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Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach
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The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this
work, we employ a Green’s function based approach, namely, the dynamical cluster approximation (DCA), to
investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used
to validate the method in a wide parameter space. An extension of the method, namely, the typical medium
DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for
binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system,
while heavier impurities lead to a partial localization of the low-frequency acoustic modes. For a uniform
(box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized
modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees
well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing
disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic
systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile
and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.
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I. INTRODUCTION

Anderson localization (AL) [1], though over five decades
old, generates sustained interest due to its importance in di-
verse phenomena such as metal-insulator transitions, quantum
Hall effect, mesoscopic fluctuations in small conductors, and
quantum chaos. Being a wave phenomenon in disordered
systems, AL is, naturally, not limited to electronic systems
and has been found in many other systems like electromagnetic
waves [2,3], acoustic waves [4], and spin waves [5]. Thus, the
physics of AL is of direct relevance to various applications
such as optical fiber design [6], molecular spintronics, and
even in biological systems [7].

A theoretical understanding of AL remains a challenging
research topic although it has been pursued extensively over
the years. In this context, several computational techniques
including exact diagonalization (ED), transfer matrix method,
kernel polynomial method [8–17], and renormalization group
method [18–20] have been developed and applied. A majority
of these studies deal, however, with electronic systems, and
less attention has been paid to other relevant elementary
excitations, such as phonons, despite being accessible to
experiment and having various applications like in high-
performance thermoelectric materials design.

This work aims to apply a recently developed framework,
namely, the typical medium dynamical cluster approximation
(TMDCA), to investigate the AL of phonons in mass-
disordered alloys. In this section, we briefly introduce the
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problem and review the relevant work on phonon localization
before delving into the formalism in the next section.

A random substitution of ions in a crystal lattice creates
local disturbances, the extent of which depends on both the
size and chemical nature of the impurity ions. As a result,
real-space perturbations of a given unit cell can propagate to
neighboring unit cells and be extended over a characteristic
length scale ξ . If this length scale is comparable to the system
size, the normal modes of the disordered system are termed
extended, and adiabatic continuity can be expected to connect
the disordered system with the clean case. However, it may
happen that, at and beyond some critical value of the disorder
strength, some or all of these modes remain confined over a
finite localization length, implying a real-space localization of
such modes.

This kind of disorder-induced confinement of lattice waves
indicates localization of phonons. If impurities are heavier
than host atoms, the phonon spectrum will be, in general,
shifted towards low-frequency regions. Lighter impurities, on
the other hand, can lead to more interesting effects. New states
corresponding to the vibration of guest atoms can appear in
frequency regions where no levels of the host crystal were
present. Hence, new impurity bands isolated from the host-
dominated spectra may be observed in the phonon spectrum.
Thus, a small amount of disorder in lattice vibrations can
change the physical properties of the material. For example, the
introduction of impurities can dramatically reduce the thermal
conductivity [21–25], which is a key factor in the design of
high-performance thermoelectric materials.

Several experimental studies have been devoted to un-
derstanding the AL of phonons and the effect of isotopic
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disorder [26–29]. Recently, Howie et al. [30] found direct
experimental evidence of phonon localization in a dense
hydrogen-deuterium binary alloy. Sarpkaya et al. [31] observe
that wave functions corresponding to acoustic phonons are
strongly spatially localized in copolymer-wrapped carbon
nanotubes. The first observation of localization of sound was
made by Hu et al. in a random three-dimensional elastic
network [4]. Very recently, Mendoza et al. [32] observed a
strong effect of the AL of phonons on the thermal conductivity
in GaAs/AlAs superlattices. A low-temperature plateau in
the thermal conductivity of disordered materials such as
glasses [33] and high-temperature superconductors [34] has
been attributed to the AL of phonons. These experimental
observations have not yet received a comprehensive theoretical
treatment.

Extensive theoretical attempts to investigate isotopic dis-
order exist and some even predate Anderson’s work on
localization [35]. Most of these may be classified as either
Green’s function based approaches or computational methods.
The former include perturbative, semianalytical approaches
[36–51] and continuum field theory based approaches [52,53].
Early perturbative methods utilized either the impurity con-
centration or the deviation from a mean mass as a small
parameter. Later approaches were based on the coherent-
potential approximation (CPA) and the average T -matrix ap-
proximation (ATA). More recently, Ghosh et al. [51] developed
the itinerant coherent-potential approximation (ICPA) which
satisfies translational invariance, unitarity, and analyticity of
physical properties. The ICPA has two additional advantages.
First, it can capture the physics of multisite correlations.
Second, it can incorporate both mass and spring disorder
simultaneously. In this connection, the ICPA is one of the most
successful extensions of the CPA to predict the vibrational
density of states of realistic binary alloy systems. Nevertheless,
the ICPA is not able to capture the AL of phonons.

Approximate theories such as the CPA or the ATA may be
used to get a qualitative insight. However, these are often based
on uncontrolled approximations, and their region of validity is
always in question. This is where numerically exact methods
such as exact diagonalization (ED) [54,55] and transfer matrix
method (TMM) [56] prove their mettle and provide very useful
benchmarks for approximate theories. Recently, Monthus and
Garel [57] use ED for relatively large system sizes to investi-
gate the localization of phonons in mass-disordered systems.
Using finite-size scaling methods for the low-frequency part
of the spectrum, they show that the single-parameter scaling
theory of localization, originally developed for electronic
systems applies to phononic systems as well. Pinski et al. [56]
employ the TMM to obtain the mobility edge as a function
of mass and spring disorder in three-dimensional systems.
They find a close correspondence between the electronic and
phonon systems. The main drawback of ED and TMM is that
their computational expense scales exponentially with system
size.

Despite extensive investigations over decades, a method
that fulfills all of the following set of requirements has not
yet been developed: (1) The method should systematically
approach the thermodynamic limit. (2) It should reproduce
exact diagonalization results for both the main vibrational
spectrum and the impurity modes. (3) It should be applicable

over the full alloy regime, i.e., for all defect concentrations.
(4) It should be able to handle both mass (diagonal) and
spring (off-diagonal) disorder on an equal footing. (5) It
should capture the AL of phonons, including the dependence
of the mobility edge on the disorder. (6) It should be
relatively computationally inexpensive in order to be useful for
investigations of phonon localization in real materials, which
necessarily involve multiple branches, and mass as well as
spring disorder.

The lack of a single method satisfying all the criteria
mentioned above for phononic systems motivates us to adapt
the dynamical cluster approximation (DCA) and the typical
medium DCA (TMDCA) for disordered phononic systems
to capture the Anderson localization of phonons since these
methods have been shown to work extraordinarily well in
electronic systems [58–61].

The main difficulty inhibiting the development of such a
method for the study of Anderson localization of phonons lies
in finding a single-particle order parameter to characterize
the Anderson transition in disordered phononic systems.
Recently, a typical medium theory (TMT) [62] for electronic
systems proposes the local density of states (LDOS) as an
appropriate quantity to look at for the study of Anderson
localization of electrons. The local density of states, defined
as ρl(ω) = ∑

n δ(ω − ωn)|ψn(l)|2, changes from continuous
to discrete upon the system transiting from an itinerant to a
localized state. On the insulating side of the transition, the
spectrum consists of delta functions. Here, the typical value
of the LDOS vanishes, whereas the globally averaged density
of states (ADOS) does not, nor is it critical at the Anderson
transition. Hence, the TMT adopts the typically averaged DOS
(TDOS) as an order parameter for the study of the Anderson
localization of electrons. In spite of the success of the TMT
in describing localized electron states, it suffers shortcomings
due to its single-site character. For example, the TMT does
not provide a proper description of the critical behavior of
the Anderson localization transition in three dimensions for
disordered electronic systems since it is not able to capture the
effects of nonlocal coherent back-scattering.

Recently, an extension of the TMT that includes nonlocal
dynamical correlations, called the typical medium dynamical
cluster approximation (TMDCA) [59], has been developed
for disordered electronic systems. It incorporates the typical
medium within the dynamical cluster approximation (DCA)
scheme. The TMDCA possesses all features of a successful
cluster theory such as the systematic incorporation of nonlocal
correlations, and it captures the critical behavior of the
Anderson localization transition including the correct value of
critical disorder strength and reentrant behavior of the mobility
edge.

The present TMDCA method for electronic systems utilizes
the fact that the LDOS is a continuum in the metallic state,
whereas it is composed of a set of delta functions in an
insulator, so that the typical value of the LDOS, averaged over
disorder locations, is zero. This same idea is equally applicable
to phonons or the localization of any propagating waves. So,
we can consider that the typical value of the LDOS remains
a valid order parameter for phononic systems. Based on this
concept, we establish a TMDCA formalism for the study of
Anderson localization of phonons.

014203-2



LOCALIZATION OF PHONONS IN MASS-DISORDERED . . . PHYSICAL REVIEW B 96, 014203 (2017)

We end this Introduction with two questions: (1) (a) How
well do the DCA and the TMDCA formalisms do when
compared with exact methods like ED and TMM? (b) To what
extent are the requirements of a successful method, that are
mentioned above, fulfilled by the DCA and the TMDCA? (2)
What new insights into the localization of phonons does the
calculation of typical density of states give? These questions
will be addressed at the appropriate places in the paper. In
this work, we have focused on diagonal mass disorder. Thus,
the issues of spring disorder and anharmonicity have not
been considered and are reserved for future studies. In the
following section, we describe a model for a mass-disordered
lattice within the harmonic approximation and the formalism
employed to solve the model.

II. METHOD

The Hamiltonian for the ionic degrees of freedom of
a disordered lattice in the harmonic approximation can be
written in terms of momentum (p) and displacement (u)
operators, as

H =
∑
αil

p2
iα(l)

2Mi(l)
+ 1

2

∑
αβll′ij

	
αβ

ij (l,l′)ui
α(l)uj

β(l′) , (1)

where piα(l) and ui
α(l) represent, respectively, the momentum

and the displacement (from the equilibrium position) of a site i

belonging to the unit cell l along the Cartesian coordinate α =
(x,y,z) direction. The index i runs from 1 to Ncell where the
latter denotes the number of atoms in the basis. We assume that
the force-constant tensor 	 is a function of |Ri(l) − Rj (l′)|,
where Ri(l) is the position of ion i in unit cell l.

The retarded displacement-displacement Green’s functions

iD
ij

αβ(l,l′,t) = 〈〈
ui

α(l,t); uj

β(l′,0)
〉〉

(2)

corresponding to the above Hamiltonian can be obtained
using their frequency-dependent counterparts given by (see
Appendix A for details) the solution of the following coupled
linear equations:

Mi(l)ω
2D

ij

αβ(l,l′,ω) = δαβδll′δij

+
∑
γ,l′′j ′

	
αγ

ij ′ (l,l′′)Dj ′j
γβ (l′′,l′,ω). (3)

With a single composite index λ = (α,l,i), we can write the
above equation in a matrix representation and obtain a formal
solution for the Green’s function [Eq. (2)] as

M0D̂(ω) = [
ω21 − 	̂M−1

0 − ω2V̂
]−1

, (4)

where M0 includes the masses of the ions in the unit cell
of the clean lattice with respect to which the mass-“disorder
potential” V̂ is given as

(V̂ )λ,λ′ = (
1 − MλM

−1
0λ′

)
δλ,λ′ . (5)

Note that the masses have been assigned a Cartesian index
purely for notational convenience, i.e., the mass of the ith
atom in the lth unit cell does not, naturally, depend on α, the
direction.

In this work, we consider an isotropic simple cubic lattice
with a monoatomic basis (M0λ = M0) and a spring constant

tensor 	 truncated at nearest neighbors:

	αβ(l,l′) = δαβ

(
	Dδl,l′ + 	nnδRl′ ,Rl+�δ

)
, (6)

where 	D and 	nn are the diagonal and the nearest-neighbor
component of the tensor, respectively, and �δ is a vector
connecting a site to its nearest neighbors.

We consider two kinds of mass disorder in Eq. (5), namely,
(1) binary isotopic disorder, where the random masses Mλ

are either Mimp or M0 with concentrations c and (1 − c),
respectively, and (2) a uniform (box) disorder, where (1 −
Mλ/M0) ∈ [−V,V ] with equal probability for any value in that
interval and 0 < V � 1 representing the strength of disorder.
Binary isotopic disorder is a special case of binary disorder
since the latter may involve substitutions that may induce
spring disorder in addition to mass disorder. Most experimental
studies involve disorder in a binary alloy. Hence, we perform
calculations for this disorder distribution. However, a com-
prehensive validation of the numerical schemes requires us
to compare our results with the available results for the box
distribution. Thus, the two distributions are needed to complete
our study.

In the absence of mass disorder, i.e., V̂ = 0, corresponding
to a clean, monoatomic lattice, all ionic masses are identical,
hence, Mi(l) = M0 and i = 1 for all l lattice sites. In
such a case, the system is translationally invariant, hence
transforming to k space using

M0D
(0)
αβ (l,l′,ω) =

∑
k

D
(0)
αβ (k,ω)eik·(Rl−Rl′ ),

Eq. (3) simplifies to

D̄(0)(k,ω) = [ω21 − F̄ (k)]−1, (7)

where the “overbar” represents a matrix in the Cartesian basis
(e.g., 3 × 3 in three dimensions), and F̄ (k) is related to 	̂

through

[F̄ (k)]αβ =
∑

l′

	αβ(l,l′)
M0

eik·(Rl−Rl′ ).

Thus, with the specific form for 	 given by Eq. (6), the Green’s
function in the clean limit reduces to

D̄(0)(k,ω) = (
ω2 − ω2

k

)−1
1, (8)

where the dispersion is given by

ω2
k = ω2

0

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

)
, (9)

with ω0 = √
4γ /M0 = 1 being our unit of energy and γ =

−	D = 6	nn; the latter equality stems from sum rules that
need to be satisfied by the spring constant tensor. The choice
of ω0 = 1 implies that the bandwidth of the noninteracting
spectrum is

√
3. Since all the branches have identical disper-

sion, we will drop the branch index (α) henceforth in this work.
Thus, Eq. (4) may be written as a Dyson equation

D̂−1(ω) = (D̂(0)(ω))−1 − ω2V̂ . (10)

The connection to disordered electronic systems can now
be made. The noninteracting electronic Green’s function in a
clean lattice is given by G(0)(k,ω) = (ω+ − εk)−1, where εk =
−2t[cos(kx) + cos(ky) + cos(kz)] is the electronic dispersion
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in a cubic lattice with nearest-neighbor hopping t . By noting
that the phonon dispersion [Eq. (9)] can be mapped to
the electronic dispersion through ω2

k = 6γ /M0 + γ εk/(M0t),
the similarity between G(0) and D(0) [Eq. (8)] becomes
immediately clear.

A major difference between the localization of phonons
and electrons emerges from the form of the Dyson equation.
In the electronic case, V̂ represents site disorder and the

Dyson equation reads as Ĝ−1(ω) = (Ĝ(0)(ω))
−1 − V̂ , while

in the phonon case, the perturbation term is ω2V̂ [Eq. (10)],
which creates a significant difference in the localization of
phonons versus electrons. For example, localizing low-energy
acoustic modes should be almost impossible because the
modulating factor of ω2 implies that the disorder potential
becomes vanishingly small at low energies, hence leaving
the acoustic modes almost unperturbed. The implication for
high-frequency modes is also clear: the disorder potential
increases without bound; hence, high-frequency modes are
expected to get localized even for relatively weak disorder.
Further differences will be pointed out in the results section.

There are several methods to solve the Dyson equation
[Eq. (10)]. Diagrammatic methods employing an infinite
resummation of a certain class of diagrams are one choice
[63]. The CPA, which reduces the lattice problem to an
effective single-site problem, is another. Alternatively, one can
choose a finite system with periodic boundary conditions and
solve for the Green’s function exactly. Each of these methods
has specific advantages and disadvantages. For example, the
diagrammatic methods are often uncontrolled approximations
and may violate sum rules and/or yield unphysical spectra.

Finite system calculations, though exact, suffer from a
large computational expense. Hence, a method is needed
that is computationally feasible, systematically approaches
the thermodynamic limit, and is fully causal. The dynamical
cluster approximation (DCA) is one such method. It has been
applied very successfully to investigate a variety of fermionic
and bosonic models. In this work, we extend the DCA to study
phonons in mass-disordered systems. We now describe the
DCA for phonons in some detail below.

A. Dynamical cluster approximation (DCA) for phonons

Jarrell et al. [64] introduced the DCA as an extension of
the dynamical mean field approximation (DMFA) through the
inclusion of nonlocal spatial correlations. DCA systematically
incorporates nonlocal correlations by mapping the original
lattice problem onto a periodic cluster of size Nc ∼ Ld

c

where Lc is the linear size of the cluster and d is the
dimension of the lattice. The periodic cluster is embedded
into a self-consistent effective medium which is characterized
by a nonlocal hybridization function (K,ω). The effective
medium is constructed via algebraic averaging over disorder
configurations. Hence, spatial correlations up to a range
ξ � Lc are taken into account accurately, while the longer
length scale physics is treated at the mean field level. In this
formulation, it is assumed that the momentum dependence
of the hybridization function is weak. An algorithm that
implements the DCA for solving Eq. (10) for phonons is given
below:

(1) The computational scheme begins with an initial guess
for the hybridization function old(K,ω). Such a guess can
be obtained either through a previous calculation or through
a coarse graining of the nondisordered Green’s function
[Eq. (8)]:

old(K,ω) = ω2 − ω̄2
K −

⎛
⎝∑

k̃

D(0)(K + k̃,ω)

⎞
⎠

−1

, (11)

where k̃ runs over the momenta of the cell centered at the
cluster momentum K, and ω̄2

K is the coarse-grained dispersion
given by

ω̄2
K = Nc

N

∑
k̃

ω2
K+k̃, (12)

where ω2
k is given in Eq. (9).

(2) The hybridization function is used to calculate the
cluster-excluded Green’s function D(K,ω) as

D(K,ω) = 1

ω2 − ω̄2
K − old(K,ω)

. (13)

(3) The cluster-excluded Green’s function in momentum
space is Fourier transformed to real space:

M0D(l,l′,ω) =
∑

K

D(K,ω) exp[iK · (Rl − Rl′)]. (14)

(4) Next, we generate a large number of configurations
of the disorder potential (V̂ ) for a given distribution, namely,
binary isotopic or box disorder.

(5) For each disorder configuration V̂ , the mass-weighted
Dyson equation is used to compute the cluster Green’s
function, given by

Dc(l,l′,ω)

=
√

1 − (V̂ )l[[D̂(ω)]−1 − ω2V̂ ]
−1
ll′

√
1 − (V̂ )l′ , (15)

which is then averaged over all disorder configurations:

Dc
DCA(l,l′,ω) = 〈Dc(l,l′,ω)〉, (16)

where 〈. . . 〉 denotes an algebraic average. As explained in
Appendix B, the mass weighting is essential in order to ensure
a proper normalization of the spectral functions in the presence
of disorder. In practice, we have generated about 600–1000
disorder configurations for each simulation, and have verified
the robustness of our results with respect to the number of
configurations.

(6) The average cluster Green’s function obtained in
Eq. (16) is Fourier transformed to momentum space, and then
used to compute the coarse-grained lattice Green’s function:

DCG(K,ω)

= Nc

N

∑
k̃

[[
Dc

DCA(K,ω)
]−1 + old(K,ω) − ω2

K+k̃ + ω̄2
K

]−1
.

(17)
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The disorder-averaged spectral function, termed the ADOS,
may be defined as

ADOS(ω2) = − 2ω

Ncπ
Im

∑
K

Dc
DCA(K,ω). (18)

(7) A new hybridization function is found through

new(K,ω) = old(K,ω)

+ ξ
[
[DCG(K,ω)]−1 − [

Dc
DCA(K,ω)

]−1]
, (19)

where ξ is a linear mixing parameter used for improving the
convergence.

Self-consistency is achieved when ||new(K,ω) −
old(K,ω)|| reaches numerical tolerance (in practice, about
0.005). We have checked that such a condition is sufficient
to obtain converged Green’s functions and self-energies.
If the self-consistency condition is satisfied, the iterations
end, else we impose old = new and go back to step 2.
In practice, we add a small imaginary broadening factor
(ω → ω + ιη; η ∼ 10−3) to real frequencies for accelerating
convergence.

Although the DCA possesses several advantages over the
CPA, both are unable to capture the Anderson localization. The
arithmetic averaging used for computing the cluster Green’s
function [Eq. (16)] in step 5 leads to this inability. The typical
medium DCA developed for electronic systems has been
demonstrated to capture Anderson localization. We describe
the extension of DCA to TMDCA for phonons below.

B. Typical medium dynamical cluster approximation (TMDCA)
for phonons

As mentioned above, the DCA employs algebraic aver-
aging over disorder configurations, while in the TMDCA,
the effective medium is constructed via geometric averag-
ing. The ansatz for computing the typical density of states
remains the same as in the electronic case, namely,

ρc
typ(K,ω) = exp

(
1

Nc

Nc∑
l=1

〈ln ρc(l,ω)〉
)

×
〈

ρc(K,ω)
1

Nc

∑
l ρ

c(l,ω)

〉
, (20)

where

ρc(l,ω) = −2ω

π
Im Dc(l,l,ω),

ρc(K,ω) = −2ω

π
Im Dc(K,ω)

are the local and momentum-dependent spectral functions,
respectively, computed from the unaveraged cluster Green’s
function Dc(l,l′,ω) [Eq. (15)].

The disorder-averaged typical Green’s function can be
calculated from the typical density of states [Eq. (20)], using
the Hilbert transform as

Dc
typ(K,ω) = P

∫
dω′ ρ

c
typ(K,ω′)

ω2 − ω′2 − i
π

2ω
ρc

typ(ω), (21)

FIG. 1. Self-consistency loop of the TMDCA for phonons.

and the corresponding typical density of states, termed the
TDOS, is given by

TDOS(ω2) = − 2ω

Ncπ
Im

∑
K

Dc
typ(K,ω). (22)

The TMDCA implementation is almost identical to that of
the DCA, except that the typical Green’s function is obtained
by combining Eqs. (15), (20), and (21) and in Eqs. (17)
and (19), the Dc

DCA is replaced by Dc
typ. The flowchart of the

algorithm is presented in Fig. 1.
Apart from the typical Green’s function, Dc

typ, an average
Green’s function, denoted by Dave

typ can also be computed within
the TMDCA using Eq. (16) in the final iteration of the TMDCA
self-consistency cycle. An interpretation of such a Green’s
function is that it yields the physical density of states, while
the typical density of states acts as an order parameter for the
Anderson localization transition.

The rest of the paper is organized as follows: We will vali-
date the DCA and TMDCA against exact diagonalization and
transfer matrix method, respectively, in Sec. III. Subsequently,
in Sec. IV, the typical density of states, computed through
TMDCA, is used to discuss the physics of phonon localization.
Conclusions are presented in the final section.

III. BENCHMARKING DCA AND TMDCA

The first step to establish any method is to benchmark it
against previous exact results. This will be the objective of this
section. The DCA and TMDCA benchmarks are established
separately in Secs. III A and III B, respectively.

A. Dynamical cluster approximation

Figure 2 shows a direct comparison of the density of states
obtained from the DCA with results from exact diagonalization
(ED) [55] for a binary isotopic alloy system in three dimensions
at various values of disorder potential (V ) and concentrations
(c). The disorder-averaged density of states can be obtained
from the DCA cluster Green’s function Dc

DCA [Eq. (16)] and is
given by Eq. (18).
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FIG. 2. Comparison of the density of states obtained from the
DCA and exact diagonalization (ED) methods for a binary isotopic
alloy system in three dimensions at a fixed mass ratio (V = 0.5) and
various values of concentration (c). The left panel shows the DCA
results for increasing impurity concentration c (from top to bottom).
Each panel illustrates the evolution of the spectrum with increasing
cluster size. The right panel shows a comparison of the Nc = 125
DCA result with ED (data from Ref. [55]) for the same parameters.
The agreement between the DCA and ED is seen to be excellent,
whereas there is strong disagreement between Nc = 1 results and ED
results.

The DCA calculations have been performed for a simple-
cubic lattice with different cluster sizes, namely, Nc =
1,8,64,125. In the ED calculations [55], the DOS was
calculated for a 6 × 6 × 25 randomly disordered simple-cubic
lattice. The left panels of Fig. 2 show the evolution of the
spectrum with increasing (from top to bottom) concentration
(c) of light impurities (with Mimp = Mhost/2, hence V = 0.5).
The two-peaked structure of the spectrum, seen for all con-
centrations, is reflective of the binary mass distribution. The
spectral weight of the higher-frequency band is seen to grow
with increasing c, while the low-frequency band shrinks. For
c � 0.5, the system may be viewed as the dual of the original
system, i.e., a binary alloy with a lighter host and heavier im-
purities. The transfer of spectral weight is natural since lighter
impurities should have higher characteristic frequencies.

The DCA for a single-site cluster (Nc = 1) reduces to
the CPA. The left panels of Fig. 2 also show that results
from the CPA are quite different from those at higher Nc,
thus emphasizing the need to incorporate nonlocal dynamical
correlations. Nevertheless, we note that the CPA roughly
captures the overall shape. There are two problems, however.

At the lowest frequencies, the CPA spectral function exhibits
a gap, while the DCA spectra (for higher Nc = 64,125) do
not. In fact, even the Nc = 8 spectrum is gapped, albeit
with a smaller gap as compared to the CPA. The reason
for this spurious gapped behavior is that the correct sum
rules are obeyed only in the thermodynamic limit. The
second problem is that in the high-frequency region, the CPA
spectrum comprises an almost separated impurity band with a
cusplike nonanalytic feature. This feature is again in contrast
with results of higher Nc, which show that the spectrum is
continuous and broad. Moreover, we observe that results for
Nc = 64 and 125 are hardly different for all concentrations,
suggesting that the convergence with respect to increasing in
cluster size is achieved for a cluster as small as 4 × 4 × 4.

The right panels of Fig. 2 show a direct comparison
of results using the DCA at the highest Nc = 125 of the
corresponding left panel with ED results [55]. In general,
the computational expense in ED depends on many factors,
such as the number of frequencies, the length of the lattice,
and also on the number of atoms in a cross section of the
lattice. We consider ED results from Ref. [55], where they use
a 6 × 6 × 25 lattice and a Strum sequence method. Clearly,
the agreement between the ED and DCA, even considering
the fine structure of the ED results, is rather good. Thus, the
DCA is not only far less expensive than the ED but is also
able to yield a smooth and continuous spectrum. Furthermore,
the DCA converges to the exact, thermodynamic limit result
far more rapidly than the ED, which achieves convergence for
much larger system sizes (6 × 6 × 25). Thus, our DCA scheme
can efficiently calculate the average vibrational spectra in three
dimensions for arbitrary values of impurity concentrations and
disorder potential.

Since the DCA is nonperturbative, it is applicable over the
entire alloy regime, c ∈ [0,1], which has been a significant lim-
itation of perturbative theories of alloys [41,42,46]. A cluster
approach developed by Myles and Dow [65] also incorporates
nonlocal correlations. However, this method is limited by a
restriction on the combined choice of concentration (c) and
cluster size (Nc), which have to obey the relation cNc =
integer, akin to supercell-based calculations. The DCA does
not suffer from this restriction, which makes it possible to
access any impurity concentration for a given cluster size.
Another drawback of Myles’ cluster method as compared to
the DCA is that the effective medium is described within the
CPA. As a result, the bandwidth of the local impurity mode
obtained from Myles’ calculations is too narrow.

The excellent benchmark obtained thus far implies that the
DCA scheme for phonons with increasing cluster size (Nc) can
efficiently predict vibrational spectra for disordered systems.
Nevertheless, the DCA is not able to capture Anderson
localization [59,64] of phonons. In order to incorporate the
physics of localization, we utilize the TMDCA method,
described in Sec. II. The following subsection describes the
validation of the TMDCA through a direct comparison with
the transfer matrix method.

B. Typical medium dynamical cluster approximation

A striking feature of disordered systems in three dimensions
is the existence, in the density of states, of a mobility edge
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FIG. 3. A comparison of the mobility edges (ωM ) in the phonon
spectrum in three dimensions for a box distribution, obtained from
the transfer matrix method [56] against TMDCA. Results from the
latter for the larger clusters agree excellently with the TMM results.

[66], which is defined as the energy separating localized and
itinerant states. Experimental measurements of the mobility
edge are feasible as demonstrated for ultracold atoms in a
disordered potential created by laser speckles [67]. Within
the TMDCA, the mobility edge is determined using the
band edges of the typical density of states (TDOS) since
the latter is nonzero only for extended states. For a box
disorder distribution, defined as PV (Vl) = �(V − |Vl|)/2V

where Vl = (1 − Ml/M0) and 0 < V � 1, where l is the site
index, and V is the width of the distribution that represents
the strength of disorder, the mobility edge determined using
TMDCA is compared against exact transfer matrix method
results in Fig. 3. The agreement between results from the
TMM (black circles) and the TMDCA for Nc = 64 (green
diamonds) and 125 (blue triangles) is excellent. Such a result
is not surprising since the TMDCA, for three-dimensional
electronic disordered systems, agrees very well with the kernel
polynomial method and the transfer matrix method [59].

For V � 0.5, the TMM results and likewise those from
TMDCA exhibit a reentrant transition with increasing disorder,
in parallel with the behavior in disordered electronic systems
[59]. However, an important difference is that beyond a
critical disorder, all the states in the electronic system become
localized, while in the phonon case, a finite fraction of the
low-frequency states remain extended. In analogy with the
electronic case, the reentrance transition seen in the TMDCA
results in Fig. 3 has the following explanation: very low
disorder induces states outside the band edge that merge
with the continuum through hybridization. At intermediate
levels of disorder, isolated localized modes (analogous to deep
trap states) appear beyond the band edge, which nevertheless
hybridize with each other and the extended states on the
band edge, and thus transform into extended states. We note
that such a hybridization requires intersite correlations, that
are missing from a single-site theory (Nc = 1) such as the
TMT, and hence a blue-shift of the mobility edge (seen in the

TMDCA results of Fig. 3) is not captured by the single-site
theory. However, with increasing disorder, states at the band
edges begin to get localized, and hence the mobility edge
undergoes a reentrance crossover.

The failure of single-site theories (Nc = 1, red squares in
Fig. 3), as evidenced by the significant disagreement with
TMM results involves two factors: (i) The TMM mobility
edge initially blue-shifts with increasing disorder, while the
Nc = 1 result red-shifts monotonically. (ii) The TMM as well
as the TMDCA results for higher disorder strengths (V � 0.5)
clearly show a reentrant transition, which the single-site theory
completely misses. Likely, this is due to the fact that the
Nc = 1 calculation is a single-site theory and hence does
not incorporate nonlocal coherent back-scattering effects,
although it does include strong localization effects induced
by deep trapped states.

With these results for the DCA and TMDCA, the question
1(a) posed at the end of the Introduction is fully answered.
Both DCA and TMDCA do yield excellent agreement when
compared to exact methods. Now, we move to a discussion of
results on the Anderson localization of phonons.

IV. RESULTS FROM TMDCA

In disordered electronic systems, the typical density of
states, given by Eq. (22), may be used as an order parameter
for the Anderson localization transition [59,62]. While the
physical observable is still the arithmetically averaged den-
sity of states [ADOS(ω)], the TDOS(ω) yields a mobility
edge that separates localized and extended states. Within
the TMDCA, the ADOS(ω) is computed from Dave

typ (K,ω),
which, as explained in Sec. II, carries information about the
typical medium within which the cluster is embedded. The
hybridization function connecting the cluster with the host is
known [58] to decay as a function of increasing cluster size as
∼1/N2

c . Hence, the ADOS(ω) computed within TMDCA must
coincide with the corresponding quantity computed within the
DCA in the thermodynamic limit. In practice, we find that
even at Nc = 64, the two are almost identical. This is shown in
Fig. 7 of Appendix C. In what follows, we will discuss results
for the average and the typical density of states, computed
through TMDCA for box and binary disorder distributions.

A. Box disorder

We restrict our discussion of TMDCA results to three-
dimensional systems and focus first on box disorder. In Fig. 4,
the ADOS (black) and TDOS (red) are shown for a range
of disorder strengths (V ) and cluster sizes Nc = 1, 64, and
125 for a uniform (box) distribution. As may be expected, the
typical DOS is almost the same as the ADOS for low disorder
(V � 0.4). However, for higher V , localization sets in at higher
frequencies. The ADOS develops long tails, but the TDOS is
nonzero over a much smaller frequency interval, indicating
that all tail modes are Anderson localized. Moreover, the
integrated spectral weight in the TDOS decreases steadily.
The TDOS shown in Fig. 4 has been used to extract the
mobility edges that were compared against TMM results in
Fig. 3. Note that, for higher V (�0.8) and Nc = 1, the spectra
exhibit a second mobility edge at low frequencies implying that
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FIG. 4. The evolution of the ADOS and TDOS, obtained from
the TMDCA, as a function of the square of the frequency (ω2) at
various disorder strengths V chosen from a box distribution in three
dimensions with cluster sizes Nc = 1, 64, and 125. At low disorder
(V ), the shape of the TDOS is similar to ADOS. As V increases,
the spectral weight in the TDOS decreases monotonically, while the
ADOS, being normalized, develops long, slowly decaying tails that
comprise localized phonon modes. The tiny arrows denote mobility
edges (ωM ), that have been used for benchmarking against TMM
results in Fig. 3.

long wavelength acoustic modes become localized. However,
this result is again an artifact of the single-site approximation
because higher Nc results show that long-wavelength acoustic
modes do not localize at all, even when V → 1.

B. Binary isotopic disorder

For a binary, isotopic distribution, the evolution of ADOS
and TDOS, obtained within the TMDCA for cluster sizes
Nc = 1, 64, and 125, with increasing impurity concentration
c and fixed disorder potential V = 0.7, is shown in Fig. 5.
Figure 5 displays a transfer of spectral weight from low to high
frequencies, and a modest dip in the typical spectral weight
around c = 0.5.

We find that the ADOS shown in Fig. 5 is almost the same
than the one found within the DCA (see Fig. 2). The main
difference is that the ADOS found within the TMDCA is
very spiky as compared to the corresponding quantity in the
DCA. Interestingly, the impurity modes yield a nonzero ADOS
beyond the band edge of the host band, but the TDOS is almost
zero for low concentrations (c � 0.2). The vanishing of the
TDOS indicates the localization of the impurity-induced high-
frequency modes for such concentrations. As the concentration
increases, the low- and high-frequency bands merge, and the

FIG. 5. The ADOS and TDOS calculated using the TMDCA
with cluster sizes Nc = 1, 64, and 125 at various values of impurity
concentration c with fixed disorder potential V = 0.7 for binary
isotopic mass distribution in three dimensions.

TDOS is nonzero over the entire bandwidth. Nevertheless, as
the concentration c → 1, the ADOS clearly shows a remnant
of the host modes, but the TDOS is quite small in the
same frequency range, implying that most of those modes
are localized. The leftmost panel, for Nc = 1, shows that
for c → 1, the host modes are completely localized, and a
low-frequency mobility edge emerges. However, results for
larger cluster sizes of Nc = 64 and 125 show that such a result
is an artifact of ignoring nonlocal dynamical correlations.

Far more dramatic changes occur for fixed concentration
c and increasing disorder potential V , as shown in Fig. 6. At
low V (�0.4), the ADOS and TDOS do not differ much,
which is expected since the TMDCA reduces to DCA in
the low disorder limit [59]. The good agreement between
ADOS and TDOS also indicates that most modes remain
propagating even if half of the host atoms are replaced with
lighter atoms of mass, Mimp � 0.6M0. However, for higher V ,
the TDOS is sharply suppressed and is seen almost to vanish for
V → 1, thus suggesting that almost all modes get localized in
this parameter regime. Nevertheless, a complete localization
seems to be possible only when V = 1, or when Mimp = 0,
which corresponds to vacancies, for which a proper treatment
involves the inclusion of spring disorder.

Therefore, localization of the impurity modes in the
high-frequency region may be achieved with experimentally
feasible disorder parameters. However, low-frequency
phonons are almost impossible to localize, which is consistent
with the argument made in Sec. II. Howie et al. [30] study
hydrogen-deuterium mixtures for three concentration ratios,
namely, 0.6 : 0.4, 0.55 : 0.45, and 0.5 : 0.5 using Raman
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FIG. 6. The ADOS and TDOS calculated using the TMDCA
with cluster sizes Nc = 1, 64, and 125 at various values of disorder
potential V with impurity concentration c = 0.5 for binary, isotopic
mass distribution in three dimensions.

spectroscopy. They observe that the hydrogen-deuterium
mixture goes into a new phase IV, which may be modeled
as an ideal binary isotopic alloy. In this alloy, with a mass
factor of 2 and varying the concentration ratio, they find six
localized modes located in the high-frequency region, while
four low-frequency modes are found to be delocalized. Our
model study using the TMDCA can capture this localization
effect qualitatively. It will, naturally, be interesting to explore
the phenomenon of acoustic phonon localization using more
realistic parameters in the presence of both mass and spring
disorder. Such a study is underway.

The results shown in this section allow us to answer the
second question posed at the end of the Introduction. Although
the ADOS shows the physically observable exact spectrum
of the disordered phonon system, a clear identification of
localized and extended states cannot be made based only on
the ADOS. Through a direct comparison of the TDOS with
the ADOS, such an identification becomes straightforward.
Thus, the TDOS gives great insight into which modes are
propagative and which ones are not; that can be further used for
developing strategies for, e.g., decreasing thermal conductivity
in thermoelectric materials.

V. CONCLUSIONS

We have developed the DCA and TMDCA formalisms for
investigating the effects of disorder on the phonon spectrum.

Although the DCA exhibits several advantages over the CPA
by including important nonlocal spatial correlations, it suffers
from its inability to capture Anderson localization. Such
a failure is due to the arithmetic averaging over disorder
configurations. Based on this understanding, we develop
the TMDCA, where a typical averaging ansatz replaces the
arithmetic averaging step. Using the TMDCA for a binary and
a box distribution of mass disorder, we explore several aspects
of Anderson localization in phononic systems. In particular,
a comparison of the mobility edge computed through the
TMDCA with that from the transfer matrix method yields
an excellent agreement including the capture of the reentrance
transition of the mobility edge.

We also find that for a binary isotopic alloy, low concen-
trations of light impurities introduce high-frequency modes,
which are Anderson localized. While at high concentra-
tions, the lower-frequency modes are localized. Maximum
localization over the entire spectrum is observed for equal
concentrations of light and heavy atoms. Another finding is
that a larger difference between the isotope masses introduces
stronger localization effects than the ones due to an increasing
in the concentration of impurities.

Addressing the question 1(b) posed at the end of the
Introduction, the DCA and the TMDCA methods do fulfill
several essential characteristics required for a successful
cluster theory. They converge systematically to the thermo-
dynamic limit, and with far lower computational expense
than exact methods such as ED and TMM. The excellent
benchmarks obtained show that not only do the methods work
in the full parameter regime, and over all frequencies, the
TMDCA is also capable of describing AL of phonons highly
accurately. The equation for the Green’s function, namely,
Eq. (3), is valid for mass and spring disorder, as well as for
multiple branches. Thus, in principle, these methods should
be able to go beyond mass disorder, and our preliminary
results do support this conjecture. Since these methods are
computationally relatively inexpensive, it should be possible
to incorporate material-specific information. In combination
with first-principles approaches for phonons, the TMDCA can
be an efficient tool for studying Anderson localization in real
materials. However, for doing so, the present formalism should
be extended to incorporate multiple nondegenerate branches
and also to the inclusion of spring disorder in addition to mass
disorder. Since the current formulation adopts the Green’s
function approach, it can be easily extended to layered geome-
tries, thus allowing for investigations of phonon engineering
in superlattice structures, heterostructures, thin films, and
interfaces. Some of these directions are presently in progress.
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APPENDIX A: DISPLACEMENT-DISPLACEMENT
GREEN’S FUNCTIONS

The Green’s functions and their spectral representation for
disordered lattice vibrations have been extensively discussed
in the literature. However, for completeness, we rederive some
of those results here.

The Hamiltonian for a mass-disordered lattice within the
harmonic approximation is written as

H =
∑
αil

p2
iα(l)

2Mi(l)
+ 1

2

∑
αβll′ij

	
αβ

ij (l,l′)ui
α(l)uj

β(l′), (A1)

where the symbols and indices are described in Sec. II.
The retarded displacement-displacement Green’s functions,
represented by

iD
ij

αβ(l,l′,t) = 〈〈
ui

α(l,t); uj

β(l′,0)
〉〉
, (A2)

may be found through the equation-of-motion formalism.
Using the Heisenberg equation of motion, we get

i
∂

∂t

〈〈
ui

α(l,t); uj

β(l′,0)
〉〉 = iδ(t)

〈[
ui

α(l,t),uj

β(l′,0)
]〉

+ 〈〈[
ui

α(l,t),H
]
; uj

β(l′,0)
〉〉
.

(A3)

Now, since [ui
α(l,t),H] = ipiα(l)/Mi(l), Eq. (A3) can be

written as

∂

∂t

〈〈
ui

α(l,t); uj

β(l′,0)
〉〉 = 0 +

〈〈
piα(l,t)

M(i)(l)
; uj

β(l′,0)

〉〉
. (A4)

A similar consideration for the momentum-displacement
Green’s function 〈〈piα(l,t); uj

β(l′,0)〉〉 yields

i
∂

∂t

〈〈
piα(l,t)

Mi(l)
; uj

β(l′,0)

〉〉
= iδ(t)

〈[
piα(l)

Mi(l)
,u

j

β(l′)
]〉

+
〈〈[

piα(l,t)

Mi(l)
,H

]
; uj

β(l′,0)

〉〉
.

(A5)

Since

[
piα(l,t)

Mi(l)
,H

]
= −i

∑
γ,l′′j ′

	
γ,α

j ′,i (l
′′,l)

Mi(l)
uj ′

γ (l′′,t), (A6)

Eq. (A5) reduces to

i
∂

∂t

〈〈
piα(l,t)

Mi(l)
; uj

β(l′,0)

〉〉

= −i
1

Mi(l)
iδ(t)δij δ(l,l′)δαβ

− i
1

Mi(l)

∑
γ,l′′j ′

	
γ,α

j ′i (l′′,l)
〈〈
uj ′

γ (l′′,t); uβ(l′,0)
〉〉
. (A7)

Taking derivative with respect to time on both sides of Eq. (A4)
and using Eq. (A7), we get

∂2

∂t2

〈〈
u(i)

α (l,t)u(j )
β (l′,0)

〉〉
= − 1

Mi(l)
iδ(t)δij δαβδ(l,l′)

− 1

Mi(l)

∑
γ,l′′j ′

	
γ,α

j ′i (l′′,l)
〈〈
uj ′

γ (l′′,t); uj

β(l′,0)
〉〉
. (A8)

Using the definition of Green’s function [Eq. (A2)], we can
rewrite Eq. (A8) as

Mi(l)
∂2

∂t2
D

ij

αβ(l,l′,t) = −δ(t)δαβδll′δij

−
∑
γ,l′′j ′

	
γα

j ′i (l′′,l)Dj ′j
γβ (l′′,l′,t).

(A9)

Transforming to frequency space and using the symmetry
relations of the force-constant matrix (	γα

j ′i = 	
αγ

ij ′ ), finally,
Eq. (A9) can be written as

Mi(l)ω
2D

ij

αβ(l,l′,ω) = δαβδll′δij

+
∑
γ,l′′j ′

	
αγ

ij ′ (l,l′′)Dj ′j
γβ (l′′,l′,ω).

(A10)

APPENDIX B: NORMALIZATION CONDITION IN
MASS-DISORDERED SYSTEMS

To obtain the normalization condition for the Green’s
function in the presence of mass disorder, we expand the
displacement (u) and momentum (p) in terms of normal modes
as follows [38]:

u(l,t) = 1√
2M(l)

∑
s

B(s)(l)

√
1

ωs

× [bs exp(−iωst) + b†s exp(iωst)], (B1)

p(l,t) = 1

i

√
M(l)

2

∑
s

B(s)(l)
√

ωs

× [bs exp(−iωst) − b†s exp(iωst)]. (B2)

Here, bs and b
†
s are the phonon destruction and creation

operators for the sth normal mode, respectively. Hence, they
follow commutation algebra for bosons, i.e., [bs,b

†
s ′ ] = δss ′ .

The normal modes Bs(l) are defined by a quantum number
s, which take 3p values for a three-dimensional system with
p ions in the basis. The normal modes satisfy orthonormality
and completeness relations, namely,∑

l

B(s)(l)B(s ′)(l) = δss ′ ,

∑
s

B(s)(l)B(s)(l′) = δll′ . (B3)
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Inverting Eq. (B2) to get the phonon creation (bs) and annihi-
lation operators (b†s ) in terms of displacement and momentum
operators in frequency space, we get [using Eq. (B3)]

bs =
∑

l

Bs(l)
1√

2M(l)ωs

(M(l)ωsu(l,ω) + ip(l,ω)), (B4)

b†s =
∑

l

Bs(l)
1√

2M(l)ωs

(M(l)ωsu(l,ω) − ip(l,ω)). (B5)

Using the definition of displacement-displacement Green’s
function as given in Eq. (A2), we get

iD(l,l′,ω) = i
1√

M(l)M(l′)

∑
s

Bs(l)Bs(l′)
1

(ω+)2 − ω2
s

.

(B6)

Thus, the normalization condition in mass-disordered systems
is

− Im

π

∫ ∞

0
dω (2ω+)

√
M(l) D(l,l′,ω)

√
M(l′) = δll′ . (B7)

APPENDIX C: PHYSICAL DENSITY OF STATES FROM
THE DCA AND THE TMDCA

In Fig. 7, we show results for the arithmetically av-
eraged phonon spectra computed within the DCA (black)
and TMDCA (red) for a binary, isotopic mass distribution
with fixed concentration c = 0.5, and various mass ratios
(Mimp/M0).

The main message here is that the physical density of states
must not be dependent on the hybridization of the cluster
provided that the cluster is large enough. And it is seen clearly
in Fig. 7 that the ADOS from DCA and TMDCA are identical
for all disorder potentials for larger clusters, i.e., Nc = 64
and 125. For Nc = 1, the two differ significantly at higher
disorders, which is expected as mentioned above. However,
ADOS is same for low disorder for all the cluster sizes Nc =
1, 64, and 125, showing that TMDCA yields the same results

FIG. 7. The evolution of the ADOS calculated using the DCA
(black curves) and TMDCA (red dashed curves) for cluster sizes
of Nc = 1, 64, and 125 at various values of disorder potential V

with fixed impurity concentration c = 0.5 for a binary, isotopic
distribution of masses in three dimensions. The ADOS obtained
from the DCA and TMDCA differ significantly from each other
for cluster size Nc = 1, whereas for higher cluster size (Nc = 64 and
125), the two are completely identical to each other for all disorder
potentials. This result indicates that at higher cluster size, ADOS is
independent of hybridization function (K,ω), and equivalently the
disorder-averaging procedure.

as DCA at low disorder. Also, observe that the ADOS is the
same for cluster sizes Nc = 64 and 125, which ensures the
convergence of the results as cluster size increases.
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