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The Loschmidt echo, defined as the overlap between quantum wave function evolved with different
Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of
quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many-body localized phase,
which is characterized by emergent local integrals of motion and provides a generic example of nonergodic
dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the
many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider
the spin-echo generalization of the Loschmidt echo and argue that the corresponding correlation function
saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type
overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a
noninteracting Anderson insulator. While most of the previously considered probes of dephasing dynamics could
be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and
its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion
operators, as well as operators which flip local integrals of motion. Hence these probes allow one to get insights
into the relation between physical operators and local integrals of motion and access the operator spreading in

the many-body localized phase.
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I. INTRODUCTION

Despite intense theoretical studies, there remain many open
questions about thermalization and emergence of statistical
mechanics in quantum many-body systems. In classical
many-body system thermalization is intimately related to the
chaotic behavior. Chaos in classical systems originates from
the nonlinearity of the classical equations of motion. Such
nonlinearity generally leads to a divergence of two trajectories
which were initially close to each other in the phase space. The
Lyapunov exponent, which sets the inverse time scale for the
divergence of trajectories, is a convenient measure of classical
chaotic behavior.

In quantum systems, relation between thermalization and
chaotic behavior is much less clear. The “quantum chaos”
in few-body quantum systems is usually probed by the
level statistics. While being a powerful probe, the level
statistics provides a “yes/no” answer, being Wigner-Dyson
(Poisson) in the ergodic (integrable) phase. At the same time,
level statistics gives little insight into time scales on which
thermalization emerges. Furthermore, the naive generalization
of the Lyapunov exponent to the quantum systems fails.
Indeed, the quantum dynamics is generated by a linear unitary
operator U = e~*#" and hence the overlap between different
wave functions evolved with the same unitary operator remains
constant in time.

The Loschmidt echo offers an alternative way to define
an analog of Lyapunov exponent in quantum systems. In the
Loschmidt echo setup one measures the overlap of the same
wave function that was evolved with different Hamiltonians.
More specifically, starting from an initial state |y), one
considers the decay of the overlap function

S(t) = (Yrole! otV eI Ho [y (1
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where Hj is the unperturbed Hamiltonian, and V is usually
a local perturbation. The Loschmidt echo has been studied
extensively both in the context of a few body [1-3] and
many-body systems [4-6]; in particular, see reviews [7,8]
and references therein. In ergodic systems Loschmidt echo
is believed to decay exponentially |S(¢)|*> ~ e~ !, where
I' can be directly related to the Lyapunov exponent of
the classical system within the semiclassical approach. On
the other hand, the situation is more intricate in quantum
systems which do not have an obvious semiclassical limit,
e.g., the subexponential relaxation of Loschmidt echo was
demonstrated in the nonintegrable two-dimensional lattice of
spin 1/2 [9]. The exponential behavior was demonstrated to be
recovered for large quantum spins [10]. Finally, connections
between Loschmidt echo revivals and quantum criticality were
also recently discussed [11].

In this work we consider the behavior of the Loschmidt
echo in many-body localized (MBL) systems. MBL phase
provides a generic mechanism to avoid thermalization and
break ergodicity [12-15]. In systems with bounded Hilbert
space (e.g., fermionic or spin systems) at sufficiently strong
disorder all many-body eigenstates could become localized.
Such fully many-body localized phases can be characterized
by the emergence of the extensive number of local integrals
of motion [16,17] which prevent thermalization. These local
integrals of motion (LIOM) do not relax; hence the system
retains the memory of its initial state, as was recently demon-
strated experimentally [18-20]. The dynamics is limited to the
accumulation of random phases of eigenstates with different
configuration of LIOMs, usually referred to as “dephasing.”
Dephasing dynamics in the MBL phase leads to the logarithmic
spreading of entanglement [21-23] and a power-law relaxation
of local observables [24,25].
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There exists an increasing number of experimental real-
izations of MBL phases in systems of cold atoms [18-20,26]
and in long-range interacting ion chains [27]. However, most
of the evidence for the MBL phase consists of the absence of
complete relaxation in the presence of interactions, and charac-
teristic signatures of the MBL dynamics were not yet observed
(see, however, recent experiments [27,28]). While measuring
entanglement spreading experimentally is generally a very
hard problem, the same dephasing dynamics could be detected
in the relaxation of observables in a global quench [24],
modified spin-echo type setups [25], quantum revivals [29],
and other dynamical experimental signatures of the MBL
phase [29-32].

In this paper we propose fluctuations of Loschmidt echo as
an alternative probe of dephasing dynamics, and demonstrate
that they decay as a power law in the MBL phase, saturating
at the value that is exponentially small in the system size. We
note that our setup should be experimentally accessible, as it
relies on the interferometry performed on individual degrees
of freedom and does not require the change of global sign
of the Hamiltonian. For example, the (generalized) fidelity
was experimentally measured for a kicked rotor [33-35]. The
possible obstacle that may arise in implementing such a setup
may arise from the requirement to access the fluctuations
of Loschmidt echo. However, the same requirement is also
present for more complex setups, e.g., out-of-time ordered
correlation functions [36] which in addition require the sign
change of the Hamiltonian or evolution of several copies of
the system.

At the same time, we show that the decay of Loschmidt echo
S(¢) itself, contrary to the claims of Ref. [37], does not probe
the dephasing dynamics of the MBL phase, but instead gives
information about statistics of single particle energies. We also
note that the Loschmidt echo was also studied in Ref. [38] for
the case when operator V is a global perturbation in the MBL
and ergodic phases.

There are important differences between fluctuations of
Loschmidt echo and other proposed probes. In contrast to
the majority of other probes, the Loschmidt echo is sensitive
to the presence of multiple terms in the expansion of a local
operator over local integrals of motion. Knowledge of the
local integrals of motion is equivalent to knowing the full
many-body spectrum and, consequently, all physical properties
of the system. However, despite a number of theoretical and
numerical proposals [16,39-44], the explicit construction of
LIOMS remains a partially open problem. Nevertheless, even
partial knowledge about the statistical properties of LIOM can
be useful. For example, the support of LIOMS in the real space
can be used to define the localization length that diverges at
the many-body localization transition.

Below we demonstrate that the Loschmidt echo and its
modifications can provide direct insights into the structure
of local integrals of motion. We show that the Loschmidt
echo predominantly probes the diagonal part of the operator.
In addition, we also study a spin-echo type modification
of the Loschmidt echo protocol. We show that it exhibits
qualitatively different behavior, saturating to a finite value in
the localized phase. The fluctuations of spin echo probe the
operator spreading of the off-diagonal part of local operators
in the many-body localized phase.
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FIG. 1. Cartoon of the setup implementing orthogonality catas-
trophe in the cold atom setting. The spin-1/2 impurity on the left
is coupled to the spin chain via the Zeeman interaction and has no
internal dynamics. If impurity spin is initialized along the x direction,
the expectation value of o7, ) at time 7 gives the real part of the overlap
function.

The paper is organized as follows: in the next section
we describe the general setup for the measurement of the
Loschmidt echo and explain its relation to the orthogonality
catastrophe. We also introduce an XXZ spin chain as a specific
model of the many-body localized phase and briefly review
its description in terms of local integrals of motion. Next,
in Sec. III we consider the behavior of the overlap function
analytically and numerically. Section IV relates the overlap
function in the spin-echo protocol to the operator spreading.
Finally, in Sec. V we summarize our results, and discuss
similarities and differences between orthogonality catastrophe
and other probes of dynamics in the MBL phase. Appendixes
provide more details on the averaged overlap S(¢) and behavior
of spin-echo fluctuations.

II. GENERAL SETUP AND MICROSCOPIC MODEL

Naively the overlap function defined in Eq. (1) involves
evolution of the initial wave function with two Hamiltonians,
Hy and —Hy — V. However, it can be naturally accessed via
real-time dynamics of the orthogonality catastrophe setup, as
proposed in Ref. [45]. In particular, let us consider an impurity
coupled to a system, which is chosen to be a spin chain, as
sketched in Fig. 1. We assume that the impurity spin has no
internal dynamics, and is interacting only with its neighboring
spin via Zeeman-type interaction,

He=3(1 405V, @

where V is an operator acting on the system’s degrees of
freedom and off,, denotes a corresponding Pauli operator
acting on the impurity.

Under the assumption that the impurity spin has no internal
dynamics it is possible to extract the overlap function (1) from
a local measurement of the impurity spin. Let us prepare the
full system initially in the product state,

W) = [ = )imp ® [¥0). 3

where | — )imp denotes the state with impurity spin along
x axis. Evolving the state |¥) with the full Hamiltonian
H; = Hy + H,, we obtain

1 —i
EIT)amp ® etV )

1 .
+E|\L)imp ® e ), “

|W(t)) = e ' |W) =
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so that the wave function of the system is now entangled with
the impurity spin. From Eq. (4) we see that the component of
the wave function which has the impurity spin pointing up was
evolving with the perturbed Hamiltonian, while the part with
impurity spin pointing down is evolving with Hy. Calculating
the expectation value of the impurity spin o after time 7,

= Re(le ™ el yg),  (5)
we see that it coincides the real part of the overlap S(¢)
introduced in Eq. (1).

Hence measuring overlap function requires the ability to
prepare the system with coupled impurity in a product state
and to observe the expectation value of impurity spin after
some time. Both of these requirements are achievable with
modern experimental techniques, motivating the theoretical
study of the behavior of overlap function, S(¢). While the above
considerations were completely general, in what follows we
restrict studies of the overlap function to a specific system used
as a model of the many-body localized phase.

More specifically, below we consider XXZ spin chain in a
random magnetic field which is defined by the Hamiltonian

(W) W (1))

L

L—1

Z
E O‘Ul+1—‘r0’0’ 1+J~aal+1]+g w;o;.
i=1 i=1

N =

Hxxz =

(6)

This model can be in the ergodic or MBL phase, depending on
the value of the interaction strength J, and disorder strength
W, which controls the width of the uniform distribution of
random fields, w; € [-W,W][14,15]. For J, = 1 the model is
in the many-body localized phase for W, > 3.7 even at infinite
temperature. This means that all many-body eigenstates, even
in the middle of the band, are localized. As one decreases
disorder, W < W,, the states in the middle of the band begin
to delocalize and many-body mobility edge appears [46,47].
For weaker values of interaction the critical value of disorder is
smaller [29]. Finally, when J, = 0 the model (6) maps onto an
Anderson insulator of free fermions and is always localized.

To fully specify the overlap function, we also need an
explicit form of the operator V. In what follows we consider
the perturbation operator

V =2goy, (7N

where g controls the coupling strength and o corresponds to
the first spin in the chain. Taking the initial Hamiltonian to
be Hy = Hxxz — goy, Eq. (1) reduces to a more symmetric
form,

S@t) = <¢O|ei(Hxxz-‘rgﬂf)te—i(Hxxz—gﬂf)l|w0)’ (8)

that will be used below.

In the MBL phase one can diagonalize Hamiltonian (6)
by applying a sequence of quasilocal unitary transforma-
tions [16,39]. The same sequence of quasilocal unitary opera-
tors that diagonalizes the Hamiltonian can be used to rotate the
physical spin operators into local integrals of motion (LIOM)
which commute with the Hamiltonian and have exponentially
localized support [16,17,39,40]. Expressed via LIOMs, the
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Hamiltonian reads

Hxxz—zht +Z”’ J-i-ZJUkT SR

ijk
)

where all couplings are exponentially suppressed with the
distance J;, ;,.. i o< exp(—|i; — ix|/E’), where we assumed
il > iz > lk

The physical spin operator also can be expanded over the
complete basis of 7 operators. In particular, we will be
interested in the expansion of the perturbation operator (7),
given by o . In the basis of LIOM it can be written as

of = FOl= N+ 1P @ o +He
+r e @ g oty + -+ He) + -+, (10)

where functions fl(p) Uz with p=0,2,...,L denote
polynomials in ¢ that couple to terms flipping p effective

spins. For example,
f(o) Zc,t +Zc,]rt + - (11)

where similar to the couplings Jil,iz ,,,,, i,» the coefficients ¢;; .
decay exponentially with the distance from the site i} = 1,
where the physical spin is located,

G o e ITE o Ml =alE (1)

Recalling that eigenstates correspond to nonentangled
configurations |1 ...} ) of LIOMs, where each spin points
either up or down, we may interpret the first term in Eq. (10),
FOL{}], as being fixed by the diagonal matrix elements
of operator o in the basis of eigenstates. All other terms
in Eq. (10) label off-diagonal matrix elements which flip
progressively larger numbers of effective spins. Note that the
structure of expansion (10) becomes qualitatively different for
the noninteracting Anderson insulator. There, the expansion is
limited to the terms that contain either 7/ or ri+ T; operators.
All terms that have more than one 7° operator, or flip more
than a single spin, arise from the interactions.

III. DECAY OF SPIN COHERENCE WITH TIME

In order to understand the behavior of the overlap, it is
convenient to transform Eq. (8) to the basis of LIOMS using
Egs. (9) and (10). Under the assumption that o commutes
with the Hamiltonian [this is equivalent to retaining only the
first term in the expansion of o) over LIOMS, Eq. (10)], the
overlap becomes

(1) 2 (Yol TN ). (13)

We will discuss and motivate the legitimacy and limitations of
such an approximation in the next section. Assuming a weakly
entangled initial state, we may approximate the initial state of
the spin chain in the LIOM basis as

W) = ®i; (A )i + Ai 1)), (14)

where coefficients A;, depend on the details of the initial state.
Using an explicit form of the initial state and an approxi-
mated form of S(¢) in Eq. (13), we deduce that the overlap is

014202-3



MAKSYM SERBYN AND DMITRY A. ABANIN

expressed as a sum of oscillating terms,

L
S(l) — Z 1_[ |Ai1:/.‘" |262igtlz,- CiT/-:JrZij Ci‘,"[/_:‘rijn.], (15)
{r} i=1

where the sum runs over all possible 2° configurations of
{r*} that label the entire spectrum of the system. Due to the
exponential suppression of couplings c;; . with the range of
indices as in Eq. (12), the dynamics of S(z) will be governed
by the slow dephasing mechanism described in Ref. [24].

In particular, for time such that 2g¢ < 1, the only relevant
coupling is ¢; o« O(1), and there are only two oscillating terms
in the S(¢) corresponding to r{ = 1. Atlonger times such that
2gtcy ~ 1, where ¢; o< e~2/¢ the second spin begins to matter,
and the sum has four oscillating terms. Hence we see that while
S(t) will have many oscillating contributions, the number of
spins that participate in dephasing grows logarithmically with
time. From Eq. (12) we get that the number of “dephased”
spins grows as x = £ log2gt (we note that this relation holds
when the perturbed spin is at the boundary; if the impurity
spin couples to the bulk of the system, there is an extra factor
of 2), so that the number of oscillating terms, 2*, will grow
as a power law in time. Collecting all factors, we deduce that
fluctuations of S(¢) would decay as

(IS(®)*) o b=Esy, (16)

2g0)’
where the power b is related to the second diagonal Renyi
entropy density s, = $»(£)/¢, and an extra factor of 2 is
present when the perturbed spin is located in the bulk of the
system [24].

Note that, in order to access the dephasing dynamics, it is
important to consider the fluctuations of S(¢), e.g., by taking
the average of the absolute value as in Eq. (16). If one considers
the average overlap (S(¢)) without taking the absolute value,
as was done in Ref. [37], one accesses the generating function
of the distribution of ¢;, instead of the dephasing mechanism,
as we show in Appendix A.

To illustrate the power-law decay derived above, we
calculate the overlap function numerically using exact di-
agonalization for spin chains up to L = 14 spins. We start
with the spin-density wave state, |{o) = |14 1] ... 1), where
every even (odd) spin points up (down). Figure 2 illustrates
the power-law decay of the averaged absolute value of the
overlap for the different system sizes. While the overall decay
of the signal is less than one decade, one can see that the
range of the power-law decay expands and becomes more
pronounced for larger systems. Note that the saturation value
is fairly large even for the system of L = 14 spins, which is
naturally explained by the strong value of disorder W = 6.5
and initialization of the system in the Néel state at r = 0.

It is instructive to compare the decay of the overlap in the
MBL phase to the case of the Anderson insulator. Figure 3
illustrates that the decay becomes slower with increased
value of disorder. This is indeed what Eq. (16) predicts,
because for stronger disorder the Néel state has progressively
larger overlap with an exact eigenstate; hence diagonal Renyi
entropy density s, decreases, leading to slower decay of S(t).
Decreasing interaction strength has a similar effect, but affects
the decay even stronger. Note that in the noninteracting case
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FIG. 2. Fluctuations of the overlap decay as a power law in
time, saturating to the value that is exponentially suppressed with
the system size. The averaging was performed for at least 10°
disorder realizations in an XXZ spin chain with disorder W = 6.5
and interaction J, = 1.

there are only linear in ¢ terms in the exponent in Eq. (15),
while nonzero value J, leads to the presence of operators
with support on many spins. Hence, while nonzero interaction
weakly impacts the saturation value of imbalance, it is the
change in the structure of the operator expansion that is causing
faster overlap decay in the presence of interactions.

In this section and in what follows we use variance,
(18()?), as a measure of fluctuations. This is not the
only possible measure of the fluctuations in the system. In
particular, the median value of |S(z)|? also decays like a power
law (not shown). Moreover, the median value of |S(¢)|? decays
faster than its mean value suggesting the broad distribution
of (|S(t)|?) between different disorder realizations. We leave
more detailed investigation of these questions for future
studies.

IV. IMPURITY SPIN-ECHO PROTOCOLS

Next, let us return to the approximation made in the
beginning of the previous section, where we neglected terms
that flip effective spins in the expansion of the o} operator.
Such terms can be conveniently probed in a spin-echo-type

0.8
0.6
=
N 0.4
~ W=6.5, J,=0
— W=6.5 J,=1
--l W=T.5, J.=0
--s W=T.5, J.=1
0.2 ‘

10°  10° 100 102
¢

ot
S

100 10% 1

FIG. 3. Cyan and gray lines show the power-law decay of (| S(¢)|?)
in Anderson insulator and MBL phase. Note the much faster overlap
decay in the MBL phase. Moreover, the exponent of the decay is more
sensitive to the increase in the value of disorder in the MBL phase.
System has L = 14 spins.
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protocol performed on the impurity. Namely, if one applies
a m pulse to the impurity at time ¢, and allows the system
to evolve for an additional time ¢ before measuring oy, this
gives access to the real part of the following expectation value:

Secho(t) = <w0|Uecho(t)|w0>,
Uecho(t) — ei(H0+V)teiHotefi(Ho+V)tefiHot.

(17a)
(17b)

The overlap, defined in Eq. (1), was measuring the similarity
between the wave function evolved with perturbed and
unperturbed Hamiltonian. In contrast, the spin-echo protocol,
Eq. (17), probes the overlap between wave functions which are
evolved with both perturbed and unperturbed Hamiltonian, but
the order of the evolution is reversed between the two.

In order to understand the behavior of Se.o(?), it is
convenient to rewrite the unitary operator in Eq. (17b) as
follows:

Ueeho() = ei(Ho+V)te—i(Ho+V[t]o)t’ (18)

where we promoted operators e/ inside the exponent, and

introduced short-hand notation V[t]y for operator V time
evolved with Hamiltonian Hj:

V[tly = &' ve=ithr, (19)

Using Eq. (18), we may reinterpret the Secho(f) as an
overlap between wave function that is evolved with two
different Hamiltonians H; = Hy + V and H, = Hy + V[t]o.
These two Hamiltonians have identical spectra, since they are
related as H, = H[t]yp, and the spectrum remains invariant
under evolution with an arbitrary unitary operator. Due to
the identical spectra of H; and H,, the decay of Secho(?) can
be caused only by the difference in the eigenbasis of these
Hamiltonians, which in turn depends on the difference between
Vo and time-evolved V[¢], operators.

The difference between operator V and its time-evolved
version crucially depends on the presence of interactions in
the system. If there are no interactions, J, = 0, and the system
is an Anderson insulator, the operator V[t]y does not spread
beyond single-particle localization length, and it always
remains localized. Hence, in the noninteracting case we do not
expect any decay of fluctuations of Secno(#) on long time scales.

On the other hand, in the many-body localized phase the
operators spread logarithmically in time. From the expansion
(10) it is straightforward to work out the time-evolved form
of the operator of. Under evolution with Hamiltonian (9)
diagonal terms remain invariant, while off-diagonal terms
acquire arbitrary long “tails” consisting of 7° operators. For
instance, the time-evolved operator 7; that is contained within
expansion (10) becomes

(1] = cos (2H [{z/}]e) = — sin 2H; [{77}]r)7, (20

where H,[{t{}]is an (operator) magnetic field experienced by
the first spin that is given by the linear in 7{ term in Eq. (9).
This magnetic field contains local field, two-spin terms, and
SO on,

H[{Z )] =h+) it + ) hytiti 4+, (@21)
i ij

where prime denotes that indices are not repeated and are
different from 1, i, j # 1; see Ref. [24] for more details.
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Due to exponential hierarchy of couplings J;; .. the number
of terms that are relevant in Eq. (21) grows logarithmically
with time, causing a logarithmic spreading of t;[t]y. For
example, leaving only nearest- and next-nearest-neighbor two-
spin terms we get H[{t{}] ~ hi + Ji275 + Ji375, leading to

cos (2H1[{rf}]t) = C1C12C13 — $1S12C13 T;
—S1€12813 T3Z — Ci1812813 Tzzfgz, (22)

where we introduced short-hand notations c; = cos(2h;t),
cij = cos(2J;;t) and s; = sin(2h;t), s;; = sin(2J;;¢). From
here we see that, at times such that Jj»¢ ~ 1, the operator 7 [¢]o
acquires a term t{t;, while at longer times when Ji3t ~ 1
two more terms emerge, including 7{7;7;. Eventually at
sufficiently long times the t* operator will include terms
'y, uruty, o, nluhgeeet. (23)

From the above example we observed that all spin-flip terms
in the expansion of o{ develop long strings of T¢ operators with
time. Nonetheless, these 77 strings cannot flip any LIOM spins.
Hence, while operator o;[t]o spreads up to the full system
size, spin flip terms remain localized in the vicinity of site
i = 1. Physically, this can be interpreted as a fact that the local
operator can produce excitations only within a finite region,
but energy of those excitations in the MBL phase depends on
the state of all other spins in the system. Thus, such operator
spreading is qualitatively different from the one in the ergodic
phase. There, the time-evolved local operator is able to produce
excitations throughout the entire volume of the system.

After understanding the operator spreading, we can return
to the discussion of spin-echo overlap. As we demonstrated,
the operator spreading causes the eigenbases of H; and H,
to be different from each other. Nevertheless, due to the fact
that the time-evolved operator in the MBL phase still can
produce only local excitations, we expect the finite saturation
value of the spin-echo overlap. In Appendix B we calculate
the saturation value of spin echo by expanding the expression
for the spin-echo signal, Eq. (17), in the eigenstate basis of
Hy + V. This value is given by the second participation ratio
of the eigenstates of Hy, denoted as |);) over eigenstates of
perturbed Hamiltonian, |4 i)

1 -
Seeho(00) = = D IhilA)P, (24)
J,i

where D is the Hilbert space dimension. While in the ergodic
phase such participation ratio would be exponentially sup-
pressed in the system size, in our many-body localized system
this participation ratio is finite [ 16]. Hence the spin-echo signal
relaxes towards a finite value that does not depend on the
system size.

On the other hand, the operator spreading leads to the
relaxation of the fluctuations of spin-echo overlap. The support
of the operator V[t]y grows as xy(¢) = &' log J.¢. While this
operator still produces only local excitations, the energy of
these excitations depends on the state of xy(¢) spins that
increases due to accumulation of long 7° strings in the
dynamics. Assuming the initial state similar to Eq. (14), we
obtain the same dephasing mechanism, that now relaxes the
fluctuations of spin echo. The number of oscillating terms
grows exponentially with xy (¢), and we expect the fluctuations
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FIG. 4. Fluctuations of impurity spin-echo signal decay in a
similar way to the overlap (solid lines). Value of disorder is W =5,
interaction J, = 1, and g = 2.

of the spin echo around its saturation value to decay as

1
<|Secho(r)—secho(oo)|2>o<ﬁ, b =¢s. (25

Note that exponent is again controlled by the second diagonal
Renyi entropy density and the scale &’ that controls entangle-
ment spreading and operator growth. At the same time, we
would like to emphasize that the decay of the fluctuations does
not imply transport of conserved quantities (in particular, spin
density that is conserved in XXZ spin chain), as spin-flip terms
remain localized in V[¢]o.

To illustrate the results, we present numerical studies of
fluctuations of Secho(?) in Fig. 4, comparing it with the usual
overlap within the MBL phase. We again use the symmetrized
form, measuring fluctuations of the following quantity:

Secho(t) = <w0|ei(Hxxz+gUf)tei(Hxxz—gUf)t
x e*i(HxszrgUf')fe*i(Hxxz*gUf)t |Wo). (26)

We note that the initial decay of the spin-echo overlap itself
(not shown) is faster compared to the decay of S(z). The rapid
decay is caused by the dynamics on the length scales below
the localization length, and it fully agrees with the intuition
provided in Ref. [45] that the spin-echo exponent is larger
compared to the exponent for the usual overlap in the system
of free fermions without disorder.

On longer length scales our system is localized and different
physics comes into play. The spin echo saturates to the
finite value (not shown), while its fluctuations slowly relax;
see Fig. 4. Note that the decay of fluctuations of spin echo
is very similar to the decay of the fluctuations of overlap,
suggesting that & ~ &’ in Egs. (16) and (25). Finally, Fig. 5
illustrates the dependence of the spin-echo fluctuations decay
on the interaction strength. In particular, fluctuations do not
relax when J, = 0. When J, # 0, the saturation value of the
fluctuations has a weak dependence on the interaction strength,
similar to the fluctuations of overlap S(z).

V. SUMMARY AND OUTLOOK

In conclusion, we studied the behavior of the Loschmidt
echo and its spin-echo generalization in the localized phase
with and without interactions. We demonstrated that the
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(|Seeno(t)

10° 10° 107 10°

FIG. 5. Fluctuations of the spin-echo overlap do not relax in the
noninteracting system at long times (solid curves), while presence
of even small interactions (J, = 0.01, dotted lines) leads to a
slow power-law-like decay and residual fluctuations that decrease
exponentially with the system size. Increasing interaction strength to
J, = 1(solid lines) gives even faster decay of spin-echo overlap. Data
is obtained for disorder W = 4 and perturbation strength is g = 4.

Sfluctuations of the overlap function have a power-law decay
both in Anderson insulator and MBL phase. The power-
law decay can be contrasted with the exponential decay of
the Loschmidt echo in ergodic systems, reflecting extreme
sensitivity of the unitary dynamics of the ergodic systems
to the local perturbation. This can be viewed as yet another
signature of the nonergodic dynamics in the MBL phase.

Let us discuss the differences between the overlap, which is
decaying irrespective of the presence of interactions, and, for
example, fluctuations of the local observables, which do not
relax in the Anderson insulator, while decaying as a power law
in the MBL phase [24]. The power-law decay of the Loschmidt
echo overlap in the Anderson insulator closely parallels the
dynamics of the entanglement propagation. The earlier probes,
such as relaxation of local observables [24] or quantum revivals
[29], considered the unitary evolution with a fixed Hamilto-
nian. Such evolution does not cause entanglement spreading in
the noninteracting systems [21,22], hence explaining perfect
revivals and absence of relaxation of local observables. In con-
trast, the orthogonality catastrophe setup can be interpreted as
the sequential forward and backward evolution of initial state
|vo) with two different Hamiltonians, Hy and Hy + V, which
generically have different spectra (single-particle energies).
The difference in spectra between Hy and Hy + V gives rise to
the dephasing mechanism and entanglement growth even in the
absence of interactions. Hence the fluctuations of Loschmidt
echo relax even in a localized phase without interactions.

While the decay of the overlap is qualitatively similar in
the Anderson insulator and MBL phase, the exponent of the
decay is sensitive to the presence of interactions. Hence the
orthogonality catastrophe setup can be used to probe the decay
of the diagonal (e.g., commuting with the Hamiltonian) part
in the expansion of the perturbation operator V over LIOMs.

Next, we would like to highlight the differences between
the physics probed by the overlap function (1) with the conven-
tional orthogonality catastrophe physics. In the original work
by Anderson, the orthogonality catastrophe was defined as the
effect of the single impurity on the ground state of the Fermi
gas [48]. These results imply that, in the absence of disorder
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for the initial state |1/) being a filled Fermi sea, the overlap
|S(2)|> decays as a power law in time with an exponent set by
the scattering phase of impurity potential [48]. In contrast, in
the present work we consider disordered systems, where all
eigenstates are localized, and decay occurs via dephasing. In
particular, if we initialize our system in an eigenstate of Hy or
Hy + V, the fluctuations would not decay. For the dephasing
mechanism to be at play it is important to start with the initial
state |1p) that is a superposition of many eigenstates.

In addition to the standard orthogonality catastrophe, we
also considered the spin-echo type overlap function. In particu-
lar, we demonstrated that it singles out and allows one to probe
the off-diagonal (spin-flip) terms in the operator expansion
of V over LIOMs. In the Anderson insulator the spin-echo
overlap has no dynamics: diagonal terms do not contribute to
the spin-echo setup, while off-diagonal terms remain local. The
presence of arbitrary small interactions qualitatively changes
the dynamics of the spin-echo overlap. Now, the logarithmic
in time spreading of the off-diagonal parts of V causes the
power-law decay of spin-echo overlap fluctuations. In this
sense it is interesting to draw the parallel between spin-echo
type overlap and out-of-time ordered correlation function
recently demonstrated to have a power-law decay in the MBL
phase [36,49].

The setup for measuring orthogonality catastrophe and its
spin-echo extension works for generic initial nonequilibrium
states, and requires only manipulation of the local degrees
of freedom. Hence it can be potentially implemented in
systems of cold atoms in optical lattices and trapped ions,
where signatures of MBL phase were recently observed.
Nevertheless, one has to be able to access the fluctuations of the
local observables in order to probe the dephasing dynamics,
as the naive averaging of the observables probes different
physics (see Appendix A). Provided one has access to the
fluctuations, measurements of orthogonality catastrophe and
spin-echo overlap could be useful for exploring structure of the
expansion of local operators over LIOMs in the MBL phase.
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APPENDIX A: UNDERSTANDING TIME-AVERAGED
COHERENCE

In this appendix we consider the behavior of the overlap
decay averaged over disorder realizations, |(S(¢))|. From
Eq. (15) it is clear that the overlap averaged over disorder
realizations depends on the distribution of the coefficients
¢i,Cij, - . .. For simplicity, let us ignore the effect of interaction.
Then it is legitimate to keep only the leading order coefficients
in Eq. (15), and we deduce

L
(S(t)) = <Z [ JaaisPe?s + |Ai¢|2e2"g'”")>. (A1)
(r} i=1
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From here, neglecting the correlation between A;; and c;,
we see that the time dependence of the (S(¢)) comes from
the disorder-averaged e, which is determined by the
characteristic function (or, equivalently, Fourier transform) of
the distribution of ¢;, p(c;),

@) = [ daplene =g, @en. a2)

In the noninteracting case the coefficients ¢; in the ex-

pansion (10) are given by the tails of the single-particle

wave function. Using a log-normal form of the distribution

of the inverse localization length [50], we replace ¢, (¢)

with an asymptotic form of the characteristic function of the
log-normal distribution [51]

exp (_ W2(10i2<6i>Z§W(t0,-2<c,)))

P, (1) X ’ :

1+ W(to?(ci))

(A3)

where W is the Lambert W function, (c;) is the median (typical)
value of the corresponding coefficient in the expansion, and o;
is the variance of In ¢;.

Using expression (A3), we can approximate the average
overlap as

L
(S@) ~ [ [ oe 280 (A4)
i=1

Practically, the above product quickly converges since each
ciy1 is suppressed compared to ¢; by an extra factor of e~!/%,
and it can be truncated at i = 2. Hence the expression (A4)
has only three independent parameters: median value of ¢y, its
variance o7, and suppression factor e~1/%.

Treating (c1), o1, and e~ /¢ as fitting parameters, we
compare the predictions of Eq. (A4) to the numerical data
obtained for the XXZ spin chain in Fig. 6. The numerical data
weakly depends on the value of disorder, and shows almost
no dependence on the system size and interaction strength,
consistent with the convergence of the product in Eq. (A4).

model fit ‘
10° 10! 102 103
t

0.0

FIG. 6. Absolute value of the averaged coherence does not
depend on the system size and interaction strength, and has a
weak dependence on the disorder strength (solid lines correspond
to W = 6.5 and dashed lines to W = 7.5). The numerical data
agrees reasonably well with the theory suggesting the log-normal
distribution of the localization length.
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Fit with Eq. (A4), shown in Fig. 6, adequately reproduces the
time dependence of |(S(¢))| at intermediate time.

Physically, the nontrivial behavior of the |(S(z))| with time
arises from the broad distribution of the coefficients ¢; that
determine the distribution of the oscillation frequencies. Quick
convergence of the product in Eq. (A4) explains why the
interactions do not affect the dependence of |(S(¢))| on the
intermediate times: both terms with ¢; with i > 1 and terms
involving more t° in Eq. (11) are exponentially suppressed.
Hence their effect is not important on the time scales shown
in Fig. 6.

APPENDIX B: DECAY OF SPIN-ECHO OVERLAP
AND ENTANGLEMENT DYNAMICS

Below we consider the behavior of the spin-echo overlap
Secho(?). In the main text we argued the decay of this overlap
as originating from the spreading of operator V[¢]y defined in
Eq. (19) with time. However, it is instructive to consider the
decay of Secpo(f) from the perspective of eigenstate dynamics.
For this we expand the initial state over eigenstates of operator
Hyp+V as

Wo) = Y ailki), (B1)

where the sum involves a number of eigenstates that is
proportional to the size of the Hilbert space. Eigenstates |1;)
are assumed to have energy ;. Using this representation, we
rewrite the overlap using the fact that eigenstates of Hy + V
only acquire a phase under action of e/ (Ho+V):

Secho(t) = Y at}arjsij (), (B2a)

iJj
Su(t) — eiLl(Xi |eiH0te—i(H0+V)te—iHot|Xj)’ (sz)

where we defined as spin-echo response of a pair of eigenstates
i and j, s;;(t). Further, we expand eigenstates of Hamiltonian
Hy + V over eigenstates of Hy. Since these two Hamiltonians
are related by the local perturbation and the system is in
the many-body localized phase, each eigenstate |1;) can be
expressed as a sum of a finite number of eigenstates of
unperturbed Hamiltonian, |A;) (up to exponentially small
corrections):

Ry~ Y wadhe), ) = Y ik, (B3)

kel; iely

where sets I;, I; depend on corresponding eigenstates |1;),
|[Ax), and include a finite number of indices. This follows
from the local effect of the local perturbation in the MBL
phase; similar participation ratios were explicitly calculated in
Ref. [16].

Applying the expansion (B3) twice, we get the following
result for the s;;(1):

Sij (t) — ei)»,'t Z ei()»k—)»n)lu;kkujn ()"k |e—i(H0+V)l |)\-n)

kel;,nel;

- ¥

kel;,nelj,qelN,

e’(’\r’\"ﬂ"7A4)’u?‘kuqku;nujn. (B4)
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If operator V had no off-diagonal matrix elements, the unitary
matrix u;; would be the permutation matrix, having only a
single nonzero element in each row/column. In this case the
Secho(?) would always remain equal to one. Presence of off-
diagonal matrix elements in operator V leads to the decay of
the expectation value (B4).

Nevertheless, the expectation value of diagonal operators
s;;(t) with i = j saturates to a finite value §;; = s;;(f — 00)
that does not scale with the system size. This saturation value
is given by the terms in the sum in Eq. (B4) that have no
oscillations in time, which corresponds to the part with k = n
andi = g:

- ixit * *  —ikit 4
5 =e" E uj e = E luix]”,

kel; kel;

(B5)

where all oscillating terms cancel. From here we see that 5;;
is given by a second participation ratio of the eigenstates of
Hj in the basis of perturbed Hamiltonian Hy 4 V. The finite
value of §;; < 1 translates into the finite saturation value of
Secho(?) at long times, as ), |o; |> = 1in Eq. (B2a). Note that
this result implies a weak dependence of the saturation value
of spin echo on the choice of initial state.

Above we demonstrated that diagonal terms in Eq. (B2) are
responsible for the finite saturation value of spin echo. At the
same time these terms do not contribute to the relaxation of
spin-echo fluctuations. Due to the local character of operator V
the range of summation in Eq. (B4) is restricted (sets /; and oth-
ers include a number of indices that does not depend on the sys-
tem size); hence fluctuations of individual s;;(¢) do not relax.

On the other hand, the spin-echo overlap Eq. (B2) generally
contains an extensive number of off-diagonal terms s;;(f) with
i # j. Hence, even though operator V is able to relate each
eigenstate only to a finite number of other eigenstates by
producing local excitations, the fluctuations of different s;;(t)
relax via the dephasing mechanism [24,25]. More specifically,
the s;;(t) can be nonzero only if eigenstates X and X j are
different in the vicinity of operator V. However, the energy
difference in the exponent in Eq. (B4) depends on the state
of all spins in the system. In other words, the energies of the
same local excitation for different eigenstates would be split

FIG. 7. Entanglement generated by U,.ho(?) across the middle link
of the spin chain depends on the presence of interactions. When J, >
0 entanglement grows logarithmically and has extensive saturation
value (solid lines). In contrast, in the noninteracting system saturation
value of entanglement decreases with the system size (dashed lines).
Disorder strength is W = 3 and g = 4.
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by an exponentially small amount depending on the state of
the distant spins [31]. This splitting, described in the main
text via the operator spreading, gives rise to oscillations at
sufficiently long times and leads to the power-law decay of
spin-echo fluctuations.

Finally, we illustrate the entanglement dynamics under the
action of the unitary operator Ugcho(?), defined in Eqgs. (17b).
Taking |v) to be the Néel state, we have no entanglement
at t = 0. Figure 7 shows the entanglement entropy of state
Ueccho()|¥0) as a function of time . The entanglement cut is at
the middle link of the system. Note that in the noninteracting
case there is no entanglement growth at long times. Moreover,

PHYSICAL REVIEW B 96, 014202 (2017)

the saturation value of entanglement at the middle link
decreases with the system size, as the distance between the
entanglement cut and site where perturbation V is applied
increases with system size as L/2. This confirms that the
operator V[t]yp remains local in the Anderson insulator, and
goes in parallel with the absence of the decay of fluctuations
of Secho(?). In contrast, the presence of weak interactions
qualitatively changes the entanglement dynamics, which now
spreads logarithmically in time. The saturation value of
entanglement is proportional to the system size. At the same
time, fluctuations of S.cno(f) now also have a nontrivial decay,
emphasizing that (|Seeno(2)|?) probes the same physics.
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