion [32,34], the calculation of sixth-order
corrections to the ground-state energy is required to address
the distinction between the 0-coplanar and π -coplanar states,
but it is also technically difficult.

One promising approach to address the problem is the
CMF+S method [25,29,37,40]. This method has been applied
to the triangular-lattice XXZ model (1) for S = 1/2 and
has successfully produced the ground-state phase diagram

FIG. 10. Log-log plots of the eigenenergies of ��3 (circles) and
��4 (diamonds) measured from that of the lowest eigenstate ��1,2 as
a function of the system size N at the fixed magnon density n/N =
0.065. We show the data for different anisotropy parameters (J/Jz =
0.5, 1, and 2). The lines are a linear fitting function for each data
series.

including the transition between the 0-coplanar and π -coplanar
phases [29]. In the CMF+S method, although one deals with
interacting spins on a finite-size cluster as in the ED analysis,
the correlation effects from the spins outside the cluster are
also treated as effective magnetic fields (mean fields) acting
on the edge sites of the cluster.

The many-body problem with the Hamiltonian (1) in the
presence of external magnetic fields (2) is replaced by an NC-
body problem described by the cluster Hamiltonian

ĤC = J

NB∑

〈i,j〉∈C

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

) + Jz

NB∑

〈i,j〉∈C

Ŝz
i Ŝ

z
j

−H

NC∑

i∈C

Ŝz
i −

∑

i∈∂C

hMF
i · Ŝi , (13)

where NB is the number of nearest-neighbor bonds inside the
cluster C and ∂C are the edge sites of the cluster. The mean-
field decoupling Ŝα

i Ŝα
j → 〈Ŝα

i 〉Ŝα
j + 〈Ŝα

j 〉Ŝα
i − 〈Ŝα

i 〉〈Ŝα
j 〉 of the

interactions across the spins inside and outside the cluster gives
the effective one-body fields

hMF
i =

∑

j∈C̄

(
Jij

〈
Ŝx

j

〉
,Jij

〈
Ŝ

y

j

〉
,J z

ij

〈
Ŝz

j

〉)
, (14)
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FIG. 11. Series of the clusters used in the CMF+S analysis. The
parameter λ is defined by λ ≡ NB/(3NC). The bottom illustrations
show examples of the independent clusters that have to be considered
under the three-sublattice ansatz.

where Jij = J and J z
ij = Jz for nearest-neighbor pairs 〈i,j 〉

and Jij ,J
z
ij = 0 otherwise, and C̄ is the outside of cluster C.

In contrast to the ED analysis in Sec. II with the periodic
boundary condition, the existence of the mean fields hMF

i ,
whose values are self-consistently determined, approximates
the effects of spontaneous symmetry breaking expected to take
place in the thermodynamic limit. Therefore, one can describe
the distinction between the 0-coplanar and π -coplanar phases
at the level of finite-size calculations. The approximation error
caused by the mean-field decoupling can be neglected in
principle by performing the cluster-size scaling NC → ∞ in
the CMF+S method. Of course, there is a practical limitation
on the cluster size NC that can be handled with numerical
diagonalization. Unfortunately, since the assumption of the
mean fields also breaks the conservation of the total spins∑

i Ŝ
z
i , the maximum size of tractable clusters becomes rather

smaller than that of the ED analysis with the periodic boundary
condition.

In the following, we apply the CMF+S method to higher
spins S = 1 and S = 3/2 to complement the study in Ref. [29]
treating S = 1/2. We calculate the transition points just below
the saturation, (J/Jz)c1 between the 0-coplanar and π -coplanar
phases and (J/Jz)c2 between the π -coplanar and umbrella
phases, and compare the dependencies on the spin value S in
the small-S regime with those of the large-S expansion given
in Eq. (4).

In order to take an efficient scaling within the cluster-size
limitation, we employ the series of triangular-shaped clusters
shown in Fig. 11. The maximum size of the cluster in the
practical calculations is NC = 15 for S = 1 and NC = 10 for
S = 3/2. The magnetic orders such as 0-coplanar, π -coplanar,
and umbrella are characterized by the sublattice magnetic
moments mα

μ (α = x,y,z) on sublattice μ = A,B,C:

mα
μ = 1

Nμ

MC∑

n=1

∑

iμ∈Cn

Tr(Ŝα
iμ
e−βĤCn )/Tr(e−βĤCn ), (15)

where iμ denotes site i belonging to sublattice μ, MC is the
number of independent clusters determined by the matching
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FIG. 12. Cluster-size scaling of the CMF+S method for the
phase boundaries just below the saturation field for (a) S = 1 and
(b) S = 3/2. The transition points (J/Jz)c1 and (J/Jz)c2 correspond
to the transitions between the 0-coplanar and π -coplanar phases
and between the π -coplanar and umbrella phases, respectively. The
symbols (×) mark the semianalytical values (J/Jz)c2∗ from the dilute
Bose-gas expansion [34].

between the cluster shape and the sublattice ansatz (see
Fig. 11), Nμ is the number of total sites belonging to the
sublattice μ in the MC clusters, and β = 1/T (we take T → 0
to consider the ground-state properties). Substituting mα

μ into

〈Ŝα
iμ
〉 in the effective field terms (hMF

i ) of ĤCn
, Eq. (15)

becomes a set of self-consistent equations for mα
μ. Starting with

a certain set of initial values for mα
μ, we evaluate the right-hand

side of Eq. (15) in an iterative manner until the convergence
of the values of mα

μ is reached. Finally, we take the limit of the
infinite cluster size for the results by using a scaling parameter
λ ≡ NB/3NC [25,29,37,40]. Note that a similar approach has
been also applied to study an S = 1 bilinear-biquadratic model
with single-ion anisotropy (at zero magnetic field) [41].

A. The CMF+S result for the transition points just
below the saturation

Solving numerically Eq. (15), we obtain the ground-state
phase diagram of the triangular XXZ model for S = 1 and
S = 3/2 in the strong-field regime, which has the same
topology as in the case of S = 1/2 [29] [shown in Fig. 1(b)].
Both phase transitions between the 0-coplanar and π -coplanar
phases and between the π -coplanar and umbrella phases are
of first order. At the transition points, the energies of each
pair of the two phases are equal. We calculate the values
of J/Jz at the transitions with the help of the Maxwell
construction in the plane of J/Jz versus χ ≡ −∑

〈i,j〉〈Ŝx
i Ŝx

j +
Ŝ

y

i Ŝ
y

j 〉/M , namely, the nearest-neighbor transverse correlation
(see Ref. [29] for more details).

In Fig. 12, we show the cluster-size scaling of the phase
transition points (J/Jz)c1 and (J/Jz)c2 just below the satura-
tion field for S = 1 and S = 3/2. The scalings are performed
with the parameter λ ≡ NB/3NC , which takes values of zero
for NC = 1 and 1 for NC → ∞. Note that for S = 3/2, the
π -coplanar state is not energetically favorable against the
0-coplanar or umbrella state for any J/Jz when the cluster
size is small (NC = 3,6). However, the π -coplanar phase is
still found as a stationary solution of Eq. (15). Therefore, in
Fig. 12 we plot the equal-energy points between the 0-coplanar
and π -coplanar solutions and between the π -coplanar and

014431-9



DAISUKE YAMAMOTO et al. PHYSICAL REVIEW B 96, 014431 (2017)

TABLE II. The CMF+S data for (J/Jz)c1 and (J/Jz)c2 obtained
by the scaling with cluster sizes NC � 21 for S = 1/2 [29], NC � 15
for S = 1, and NC � 10 for S = 3/2. The semianalytical values
for the coplanar-umbrella transition point (J/Jz)c2∗ just below the
saturation field [34] are also listed for comparison.

S 1/2 1 3/2

CMF+S: (J/Jz)c1 1.588 [29] 1.417 1.309
CMF+S: (J/Jz)c2 2.220 [29] 1.553 1.340
Dilute Bose-gas expansion: 2.218 1.554 1.361

(J/Jz)c2∗ [34]

umbrella solutions also for those small clusters in order to
obtain a proper scaling series for (J/Jz)c1 and (J/Jz)c2.

The fittings with a linear function are performed for the
data points of the three largest clusters (NC = 6,10,15 for
S = 1 and NC = 3,6,10 for S = 3/2). To see the accuracy, we
also mark the semianalytical results of the arbitrary-S dilute
Bose-gas expansion for the coplanar-umbrella transition [34],
which show good agreement with the extrapolated value of
the π -coplanar-umbrella transition (J/Jz)c2 for S = 1. The
agreement is worse (but still within 2%) for S = 3/2. This can
be attributed to the fact that the scaling series includes the data
of the NC = 3 cluster, which is evidently too small. Indeed,
the fitting with a linear function does not seem completely
satisfactory in this case.

For the zero-π transition point (J/Jz)c1, no analytical value
has been found in the literature. However, one can see that the
linear fitting for (J/Jz)c1 is better than that for (J/Jz)c2. Even
for S = 3/2 with the data including NC = 3, the linear fitting
is fine for (J/Jz)c1. One can clearly see that the difference
(J/Jz)c2 − (J/Jz)c1, i.e., the range where the π -coplanar phase
appears, increases with NC → ∞ for both S = 1 and S = 3/2
as in the case of S = 1/2 [29].

The CMF+S results for (J/Jz)c1 and (J/Jz)c2 in the small-S
regime are summarized in Table II together with the arbitrary-S
dilute Bose-gas results [34]. Although the latter has not ad-
dressed the distinction between the 0-coplanar and π -coplanar
states for a technical reason (as was explained in Sec. I),
the semianalytical values for the transition point (J/Jz)c2∗

between the (unspecified) coplanar and umbrella phases are
quantitatively reproduced as (J/Jz)c2 in our CMF+S method
especially for S = 1/2 and S = 1, in which the calculations
with relatively large clusters NC � 15 have been done.

B. Comparison with the large-S approximation

Taking the current CMF+S results and the previous studies
[29,30,34] into account, we discuss the crossover from the
nearly classical, large-S regime to the highly quantum, small-S
regime of the magnetic phases in the TLAFs near saturation.
In Fig. 13, we show the transition points (J/Jz)c1 and (J/Jz)c2

just below the saturation field as a function of spin S. One can
see that the transition points for small S � 3/2, obtained by
the CMF+S method, are smoothly connected to the large-S
values [Eq. (4)] for S � 2. It can be also expected that the
π -coplanar phase is present as the ground state for any finite
value of S and asymptotically vanishes in the classical limit of
S → ∞.

FIG. 13. Phase boundaries among the two coplanar and umbrella
states just below the saturation field. We show the current CMF+S
results for S = 1 and S = 3/2 together with the previous S = 1/2
values [29] for (J/Jz)c1 (inverted triangles) and (J/Jz)c2 (diamonds).
The dilute Bose-gas results for arbitrary S (circles) [34] and within
the large-S approximation (dashed and dash-dotted curves) [30]
are also plotted for comparison. Note that the arbitrary-S dilute
Bose-gas analysis provides a quantitatively precise value for the
coplanar-umbrella transition point (J/Jz)c2∗ just below the saturation,
but which coplanar state (0-coplanar or π -coplanar) appears for
J/Jz � (J/Jz)c2∗ is unspecified [32,34]. The boundary lines are just
a guide for the eye.

Of particular interest is that the J/Jz range where the π -
coplanar phase is stabilized, i.e., (J/Jz)c2 − (J/Jz)c1, mono-
tonically increases as S decreases. The most quantum case
of S = 1/2 has the greatest chance to observe the quantum
stabilization of the π -coplanar phase in experiments on TLAF
materials.

IV. CONCLUSIONS

We have studied the ground-state magnetic phases as a
function of anisotropy J/Jz in the triangular-lattice XXZ
model near saturation for small spins S � 3/2. In the former
part, we reconsidered the previous ED analysis of Sellmann
et al. for S = 1/2 in the three-magnon (n = 3) sector of the
Hilbert space [36] by taking into consideration much-larger-
size clusters (N � 1296) and several higher eigenvalues.
Moreover, we identified the associated eigenstates from the
space-group symmetry and by calculating the overlaps with
the coherent states corresponding to the candidate magnetic
orders, i.e., the 0-coplanar, π -coplanar, and umbrella states.
For the system sizes N = 36,81,144,225, the model exhibits
three parameter J/Jz ranges that have different lowest eigen-
states. However, the intermediate one of the three ranges
shrinks and vanishes as N is further increased, or does not
exist from the beginning in the case of another cluster series
with N = 27,48, . . .. The authors in Ref. [36] interpreted this
result as indicating the nonexistence of the π -coplanar phase
in the ground state, as opposed to our previous suggestion [29].
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The current ED study with proper identification of the low-
lying eigenstates offered a counterargument against Ref. [36].
From the identification analysis, we demonstrated that the
spurious phase which is present in finite-size calculations
and disappears in the thermodynamic limit is actually a
chirally symmetric combination of finite-size umbrella states.
Furthermore, the lowest eigenstate in the coplanar region
0 < J/Jz � 2.218 is always doubly degenerate and does not
identify what coplanar state (more specifically, 0-coplanar
or π -coplanar state) appears in the thermodynamic limit.
Although the higher (but low-lying) eigenstates are expected
to lift the degeneracy in such a case, it is also fundamentally
impossible to argue that here since the collapse of the low-
lying eigenstates into the symmetry-broken ground state in
the thermodynamic limit N → ∞ is much slower than the
merging of the 0-coplanar and π -coplanar states into the
magnetically saturated state as n/N → 0.

In the latter part of the paper, we applied the CMF+S
method to the cases of S = 1 and S = 3/2 to complement
the previous study [29], in which the CMF+S has given
a distinction between the 0-coplanar and π -coplanar states
for S = 1/2. Also for S = 1 and S = 3/2, we found the
π -coplanar phase as the ground state for strong magnetic fields
in a finite range of J/Jz as well as the 0-coplanar and umbrella
phases. In addition, we showed the crossover from the small-S
regime to the large-S regime of the transition points just below
the saturation field between the 0-coplanar and π -coplanar

phases and between the π -coplanar and umbrella phases. It
was predicted that the π -coplanar phase occupies the largest
range of J/Jz in the most quantum case of S = 1/2, and
asymptotically disappears as increasing S towards the classical
limit of S → ∞.

In order to access the π -coplanar phase in real TLAF
materials, it is required that the material has a relatively
large easy-plane anisotropy, e.g., J/Jz ≈ 1.6–2.2 for S =
1/2, J/Jz ≈ 1.4–1.6 for S = 1, and J/Jz ≈ 1.3–1.4 for
S = 3/2. A possible option is a family of Co-based com-
pounds [11,12,14,15,19], which can possess an effective
XXZ anisotropy due to the strong spin-orbit coupling. For
example, the latest estimation of the anisotropy parameter
J/Jz in Ba3CoSb2O9 (S = 1/2) ranges from J/Jz ≈ 1.18 to
1.3 [18,29,42]. Another way is to place TLAF materials under
static pressure [43,44], which could tune the system parameters
including the anisotropy.
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