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Machine-learning potentials (MLPs) for atomistic simulations are a promising alternative to conventional
classical potentials. Current approaches rely on descriptors of the local atomic environment with dimensions that
increase quadratically with the number of chemical species. In this paper, we demonstrate that such a scaling
can be avoided in practice. We show that a mathematically simple and computationally efficient descriptor with
constant complexity is sufficient to represent transition-metal oxide compositions and biomolecules containing
11 chemical species with a precision of around 3 meV/atom. This insight removes a perceived bound on the
utility of MLPs and paves the way to investigate the physics of previously inaccessible materials with more than
ten chemical species.
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Atomic interaction potentials based on the interpolation of
first-principles calculations with machine-learning algorithms
have the potential to enable efficient linear-scaling atomistic
simulations with an accuracy that is close to the reference
method [1–4]. Such machine-learning potentials (MLPs) es-
tablish a relationship between a unique descriptor and the total
or atomic energy using, e.g., artificial neural networks (ANNs)
[5] or Gaussian process regression (Kriging) [6]. However, the
combined space of atomic coordinates and chemical species
grows rapidly with the number of chemical species, resulting
in a formal corresponding growth of the descriptor complexity
and thus the complexity of the MLP. This scaling has so far
limited current MLP approaches to compositions with only a
few chemical species [7–10] or atomic structures [11]. Over-
coming this limitation is a very active field of research [12,13].

In this paper we demonstrate that the computational
complexity of MLPs does not necessarily grow with the
number of chemical species, so that MLPs for materials with
ten or more chemical species are in principle feasible and
computationally efficient. We show that, contrary to intuition
and common belief, the same model complexity that is optimal
for a ternary material is also sufficient to describe a system with
11 chemical species (Fig. 1). To illustrate these concepts, we
consider two different material classes of practical relevance:
cation-disordered lithium transition-metal (TM) oxides, which
have recently attracted interest as high-energy-density cathode
materials for Li-ion batteries [14,15], and proteinogenic amino
acids, i.e., the building blocks of proteins and their complexes
with divalent cations [16,17]. We show that both of these
high-dimensional material systems can be accurately
modeled using MLPs based on a mathematically simple and
computationally efficient descriptor with constant complexity
that we will introduce in the following.

In the present paper, we focus on MLPs that express the total
structural energy as the sum of atomic energy contributions
and are in this respect similar to other many-body potentials
such as embedded atom models [18,19]. However, unlike
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conventional potentials, the atomic energy is not confined to a
rigid functional form, but is represented by a flexible nonlinear
machine-learning model that is trained to a descriptor of the
local atomic environment. In this context, the local atomic
environment σRc

i ⊂ σ of an atom i in a structure σ is defined as
the local structure given by the set of coordinates {R1,R2, . . .}
of all atoms within a cutoff distance Rc from atom i and the
local composition, i.e., the corresponding chemical species
{t1,t2, . . .}. To be physically meaningful and transferable
between equivalent structures, the descriptor needs to be
invariant with respect to translation and rotation of the structure
and the exchange of equivalent atoms. Several transformations
for σ

Rc
i into invariant representations σ̃

Rc
i have been proposed

in the literature [20–26], and the most commonly used methods
for MLPs are the symmetry functions by Behler and Parrinello
(BP) [2] and Behler [20] and by the smooth overlap of
atomic positions (SOAP) approach by Bartók and coworkers
[13,21,27]. With an invariant descriptor σ̃

Rc
i , the total MLP

energy of a structure σ can then be expressed as

E(σ ) =
atoms∑

i

MLPti

(
σ̃

Rc
i

)
.

Our approach draws inspiration from the strength of the
established descriptor methods but explicitly maintains the
distinction between local structure and composition by using
two sets of invariant coordinates, {R}σ̃ Rc

i and {t}σ̃ Rc
i , that

separately encode the atomic positions and species. The union
of both sets, σ̃

Rc
i = {R}σ̃ Rc

i ∪ {t}σ̃ Rc

i , is used as a combined
descriptor for an ANN-based MLP (ANN potential). As struc-
tural descriptor {R}σ̃ Rc

i we choose the expansion coefficients of
the radial (bond length) and angular (bond angle) distribution
function (RDF and ADF, respectively) in a complete basis set
{φα}:

RDFi(r) =
∑

α

c(2)
α φα(r) for 0 � r � Rc, (1)

ADFi(θ ) =
∑

α

c(3)
α φα(θ ) for 0 � θ � π, (2)
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FIG. 1. Precision of ANN potentials as a function of the dimension of the descriptor used to represent the local atomic environment. (a)
Root-mean-squared error (RMSE) of the ANN potential energies relative to their DFT references for LiMO2 systems with increasing number of
chemical species: three species (M = Ti; black circles), four species (M = Ti, Ni; red squares), five species (M = Ti, Mn, Ni; green diamonds),
and 11 species (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu; blue stars). The unit cell of a representative LiMO2 structure from the data set is
shown in the inset. (b) An equivalent analysis for a data set with conformations of the 20 proteinogenic amino acids (five chemical species: H,
C, N, O, S; green diamonds) and their complexes with the divalent cations Ba2+, Ca2+, Cd2+, Hg2+, Pb2+, and Sr2+ (in total 11 species; blue
stars). The inset shows one conformation of a tryptophan dipeptide complex with Ca2+. Generally, the RMSE was evaluated after 3000 training
iterations, except for the two 11-species systems for which 5000 iterations were required. The error bars indicate the standard deviation of three
independently trained ANN potentials, the gray region highlights descriptors that result in essentially converged ANN potentials with RMSE
values around 3 meV/atom, and the lines are meant to guide the eye.

and the compositional descriptor {t}σ̃ Rc

i is given by the
expansion coefficients of the same distribution functions but
with atomic contributions that are weighted differently for each
chemical species. The RDF and ADF obey the invariants of
the atomic energy, and basing the descriptor on an expansion
in a complete basis set allows its systematic refinement by
converging the number of basis functions. We implemented
the descriptor into the free and open-source atomic energy
network package [28].

In general, multilayer ANNs can reproduce any function
with arbitrary precision [29]. However, the resolution of the
invariant descriptor determines the maximal precision with
which an ANN potential can resolve the chemical space of a
given material. To determine the resolution of our combined
descriptor, we trained ANN potentials to extensive reference
data sets with different numbers of chemical species. We
consider the resolution satisfactory if the ANN potential can
reproduce the reference energies of our data sets with a
precision of ∼3 meV/atom, which is the order of magnitude
of the noise in our reference data.

Figure 1(a) shows the precision that can be achieved in rep-
resenting Li-TM oxides with different numbers of TM species
using ANN potentials based on the combined descriptor with
different numbers of basis functions. The reference set for
the ANN potential training comprised Hubbard-U corrected
[30–32] density-functional theory (DFT) energies and
optimized structures of 16 047 LiMO2 configurations
in the rocksalt structure with different compositions
based on nine TMs (Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, and Cu) and cation arrangements with up to 36
atoms. For all DFT + U calculations we employed the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [33] with projector-augmented wave [34]
pseudopotentials as implemented in VASP [35,36]. DFT
energies and atomic forces were converged to 0.05 meV per
atom and 50 meV/Å, respectively, gamma-centered k-point

meshes with a density of 1000 divided by the number of
atoms used, and the plane-wave cutoff was 520 eV. VASP input
files were generated using the pymatgen software with default
parameters [37]. Structures with up to five chemical species
were generated by systematic enumeration, and random
atomic configurations were generated for compositions
with 6–11 chemical species. Further information about the
generation of these reference structures, the parameters of our
DFT calculations, and the architecture of the ANNs is given in
Ref. [38].

As seen in Fig. 1(a), the ANN potentials achieve a root-
mean-squared error (RMSE) of ∼3 meV/atom relative to the
DFT reference energies with a descriptor dimension of 44
(i.e., 22 basis functions). Note that, for the present paper,
we employed the same number of basis functions for the
radial and angular expansion (i.e., 11 each), though this is
not a general requirement of the methodology. Increasing
the descriptor dimension beyond 52 or 60 results in a minor
additional reduction of the RMSE at the cost of significantly
increased computational effort. We emphasize that this RMSE
is purely a quality measure of the descriptor precision and does
not reflect the accuracy of the ANN potentials in simulations,
which would have to be carefully validated separately.

The RMSE was evaluated after 3000 training iterations
using the Limited-Memory Broyden-Fletcher-Goldfarb-
Shanno (LM-BFGS) method [44,45]; however, with
increasing number of species and increasing descriptor size the
required number of training iterations to achieve convergence
generally also increases. Thus, the ANN potentials for 11
chemical species and descriptor dimensions above 40 have
not converged after 3000 iterations, and the RMSEs after
5000 iterations are shown in Fig. 1. The unconverged RMSE
after 3000 training iterations is shown in Fig. S2 in Ref. [38].

Remarkably, the optimal descriptor dimension is essen-
tially independent of the number of chemical species in the
composition, and a descriptor dimension of 44 is sufficient
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to capture the structural and chemical features of the distinct
atomic configurations in the LiMO2 data set with up to 11
chemical species.

Figure 1(b) shows the equivalent analysis for the first-
principles energies and structures of 45 892 conformations
of the proteinogenic amino acids (five chemical species: H,
C, N, O, and S) and their complexes with the six divalent
cations Ba2+, Ca2+, Cd2+, Hg2+, Pb2+, and Sr2+ (a total of 11
chemical species) by Ropo, Schneider, Baldauf, and Blum [16]
based on DFT calculations (PBE+Tkatchenko-Scheffler–van
der Waals [46]) using the FHI-AIMS package [47]. This data set
was compiled specifically for the parametrization of atomic
potentials and thoroughly samples the relevant conformational
space [16], an important first step towards improved force
fields for proteins [48]. The high precision of the ANN
potentials with an RMSE of ∼3 meV/atom for 5 and 11
chemical species indicates that our combined descriptor is
not limited to crystal structures with similar atomic positions,
but is also suitable to distinguish between continuous atomic
arrangements.

To understand the significance of these observations, we
first describe the details of the structural and compositional
descriptor. We begin by expressing the atom-centered radial
and angular distribution functions of Eqs. (1) and (2) in terms of
discrete delta functions centered at the bond lengths between
atoms j and the central atom i, Rij = ||Rj − Ri ||, and the
bond angle θijk = ∠(Rj − Ri ,Rk − Ri):

RDFi(r) =
∑

Rj ∈ σ
Rc
i

δ(r − Rij ) fc(Rij ) wtj , (3)

ADFi(θ ) =
∑

Rj ,Rk∈ σ
Rc
i

δ(θ − θijk) fc(Rij ) fc(Rik) wtj wtk , (4)

where fc is a cutoff function that smoothly goes to zero at
Rc—in practice, we use fc(r) = 0.5[cos(r · π/Rc) − 1]. The
weights wtj and wtk are 1 for the structural descriptor {R}σ̃ Rc

i

and take on species-dependent values for the compositional
descriptor {t}σ̃ Rc

i . Here, we followed the (Ising-model) pseu-
dospin convention commonly used for lattice models [49],
i.e., wl = 0,±1,±2, . . . where 0 is omitted for even numbers
of species. For the expansions Eqs. (1) and (2) we choose a
complete orthonormal basis {φα}, i.e.,

∫
φαφβ = 1 if α = β

and 0 else. With this choice, the expansion coefficients are
given by

c(2)
α =

∑
Rj ∈ σ

Rc
i

φα(Rij ) fc(Rij ) wtj , (5)

c(3)
α =

∑
Rj ,Rk∈ σ

Rc
i

φα(θijk) fc(Rij ) fc(Rik) wtj wtk . (6)

A derivation of Eqs. (5) and (6) can be found in Ref. [38].
The expansions are truncated at finite radial and angular
orders N2 and N3 that determine the dimension (i.e., the
complexity) and the resolution of the descriptor, i.e., {R}σ̃ Rc

i =
{{R}c(2)

1 , . . . ,{R}c(2)
N2

,{R}c(3)
1 , . . . ,{R}c(3)

N3
}.

For this paper, we employed the Chebyshev polynomials of
the first kind as basis functions (see Ref. [38]), as they can be
defined in terms of a recurrence relation that allows for highly
efficient numerical evaluation of the function values and their

FIG. 2. (a) Discrete atom-centered radial distribution function
(RDFi) for a lithium site in a structure with composition Li2MnNiO4

(black lines) and the cosine cutoff function fc for a cutoff radius of
Rc = 8 Å. (b) Convolution of the RDF of panel (a) with a Gaussian
function with a width of 0.2 Å (black line) and the reconstructed RDF
from a Chebyshev expansion with a radial order N2 = 50 (orange
line). (c) Same as panel (b), but with a Gaussian width of 0.1 Å and
an expansion order of N2 = 150.

derivatives. With this choice of basis functions, Fig. 2 shows
the RDF as reconstructed based on the structural expansion
coefficients {{R}c(2)

α } for two different orders (N2 = 50 and
150). From comparison with Gaussian convolutions of the
discrete RDF, the radial resolution of the expansion order N2 =
150 is around 0.1 Å. Atomic features on smaller scales may
affect the shape of the RDF but do not give rise to distinct
peaks. The expansion of the ADF is completely analogous.

We note that the radial and angular BP symmetry functions
[2,20] can be cast into the form of Eqs. (5) and (6) but are
neither orthogonal nor systematically refinable. The relation-
ship of our structural descriptor to the coefficients of a basis set
expansion is, in turn, closer in spirit to the SOAP method [3,21]
which is based on the power spectrum of the atomic density
of the local atomic environment. SOAP allows for a rigorous
and systematic description of the local structure, which comes
at the cost of an arithmetically (and computationally) more
complex formalism. However, by limiting the descriptor to
radial and angular contributions our method maintains the
simple analytic nature of the BP approach that allows for a
highly efficient numerical implementation and straightforward
differentiation (which is required for the calculation of analytic
forces and higher derivatives). Basing the radial and angular
descriptors on an expansion in a complete basis set allows their
systematic refinement in the spirit of the SOAP approach,
though our approach is limited to two- and three-body
interactions.

Also note that decomposing the local atomic environment
into n-body contributions as done in our structural descriptor
is an established and well-tested approach for lattice models
such as the cluster expansion (CE) method [50,51]. In CE
models, the total configurational energy is expanded in a
basis set consisting of site clusters (sisj . . .) with increasing
numbers of lattice sites sα , i.e., point clusters, pairs, trimers,
n-tuples, etc. The site clusters form a complete basis set, and
the configurational averages of all equivalent clusters (the
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FIG. 3. Convergence of the RMSE of the predicted LiMO2 (five
species, M = Ti, Mn, Ni) energy for a linear model (empty diamonds)
and a nonlinear ANN (filled diamonds) with the dimension of the
combined descriptor. The gray region highlights descriptors that result
in essentially converged ANN potentials with RMSE values around
3 meV/atom. The lines are meant to guide the eye.

cluster correlations) are the descriptor of the CE model. Unlike
MLPs, the CE energy is a linear function of the descriptor. For
the case of the continuous structural energy, Thompson et al.
demonstrated that a linear potential based on SOAP (which
also is a complete basis of the local structure) can achieve
reasonable accuracy in practice if a sufficient number of basis
functions is used [52].

However, the strength of nonlinear machine-learning mod-
els is that they do not require mathematically complete
descriptors as long as the descriptor is able to differentiate
between all relevant samples. This property is exploited,
for example, in the area of image recognition and text
classification [53]. In practice this means that even an
incomplete descriptor of the local atomic environment may
be sufficient to construct a nonlinear MLP if that descriptor
is able to differentiate between all relevant local atomic
structures, i.e., the descriptor does not have to resolve all
hypothetically possible sets of three-dimensional coordinates.

This behavior is exemplified in Fig. 3, which compares
the precision of an ANN potential for the LiMO2 data set

with five chemical species (10 175 atomic configurations) with
that of a linear energy model as a function of the descriptor
dimension. As seen in the figure, the ANN achieves an RMSE
of ∼3 meV/atom with descriptor dimensions of 44 (22 basis
functions) and larger. Comparison with Fig. 2 shows that
such a small basis set corresponds to a coarse representation
of the RDF and the ADF; however, obviously this level
of approximation is sufficient for the ANN potential to
differentiate between all structural and compositional features
in the reference set. This is not the case for the linear model
the RMSE of which is >15 meV/atom even for a descriptor
dimension of 84.

In conclusion, we showed that machine-learning potentials
do not require (mathematically) complete descriptors of the lo-
cal atomic environment to reproduce potential-energy surfaces
with high precision. With this insight, we devised a combined
descriptor of the local atomic structure and composition the
complexity of which does not scale with the number of
chemical species. The method is conceptually simple and
allows for highly efficient numerical implementations. The
utility of the approach was demonstrated for two exemplary
material classes, lithium transition-metal oxides and amino
acid complexes, each separately comprising compositions
with 11 different chemical species. We showed that the
potential-energy landscape of both example systems can be
represented with high precision by artificial neural network
potentials using the combined descriptor achieving a resolution
of around 3 meV/atom. Hence, machine-learning potentials
are in practice not limited to compositions with small numbers
of chemical species as previously argued in the literature
and may be effective for the modeling of high-dimensional
materials such as oxide solid solutions and peptide chains.
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ment, which is supported by NSF Grant No. ACI-1053575.
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