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The density of states of a three-dimensional Dirac equation with a random potential as well as in other problems
of quantum motion in a random potential placed in sufficiently high spatial dimensionality appears to be singular
at a certain critical disorder strength. This was seen numerically in a variety of studies as well as supported
by detailed renormalization group calculations. At the same time it was suggested by a number of arguments
accompanied by detailed numerical simulations that this singularity is rounded off by the rare region fluctuations
of random potential, and that tuning the disorder past its critical value is not a genuine phase transition but rather
a crossover. Here we develop an analytic theory which explains how rare region effects indeed lead to rounding
off of the singularity and to the crossover replacing the transition.
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Thirty years ago Fradkin [1] made a remarkable observation
that the density of states in a three-dimensional Dirac equation
with random scalar potential appears to be a singular function
of energy (a power law of its absolute value) if the disorder
strength is tuned to a certain critical value. This observation
went against the accepted wisdom that the disorder averaged
density of states was typically a smooth function of disorder
[2,3]. Examples of the models with singular density of states
were nonetheless already known in the literature by then (the
one-dimensional tight binding model with random hoppings
studied in Ref. [4] which has the so-called Dyson singularity
in its density of states at zero energy). It was subsequently
understood that this and other similar models have extra
symmetries systematically studied by Altland and Zirnbauer
[5], resulting in their now famous classification table. The
three-dimensional Dirac equation studied in Ref. [1] does not
appear to fall under any of the nontrivial entries of this table,
so the potential singularity of its density of states if present is
unrelated to the Altland-Zirnbauer classification table.

Interest to the three-dimensional Dirac equation with ran-
dom scalar potential was revived recently due to the theoretical
prediction [6] and observation [7–11] of the semimetals
with the band structures well described by three-dimensional
Weyl or Dirac equations. Theoretical [12] [in the framework
of renormalization group (RG)] and numerical [13] studies
seemingly confirmed the presence of the singularity first
predicted by Fradkin. A number of studies followed, for
example Refs. [14–19], exploring the critical properties of this
singularity and its effects on transport in the Dirac equation
and other phenomena.

Subsequently Ref. [20] generalized the arguments of
Ref. [1] to show that any quantum problem with random
scalar potential, if placed in space of high enough dimension
d > dc, develops singular density of states at a certain
critical disorder strength. In particular, for the conventional
Schrödinger equation with quenched disorder, this occurs
with dc = 4, for Dirac equation dc = 2, and models can be
developed which have arbitrary dc, even with dc < 1 if desired
[21]. One striking prediction of Ref. [20] concerned the nature
of the Anderson transition [3] in the disordered Schrödinger
equation at d > 4 [22], where if disorder is tuned to its critical
value, the divergence of the localization length as energy
approaches the mobility edge was predicted to be controlled

by an exponent distinct from the conventional d-dependent
exponent of the Anderson transition. The latter was predicted
to be at work only if disorder strength was above its critical
value. Finally, Ref. [23] showed, in part by adopting the
arguments of Ref. [24] to higher spatial dimensions, that
at disorder and energy tuned to its critical value, the wave
functions of these problems are multifractal.

However, it was noted in an number of publications that all
these models lack an order parameter which would label the
different phases separated by the critical point discussed above
(often referred in the literature as “ballistic” and “diffusive”
phases, occurring at weak and strong disorder, respectively).
Specifically, let us take the three-dimensional Weyl problem
governed by the Hamiltonian

H = −iv

3∑
j=1

σ j∂j + V (r), (1)

where σ j are Pauli matrices, and V (r) is the random potential,
and look at its disorder averaged density of states ρ(E), defined
as always by

ρ(E) = 1

Ld

∑
m

〈δ(E − Em)〉, (2)

where L is the size of the system, Em are exact energy levels,
and the brackets denote averaging over the realizations of the
random potential.

Reference [1] argued that ρ(0) = 0 if the disorder strength
is below its critical value and ρ(0) > 0 if it is above that
value, in the case when the random potential averages to
zero 〈V (r)〉 = 0. This seems to be supported by some of the
available numerical studies of this model [13]. Thus we could
take ρ(0) as the order parameter of the transition potentially
occurring in this model. However, it is clear that ρ(0) cannot
be exactly zero at any disorder strength. Indeed, a fluctuation
of disorder which is constant over some (large) region of
space, which one can term a rare region, shifts the energy
of the eigenstates of Eq. (1) resulting in some of them shifted
towards zero energy, rendering ρ(0) nonzero [25], an effect
neglected in Ref. [1]. This invalidates using ρ(0) as the order
parameter. In the absence of other suitable candidates, one may
conclude that there could not be a transition in this problem
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with a critical density of states. Yet this argument does not
unambiguously rule out a genuine singularity in the density of
states at a critical value of disorder. Despite this, subsequent
numerical studies going beyond the earlier work of Ref. [13],
starting from the work of Ref. [26], together with some analytic
arguments were able to resolve the absence of singularity in
the density of states [26–29] and argue in favor of the crossover
replacing the transition in the model Eq. (1).

Note that even if the transition is indeed absent and replaced
by a crossover, this does not invalidate the prior studies of
criticality and multifractality in these models. It just implies
that unlike in genuine critical points, in these problems as
the disorder strength is tuned to what should be its critical
value, the correlation length saturates at some maximum value
� instead of diverging to infinity. All the critical scaling
and multifractality will still be observed at scales below
that saturation scale, explaining why most numerical studies
failed to distinguish the crossover in these models from
genuine critical points. In particular, the Anderson transition
in the model Eq. (3) at d > dc = 4 is still governed by
the Anderson critical exponent, however at disorder strength
close to what would have been its critical value, a crossover
regime at E below the mobility edge should exist where the
localization length is governed by the exponent discussed in
Ref. [20], turning into the conventional Anderson exponent as
E approaches the mobility edge [30].

Here we would like to present quantitative arguments
showing that in these problems there cannot be a genuine
singularity in the density of states and develop an analytic
framework to calculate the saturation scale which controls
these crossover phenomena.

Let us examine the Schrödinger equation with random
potential at d > dc = 4, defined by the usual Hamiltonian

H = − 1

2m
� + V (r). (3)

Reference [20] argued that since, just like in the Dirac problem
at d = 3 studied in Ref. [1] and in subsequent studies, the
weak disorder here is irrelevant in the RG sense, while strong
disorder is relevant, there should be a critical disorder strength
separating these two phases. At this critical disorder strength,
ρ(E) for this problem should have a singularity at E = Ec

(unlike in the Dirac problem considered above, Ec may be
different from zero). This can be encoded by the following
RG equation satisfied by the dimensionless disorder strength
γ = λξ 4−d defined by the correlator

〈V (r)V (r′)〉 = λ δ(r − r′), (4)

which can be shown to be [20]

γ̇ = −(d − 4)γ + Cγ 2 + · · · , (5)

where C > 0 is some positive constant (as always, ξ is the
ultraviolet length scale defined precisely below). This equation
seemingly shows that at d > 4, weak γ is irrelevant and flows
to the disorder-free γ = 0 fixed point, while there exist a value
γ = γc which nullifies the right-hand side of Eq. (5) and which
corresponds to the critical point in the renormalization group
[as always, Eq. (5) is perturbative in γ , so γc can be extracted
from it only if d − 4 is small and γc is small enough for the
perturbation theory to work, but usually γc which nullifies

the right-hand side of Eq. (5) is presumed to exist at any
d > 4]. It is at this critical point γ = γc, corresponding to
λ = λc = γcξ

d−4, that we expect the density of states to be a
critical function of energy.

These arguments immediately lead to a striking prediction
that disagrees with the available literature. It is well known the
disorder-averaged Green’s function of the problem defined by
(3) and (4) is equivalent to the self-attracting random walks
where λ controls the strength of the attraction [31,32] (while
λ < 0 corresponds to the more familiar case of self-repulsive
random walks). It is tempting to conclude from Eq. (5) that
the self-attracting random walks at d > 4 are equivalent to
Brownian motion for the attraction below critical, and are
critical at the critical value of the attraction which nullifies
the right-hand side of Eq. (5). However, existing studies of
self-attractive random walks at d > 4 showed that those are
never equivalent to Brownian motion, and do not have any
special critical value of the strength of the attraction [33–35].
By extension, this hints at the absence of criticality in the
random Schrödinger equation at d > 4.

While adopting the arguments of Refs. [33–35] to the
motion in random potential at d > 4 is possible to explain the
absence of criticality in Eq. (3), the drawback of this approach
is that it is not easy to apply it to other problems such as the
one defined by Eq. (1) or discussed in Ref. [21].

We would therefore like to present another argument based
on adopting the method of instantons in the replica approach to
the problem of calculating the density of states. It has long been
known that these instantons is what produces the so-called
Lifshitz tail [36] density of states where there would have
been none had the disorder been absent. We would like to
show that these instantons, when properly resummed, result
in the absence of any singularity in the density of states
of these problems, thus unifying the absence of vanishing
density of states and the absence of criticality as anticipated in
Refs. [25,28].

While this argument works equally well for Eq. (3) or
Eq. (1), we will demonstrate it in case of the random
Schrödinger equation for simplicity. Taking Eqs. (3) and (4)
we write down the replica theory which produces the disorder
averaged retarded Green’s function

Z =
∫

Dφ e
i
2

∫
ddx

∑
n φn(E+i0+�)φn− λ

4 (
∑

n φ2
n)

2

(6)

(from now on we set m = 1/2 since it can always be put
back into every equation simply by dimensional analysis).
The density of states for E � 0, where in the absence of
disorder potential the density of states is zero, can be computed
using the instanton or saddle point method as first discussed
in Ref. [37]. Extremizing the action in the exponential and
following Ref. [38], we find

�f = |E|f − λf 3, (7)

where φn = vnf (r)(1 + i)/
√

2, and vn being a unit vector in
replica space. Given a solution of this equation, the action in
the exponential of Eq. (6) evaluates to

S = λ

4

∫
ddx f 4, (8)
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and produces the contribution to the density of states

ρ ∼ e−S. (9)

If d < dc = 4, as explained in Ref. [38], a theorem proven in
Ref. [39] guarantees that there is a finite action solution to
Eq. (7) of the form

f =
√

E/λ F (r
√

|E|), (10)

where F is a dimensionless function finite at the origin and
quickly decaying at infinity, producing the finite action and the
density of states

ρ ∼ exp(−const|E|2−2/d/λ), (11)

with the numerical constant which can be found if F is known
(here and below, the proportionality symbol implies equality
up to an overall numerical coefficient). This result is well
known in the theory of Lifshitz tail states.

If d > dc = 4, the theorem of Ref. [39] no longer applies.
We investigated Eq. (7) numerically to find that most likely all
solutions of the form Eq. (10) produce an infinite action. The
insight of Ref. [25], which can be taken from their analysis of
the corresponding problem arising in the context of Eq. (1),
is that we should instead broaden the correlation function of
disorder in Eq. (4) and consider disorder correlated at finite
length ξ ,

〈V (r)V (r′)〉 = λξ−d K(|r − r′|/ξ ), (12)

where K is a dimensionless function of its argument decaying
to zero at large arguments such that∫

ddr K(r) = 1, (13)

so that ξ → 0 limit of K is just the original delta function.
Equation (7) now becomes

�f (r) = |E|f (r) − λf (r)

ξd

∫
ddr ′ K(|r − r′|/ξ )f 2(r′). (14)

Let us study Eq. (14) at E = 0. There exists a solution finst

of this equation which, at large distances, coincides with the
solution of the Laplace equation in d-dimensional space

finst(r) = A

rd−2
, r � ξ. (15)

Importantly, at r � ξ , the right-hand side of Eq. (14) goes as
1/r3(d−2) while the terms on the left-hand side go as 1/rd . At
3(d − 2) > d or d > 3 the right-hand side can be neglected,
making Eq. (15) a solution. At r ∼ ξ , we have a consistency
condition which follows from matching the left- and the right-
hand sides of Eq. (14), giving

A

ξd
∼ λA3

ξ 3(d−2)
, A ∼ ξd−3/

√
λ. (16)

At distances r � ξ , the right-hand side of Eq. (14) cannot be
neglected. Its effect is to regularize the solution and make it
nonsingular at r = 0. This results in the solution finst(r) to
Eq. (14) at E = 0 such that

finst(r) = A0
ξd−3

√
λ

1

rd−2
, r � ξ, (17)

where A0 is a numerical coefficient and f (r) finite at r → 0
The action of this solution is the generalization of Eq. (8) onto
the case of finite disorder correlation Eq. (12), which is

S = λ

4

∫
ddrddr ′

ξd
K(|r − r′|/ξ )f 2(r)f 2(r′). (18)

Evaluating the action for f = finst, we observe that K can still
be approximated as a delta function at r � ξ , as emphasized
in Ref. [25], to give an estimate

S ∼ A4
0
ξ 4d−12

λ

∫ ∞

ξ

rd−1dr

r4d−8
∼ ξd−4

λ
. (19)

This produces the density of states at E = 0 as ρ ∼
exp(−const ξd−4/λ), in agreement with Refs. [20,40] (for
uncorrelated potential, ξ should be taken to be equal to
lattice constant). Note that E 
= 0 results in a modified finst

at r � |E|−1/2 where it now decays exponentially, which as a
first approximation does not change Eq. (19), also in agreement
with Refs. [20,40].

We are now in position to address the central issue of this
paper: how the instanton solutions of this type can make the
Green’s function to decay exponentially in space. A single
instanton solution produces an additive contribution to Z

and to the Green’s function, thus resulting in the density of
states which is the sum of the instanton (smooth) and the
perturbative (singular) parts. However, we can generalize the
solution Eq. (15) to a gas of instantons of the form

f (r) =
N∑

n=1

ζnfinst(r − rn), (20)

where ζn = ±1 and rn are positions of instantons, and N

is their number. Importantly, as long as the instantons are
apart by more than ξ , Eq. (20) approximately solves Eq. (14).
Substituting this into Eq. (8) we note that terms of the form
1/|r − rn|4(d−2) produce the sum of the actions Eq. (19), one
per instanton, representing the sum of their “core energies.”
The next term comes from the cross terms of the form

1

λ

∫
ζnζmξ 4d−12ddr

|r − rn|3(d−2)|r − rm|d−2 ∼ ζnζmξ 2d−6

λ|rm − rn|d−2 . (21)

To evaluate this integral we have to remember that the functions
1/rd−2 are all understood as being regularized at r � ξ , and the
integrals can be estimated by integrating over r in the vicinity
of rn. The rest of the terms produced by Eq. (8) with Eq. (20)
substituted will have weaker divergencies as r approaches rn,
leading to terms smaller that the one above at small ξ .

The conclusion is that these instantons interact via two body
Coulomb-like interaction 1/rd−2 given by Eq. (21), with three
and four body terms suppressed as powers of ξ , leading to a
Coulomb gas of instantons. These have been studied at length
in the literature, in particular in dimensionalities [41] d > 2.
The standard approach to the Coulomb gas at d > 2 described
for example in Ref. [42] can now almost literally be adapted to
our problem. This gas of instantons can be recast in the form
of an effective field theory with the action

S =
∫

ddx

[
Dλξ 6−2d

2
(∇χ )2 − iμξ−d cos(χ )

]
, (22)
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where D is a dimensionless factor and a real dimensionless
μ can be related to the density of states [the details of the
derivation of Eqs. (21) and (22), while mostly standard, are
given in Appendix A].

cos(χ ) is a relevant perturbation, so it can be expanded
cos(χ ) ≈ 1 − χ2/2 leading to Eq. (22) describing exponen-
tially decaying Green’s function

G(p) ∼ [Dλξ 6−2dp2 + iμξ−d ]−1, (23)

with the correlation length

� ∼ ξ 3−d/2
√

λ/μ (24)

[for the derivation of Eq. (23) including the disorder-dependent
prefactor omitted here see Appendix A leading to Eq. (A17)].
We note that the density of states at zero energy can now be
calculated simply as

ρ(0) = Im
∫

ddp

(2π )3

1

Dλξ 6−2dp2 + iμξ−d
∼ μ. (25)

Importantly, as d > dc, this is an ultraviolently divergent
integral so to estimate it we just need to expand it in powers
of μ and keep the leading term [as always the divergence is
cut off since p in Eq. (25) cannot exceed 1/ξ ]. Therefore, the
correlation length is

� ∼ 1/
√

ρ(0), (26)

giving us a relationship between the density of states at zero
energy (which would have been zero in the absence of disorder
and is only nonzero due to rare fluctuations of disorder) and
the correlation length, the length at which the divergent length
scales saturate in the vicinity of λ = λc. Technically speaking,
the line of arguments presented here applies at very small λ.
In practice however ρ(0) is known to be small (numerically,
for example), and we can rely on this to justify the instanton
approximation even when λ  λc.

This derivation can easily be generalized to the problems
of particles whose disorder-free spectrum is E = pα , where
α = 2 for Eq. (3), α = 1 for Eq. (1), and with models where
α can be freely tuned described in [21]. Equation (5) gets
modified to γ̇ = −(d − 2α)γ + Cγ 2 + · · · , with the critical
point γc occurring at d > 2α (γ = λξ 2α−d ).

Repeating the arguments above we find that the single
instanton solution goes as f ∼ ξd−3α/2/(rd−α

√
λ), leading to

the density of states at zero energy ρ ∼ exp(−const ξd−2α/λ)
(this matches the density of states of Eq. (1) derived in [25] if
d = 3, α = 1 is substituted). A gas of instantons will interact
with the pairwise potential ξ 2d−3α/(λ rd−α). This produces the
effective field theory with the Green’s function

G(p) ∼ [Dλξ 3α−2dpα + iμξ−d ]−1, (27)

and the correlation length � ∼ ξ 3−d/α(λ/μ)1/α . Importantly,
the density of states is still ρ(0) ∼ μ, therefore � ∼
1/[ρ(0)]1/α . In particular, in the important application of this
formalism to the Weyl problem defined by Eqs. (1) and (4),

� ∼ 1/ρ(0). (28)

The details of this derivation can be found in Appendix B.
With the help of the formalism developed here, it is now

possible to study the physical consequences of the avoided

criticality in the disordered Weyl problem, which will be the
subject of future research.
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APPENDIX A: COULOMB GAS ACTION

We would like to elaborate on how to derive the effective
action of the Coulomb gas for the disordered Schrödinger
equation defined by Eqs. (3) and (4) in d > dc = 4 dimensions.
Almost all the steps in this derivation are standard, although
their implementation in this problem have some peculiarities
which will be emphasized here.

The energy of a gas of instantons can be found via
substituting Eq. (20) into Eq. (18):

S = λ

4

∫
ddrddr ′

(
N∑

n=1

ζnfinst(r − rn)

)2

×
(

N∑
m=1

ζmfinst(r′ − rm)

)2

K

( |r − r′|
ξ

)
, (A1)

where ζn = ±1, so that ζ 2
n = 1.

Opening the brackets, the first term is

S0 = λ

4

N∑
n=1

∫
ddrddr ′f 2

inst(r − rn)f 2
inst(r

′ − rn)K

( |r − r′|
ξ

)

= C1N
ξd−4

λ
. (A2)

To do this calculation we replace finst by its asymptotic
behavior Eq. (17), replace the kernel K by a delta function, and
estimate the integral, up to an overall numerical coefficient C1,
by integrating up to distances ξ . This is nothing but the sum of
the “core energies” of instantons Eq. (19), one per instanton.
The next term has the form

S1 = λ
∑
n
=m

ζnζm

∫
ddrddr ′f 2

inst(r − rn)finst(r′ − rn)

× finst(r′ − rm)K

( |r − r′|
ξ

)
. (A3)

In its estimation we again replace the kernel K by the delta
function and use the asymptotic behavior Eq. (17) to find

S1 ≈ A4
0
ξ 4d−12

λ

∑
n
=m

ζnζm

∫
ddr

|r − rn|3d−6|r − rm|d−2
, (A4)

where the integral is computed over the domain excluding the
circles of radius ξ surrounding each of the points rn, rm. We
observe that this integral is then dominated by r in the vicinity
of rn as long as d > 3 which is definitely the case here, where
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we find

S1 = C2
ξ 2d−6

λ

∑
n
=m

ζnζm

|rn − rm|d−2
, (A5)

as stated in Eq. (21). Importantly, as r approaches rm in
Eq. (A4) the integral there is not divergent and so the
contribution of the neighborhood of rm to S1 will be small
and can be neglected at small ξ . Note that this expression is
correct only if |rn − rm| � ξ .

Furthermore, all other terms arising from Eq. (A1) have
weaker divergencies than the ones leading to Eq. (A5) and
so can be neglected. Thus we obtained a Coulomb gas of
charges, which can be treated using the standard methods.
These methods involve the following steps. We take advantage
of the Gaussian integral representation of the Coulomb gas∫

Dχ e− 1
2 λξ 6−2dC4

∫
ddx(∇χ)2+i

∑
n ζnχ(rn)

= exp

⎛
⎝−C2

ξ 2d−6

λ

∑
n
=m

ζnζm

|rn − rm|d−2 − NC3
ξd−4

λ

⎞
⎠. (A6)

The coefficient C4 is chosen to produce C2 on the right-hand
side, which is straightforward to do explicitly but is not
necessary here. The numerical coefficient C3 arises as the
term χ (rn) in the exponential on the left-hand side should
be understood as χ (r) integrated together with an envelope
function centered around rn designed to produce S1 not only
when |rn − rm| � ξ , but also when these two points approach
each other. This regularizes 1/|rn − rm|d−2 at distances less
than ξ as roughly 1/ξd−2, up to the coefficient C3.

This allows us to sum over sectors with arbitrary number
of instantons, and sum over ζn = ±, in the standard way with
the result ∫

Dχ e
− ∫

dd r
[

Dλξ6−2d

2 (∇χ)2−iμξ−d cos (χ)
]
. (A7)

Here

μ = C5e
−C4

ξd−4

λ . (A8)

Here the coefficient C4 = C1 − C3. As emphasized in
Ref. [38], iμ is purely imaginary. This point is subtle: this
arises from integrating over Gaussian fluctuations about the
instanton solution in the limit of number of replicas taken to
zero. In Ref. [38] this produced an overall coefficient i. In our
multi-instanton calculation this produces a factor of iN in the
sector with N instantons, reproduced by expanding Eq. (A7)
in powers of μ.

In the theory given by Eq. (A7) cos(χ ) is always a relevant
perturbation as long as d � 3 (unlike the conventional BKT
transition where it can be either relevant or irrelevant). Since
it is relevant, we can expand the exponential in Eq. (A7) in
powers of χ to find the effective theory given by∫

Dχ e
− ∫

dd r
[

Dλξ6−2d

2 (∇χ)2+i
μ

2 χ2
]
. (A9)

In turn, this produces the Green’s function

G(p) ∼ 1

Dλξ 6−2dp2 + iμ
, (A10)

with purely imaginary μ. While intuitively this expression
should be correct, one can follow the prescription worked out
in Ref. [42] to resum over the instanton contribution to arrive
at Eq. (A10) as the Green’s function of the field φ1 of Eq. (6).
This arguments proceeds in the following way: we express the
field φ from Eq. (6) as

φn(r) = vn

√
i

N∑
m=1

finst(r − rm)ζm + ϕn(r)

=
∫

d3rfinst(r)ρinst(r) + ϕn(r). (A11)

Here N is the number of instantons, n is the replica index, and
ϕn are the Gaussian fluctuations about the instanton solution.
ϕ gives perturbative contributions to the correlator of φ. ρinst

is the instanton density defined by

ρinst =
N∑

m=1

δ(r − rm)ζm. (A12)

Now the correlations of ρinst can be extracted from the
generating functional [42]〈

ei
∫

d3rρinst(r)η(r)
〉

=
∫

Dχ e− 1
2

∫
dd r{Dλξ 6−2d [∇(χ−η)]2−iμξ−d cos (χ)}. (A13)

It follows that

〈ρinst(p)ρinst(−p)〉
= −Dλξ 6−2dp2 + (

Dλξ 6−2dp2
)2〈χ (p)χ (−p)〉

= −Dλξ 6−2dp2 + (
Dλξ 6−2dp2

)2 1

Dλξ 6−2dp2 + iμ

= − iμDλξ 6−2dp2

Dλξ 6−2dp2 + iμ
. (A14)

In momentum space, Eq. (A11) reads

φn = vn

√
i
Bξd−3

√
λp2

ρinst(p), (A15)

where B is yet another dimensionless factor related to the
Fourier transform of Eq. (17). This leads to the contribution of
the instantons to the Green’s function

Ginst = 1

p2

iμDB2

Dλξ 6−2dp2 + iμ
. (A16)

We should add to this the contribution of the instanton-free
sector, which is −1/p2. We expect that this eliminates the
pole at p → 0 in Eq. (A16) or that DB2 = 1, to give

G = 1

p2

(
iμDB2

Dλξ 6−2dp2 + iμ
− 1

)
= − Dλξ 6−2d

Dλξ 6−2dp2 + iμ
,

(A17)

the result quoted above in Eq. (A10) and in Eq. (23).
This produces the correlation length

� ∼ ξ 3−d
√

λ√
μ

. (A18)
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This correlation length produces the avoidance of criticality
in the random Schrödinger problem, with the critical scaling
occurring below this length only.

Note that this same Green’s function can be used to evaluate
the density of states. At d > dc = 4, we find

ρ = Im
∫

ddp

(2π )d
1

λξ 6−2dp2 + μ

≈ μ

λξ 6−2d

∫
ddp

(2π )d
1

p4
∼ μ

λξ 2−d
. (A19)

Here we use that the integral on the right-hand side of (A19)
is divergent at large p and should be cut off at p ∼ 1/ξ .
Comparison between Eqs. (A18), (A19), and (11) gives

� ∼ 1√
ρ

, (A20)

the relationship between the density of states at zero energy
(where it would have been zero in the absence of disorder)
and the correlation length built into the Green’s function. This
relationship conveniently relates the scale at which criticality
is avoided with the density of states produced by the rare
fluctuations of disorder.

APPENDIX B: INSTANTON GAS FOR ARBITRARY α

We would like to discuss briefly the generalization of the
above formalism to the case when the spectrum in the absence
of disorder is E = pα . In particular, α = 2 for the Schrödinger
problem, α = 1 for the Weyl/Dirac problem, and in other
examples α could take arbitrary values. In order for weak
disorder to be irrelevant and in order for the RG critical point
to exist, d > dc = 2α.

A single instanton in this problem goes as finst ∼ 1/rd−α .
This can be seen from the fact that at distances r � ξ the
instanton coincides with the Green’s function of the kinetic

energy operator [25], which is 1/pα in momentum space.
Marching the cubic and linear terms in the corresponding
generalization of Eq. (14), we find that

finst = A0
ξd−3α/2

rd−α
√

λ
, r � ξ. (B1)

This is the generalization of Eq. (17). Evaluating the action
of the single instanton gives a generalization of Eq. (19) or
S ∼ exp(ξd−2α/λ) leading to the density of states

ρ ∼ exp
(−const ξd−2α/λ

)
. (B2)

A gas of such instantons can now be constructed, which
interacts via a pair potential ξ 2d−3α/(λrd−α), generalizing
Eq. (A5). In order to derive this, we need a divergence of the
corresponding integral in Eq. (A4), which requires d > 3α/2,
which is indeed fulfilled here due to d > 2α. This produces an
effective field theory∫

Dχ e− 1
2

∫
dd r[Dλξ 3α−2dχ |∂|αχ+iμξ−dχ2], (B3)

with

μ = C5e
−C4

ξd−2α

λ . (B4)

Finally, the correlation length in this theory is

� ∼ ξ 3−2d/α

(
λ

μ

)1/α

. (B5)

The density of states is still proportional to μ, resulting in the
relation

� ∼ ρ−1/α. (B6)

In particular, in the Weyl problem Eq. (1) the correlation length
at what would have been a critical point goes as the inverse
density of states induced by the rare fluctuations of disorder at
the Dirac point.
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