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Overcoming the sign problem at finite temperature:
Quantum tensor network for the orbital eg model on an infinite square lattice
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The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite
temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg

model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the
inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond
dimension D—limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain
a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of
finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the
critical exponents within 1% of the 2D Ising universality class.
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I. INTRODUCTION

Frustration in quantum spin systems occurs by competing
exchange interactions and often leads to disordered spin liquids
[1,2]. This is in contrast to Ising spins on a square lattice
where periodically distributed partial frustration in the form of
exchange interactions with different signs does not suppress
a phase transition at finite temperature Tc [3], while complete
frustration gives a disordered classical phase [4]. Frustration
may also be generated by a different mechanism—when Ising-
like interactions for different pseudospin components compete
on a square lattice in the two-dimensional (2D) compass model
[5–8] or on the honeycomb lattice in the Kitaev model [9].
While the short-range spin liquid is realized in the Kitaev
model [10], the pseudospin nematic order stabilizes below Tc

in the 2D compass model [11,12]. In such cases entanglement
plays an important role [13] and advanced methods of quantum
many-body theory have to be applied.

In real systems pseudospin interactions concern the orbital
degrees of freedom. The case of eg orbitals is paradigmatic
here as it (i) is related to the 2D compass model [14] and
(ii) initiated spin-orbital physics [15–19]—the well known
systems with eg orbitals are: KCuF3 [20–22], LaMnO3

[23–30], and LiNiO2 [31–33]. This field is very challenging
due to the interplay and entanglement of spins and orbitals,
which leads to remarkable consequences [34,35]. However,
when spin order is ferromagnetic, as in the (a,b) planes of
KCuF3 and LaMnO3, spins disentangle and one is left with
the 2D orbital eg model [36,37] where hole propagation is
possible by the coupling to orbitons [38]. Surprisingly, the
tendency towards long-range order with such excitations is
then opposite to that for spin systems [39], i.e., eg orbital order
occurs in a 2D square lattice below Tc [40,41], for instance
in K2CuF4 [42,43], while the role of quantum fluctuations
increases with increasing dimension [36,44].

In this paper we investigate a phase transition at Tc in the
2D orbital eg model. A better understanding of the signatures
of this phase transition provides a theoretical challenge. We
present a very accurate estimate of Tc and the critical exponents
being in the 2D Ising universality class. These results could

be achieved due to a remarkable recent progress in tensor net-
works due to the formulation of an algorithm at finite temper-
ature using a projected entangled-pair operator (PEPO) [45].

The paper is organized as follows. Section II gives brief
overview of tensor network methods. Section III introduces
simulated model. Section IV introduces the 2D finite tem-
perature tensor network method used to simulate the model.
Numerical results are presented in Sec. V. Section VI sum-
marizes the paper. Appendix A gives a detailed description
of the results of convergence analysis, which enabled us to
obtain trustworthy results for the model. Technical details of
simulations are given in Appendix B. Finally, Appendix C
gives additional results for the low-temperature regime of the
model.

II. TENSOR NETWORKS

Since the discovery of the density matrix renormalization
group (DMRG) [46,47]—which was later shown to optimize
the matrix product state (MPS) variational ansatz [48]—
quantum tensor networks proved to be an indispensable tool
to study strongly correlated quantum systems [49]. The MPS
ansatz was later generalized to a 2D projected entangled pair
state (PEPS) [50,73] and supplemented with the multiscale
entanglement renormalization ansatz (MERA) [51]. The net-
works do not suffer from the notorious sign problem [52] and
in the doped case fermionic PEPS provided better variational
energies for the t-J model [53] and the Hubbard model [54]
than the best available variational Monte Carlo results. A
combination of different tensor networks, supplemented with
other sign-error-free methods, seems to have finally settled the
controversy on the ground state of the underdoped Hubbard
model [55]. The networks—both MPS [56–58] and PEPS
[59–61]—also made some major breakthroughs in the search
for topological order. This is where, like in the eg model [40],
geometric frustration often prohibits the traditional quantum
Monte Carlo.

Thermal states of quantum Hamiltonians were explored
much less than their ground states. In one dimension they can
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be represented by an MPS ansatz prepared with an accurate
imaginary time evolution [62,63]. A similar approach can be
applied in 2D models [64,65], where the PEPS manifold is a
compact representation for Gibbs states [66] but the accurate
evolution proved to be more challenging. Alternative direct
contractions of the 3D partition function were proposed [67],
but, due to local tensor update, they are expected to converge
more slowly with increasing refinement parameter. Even a
small improvement towards a full update can accelerate the
convergence significantly [68].

In order to avoid these problems, in the pioneering work
[45] two of us introduced an algorithm to optimize variation-
ally a projected entangled-pair operator (PEPO) representing
the Gibbs state e−βH of a 2D lattice system (β ≡ 1/T ). Its
first challenging benchmark applications include the quantum
compass [12] and Hubbard [69] models where it provided
accuracy comparable to the best conventional methods.

This was not quite unexpected. Just like for the ground-state
PEPS, the accuracy of the thermal PEPO is limited by its finite
bond dimension D, i.e., the size of tensor indices connecting
nearest-neighbor lattice sites. This size limits the entanglement
within the ground/thermal state. However, by its very definition
the Gibbs state is the mixed state that maximizes the entropy for
a given average energy. Since this maximal entropy is actually
the entropy of entanglement with the rest of the universe,
then—thanks to the monogamy of entanglement—the Gibbs
state also minimizes its internal entanglement. Among all
states with the same average energy it is the one most suited
to be represented by a tensor network. Encouraged by the
benchmarks tests, in this work we apply the algorithm to a
model that evades treatment by quantum Monte Carlo [40,41].
Numerical convergence and self-consistency alone allow us
to make definitive statements on the physics of the model
demonstrating the power of this method.

III. eg ORBITAL MODEL

The quantum eg model on an infinite square lattice is defined
by the Hamiltonian

H = −J
∑

j

∑

α=a,b

τ α
j τ α

j+eα
. (1)

Here j labels lattice sites, ea(eb) are unit vectors along the a(b)
axis and τα

j are orbital operators represented by Pauli matrices:

τ a
j = 1

4

(−σ z
j +

√
3σx

j

)
, τ b

j = 1
4

(−σ z
j −

√
3σx

j

)
. (2)

The coupling in the orbital space depends on the spatial
orientation of the bond. In what follows J = 1.

At low temperature a spontaneous breaking of symmetry
takes place and the system orders according to the strongest
interaction ∝ 3

16σx
i σ x

j [14]. This symmetry breaking implies a
finite real order parameter

m(T ) ≡ 〈
σx

j

〉
. (3)

Unlike the 2D compass model [11], the model (1) is not
tractable by Monte Carlo [41], but the order parameter suggests
the 2D Ising universality class for the finite temperature
transition, which is confirmed by our simulations.

FIG. 1. A route towards a tractable 2D PEPO network: (a) a small
time step U (dβ) as a PEPO network with a bond dimension 4; (b)
the operator e−βH/2 ≡ U (β) as a product of N small steps U (dβ)N ;
contraction of (b) along each column gives (c) a 2D network with a
huge bond dimension 4N where each bond line is inserted with (d) an
orthogonal projection of dimension D made of two isometries; next
each isometry is absorbed into its (e) nearest tensor truncating the
dimension of its bond index from 4N down to D. It leads to a network
U (β) depicted in (f) with a bond dimension D.

IV. ALGORITHM AT T > 0

The algorithm was described in all technical detail else-
where [12]. Its aim is to represent matrix elements of the
operator ρ = e−βH/2 by the 2D tensor network in Fig. 1. Here
we show only a small 4 × 4 unit of an infinite square lattice and
each geometrical shape (here a green ball) represents a tensor.
There is one tensor at every lattice site. Each line sticking out of
the tensor represents one index. A (black) line connecting two
tensors represents a tensor contraction through the connecting
index. There is one bond index along every nearest-neighbor
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bond. It has a finite bond dimension D. The dashed bond lines
connect the 4 × 4 unit with the rest of the lattice. The open (red)
vertical indices number the orbital basis states. Those pointing
up (down) number bra (ket) states. The desired 2D network
in Fig. 1(f)—known as PEPO—can be contracted efficiently
to obtain local expectation values. A finite D is sufficient to
represent Gibbs states with their limited entanglement.

On the other hand, the 2D operator e−βH/2 ≡ U (β) can
be naturally represented by a 3D network, the third dimension
being the imaginary time β. The evolution is split into N small
time steps (dβ � 1), U (β) = U (dβ)N . With a Suzuki-Trotter
decomposition, each step can be represented by a 2D layer in
Fig. 1(a). In the eg model, its bond indices have dimension
4. The product of N steps is the 3D network in Fig. 1(b).
Here we show only three layers; the remaining N − 3 ones are
represented by the vertical dashed lines.

The 3D network is too hard to treat directly. Formally, it
can be compressed to a 2D network by contracting along each
vertical column first. The resulting 2D network in Fig. 1(c)
arises at the price of a huge bond dimension 4N . Fortunately,
we know that just a tiny D-dimensional subspace in the
4N dimensions is enough to accommodate all correlations.
Therefore, it is justified to insert every bond line with a
D-dimensional projection made of two isometries. There are
two independent projections along the axes a and b, see
Fig. 1(d). After the insertion, every isometry is absorbed into
its nearest tensor truncating its bond index down to a tractable
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FIG. 2. The order parameter m = 〈σx〉 (3) for increasing temper-
ature T for different bond dimensions D. The solid line is the best fit
in Eq. (4) to the results for D = 11. Figure 3 demonstrates that they
are already converged in D.
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FIG. 3. Convergence tests as functions of the inverse bond
dimension 1/D: (a) the relative differences between the fitted critical
exponents {β,γ } and their 2D Ising values 1

8 and 7
4 ; (b) the fitted

critical temperatures Tc from m(T ) in Fig. 2 and χ (T ) in Fig. 4.
The solid lines connect the best fits and the dashed lines delimit their
error bars. For the selected T intervals close to Tc fitted results depend
primarily on D, see Appendix A, Figs. 5 and 6.

size D, see Fig. 1(e). The outcome is the desired PEPO U (β)
in Fig. 1(f), and the Gibbs state is e−βH = U †(β)U (β).

Now the problem is how to handle the huge isometries from
4N to D. Fortunately, by a divide-and-conquer strategy, each
of them can be split into a hierarchy of smaller isometries con-
nected into a tree tensor network [12]. It is possible to optimize
the smaller isometries one-by-one to obtain the most accurate
projection available for a given D. The cost of the algorithm is
polynomial in D and only logarithmic in the number of steps
N , allowing for dβ small enough to make the Suzuki-Trotter
decomposition numerically exact at very little expense.

V. NUMERICAL RESULTS

For each T < Tc the order parameter m (3) was converged
in D in the symmetry-broken phase, see Fig. 2. For each D it
was fitted with a power law,

m(T ) ∝ (Tc − T )β, (4)

see Fig. 3. Here β is the order-parameter critical exponent
(not to be confused with the inverse temperature β = 1/T ).
For D � 7 the estimates: 0.35660 < Tc < 0.35664, and
0.1258 < β < 0.1261, do not depend significantly on increas-
ing D. They slowly drift towards Tc = 0.35661 and β = 0.125,
respectively. For more details see Appendix A.
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FIG. 4. The linear susceptibility χ (T ) in the symmetric phase (5)
for different bond dimension D. The solid line is the best fit of the
power law (6) to the results for D = 11. Figure 3 demonstrates that
they are already converged in D.

In the symmetric phase above Tc, we calculated the
magnetic susceptibility using the linear approximation,

χ (T ) = dm

dh

∣∣∣∣
h=0

. (5)

Here h is an infinitesimal symmetry-breaking field h
∑

i τ
x
i

added to the Hamiltonian (1). The derivative was approximated
accurately by a finite difference between h = 10−6 and h = 0.
More details on χ (T ) numerical calculation are given in
Appendix B, see Fig. 7 and Table I.

The susceptibility was converged in D (Fig. 4) and fitted
with a power law,

χ (T ) ∝ (T − Tc)γ , (6)

TABLE I. Fitted Tc and γ obtained for different symmetry-
breaking field values δh with D = 8 and M = 72. Here data for
0.3566 < T < 0.3677 were used. Changes of the fitted Tc and γ with
decreasing δh � 10−6 are negligible as compared to their dependence
on D or range of data used to fit Tc and γ .

δh Tc γ

10−6 0.356631 1.7324
10−7 0.356633 1.7317
10−8 0.356633 1.7317
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FIG. 5. The dependence of the (a) exponent β and (b) critical
temperature Tc obtained by fitting m(T ) for different D (shown
in Fig. 2) within the range of temperature 0.3472 < T < Tlim. For
D � 7, with increasing Tlim approaching the critical point, the fitted
Tc approaches Tc = 0.3566 becoming stable with respect to the choice
of Tlim, while the fitted β stabilizes within 1% of βIsing = 1/8 drifting
slowly towards βIsing with increasing D.

see Fig. 3 and Appendix A. Again, for D � 7 the estimates:
0.35660 < Tc < 0.35665, and 1.732 < γ < 1.740, almost do
not depend on increasing D, and drift towards Tc = 0.35661
and γ � 1.75. Altogether, both exponents are less than 1%
away from the exact β = 1

8 [see Fig. 5(a)] and γ = 7
4 in the

2D Ising universality class.
Remarkably, Tc found from m(T ) (4) and χ (T ) (6) is

identical up to the four-digit precision. We propose

Tc = 0.3566 ± 0.0001, (7)

deduced from the scatter of the data for D � 7 in Fig. 3(b)
multiplied by a factor of 3, see also Fig. 5(b). It is worthwhile
to compare the above estimate (8) with the 2D Ising model
[70] with interaction 1

4σ z
i σ z

j ,

T Ising
c = 1

2 log(1 + √
2)

≈ 0.567296. (8)

Exchange interactions in the dominating term 3
16σx

i σ x
j in

Eq. (1) are reduced by the factor 3
4 from the 2D Ising model,

so this reduction alone would give instead Tc = 0.75T
Ising
c . De

facto, the obtained value in Eq. (7) is Tc � 0.6286T
Ising
c , i.e., it

is further reduced by ∼ 16% by quantum fluctuations activated
at finite T due to ∝

√
3

4 (σx
i σ z

j + σx
i σ z

j ) and ∝ 1
4σ z

i σ z
j terms in

Eq. (1). The order parameter (3) at T = 0 is almost saturated
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as quantum fluctuations are negligible at T → 0,

m(0) = 0.993. (9)

More details on m(0) simulation are given in Appendix C,
see Fig. 8. The value in Eq. (9) was obtained by the present
method and agrees with the ground-state MERA calculations
[14]. This shows that the quantum fluctuation effects in the eg

orbital model (1) are very weak indeed at T = 0 [36], while at
T > 0 the fluctuations are activated and reduce significantly
the value of the critical temperature down to Tc � 0.3566, see
Eq. (7). Indeed quantum fluctuations play a role here but are
not as significant as for the 2D SU(2) symmetric Heisenberg
antiferromagnet [39]. Yet, the entanglement between the
orbital operators is here much reduced from that in the 2D
compass model [45] and therefore such an accurate estimate
of Tc (7) is possible.

VI. SUMMARY

Being a paradigmatic frustrated system, the orbital eg

model evades treatment by quantum Monte Carlo but it proves
to be accurately tractable by our thermal tensor network.
The notorious sign problem—often inescapable for quantum
Monte Carlo—is not an issue for our method. Instead the
relevant issue is if the entanglement in a thermal state can be
accommodated within a bond dimension that is small enough
to fit into a classical computer. This criterion is satisfied by
the thermal state of the eg model and a four-digit estimate of
the critical temperature and a better than 1% accuracy of the
critical exponents could be achieved. Since the Gibbs state is
the least entangled one among all excited states with the same
average energy, it is potentially the easiest target for a suitable
tensor network.
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APPENDIX A: CONVERGENCE OF THE RESULTS

The bond dimension D (see Fig. 1) has to be large
enough to accommodate the entanglement in the thermal state.
Furthermore, an environmental bond dimension M that is used
in the analysis of the effective 2D tensor network depicted in
Fig. 1(f) (see Ref. [12] for details) has to be large enough
to accommodate long-range correlations. In general, these
requirements cannot be satisfied at the critical temperature
Tc but the phase transition can be approached from both sides
close enough to fit the critical power laws. In this appendix
we demonstrate that indeed we are able to approach Tc close
enough to obtain stable and converged fits.

All results presented here, which were obtained with
M = 72, are converged in M . Another potential source of
errors are Trotter errors. They are not a significant issue for
our approach as its cost scales at most logarithmically with the
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FIG. 6. The dependence of the (a) exponent γ and (b) critical
temperature Tc obtained by fitting χ (T ) (shown in Fig. 4) within
the range of temperature 0.3677 > T > Tlim. For D � 7 with
decreasing Tlim approaching the critical point the fitted Tc approaches
Tc = 0.3566. Close to the smallest value of Tlim it becomes dependent
primarily on D. Similar behavior occurs for γ , which for D � 7
approaches γIsing with decreasing Tlim becoming finally primarily D

dependent and drifting towards γIsing with increasing D.

inverse Trotter time step 1/dβ. Our results were obtained with
dβ � 0.001 and are converged in dβ.

The convergence of the critical exponents, β for the
magnetization m(T ) and γ for the susceptibility χ (T ), is
shown in Figs. 5(a) and 6(a) where we compare them with
the 2D Ising model exponents,

βIsing = 1
8 , γIsing = 7

4 . (A1)

For D � 7 we see that the exponents approach the Ising values
while Tlim is approaching Tc. For Tlim sufficiently close to Tc

they no longer depend significantly on range of T depending
instead primarily on D. In this regime all fitted exponents fall
within 1% of the 2D Ising universality class, drifting towards
βIsing or γIsing with increasing D. The obtained behavior of
the exponents indicates the 2D Ising universality class of the
transition.

The data collected in Figs. 5(b) and 6(b) demonstrate similar
convergence behavior of fitted Tc as for the exponents. For
D � 7 fitted Tc approaches Tc = 0.3566 when Tlim is
approaching the critical point. For Tlim sufficiently close to Tc

the critical point Tc begins to depend primarily on D rather
than on Tlim. Reaching this regime where the fits become
stable with respect to Tlim justifies taking into account only
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CZARNIK, DZIARMAGA, AND OLEŚ PHYSICAL REVIEW B 96, 014420 (2017)

0.358 0.360 0.362 0.364 0.366 0.368
0

2

4

6

8

10

12

T

χ
/1

00
0 δh = 10−6

δh = 10−7

δh = 10−8

fit

FIG. 7. The linear susceptibility χ (T ) in the symmetric phase (5)
obtained for different symmetry breaking field values δh with D = 8
and M = 72. The solid line is the best fit of the power law (6) to the
results. The figure demonstrates that χ (T ) is already converged in δh

for δh = 10−6 used in Fig. 4.

their D dependence to obtain the final Tc estimate Eq. (8). We
remark that our estimate of Tc is based on two independent Tc

estimates, coming either from the χ (T ) or m(T ) fits, which
agree up to five digits for the largest D.

APPENDIX B: NUMERICAL DETAILS

In our simulations we use the algorithm described in detail
in Ref. [12]. In particular we use corner matrix renormal-
ization (CMR) to contract approximately tensor networks
representing thermal states [71,72]. To reach convergence
of the observables m and χ approximately ten iterations of
the optimization loop were necessary. The isometries at the
beginning of the loop were initialized by a local truncation
scheme based on higher-order singular value decomposition.
The CMR procedure made ∼ 1000 iterations in the whole
loop. The farther away from the phase transition, the fewer
CMR iterations were necessary to reach convergence.

Linear susceptibility χ (T ) defined by Eq. (5) was cal-
culated from a finite difference of the order parameter δm

corresponding to finite difference of the symmetry-breaking
field δh = 10−6:

χ = δm

δh
, (B1)
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FIG. 8. (a) In (a) the order parameter m(T ) (3) as a function of
temperature T in the low-temperature phase. The inset (b) shows the
zoom on m(T ) in the low-temperature range T < 0.18. The results
demonstrate fast convergence in D: only D = 2 exhibits a different
behavior, while D = 6 and D = 8 data overlap with those for D = 4.

where δm = m(h = δh) − m(h = 0). Figure 7 shows that
χ (T ) is already converged in δh for δh = 10−6. More accurate
benchmark of δh convergence is given by Table I showing that
decreasing δh further results in changes of fitted γ and Tc that
are negligible as compared to their dependence on D or the
range of T .

All simulations were done in MATLAB with an extensive use
of the NCON procedure [73]. To give an idea of the actual time
and computer resources needed to generate the data, the most
challenging data points nearest to the phase transition, with the
largest bond dimensions D = 11 and M = 72, required one to
two days on a desktop.

APPENDIX C: SIMULATION OF THE
LOW-TEMPERATURE PHASE

The entanglement in the low-T phase is small enough to
converge the curve m(T ) in D already for D = 4, see Fig. 8.
Thanks to a short correlation length at low temperature, the
calculations are much less demanding numerically than close
to the critical point. Because of that we were able to generate
the data shown in Fig. 8 during one day using a laptop.
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[27] A. M. Oleś, G. Khaliullin, P. Horsch, and L. F. Feiner, Phys.

Rev. B 72, 214431 (2005).
[28] E. Pavarini and E. Koch, Phys. Rev. Lett. 104, 086402 (2010).
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