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A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a
unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys.
Rev. B 94, 205124 (2016)]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range
magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum
critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant
PEPS of the classification which provides excellent variational energies for the J1 − J2 frustrated Heisenberg
model, especially at J2 = 0.5, corresponding to the approximate location of the QCP or QCPh separating the
Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1

2

⊗N ⊕ 0 SU(2)
representation, i.e., with N “colors” of virtual spin- 1

2 . Using a full-update infinite-PEPS approach directly in the
thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate
gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging
correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet
and triplet channels, when the number of colors N � 3. We argue that such a PEPS gives a qualitative description
of the QCP or QCPh of the J1 − J2 model.

DOI: 10.1103/PhysRevB.96.014414

I. INTRODUCTION

Low-dimensional quantum magnets offer a rich zoo of
phases breaking a discrete (such as point-group or lattice)
or a continuous (such as spin-rotation) symmetry. Often, such
phases are separated by quantum critical points (QCP), as
described within the usual Ginsburg-Landau (GL) framework.
Interestingly, it has been proposed that some QCP may
not be described by the GL paradigm [1,2]. A celebrated
quantum spin model is the frustrated spin- 1

2 Heisenberg
model on the two-dimensional (2D) square lattice involving
competition between nearest-neighbor (NN) and next-nearest-
neighbor (NNN) antiferromagnetic (AF) couplings, J1 and
J2, respectively. Setting J1 = 1, J2 controls the amount of
frustration which is maximum (classically) at J2 = 0.5. Large-
scale quantum Monte Carlo (QMC) simulations [3–5] have
shown that the ground state (GS) of the unfrustrated (J2 = 0)
Heisenberg model exhibits long-range (LR) AF order. In
the thermodynamic limit, the (global) spin-rotational SU(2)
symmetry is spontaneously broken and the GS acquires a
finite local staggered magnetization. When J2 is turned on,
the order parameter is gradually suppressed and a quantum
phase transition to a quantum disordered (QD) phase [6–9]—
such as a dimer [10–13] or a plaquette [14,15] valence
bond crystal (VBC)—takes place (see Fig. 1). It was also
argued that magnetic frustration could stabilize spin liquids
(with no symmetry breaking), such as the resonating valence
bond (RVB) states [16] showing algebraic (short-range) VBC
correlations on the square (kagome) lattice [17–20].

Recently, tremendous progress have been made in tensor
network techniques [22–26], aiming to go beyond density
matrix renormalization-group (DMRG) methods [27] in 2D.
More specifically, projected entangled pair states (PEPS) [28]
are variational Ansätze constructed from a few local tensors,
located on M nonequivalent sites, and characterized by (i) one
bond carrying the physical degrees of freedom (of dimension
2 for spin- 1

2 systems) and (ii) z “virtual” bonds (z is the lattice
coordination number, z = 4 for the square lattice) of arbitrary

dimension D, as shown in Fig. 2(a). Interestingly, any local
(gauge) or global (physical) symmetry can be implemented
in PEPS [29–37]. Also, a simple bulk-edge (holographic)
correspondence provides a remarkable tool to investigate the
properties of edge states [38,39]. Many remarkable states of
matter such as trivial paramagnets [40], topological [19,20,41]
or algebraic [19] RVB spin liquids, loop spin liquids [42],
superfluids [43], or unconventional correlated superconductors
[44] have simple representations in terms of PEPS. Numerical
calculations with PEPS do not require one to compute the
wave-function coefficients (which, conceptually, are given by
contracting the tensor network over all virtual links) but, rather,
make use of transfer matrices [45] based on “double-layer”
tensors [see Figs. 2(b)–2(e)]. In the infinite-PEPS (iPEPS)
method [46], one works directly in the thermodynamic limit
by approximating the (infinite) space around a small M-site
cluster by an effective “environment” [see Fig. 2(f)]. One
of the most accurate computations of the environment is
based on a renormalization-group scheme involving corner
transfer matrices (CTMRG) [47–50], as shown in Figs. 2(g)
and 2(h). Unrestricted energy minimization over the MdDz

tensor coefficients can be performed using time evolution
block decimation (TEBD) [51,52], which has to be combined
with a simple update [53,54] or a full update [55] of the
environment. A (finite) PEPS method using a 2 × 2 cluster
update supplemented by a finite-size extrapolation has also
been introduced [56]. Recently, a new optimization scheme
using a conjugate gradient (CG) algorithm has been tested
on the nonfrustrated [57,58] and frustrated [59] Heisenberg
model, with iPEPS or finite PEPS, respectively.

The entanglement entropy (i.e., the quantity measuring
the amount of entanglement in a bipartitioned system) in
a spontaneously broken state exhibits anomalous additive
logarithmic corrections [60–62] to the area law (i.e., the linear
scaling of the entropy with the length of the cut). When the
staggered magnetization mstag → 0, at the QCP, the violation
of the area law is expected to be even more severe. This means
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FIG. 1. Schematical behavior of the staggered magnetization of
the spin- 1

2 J1 − J2 Heisenberg model (J1 is set to 1). mstag vanishes
at the QCP. The exact location J2c of the QCP, may be close to
0.5. Recent DMRG studies [21] quote a narrow QCPh region around
J2 = 0.5.

that a good description of the QCP, or even of the Néel state,
in terms of a PEPS (which strictly fulfills the area law for any
finite D) is particularly challenging. A very simple (D = 3)

PEPS ansatz for the Néel state on the square lattice was first
proposed in terms of a (one-parameter) spinon-doped RVB
phase [63]. Also, finite-size PEPS [64] or, more recently, state-
of-the-art iPEPS calculations involving a conjugate gradient
(CG) minimization algorithm [57,58] produced very accurate
energy for the Néel GS of the 2D Heisenberg model. However,
the phase diagram of the J1 − J2 model is still heavily debated.
No agreement has been reached between several numerical
approaches, either on the nature of the QD region—with
proposals of VBC [13,15,65,66], (topological) gapped [67] or
gapless [66,68–71] spin liquids—or on the location J2 = J2c

of the phase transition. While early exact-diagonalization (ED)
extrapolations [13] were bracketing J2c ∈ [0.34,0.6], DMRG
studies [66,67] suggested J2c � 0.41–0.44, while variational
Monte Carlo (VMC) studies [70,71] give J2c � 0.48–0.5 and
finite-size (cluster update) PEPS computations [56] J2c �
0.572(5). Recently, Wang and Sandvik [21] argued for a
quantum critical phase (QCPh) centered around 0.5. In all
of these approaches (except ED), the spin-rotational SU(2)
symmetry is explicitly broken in the Néel phase. However,
there is no obstruction principle to construct accurate SU(2)-
symmetric wave functions exhibiting long-range AF order
[72]. Since such states may be characterized by a large
entanglement, it is unclear whether it can be realized with
low-D symmetric PEPS. Also, whether SU(2)-symmetric

FIG. 2. (a) Symmetric PEPS tensor A with one physical index s = ± 1
2 and four virtual indices u, l, d , and r (of dimension D). A is

invariant under the generators of the C4v point group, i.e., the 90-degree rotation R, the reflection Rx , and the inversion I = RxRy . (b)–(e) The
“two-layer” (TL) tensors have bond dimension D2 (double lines). One-site, two-site, and four-site TL tensors obtained by inserting the identity
I, a one-site, a two-site, and a four-site operator, respectively. (f) iPEPS CTM method: a 2 × 2 cluster is surrounded by a (self-consistent)
environment built from a corner χ × χ transfer matrix C and a side χ × D2 × χ tensor T . In practice, we choose χ = kD2, k ∈ N. Here the
operator inserted on the four-site is either I⊗4 (normalization) or the J1 − J2 Hamiltonian. (g) Tensor renormalization scheme: after one site
is added, the new χD2 × χD2 CTM is diagonalized and only the largest (in modulus) χ eigenvalues are kept to get the new CTM. (h) The
unitaries approximated by isometries (yellow pyramids) are used to compute the new edge tensor.
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PEPS have the potential to describe zero-temperature QCP
or QCPh—in the same way as one-dimensional (1D) ma-
trix product states (MPS) can describe critical 1D systems
[73–75]—is still unclear [76]; although it is known that
nontrivial criticality can be captured by PEPS, even at finite D

[48,77].
Motivated by the above conceptual and practical issues,

we have revisited the J1 − J2 model using some new PEPS
developments, based on a general scheme to construct SU(2)-
symmetric PEPS using computer-assisted algebra [29]. This
enables us to introduce key features in the full-update iPEPS
scheme: (i) Full translational and rotational invariance is
enforced by using a unique SU(2)-invariant tensor on every
lattice site; (ii) full optimization of the (few) tensor coefficients
is accomplished via a CG method; (iii) careful scaling with
environment dimension χ is performed in order to address
the χ → ∞ limit. Using this procedure, we have identified a
specific (low-dimensional) family of SU(2)-symmetric PEPS
which provides excellent variational energies for the J1 − J2

frustrated Heisenberg model, especially at J2 = 0.5, i.e.,
close to the (unknown) QCP or QCPh of this model. We
show evidence that these (optimized) PEPS do not exhibit
long-range AF order. We also find that above bond dimension
D = 7, the PEPS (optimized for J2 = 0.5) exhibits diverging
spin-spin and dimer-dimer correlation lengths, i.e., showing
no sign of saturation up to large environment dimension. In
addition, a small spurious mstag is found to vanish in the limit
of infinite environment dimension. Hence, we propose that this
state offers a realization of the QCP or QCPh.

II. SYMMETRIC PEPS ANSÄTZE

We wish here to consider transitionally invariant fully
symmetric PEPS in order to (i) reduce the number of
independent variational parameters and (ii) provide a good
description of the critical point (or phase) where both SU(2)
and lattice symmetries are preserved. For this purpose, we
shall use the elegant classification of SU(2)-invariant PEPS
tensors on the square lattice [29] according to (i) their virtual
degrees of freedom and (ii) how they transform with respect
to the (lattice) point-group symmetries [see Fig. 2(a)]. For
simplicity, we shall a priori restrict ourselves to tensors that
are fully invariant under all operations of the C4v point group
(i.e., belonging to the so-called A1 irrep). The tensors are
further classified according to their virtual space V given by
a direct sum of SU(2) irrep’s or “spins”, i.e., V = ⊕

α sα .
We restrict hereafter to bond dimension D � 7. Among all

of the possible cases listed in Table I, we focus on the most
interesting ones carrying low virtual spins defined by V =
1
2 ⊕ 0 (D = 3), V = 1

2 ⊕ 0 ⊕ 0 (D = 4), V = 1 ⊕ 1
2 (D = 5),

V = 1
2 ⊕ 1

2 ⊕ 0 (D = 5), and V = 1
2 ⊕ 1

2 ⊕ 1
2 ⊕ 0 (D = 7),

spanned by a small number D of independent tensors, D =
2,8,4,10,30, respectively, given in the Supplemental Material
of Ref. [29] (except for D = 7 given in the Supplemental
Material of this paper [78]). Note that a π rotation of the spin
basis is assumed on the sites of one of the two sublattices of
the square lattice. In this basis, a genuine q = qAF ≡ (π,π )
(spontaneous) magnetic order translates into a uniform q = 0
(spontaneous) magnetization. Subsequently, the generator of
SU(2) becomes invariant only up to translations that map the
sublattices to themselves (i.e., shifts over two sites).

The iPEPS method combined with full tensor optimization.
We shall now focus on the J1 − J2 spin- 1

2 Heisenberg model
with NN and NNN antiferromagnetic coupling J1 and J2,
respectively, which we have studied at J2 = 0 in the absence
of frustration and, for strong frustration, at J2 = 0.5 and
J2 = 0.55. Our first goal is to optimize the variational
energy within each D-dimensional class of SU(2)-invariant
PEPS, i.e., finding the optimum linear superposition of the
D independent tensors of each class. Since the number of
variational parameters remains small (maximum of D = 30
for D = 7), we have used a “brute force” CG optimization
as, e.g., given in Numerical Recipes [79]. However, this
requires an efficient iPEPS computation of the variational
energy for any set of variational parameters to “feed” the
CG routine. This is performed constructing a self-consistent
environment around an active 2 × 2 cluster [see Fig. 2(b)]
using an iterative CTMRG algorithm [47,49,50] optimized
for spatially symmetric tensors. Indeed, we have introduced
simple modifications: (i) we use a unique CTM C tensor
(side tensor T ) which is the same for all corners (edges), and
(ii) the basic singular value decomposition (SVD) in each
CTMRG step to construct the environment is replaced by a
(more stable) ED, with the CTM being a symmetric matrix.
The largest environment dimension we could handle was
χ = 400 and χ = 294 for D = 5 and D = 7, respectively,
for which up to 350 or 400 iterations became necessary to
converge the environment. Note that the initial C (T ) tensor is
obtained from the E tensor of Fig. 2(b) by summing over all
external l and u (u) indices.

Energetics. Variational energies (per site) in each class of
tensors are shown in Fig. 3(a) for J2 = 0.5, as a function
of the inverse of the environment dimension χ . A rapid

TABLE I. List of all virtual spaces V of bond dimension D � 7 for which V ⊗4 can be projected onto a physical spin-1/2. The ones
considered here are indicated by (green) marks. Classes with higher spins give poorer variational energies than the lower spin ones of the same
total bond dimension D.

D 3 4 5 6 7

V � 1
2 ⊕ 0 � 1

2 ⊕ 0 ⊕ 0 1
2 ⊕ 0 ⊕ 0 ⊕ 0 1 ⊕ 1

2 ⊕ 0 � 1
2 ⊕ 1

2 ⊕ 1
2 ⊕ 0

� 1
2 ⊕ 1

2 ⊕ 0 1 ⊕ 1
2 ⊕ 0 ⊕ 0

�1 ⊕ 1
2

3
2 ⊕ 1

2 ⊕ 0
3
2 ⊕ 0 3

2 ⊕ 1
2 ⊕ 1

2
5
2 ⊕ 0
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FIG. 3. (a) iPEPS variational energies of the J1 − J2 model at
J2 = 0.5 vs the inverse of the environment dimension χ . Full (open)
symbols correspond to fully optimized (fixed) tensor Ansätze (see
text). χ → ∞ linear extrapolations are performed using only the last
data points. (b) Behavior of the χ → ∞ extrapolated energies vs the
inverse of the bond dimension D. D = 9 PEPS [56] and DMRG [66]
extrapolated energies are shown for comparison (see also Table II).

comparison between the different classes (for intermediate
χ ) reveals that for identical bond dimension D, the classes
V = 1

2
⊗N ⊕ 0 with N = 1, 2, and 3 (of bond dimensions

D = 3, 5, and 7, respectively) give the best results. Hence,
hereafter we shall focus on this PEPS family defined in terms
of N “colors” of spin- 1

2 . Note that the case N = 1 was
studied previously in Ref. [69]. Tensors are fully optimized
up to a maximum bond dimension χopt, e.g., for D = 5,
χopt = 4D2 = 100 and, for D = 7, χopt = 2D2 = 98. Then,
using environment dimensions χ > χopt together with the
fixed optimized tensor obtained at χ = χopt, one gets the true
upper bounds of the variational energy. In contrast, for D = 3,
χopt = 12D2 = 108 already gives the absolute best tensor with
enough accuracy. Generically, we found that the energy always
decreases with increasing χ and, at large enough χ , linear fits
can be performed in 1/χ to provide χ → ∞ extrapolations,
also upper bounds of the (D-dependent) variational energies.
Note that our D = 7 extrapolation −0.49502 lies within only
0.2% of the extrapolated value −0.4958 obtained using cluster
update finite-size D = 9 PEPS [56]. We have plotted our
(χ → ∞) results as a function of 1/D in Fig. 3(b), showing
perfect consistency with the above-mentioned D = 9 result
together with the DMRG extrapolation −0.4968 of Ref. [66].
This agreement is remarkable considering the fact that we
use only a unique tensor parametrized by a small number of
coefficients. Good variational energies have also been found
for the simple NN Heisenberg model (J2 = 0) as well as for
larger frustration J2 = 0.55, as shown in Appendix A. Our
results are summarized in Table II and compared to the best
estimates, from quantum Monte Carlo at J2 = 0 [4,5] and from
DMRG [66], VMC [70], and finite-size PEPS [56] at J2 = 0.5
and J2 = 0.55. We note, however, that our variational energies
for J2 = 0 and J2 = 0.55 are slightly less accurate than for

TABLE II. Comparison between our D = 7 iPEPS results (χ →
∞ extrapolations) and the best estimates in the literature, for J2 = 0,
J2 = 0.5, and J2 = 0.55: J2 = 0 results are obtained by QMC [4,5].
At finite J2, we quote energies obtained by extrapolations to the
thermodynamic limit using DMRG [66], VMC [70], and finite-size
D = 9 PEPS [56]. Note that the D = 7 iPEPS energies are only upper
bounds of the true variational energies (see text).

J 0 0.5 0.55

QMC −0.66944
DMRG −0.4968 −0.4863
VMC −0.4970(5) −0.4870(5)
D = 9 PEPS −0.4958(3) −0.4857(2)
D = 7 iPEPS −0.6677 −0.4950 −0.4830

J2 = 0.5. In fact, we believe J2c is close to 0.5 and we argue
below that our (optimized) PEPS is capable of picking up the
critical nature of the QCP or QCPh. For J2 = 0.55, translation
symmetry breaking is likely to occur spontaneously, which is
not captured by our homogeneous ansatz. The ansatz also does
not sustain magnetic LR order, which may explain its lower
accuracy at J2 = 0.

III. CORRELATION FUNCTIONS

Once the PEPS |�0〉 = |�(D,χopt)〉 have been opti-
mized using the largest possible environment dimension χ =
χopt(D), various correlation functions can be computed (e.g.,
along the ex horizontal direction), such as (i) the spin-spin
correlations,

Cs(d) = 〈Si · Si+dex
〉0, (1)

(ii) the (connected) longitudinal dimer-dimer correlations,

C
(L)
d (d) = 〈

Dx
i Dx

i+dex

〉
0 − 〈

Dx
i

〉
0

〈
Dx

i+dex

〉
0, (2)

and (iii) the (connected) transverse dimer-dimer correlations,

C
(T)
d (d) = 〈

Dy
i D

y

i+dex

〉
0 − 〈

Dy
i

〉
0

〈
D

y

i+dex

〉
0, (3)

where dimer operators Dx
i = Si · Si+ex

and D
y
i = Si · Si+ey

are oriented either along the ex (horizontal) or ey (vertical)
directions, respectively, and the expectation values are taken
in the optimized |�0〉 PEPS.

The calculations of correlators are accomplished using the
setup shown in Figs. 4(a)–4(c). Appropriate transfer matrices
are used so that one can construct arbitrarily long strips.
Here the site tensor is fixed to its optimized output using
χ = χopt(D) (hereafter we use χopt = 49 for D = 7), while
the environment dimension χ > χopt(D) can then be further
increased to reach convergence, which is easily achieved
for short distance r . A comparison between the results
obtained with the two Ansätze V = 1

2 ⊕ 1
2 ⊕ 0 [Fig. 5(a)]

and V = 1
2 ⊕ 1

2 ⊕ 1
2 ⊕ 0 [Fig. 5(b)] is shown for J2 = 0.5.

Although a fast decay of the dimer-dimer correlations is
seen in both cases, the behavior of the (staggered) spin-spin
correlations is qualitatively different: for D = 7, |Cs(r)| seems
to approach a finite value, while for D = 5 (or D = 3 as
well), it steadily decays to zero. This signals the emergence,
for D � 7, of a finite staggered magnetization as defined by
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FIG. 4. One-dimensional strips used to compute (a) the spin-spin, (b) the longitudinal dimer-dimer, and (c) the transverse dimer-dimer
correlation functions. A transfer matrix is applied recursively (a),(c) d − 1 times or (b) d − 2 times in the direction of the strip.

mstag(χ ) = √
limr→∞ |Cs(r)| . We note, however, that strictly

speaking, for finite χ the above limit should vanish since the
correlations are cut off above some correlation length ξs(χ )
(see below). In other words, the strip of Fig. 4(a) is, crudely
speaking, similar to a quasi-1D physical strip (ladder) of
effective width Leff(χ ) [80], which cannot sustain long-range
magnetic order from Mermin-Wagner theorem (MWT) [81].
However, MWT may not, strictly speaking, apply to a transfer
operator as for a true Hamiltonian. In addition, for D = 7, the
SU(2) symmetry is spontaneously broken: small deviations
from a perfectly SU(2)-symmetric environment act as a small
symmetry-breaking (AF) “field” and the local spin operator
acquires a finite value 〈Si〉0 = cos (qAF · i) mstag oscillating
at the antiferromagnetic wave vector qAF. As shown in
Appendix B, mstag(χ ) vanishes in the χ → ∞ limit, physically
corresponding to the limit of an infinitely wide strip Leff → ∞.
This implies that the infinite 2D system recovers the full
SU(2) spin symmetry encoded in the tensor ansatz. We have
seen similar behaviors for J2 = 0 and J2 = 0.55 as well (see

FIG. 5. Short-distance correlation functions at J2 = 0.5 for
(a) V = 1

2 ⊕ 1
2 ⊕ 0 and (b) V = 1

2 ⊕ 1
2 ⊕ 1

2 ⊕ 0. Large environment
dimensions χ are used ensuring full convergence of the correlations
at short distance (r < 10).

Appendix B). Interestingly, the scaling of mstag to zero may
depend slightly on the initial CTM of the CTMRG procedure
to converge the environment. In contrast, for D = 3 and
D = 5, the system remains spin isotropic even for finite χ ,
the spin correlators 〈Sα

i Sα
j 〉0 being independent on α = x,y,z,

as checked explicitly. This signals a qualitative change of
behavior when N � 3, which we identify in the next section.

Diverging correlation lengths. The results described above
give some hints that when D = 7, the spin-spin correlations
become algebraic at long distance. However, for finite bond di-
mension χ , the strips of Figs. 4(a)–4(c) can be seen as effective
1D systems. Then, finite correlation lengths ξD(χ ) naturally
emerge as the inverse of the gaps of finite-dimensional
D2

eff × D2
eff transfer matrices, where Deff = Dχ [Figs. 4(a) and

4(b)] or Deff = D2χ [Fig. 4(c)] are the effective dimensions
of the associated 1D MPS. Using empirical findings for
the correlation length ξ1D in critical 1D systems [73–75],
ξ1D(D) ∼ Dκ , one then expects that ξD(χ ) ∼ (Deff)κ , κ > 0,
which should diverge with χ as a power law for critical PEPS.
Hence, criticality (if any) is restored only in the χ → ∞ limit
and finite-χ scaling is necessary to obtain information on the
QCP or QCPh. Note that when spin-rotational symmetry is
(artificially) broken at finite χ , it is important to consider
the connected spin-spin correlator C̃s(d) = Cs(d) − (mstag)2.
From straightforward fits of the long-distance correlations at
J2 = 0.5 (see Appendix C), we have extracted the correlation
lengths ξD(χ ) associated to the C̃s, C

(T)
d , and C

(L)
d correlation

functions and results are shown in Fig. 6. For D = 3 or D = 5,
we find a clear saturation of the spin-spin correlation lengths
to small values, while the dimer-dimer correlations lengths
diverge linearly with χ . Such a behavior is typical of bipartite
dimer models [82] or of the NN RVB state on the square
lattice [17,19] due to U(1)-gauge symmetry. In fact, the D = 3
PEPS can be viewed as an extended-range RVB state [69]
and the D = 5 PEPS as an extended-range two-color RVB
state. Plotting the dimer correlation lengths in Figs. 6(c) and
6(e) as a function of χ/D2 clearly reveals the similarities
between D = 5 and D = 7. However, in the case of the spin
correlations, a sudden qualitative change occurs at D = 7 for
which we find that the spin-spin correlation length no longer
saturates but increases linearly with χ , as the dimer correlation
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FIG. 6. Scaling of the various correlation lengths at J2 = 0.5 vs
(a) environment dimension χ or (b)–(e) χ/D2, for V = 1

2 ⊕ 0 (open
squares), V = 1

2 ⊕ 1
2 ⊕ 0 (open circles), and V = 1

2 ⊕ 1
2 ⊕ 1

2 ⊕ 0
(large dots and crosses). (a) Spin-spin correlations. (b),(c) Trans-
verse dimer-dimer correlations. (d),(e) Longitudinal dimer-dimer
correlations.

lengths do (see Appendices C and D for details). No sign
of saturation of the correlation lengths is observed up to the
largest available environment dimensions. This suggests that
the (optimized) D = 7 PEPS is critical in the limit χ → ∞
or, at least, can very well describe a critical state.

Power-law exponents. Whenever the correlation length
ξD(χ ) diverges (or becomes very large), one expects to see
power-law behaviors in the correlation functions,

Cs(d) ∼ d−(1+ηs), (4)

Cd(d) ∼ d−(1+ηd), (5)

in the range of distance 1 < d < ξD , where ηs and ηd defined,
e.g., in Ref. [83] are the anomalous dimensions. Note, however,
that this scaling regime can be observed only when ξD(χ ) has
reached a sufficiently large value. To obtain estimates of the ex-
ponents 1 + ηs and 1 + ηd, we have plotted spin-spin and (lon-
gitudinal) dimer-dimer correlations at J2 = 0.5 in Figs. 7(a)
and 7(b) using log-log scales. For D = 3 (D = 5), the dimer
correlation length is very large (is large) for the largest χ we
can reach and, from fits of the data in the range 1 < d < 100
(1 < d < 20), one can easily extract the exponent 1 + ηd �
1.25 (1 + ηd � 1.5). For D = 7, it is difficult to extract accu-
rate exponents since crossovers to exponential decays occur
rapidly around d ∼ ξ7 � 6, for both the spin-spin and dimer-
dimer correlations. However, the systematic trend of the data
with χ in Figs. 7(a) and 7(b) suggests ηs ∼ 0.6 and ηd ∼ 1.2.

Discussion and outlook. Above, we have found solid
evidence that the N = 3 (D = 7) SU(2)-invariant state exhibits
slowly (possibly power-law) decaying spin-spin and dimer-
dimer correlation functions, suggesting a critical behavior or
at least very large correlation lengths. We now argue that
the family of SU(2)-symmetric tensors characterized by the
virtual space V = 1

2
⊗N ⊕ 0 with N � 3 “colors” can faithfully

describe the QCP or QCPh of the spin- 1
2 J1 − J2 Heisenberg

model.

FIG. 7. (a) Log-log plot of (a) spin-spin and (b) longitudinal
dimer-dimer correlations vs distance. Straight (dashed) lines corre-
spond to power-law decays ∼d−α .

First, we observed that spin-spin correlations decay less
and less rapidly for increasing N (i.e., D) so we expect
such correlations to become longer and longer range for
increasing N . Since the anomalous dimension ηs (defined
from the correlation at intermediate distances) generically
decreases with increasing D, one can put an upper bound to
its infinite-D limit, namely, ηs < 0.6.

Second, it is remarkable that dimer-dimer correlations (and
correlation lengths) become very similar for N = 2 and N =
3, if compared at the same value of the ratio χ/D2. In fact, we
may speculate that for N � 3, all correlation lengths diverge as

ξD(χ ) � fD χ/D2, (6)

where the prefactor fD depends weakly on D, the main
effect of increasing the bond dimension being to rescale
the environment dimension χ → χD = χ/D2. We note,
nevertheless, that although our data are consistent with (6),
one cannot rule out that some of the correlation lengths may
saturate to a finite, although large, value.

Related J − Q models can be investigated with QMC [83]
and ηs � 0.35(2) and ηd � 0.20(2) have been obtained (for
the J − Q2 model), which seem to deviate substantially from
our estimates above. However, our estimation of ηs seems
consistent with the VMC result [71] ηs ∼ 0.5 obtained for the
J1 − J2 Heisenberg model at J2 = 0.5.

Note that the power-law exponent 1 + ηd, extracted from
the correlations at intermediate distances d < ξD(χ ), seems
to increase significantly with D. The predicted large value
of the D → ∞ dimer anomalous dimension might indicate
that dimer correlations at the QCP or within the QCPh are
significantly suppressed compared to J − Q models.
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APPENDIX A: SCALING OF THE D = 7 VARIATIONAL
ENERGY VS INVERSE ENVIRONMENT DIMENSION

We report in Figs. 8(a)–8(c) the variational energies of
the V = 1

2 ⊕ 1
2 ⊕ 1

2 ⊕ 0 PEPS ansatz for the J1 − J2 model
at J2 = 0 (unfrustrated case), J2 = 0.5, and J2 = 0.55. The
parameters of the PEPS are optimized with an environment di-
mension χopt = D2 = 49, independently for each value of J2.
For J2 = 0.5, we also carried out the optimization with χopt =
2D2 = 98, providing a slightly better energy. The environment
dimension χ > χopt is then increased, keeping the PEPS tensor
fixed, and the energy is extrapolated linearly with 1/χ . At J2 =
0.5, an excellent agreement is found with extrapolation from
D = 9 PEPS cluster update [56]. For J2 = 0 and J2 = 0.55, a
lesser agreement is found with QMC [4,5] and D = 9 PEPS
cluster update [56], respectively (see text for explanation).

APPENDIX B: SCALING OF THE D = 7 STAGGERED
MAGNETIZATION VS INVERSE ENVIRONMENT

DIMENSION

We report in Figs. 9(a)–9(c) the spurious staggered magneti-
zation of the V = 1

2 ⊕ 1
2 ⊕ 1

2 ⊕ 0 PEPS ansatz for the J1 − J2

model at J2 = 0 (unfrustrated case), J2 = 0.5, and J2 = 0.55
(optimized using χopt = D2 = 49). The procedure is the same
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FIG. 8. (a) D = 7 iPEPS variational energies of the J1 − J2

model at (a) J2 = 0, (b) J2 = 0.5, and (c) J2 = 0.55 vs the inverse
of the environment dimension χ . Full (open) symbols correspond
to fully optimized (fixed) tensor Ansätze (see text). χ → ∞ linear
extrapolations are performed using only the last data points. Com-
parisons with QMC [4,5] and finite-size D = 9 PEPS extrapolations
(with error bars) [56] are shown.
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FIG. 9. (a) D = 7 iPEPS staggered magnetization of the J1 − J2

model at (a) J2 = 0, (b) J2 = 0.5, and (c) J2 = 0.55 vs environment
dimension χ . χ → ∞ extrapolations are based on power-law fits.
The exact (QMC) value of mstag [4,5] at J2 = 0 is shown.

as in Appendix A and the data are plotted vs χ . For all J2

values, the scaling (algebraic fits) is consistent with vanishing
mstag when χ → ∞. Full SU(2) invariance is recovered in this
case.

APPENDIX C: EXTRACTING THE CORRELATION
LENGTHS ξD(χ ) FROM THE LONG-DISTANCE

CORRELATIONS

In order to extract the correlation lengths associated to the
various correlation functions Cλ(d) (λ = S,D) defined in the
paper in Eqs. (1)–(3), we have computed the long-distance
correlations using the transfer matrix methods sketched in
Fig. 2. Due to a finite gap in the relevant transfer matrices
for all finite dimensions D and χ , one expects an exponential
decay of all correlations,

Cλ(d) ∼ C0 exp [−d/ξD(χ )],

at sufficiently large distance d [typically d > ξD(χ )]. Let
us summarize the procedure: First, the local tensors for
D = 3, 5, and 7 are obtained by a full CG optimization
(for J2 = 0.5) using a given environment dimension χopt =
108, 100, and 49, respectively. The correlations in these
fixed PEPS are then computed for increasing values of the
environment dimension χ in two steps: (i) For every choice
of χ � χopt, the new converged CTM C and edge tensor T

are computed (by the iterative renormalization scheme) and,
finally, (ii) used to compute the correlation functions in the
setup shown in Figs. 2(a)–2(c). Results are displayed using
semilogarithmic scales in Figs. 10(a), 11(a), and 12(a). By
fitting the asymptotic linear behaviors of the data according
to ln Cλ(d) = −(1/ξ )d + c0, one straightforwardly gets the
correlation lengths ξ from the slopes −1/ξ .

The scaling of the correlation lengths ξD with χ is shown in
Figs. 10(b), 11(b), 11(c), 12(b), and 12(c). For D = 3 and D =
5, one observes a clear saturation of the spin correlation lengths
ξ3 and ξ5 to rather small values (less than two lattice spacings),
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FIG. 10. (a) Spin-spin correlation vs distance for (fixed) D =
3, D = 5, and D = 7 tensors and several dimension χ of the
environment (semilogarithmic scale). The tensors are obtained from a
full CG optimization using environment dimensions χopt = 108, 100,
and 49, respectively. (b) Correlation length extracted from linear fits
of the asymptotic large-distance behaviors are shown vs χ .

while the dimer correlation length scales linearly with χ ,
suggesting that ξD → ∞ in the limit χ → ∞, for which the
calculation becomes exact. Note that the (extrapolated) spin
correlation length increases with D, while the divergence of
the dimer correlation length becomes weaker. For D = 7, one
has to consider the connected part of the spin-spin correlation,
subtracting the contribution from the spurious staggered spin-
density background. The spin correlation length no longer
saturates but rather increases linearly with the environment
dimension χ . This strongly suggests that ξ7 diverges in the
limit χ → ∞, which is consistent with a power-law decay
of the correlation function. We believe our numerical results
also support the divergence of both dimer-dimer correlation

FIG. 11. (a) Transverse dimer-dimer correlation vs distance for
D = 3, D = 5, and D = 7 and several values of χ (semilogarithmic
scale). Tensors are the same as in Fig. 10. (b),(c) Correlation lengths
extracted from linear fits of the asymptotic large-distance behaviors
are shown vs χ .

FIG. 12. (a) Longitudinal dimer-dimer correlation vs distance for
D = 3, D = 5, and D = 7 and several values of χ (semilogarithmic
scale). Tensors are the same as in Fig. 10. (b),(c) Correlation lengths
extracted from linear fits of the asymptotic large-distance behaviors
are shown vs χ .

lengths. Note, however, that although the transverse and
longitudinal dimer-dimer correlation lengths seem to match
for D = 3 and D = 5, they deviate substantially for D = 7,
which may be related to the nonvanishing of the spin-spin
correlation in that case.

APPENDIX D: COMPARISON BETWEEN CORRELATION
FUNCTIONS IN THE D = 7 PEPS

In principle, correlation lengths can also be extracted
directly from the low-energy eigenvalues of the zero-
dimensional transfer matrix of the one-dimensional tensor
network structures arising in Fig. 4. It would be the same
transfer matrix for the spin-spin and (longitudinal) dimer-
dimer correlation function, but the difference would be how
the corresponding virtual eigenvectors of these eigenvalues
transform under the symmetry. In a perfectly SU(2)-symmetric
state giving rise to a SU(2)-symmetric environment (as occurs
for D = 3 and D = 5), different selection rules for the singlet
(dimer) and the triplet (spin) channels lead to separate blocks
of the transfer matrix and, hence, to different correlation
lengths, in agreement with our findings. However, for D =
7, spontaneous SU(2) symmetry breaking occurs and the
environment acquires some (staggered) magnetization mstag.
We believe spin-rotational invariance [U(1) symmetry] is still
preserved around the direction of the staggered magnetization.
The latter can be pointing in any (arbitrary) direction in the
(x,z) plane, making difficult the symmetry analysis of the
zero-dimensional transfer matrix arising in Fig. 4. Analysis of
the correlation functions given, e.g., by Eqs. (1), (2), or (3) is
more straightforward.

At this point, it is not clear whether the long-distance
spin correlation described in the text is an artifact of the
symmetry breaking that (i) may lead to a mixture of (diverging)
singlet and (short-range) triplet correlations or (ii) may lead to
“Goldstone critical behavior” of the transverse spin correlation
function. We give arguments below that none of the above
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applies and argue that the critical behavior of the spin
correlation function is an intrinsic feature of the D = 7 PEPS
spin liquid.

For this purpose, we decompose the local spin operator into
its longitudinal and transverse spin components,

Si = S‖
i n + S⊥

i , (D1)

where n is a unit vector along mstag, S
‖
i = Si · n, and S⊥

i =
Si − (Si · n) n. The spin correlation function can then be split
into its longitudinal and transverse components as Cs(d) =
C

‖
s (d) + C⊥

s (d), with

C‖
s (d) = 〈

Si
‖ · S‖

i+dex

〉
0, (D2)

C⊥
s (d) = 〈

Si
⊥ · S⊥

i+dex

〉
0. (D3)

For a true singlet wave function (for which mstag = 0),
whatever the choice of the vector n, one gets C⊥

s (d) = 2C
‖
s (d).

As shown in Fig. 13(a), this is also true for the D = 7 PEPS, at
short distance only (in semilogarithmic scale, the two curves
are just shifted by ln 2). At longer distance, however, the
longitudinal and transverse spin correlations show different
exponential decays. As shown in Fig. 13(b), the correlation
length of the longitudinal correlations is much shorter than
the one of the transverse correlations. However, both seem
to diverge with increasing χ , suggesting that both correlators
are critical, possibly power law, in the χ → ∞ limit. This is
different from a “Goldstone mechanism” for which the longi-
tudinal correlations remain short range. Finally, we compare
the two spin correlation lengths to the (longitudinal) dimer

FIG. 13. (a) Longitudinal and transverse spin correlations vs
distance in the SU(2) symmetry broken D = 7 PEPS, for several
values of χ (semilogarithmic scale). Tensors are the same as in Fig. 10.
(b) Correlation lengths extracted from linear fits of the large-distance
behaviors are shown vs χ and compared to the (longitudinal) dimer
correlations. Note that, eventually, beyond some large crossover
length scale (which increases with χ ), the decay of the longitudinal
correlation function is governed by the asymptotic (larger) correlation
length of the transverse correlation function.

correlation length. Figure 13(b) shows that none of the three
(diverging) correlation lengths match, suggesting that the
(supposedly) critical behavior of the spin-spin correlation is
not induced by the critical behavior of the dimer correlation
and is an intrinsic property of the D = 7 PEPS.
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