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Ideal strength and ductility in metals from second- and third-order elastic constants
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Under tensile loading the ideal strength of a solid is governed by mechanical instabilities corresponding to
failure in tension or shear, indicative of intrinsically brittle or ductile behavior, respectively. Ideal-strength first-
principles calculations are performed in this work on several hexagonal-close-packed (hcp) and body-centered-
cubic (bcc) metals. It is shown that some metals fail in tension under uniaxial loading, whereas others fail in shear.
The observed behavior is rationalized with a simple analytical model based on second-order and third-order elastic
constants. This formalism correctly predicts the failure mode of all but one of the metals studied in this work and
leads to fundamental insights into why some classes of metals are intrinsically brittle or ductile. Further, for the
transition metals, filling of the d bands is shown to correlate with the type of mechanical instability encountered,
thus providing insights into the effect of alloying on the intrinsic mechanical behavior of hcp and bcc metals.
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I. INTRODUCTION

For any given loading condition, the ideal strength of a
crystalline solid forms an upper bound on the stress that the
material can sustain prior to reaching a mechanical instability.
The nature of the instability reached at this stress level
can provide insights into the intrinsic failure mechanisms
for a material. For example, under tensile loading crack
initiation requires that the local normal stress perpendicular
to the cleavage plane is equal to or larger than the ideal
tensile strength [1–4]. However, when a material yields under
tensile loading, it is possible for it to fail through a shear
instability [5–9]. The tensile versus shear nature of the
mechanical instability realized under tensile loading is of
considerable interest as an indicator of whether a material will
behave in an intrinsically brittle or ductile manner. For cubic
metals, first-principles calculations of ideal strength under
tensile loading have revealed shear instabilities for the ductile
metals V and Nb, whereas more brittle materials such as W and
Mo have been shown to fail in tension [6]. Similar studies in
alloys [10–13] have been undertaken recently, yielding insights
into the compositional effects on deformation behavior and
ductility. For example, it has been shown that bcc-based Mo
alloys can be made intrinsically more ductile (less brittle) by
tuning the d-band filling through alloying [6].

Fundamentally, the occurrence of any elastic instability
under an external load depends on the variation of the deformed
(or apparent) elastic constants with strain and the stress tensor
acting on the material, as well as the magnitude and direction of
the applied load. Along the load path, the various independent
deformed elastic constants vary differently as a function of the
imposed strain tensor and it is the detailed relations among
them that determine the type of elastic instability that occurs.

Elastic instabilities can be calculated by employing density
functional theory (DFT), which has been a common approach
in the literature [2,9,14–20]. In such studies, typically different
amounts of strains are applied to a unit cell and at each strain
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the internal coordinates and lattice vectors perpendicular to the
load are relaxed. In addition, the stress tensor and deformed
elastic constants are calculated, from which elastic instabilities
can be calculated. This approach however is computationally
expensive due to the necessity to calculate deformed elastic
constants at every imposed strain. In addition, it provides
limited insight into the underlying mechanisms and physics
that lead to elastic instabilities, resulting in intrinsically ductile
or brittle behavior.

In this work, in addition to comparing to traditional
ideal-strength calculations, an alternative approach is pursued
to study ideal-deformation behavior, elastic instabilities, and
intrinsic ductility. It is based on the observation that as
a solid is deformed, its deformed elastic constants vary.
Rather than performing a direct DFT calculation to obtain
the deformed elastic constants, instead the deformed elastic
constants are obtained as an expansion in terms of the applied
strain tensor, involving the standard (undeformed) second-
order elastic constants (SOECs) and the third-order elastic
constants (TOECs). Via this approach, analytical expressions
are obtained for the ideal-failure type (shear vs tensile), the
failure strain, and the failure stress. In addition, the variation
of the deformed elastic constants with strain can be rationalized
in terms of anharmonic effects, captured by the TOECs. This
formalism consequently leads to an enhanced fundamental
understanding of the ideal-deformation behavior and intrinsic
ductility of solids in terms of the variation of deformed elastic
constants and applied stress along a prescribed deformation
path.

The formalism presented in the paper relies on knowledge
of reliable SOECs and TOECs in particular. However, the
accurate calculation of TOECs is challenging due to their
sensitivity to DFT parameters and strain range. To address this
issue, a robust and general scheme is introduced to evaluate
TOECs from DFT calculations, which allows for a general
way of estimating intrinsic deformation behavior of materials
from basic elastic properties.

The outline of this paper is as follows. Section II presents the
formalism and methods that are developed as part of this work.
In particular, the Wallace formalism and elastic instabilities
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are reviewed in Sec. II A. Section II C describes the relation
between deformed elastic constants, SOECs, TOECs, and
applied strains, and Sec. II B describes a practical calculation
scheme for TOECs. The details of the DFT calculations used in
this work are described in Sec. II D. Finally, Sec. III describes
the results and discussion. Some of the detailed derivations of
the equations derived in this work are rather lengthy and are
presented in full in the Appendices.

II. METHODOLOGY

A. Wallace formalism and elastic instabilities

The elastic stability of a solid under zero stress is governed
by the eigenvalues of its elastic-constant tensor; specifically,
all 6 eigenvalues of this tensor must be larger than zero for the
solid to be elastically stable. A generalization of this concept
was introduced by Wallace to consider the elastic stability
of solids under stress [21]. In such cases, elastic stability is
governed by the Wallace tensor, defined as follows:

Bijkl = C ′
ijkl + 1

2 (σilδjk + σjlδik + σikδjl

+ σjkδil − 2σij δkl), (1)

where the term C ′
ijkl represents the elastic constants in the

deformed configuration [17,21,22], σij denotes the applied
stress acting on the solid, and δij is the Kronecker delta. Note
that the Wallace tensor reduces to the standard (undeformed)
SOECs for a solid under zero stress. The eigenvalues of the
symmetrized Wallace tensor govern the elastic stability of a
solid under stress [23]. In the present context, the symmetrized
Wallace tensor B̄ is defined as B̄ = 1

2 (B + BT ) [with B given
in Eq. (1)], where the use of Voigt notation is implied so that
both B and B̄ reduce to 6 × 6 matrices. In the remainder of
this paper, the Wallace tensor Bijkl refers to the symmetrized
Wallace tensor. We will consider cubic and hexagonal crystals
in the remainder of this work, although the same formalism
may be readily applied to lower-symmetry materials.

The terms C ′
ijkl and σ in Eq. (1) can be evaluated directly

from DFT calculations for every strain along a deformation
path, after which the eigenvalues and eigenvectors of the
Wallace tensor can be obtained to study elastic instabilities.
In this work elastic instabilities are studied by computing the
Wallace tensor [Eq. (1)] as a function of strain via higher-order
elastic constants. A similar approach has been used in the
past to study a small set of cubic materials and metallic
glasses [4,24]. The deformed elastic constants C ′

ijkl and the
stress σ are calculated as described in subsequent sections,
from a knowledge of the SOECs, TOECs, and applied strain
only.

Consider a uniaxial loading condition for a hexagonal or
cubic crystal. The load is applied along the [001] axis for
the cubic material and along the [0001] axis for the hexagonal
material, both generically referred to as the c axis in this paper.
For this loading condition, with a Green-Lagrange strain ξ

along the c axis, the Cauchy stress tensor σ may be computed
according to the formalism outlined in the Appendices. In
particular, Eqs. (A1)–(A9) detail the calculation of the strain
energy density in terms of SOECs and TOECs and the general
calculation of the stress tensor with strain. Further, the second
Piola-Kirchhoff stress tensor is obtained from the SOECs,

TOECs, and the imposed strain ξ along c (allowing for Poisson
contraction perpendicular to c). The derivation is somewhat
lengthy and is presented in Appendix A: Eqs. (A10)–(A15) for
cubic crystals and Eqs. (A16)–(A20) for hexagonal crystals.

The general derivation of the Wallace tensor starts with
Eq. (1) and then follows the lines of Eqs. (B1)–(B6) in
Appendix B. In particular, Eqs. (B7) and (B8) in Appendix B
detail the Wallace tensor for cubic and hexagonal crystals
under c loading, respectively. This formalism allows one
to analytically calculate the ideal-deformation behavior of
materials based on just a knowledge of the SOECs and TOECs.
The formalism pertaining to TOECs and their calculation is
discussed in subsequent sections.

B. Calculations of second-order and
higher-order elastic constants

The formalism outlined in Sec. II A requires a knowledge
of SOECs and TOECs, which are used to calculate stresses
and deformed elastic constants as a function of strain. This
section outlines the details of those calculations.

The third-order elastic constants are defined as

Cijklmn = ρ0
∂3F

∂ηij ∂ηkl∂ηmn

∣∣∣∣
η=0

, (2)

where F is the Helmholtz free energy density (per unit mass),
ηij is the Green-Lagrange strain, and ρ0 is the density of
the undeformed state. It should be noted that the formalism
considered in this paper is only being applied to SOECs and
TOECs calculated at absolute zero temperature using DFT;
hence the Helmholtz free energy is identical to the total energy
E, F = E.

If the TOECs contain minor and major symmetries and thus
can be written in Voigt notation, but no point symmetry other
than the identity, the sixth-order elastic tensor will consist
of 56 unique constants. These can be evaluated efficiently
using a 9-point finite-difference stencil, employing a maximum
strain of ηmax = 0.05. The value ηmax = 0.05 was chosen after
extensive convergence testing and is located near a local
plateau of the TOECs as a function of strain [25,26]. In
general, both the SOECs and TOECs obtained from DFT
do not precisely obey the desired symmetry dictated by
the underlying crystal point group [18,27–31]. The correct
symmetry is therefore restored by performing an average over
the pertinent point group operations. This method is described
in detail in the Appendices.

C. Deformed elastic constants and stress tensor

The calculation of the Wallace tensor requires the deformed
elastic constants on one hand and the stress tensor acting
on the structure on the other hand. Equations (3) denote
the deformed elastic constants for cubic crystals under c

loading. Equations (4) denote the deformed elastic constants
for hexagonal crystals under c loading.

C ′
11 = C11 + η(3C11 + C111 + C112 + C12)

+ ξ (−C11 + C112 + C12), (3a)

C ′
12 = C12 + 2η(C112 + C12) + ξ (C123 − C12), (3b)
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C ′
13 = C12 + η(C112 + C123) + ξ (C112 + C12), (3c)

C ′
33 = C11 + 2η(−C11 + C112 + 2C12) + ξ (4C11 + C111),

(3d)

C ′
44 = C44 + η

(
1
4C11 + 3

4C12 + C144 + C166
)

+ ξ
(

1
4C11 + 1

4C12 + C166 + C44
)
, (3e)

C ′
66 = C66 + η

(
2C166 + 1

2C11 + 1
2C12 + 2C66

)
+ ξ

( − C66 + 1
2C12 + C144

)
; (3f)

C ′
11 = C11 + η(3C11 + C12 + C111 + C112)

+ ξ (−C11 + C113 + C13), (4a)

C ′
12 = C12 + η

(
2C12 + 5

3C112 + 1
3C111 − 4

3C166
)

+ ξ (−C12 + C123), (4b)

C ′
13 = C13 + η(C123 + C113) + ξ (C13 + C133), (4c)

C ′
33 = C33 + η(2C13 − 2C33 + 2C133) + ξ (4C33 + C333),

(4d)

C ′
44 = C44 + η

(
1
4C11 + 1

4C12 + 1
2C13 + C144 + C155

)
+ ξ

(
C44 + C355 + 1

4C33 + 1
4C13

)
, (4e)

C ′
66 = 1

2 (C ′
11 − C ′

12). (4f)

In Eqs. (3) and (4), ξ is the strain along c and η = η1 = η2

is the strain in the a-b plane, perpendicular to the c direction.
The terms Cij represent the standard second-order elastic
constants (SOECs) in the undeformed configuration and the
terms Cijk represent the third-order elastic constants (TOECs)
in the undeformed configuration. The load cases considered in
this work are uniaxial along c, which implies that ξ and η are
not independent. This corresponds physically to a situation in
which a load is applied along c and all other crystal directions
are allowed to relax to zero stress (e.g., Poisson contraction).
In fact for this load case we can express η = η(ξ,Cij ,Cijk).
Consequently, η in Eqs. (3) and (4) can be eliminated so that the
deformed elastic constants can be expressed as only functions
of the SOECs, TOECs, and ξ .

The detailed derivations pertaining to the calculations of
TOECs and the deformed elastic constants are rather lengthy
and are presented in full in the Appendices. It should be noted
that the choice for TOECs is not unique in, e.g., Eqs. (4), and
combinations of other TOECs could be used instead of those.
For the case of hcp materials, Eqs. (5) describe some of these
relations between TOECs. A complete overview is presented
in Eqs. (C13).

C111 = C222 − C661 + C662, (5a)

C112 = C222 − 2C661 − 2C662, (5b)

C123 = C223 − 2C366. (5c)

D. DFT calculations

For the elemental metals all calculations were performed
using the Vienna Ab initio Simulation Package (VASP) [32,33].
In these calculations use was made of the Perdew-Burke-
Ernzerhof generalized gradient functional (PBE-GGA) [34],

and the projector augmented wave (PAW) method [35,36].
An energy cutoff for the plane waves of 700 eV was used,
and smearing of the electronic occupancies was performed
using the Methfessel-Paxton scheme [37], with a broadening
of 0.05 eV. Integrations in the Brillouin zone were carried
out using Monkhorst-Pack k-point sampling [38] with a
density chosen such that the number of k points in the first
Brillouin zone times the number of atoms in the cell equaled
approximately 30 000–40 000. The employed PAW potentials
for Sc, Ti, Y, Zr, and Hf included s and p semicore states as
valence electrons. For the other elements, only the outermost
s and d states were used as valence. The maximum calculated
tensile stress σ33 that occurs along the deformation path
(similar to the ultimate tensile strength) was converged to
within approximately 2% with these DFT settings.

III. RESULTS AND DISCUSSION

In this section, the ideal-deformation behaviors of 4 bcc
metals (Mo, Nb, W, and Ta) and 13 hcp metals (Be, Mg, Os,
Re, Ru, Ti, Y, Zn, Zr, Co, Tc, Sc and Hf) are studied. Lattice
stabilities are calculated as a function of the strain ξ along
the c axis, and the failure modes are determined, employing
only the SOECs and TOECs. This results in a categorization
of the elemental metals into two classes: those that fail in shear
(intrinsically ductile) or in tension (intrinsically brittle) for this
loading condition.

A. Elastic instabilities and intrinsic ductility

Previously established relations between atomistic (ideal)
measures of ideal-deformation behavior and true (experimen-
tal) deformation behavior allow us to compare the results
obtained in this work to experimental findings in the liter-
ature [39]. A direct comparison between experimental and
theoretical measures of ductility is not straightforward because
elongation and reduction of area depend critically on several
factors, including temperature, grain size, processing route
(e.g., annealed vs as-fabricated), impurity concentrations, and
strain rate. However, keeping these factors constant as much
as possible across various metals and alloys allows for a qual-
itative comparison to be made. Table I shows experimentally
reported values of elongation for several commercially pure

TABLE I. Experimentally reported values of elongation for
several commercially pure metals subject to tension [54–57], together
with computed ideal-failure mode.

Metal Elongation (%) Failure mode

Titanium 40–72 Shear
Zirconium 35–40 Shear
Hafnium 35–43 Shear
Niobium 50 Shear
Tungsten 1–5 Tension
Tantalum 70 Shear
Molybdenum 10–15 Tension
Rhenium 25–28 Tension
Magnesium 2–15 Tension
Beryllium 1–5 Tension
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TABLE II. Calculated SOECs, TOECs, and ideal-failure charac-
teristics for selected cubic metals and intermetallics. Failure modes
are characterized as either shear (S) or tension (T).

Mo Nb W Ta

SOECs (GPa):
C11 462 265 516 271
C12 171 126 215 168
C44 85 25 134 71

TOECs (GPa):
C111 −4688 −1812 −5613 −2567
C112 −974 −233 −967 −1116
C123 −37 −1221 −420 1024
C144 −447 −540 −848 −298
C155 −756 11 −816 −625
C456 −176 207 −571 40
Failure characteristics:
Failure mode T S T S

metals subject to tension together with computed ideal-failure
mode. Tables II and III show the calculated elastic properties
and failure modes for the cubic and hcp metals considered in
this work, respectively.

Turning first to the cubic metals studied in this work, it is
found that Mo and W are intrinsically brittle whereas Nb and
Ta exhibit intrinsically ductile behavior. This is consistent with
(i) experimental investigations which show that Nb and Ta dog-
bone samples have significantly higher elongations to fracture
in tensile tests than Mo and W, respectively [40–43], and (ii)
evidence of a significantly higher ductile-to-brittle-transition
temperature in Mo and W compared to Nb and Ta [44–48].
Table I shows an interesting trend, namely commercially pure
W and Mo having significantly less tensile elongation (1–5 %

and 10–15 %, respectively) than Ta and Nb (70% and 50%,
respectively). This corroborates the findings in this work
that Nb and Ta are intrinsically ductile and exhibit ideal
shear failure whereas Mo and W are intrinsically brittle
and fail in tension. These results are further consistent with
previous computational studies in which direct ideal-strength
calculations were performed on several bcc metals [8,49–51].
Interestingly, Mo & W and Nb & Ta are from the same columns
in the periodic table, underlining the role of d-band filling in
establishing the detailed deformation mechanisms of transition
metals [6].

Table III shows the calculated SOECs, TOECs, and failure
modes and strains for several transition metals with the hcp
structure, in addition to the non-transition-metals Be and Mg.
For comparison, deformation properties for these metals are
calculated (i) by the formalism developed in this work using
SOECs and TOECs and (ii) by explicit DFT calculations
of the Wallace tensor and elastic constants along the strain
path. The following 5 metals are found to fail in tension: Be,
Mg, Os, Re, Ru, whereas the following 8 fail in a ductile
shear mode: Ti, Y, Zn, Zr, Co, Tc, Sc, Hf. Table I shows a
compilation of reported experimental elongations at break for
high-purity (�99.98%) metals at room temperature. Not all
metals considered in this work are included, but only those
for which reliable and consistently measured data could be
found.

With the exception of Re, the metals that are predicted
computationally to be intrinsically ductile exhibit the largest
elongations ranging from 15–72 %. On the other hand, the
metals predicted to be intrinsically brittle show elongations in
the range 1–15 %, again with the exception of Re. Although
this anomalous behavior of Re with predicted tensile failure
but experimentally measured high elongations is not fully
understood, it is known from previous work that Re has a

TABLE III. Calculated SOECs, TOECs, and ideal-failure characteristics for 13 hcp metals. Failure modes are characterized as either shear
(S) or tension (T).

Be Mg Os Re Ru Ti Y Zn Zr Co Tc Sc Hf

SOECs (GPa):
C11 333 65 724 626 567 178 79 156 148 346 500 101 188
C12 16 21 237 270 179 88 26 56 68 126 222 37 75
C23 5 23 228 219 170 84 20 44 70 122 186 28 74
C33 392 62 818 682 636 189 82 68 164 359 553 102 200
C44 171 19 255 163 184 42 26 42 27 62 135 31 54
TOECs (GPa):
C222 −2845 −809 −9395 −7746 −6690 −1725 −670 −3676 −1087 −4437 −5703 −852 −1767
C166 116 −104 −1992 −1364 −1156 −364 −163 −809 −267 −858 −1142 −204 −355
C266 −2132 −274 −1802 −1973 −1744 −341 −129 −429 −243 −1029 −1000 −185 −442
C223 707 187 −105 227 −461 61 −43 976 −64 −219 −978 −82 11
C366 397 65 −225 356 −203 −224 −120 141 −231 31 −682 −107 −246
C233 −838 −438 −3501 −2514 −2042 −607 −143 −2215 −317 −1191 −1555 −165 −436
C333 −2048 60 −5674 −4609 −5476 −876 −526 5489 −1239 −3478 −5325 −711 −1397
C155 −475 −105 −1912 −1128 −1281 −341 −82 −169 −151 −498 −1108 −122 −341
C255 −435 −91 −606 −809 −529 12 −50 −186 132 −261 −1039 −81 5
C355 −489 −103 −1500 −847 −1134 −96 −124 −134 −66 −644 −1607 −163 −156
Failure characteristics:
ξ̄ (direct DFT) 0.13 0.22 0.15 0.19 0.15 0.24 0.20 0.12 0.16 0.15 0.18 0.22 0.14
ξ̄ (analytical) 0.17 0.25 0.19 0.23 0.19 0.27 0.27 0.13 0.13 0.17 0.23 0.27 0.16
Failure mode T T T T T S S S S S S S S
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strong propensity for deformation twinning, which may help
explain its high degree of measured plasticity [52,53].

It is found that the hcp metals from groups III and IV (Sc,
Y, Ti, Zr, Hf) fail in shear whereas those from group VIII (Ru
and Os) fail in a brittle tensile mode. The formalism further
shows that Tc fails in shear, whereas Re fails in tension, despite
these metals both being from group VII and thus having the
same d-band filling. We note, however, that the failure strains
for tension and shear for Re are very close (to within 1%) and
hence, although Re fails in tension according to the formalism,
it is on the verge of shear failure. In fact, the difference is
likely within the error bars of the SOECs, TOECs, and DFT
calculations. These results suggest that d-band filling is a
descriptor for rationalizing the mechanical behavior across
the transition metals for both cubic and hcp materials.

The failure strains in the c direction according to the
analytical model and direct DFT calculations are also shown in
Table III for the hcp metals. It can be seen that the agreement
is reasonable with typical discrepancies ranging from 1 to
5 percent. This is excellent agreement, given the simplicity
of the model that relies only on elastic constants and given
the technical difficulties in robustly calculating TOECs. We
find that the precise failure strain is rather sensitive to small
changes in the TOECs; however the type of failure mode (shear
vs tension) can be calculated rather robustly. The agreement
shown in Table III between the analytical model and direct
DFT calculations indicates that the use of nonlinear elasticity
is a viable method for calculating ideal-deformation behavior.

B. Origins of shear and tensile failure

The failure mode of cubic and hcp materials under loading
along c is determined by a complex combination of SOECs and
TOECs. For cubic materials, the eigenvalues of the Wallace
tensor associated with shear failures are given as C ′

66, C ′
11 −

C ′
12, and C ′

44 + σ33
2 . In turn, these quantities depend on the

(undeformed) SOECs, the TOECs, η, and ξ as described by
Eqs. (3a)–(3f). ξ and η are related to each other by a rather
complicated function of SOECs and TOECs, but for most
materials this relation can be approximated for small strains
by the Poisson ratio ν, i.e., − η

ξ
≈ ν ≈ 0.30.

Referring to Eq. (3f) for C ′
66, it is seen that intrinsically

ductile behavior is favored by cubic materials that have (i) low
values for C44 = C55 = C66, and (ii) large (negative) values
for C166 and large (negative) values for the TOEC C144. For
the eigenvalue C ′

11 − C ′
12 similar observations hold, with (i)

a small (absolute value) for C11 − C12 favoring shear failure,
along with (ii) a large negative value for C112. Brittle tensile
failure on the other hand is associated with more complicated
eigenvalues (not shown here) and is favored by materials with
(i) large values for (undeformed elastic constants) C11 = C33,
and (ii) a large (negative) TOEC C111.

For hcp metals, the expressions for the eigenvalues of
the Wallace tensor are more complicated, but a similar
rationale holds true as for cubic materials. During loading,
the eigenvalues of the Wallace tensor vary as a function of the
imposed strain ξ , with the SOECs and TOECs dictating the
rate of decay of each eigenvalue with strain. In general, brittle
behavior is favored for materials with relatively low values
for C33 and TOECs that result in relatively high softening

of C33 with strain along c. Equation (4d) shows that a large
negative value of C333 in particular favors brittle behavior.
In addition, brittle behavior is favored for material with high
shear moduli (C44, C55, C66) and TOECs that lead to a low
softening of the shear moduli with strain. It is the delicate
balance between these SOECs and TOECs that determines the
ultimate failure mechanism. For example, the hcp metals Os
and Ru have high moduli C33 (818 and 636 GPa, respectively)
but nonetheless fail in tension along c since the TOEC C333 is
a large negative number and in addition the shear moduli C44

are high (255 and 184 GPa, respectively). Further, the TOECs
governing the softening of the shear moduli with strain such as
C366 are moderate in magnitude, which avoids hitting a shear
instability in these materials. Ductile materials such as Nb on
the other hand have low (undeformed) shear moduli (C44, C55,
C66) which already brings the material under zero load near
a shear instability. Loading along c decreases this modulus
further and—in conjunction with the other SOECs, TOECs,
and the applied stress—leads to a quick shear failure after a
small amount of strain.

This view on failure mechanisms fits into the formalism
developed by Pugh [58], which states that the ratio of bulk
(K) to shear (G) modulus, K/G, is a measure of intrinsic
ductility. Pugh’s ratio can be rationalized to some extent. The
ratio relates the competition between brittle failure and shear
failure in the material. For an isotropic material it is supposed
that the tendency for shear failure varies inversely with G,
while the tendency for brittle failure should vary inversely
with the elastic constant, C11, for a material with a tensile load
applied along 〈100〉. This ratio written in terms of K and G

is C11
G

= K
G

+ 4
3 . However, it should be noted that Pugh’s ratio

does not include any notion of higher-order elasticity; i.e., it
does not consider the softening of the various elastic moduli
with strain.

IV. SUMMARY AND CONCLUSIONS

A formalism is developed in this work to study the ideal-
deformation behavior of single-crystal hcp and bcc solids.
This formalism can be used to compute failure modes of
materials and is a function only of elastic constants and
applied strain, in particular SOECs and TOECs. It accounts
for the anharmonicity of elastic constants as a function of
strain and employs the Wallace tensor, its eigenvalues, and
eigenvectors to characterize the failure mode of materials. In
order to apply this formalism, a practical and robust way of
calculating SOECs and in particular TOECs is developed and
described in this work.

The formalism is applied in this paper to 4 bcc transition
metals (Nb, Ta, Mo, and W) and 13 hcp metals (Be, Mg,
Os, Re, Ru, Ti, Y, Zn, Zr, Co, Tc, Sc, and Hf). It is found
that Nb and Ta fail in shear and are consequently intrinsically
ductile whereas Mo and W fail in tension and are intrinsically
brittle. Among the hcp metals, Mg, Be, Os, Ru, and Re are
found to be intrinsically brittle, whereas Ti, Y, Zn, Zr, Co,
Tc, Sc, and Hf are intrinsically ductile. Re is a special case
in which the shear and tensile failure modes occur near the
same strain along c, and hence the precise failure mechanism
cannot easily be determined. The formalism predicts W, Mo,
Be, Mg, Re, and Os to be brittle, separating those metals from
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more ductile metals such as Hf, Sc, and Ti. Based on available
experimental data on several commercially pure transition
metals, there appears to exist an excellent correlation between
intrinsic ductility and tensile elongation.

It is further found that d-band filling appears to be an
important physical parameter in determining the deformation
behavior of transition metals (and alloys). Metals from groups
III and IV with the hcp structure (Sc, Y, Ti, Zr, Hf) fail in
shear whereas those from group VIII (Ru and Os) fail in a
brittle tensile mode. Further, cubic metals from group V fail in
shear whereas those in group VI fail in tension. This formalism
provides insights into the origins of these differences in failure
modes and relates them to basic elastic properties, in particular
the SOECs and the degree to which the SOECs soften under
strain, which is described by the TOECs. Metals with relatively
high shear moduli tend to exhibit intrinsically brittle behavior,
consistent with Pugh’s formalism; however this is merely a rule
of thumb and the detailed answer depends on a complicated
trade-off between the SOECs and TOECs as discussed in this
paper. Metals with relatively low shear moduli on the other
hand tend to fail in shear, in particular if the shear modulus
softens significantly with an increase in the applied strain.
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APPENDIX A: STRAIN ENERGY DENSITY:
FORMALISM AND RESULTS

1. General expressions

Consider the mapping between the reference and cur-
rent configuration of a continuum solid. In the reference
configuration, a particle occupies a point p with spatial
coordinates X = X1e1 + X2e2 + X3e3, where e1,e2,e3 is a
Cartesian reference triad and X1,X2,X3 are the reference
coordinates. Upon deformation of the body, the point originally
at X is translated by the displacement vector u(X1,X2,X3) to
its final coordinates x(X1,X2,X3), see Eq. (A1):

x(X1,X2,X3) = u(X1,X2,X3) + X(X1,X2,X3). (A1)

Based on this description, a deformation gradient is formu-
lated as in Eq. (A2). The Green-Lagrange strain tensor η then
follows from F as shown in Eq. (A3), where I denotes the
identity matrix.

Fij = ∂xi

∂Xj

, (A2)

η = 1
2 (FT F − I). (A3)

With the notation now established, the strain energy density
E (per unit mass) can be expanded in terms of the second-order

elastic constants (SOECs), Cij , third-order elastic constants
(TOECs), Cijk , and the Green-Lagrange strain, η, as in
Eq. (A4), where ρ0 represents the mass density in the
undeformed state and the terms ηi represent the components of
the tensor defined in Eq. (A3). The symmetry of the SOECs and
TOECs will be applied in the expansions, which simplifies the
resulting expressions considerably. Note that in Eq. (A4), the
Voigt notation η11 �→ η1, η22 �→ η2, η33 �→ η3, η23 �→ η4/2,
η13 �→ η5/2, η12 �→ η6/2 has been applied:

ρ0E(η) = 1

2!

6∑
i,j=1

Cijηiηj + 1

3!

6∑
i,j,k=1

Cijkηiηjηk + · · · .

(A4)

In this work, strain control is assumed and the crystals are
loaded uniaxially along the c axis. All other degrees of freedom
are allowed to relax to zero stress by means of Poisson
contraction. The imposed strain component along c is denoted
by ξ in this work, and the resulting equilibrium strain along the
a and b directions is η1 = η2 = η̄. The deformation gradient
F and the corresponding Green-Lagrange strain tensor η that
pertain to this loading situation are presented in Eqs. (A5)
and (A6):

F =
⎡
⎣

√
2η̄ + 1 0 0

0
√

2η̄ + 1 0
0 0

√
2ξ + 1

⎤
⎦, (A5)

η =
⎡
⎣η̄ 0 0

0 η̄ 0
0 0 ξ

⎤
⎦. (A6)

Further, we introduce the different measures of stress that are
used throughout this work. First, the second Piola-Kirchhoff
stress tensor S is defined in Eq. (A7) as a derivative of the
strain energy density with respect to Green-Lagrange strains:

Sij = ρ0
∂E

∂ηij

. (A7)

Nanson’s equation is used to convert between S and the
Cauchy stress tensor σ according to Eq. (A8), where |F|
denotes the determinant of F:

S = |F|F−1σF−T ↔ σ = 1

|F|FSFT . (A8)

For a loading direction where only σ33 (and S33) are
nonzero, and F given by Eq. (A5), the relation between σ33

and S33 is particularly simple; see Eq. (A9):

σ33 =
√

2ξ + 1

2η̄ + 1
S33. (A9)

In the next sections, we derive explicit relations between
strain, stress, and elastic constants for cubic and hexagonal
crystals under a uniaxial stress along c.

2. Cubic crystal system

We consider a cubic material that is loaded along the c axis
by a Green-Lagrange strain denoted by ξ . Initially, we allow
for additional strains denoted by η1,η2,η4,η5,η6. Consider an
expansion of the strain energy density up to and including
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SOECs. When the symmetry of the SOECs is invoked, the
expression in Eq. (A10) is obtained:

ρ0E(η) = C11
η2

1

2
+ C11

η2
2

2
+ C33

ξ 2

2
+ C44

η2
4

2
+ C44

η2
5

2

+C44
η2

6

2
+ C12η1η2 + C12ξη2 + C12η1ξ. (A10)

Equation (A10) generally suffices for small strains. For
larger strains, a higher-order expansion of the strain energy
density involving TOECs is required, as shown in Eq. (A11),
where the terms Pi are given in Eqs. (A12):

ρ0E(η) = C11P1c + C44P2c + C12P3c + C111P4c + C112P5c

+C123P6c + C144P7c + C155P8c + C456P9c,

(A11)

P1c = η2
1

2
+ η2

2

2
+ ξ 2

2
, (A12a)

P2c = η2
4

2
+ η2

5

2
+ η2

6

2
, (A12b)

P3c = η1η2 + η2ξ + η1ξ, (A12c)

P4c = 1

6

(
η3

1 + η3
2 + ξ 3

)
, (A12d)

P5c = 1

2

(
η2η

2
1 + ξη2

1 + η2
2η1 + ξ 2η1 + η2ξ

2 + η2
2ξ

)
,

(A12e)

P6c = η1η2ξ, (A12f)

P7c = 1

2

(
η1η

2
4 + η2η

2
5 + ξη2

6

)
, (A12g)

P8c = 1

2

(
η2η

2
4 + ξη2

4 + η1η
2
5 + ξη2

5 + η1η
2
6 + η2η

2
6

)
,

(A12h)

P9c = η4η5η6. (A12i)

In this work, we consider deformations of the type shown in
Eq. (A5), resulting in a strain tensor as shown in Eq. (A6). This
implies that η4 = η5 = η6 = 0 and also η1 = η2. If we further
invoke that η1 = η2 = η̄ and η3 = ξ , Eq. (A13) is obtained:

ρ0E(η) =
(

C111

3
+C112

)
η̄3+(C11+C12+C112ξ+C123ξ )η̄2

+ (C112ξ
2 + 2C12ξ )η̄ + C111ξ

3

6
+ C11ξ

2

2
. (A13)

The strains η̄ and ξ are clearly not independent and in
fact, we can write η̄ = η̄(ξ ). The value of η̄ can be obtained
by differentiating Eq. (A13) with respect to η̄ and setting the
resulting expression equal to zero. The governing quadratic
equation in η̄ is shown in Eq. (A14) (the resulting expression
for η̄ is rather long and is not shown here):

3

(
C111

3
+ C112

)
η̄2 + 2(C11 + C12 + C112ξ + C123ξ )η̄

+ 2C12ξ + C112ξ
2 = 0 ⇒ η̄ = η̄(ξ ). (A14)

The component S33 of the second Piola-Kirchhoff stress
tensor can be obtained from Eq. (A7) (upon the insertion of η̄

and ξ ) and is shown in Eq. (A15). All other components in S
are zero and the same is true for σ .

S33 = (2C12 + 2C112ξ )η̄ + C11ξ + (C112 + C123ξ )η̄2

+ C111ξ
2

2
. (A15)

The Cauchy stress component σ33 can now be obtained for
every strain ξ as follows:

(1) Consider an applied strain ξ .
(2) Compute the resulting strain (Poisson contraction) η̄

from Eq. (A14).
(3) Compute S33 from Eq. (A15).
(4) Compute σ33 from Eq. (A9).

3. Hexagonal crystal system

For the hexagonal crystal system, the formalism follows a
similar path to that for the cubic crystal system. The various
expressions are longer, however, due to the lower amount of
symmetry present.

Consider an imposed strain ξ along the c axis of a hexagonal
material, in addition to strains denoted by η1,η2,η4,η5,η6.
Consider first the expansion of Eq. (A4), retaining only terms
up to and including the SOECs (hence, ignoring the TOECs
for now). This gives the energy expression in Eq. (A16), in
which the symmetry of the SOECs has been applied:

ρ0E(η) = C11
η2

1

2
+ C11

η2
2

2
+ C33

ξ 2

2
+ C44

η2
4

2
+ C44

η2
5

2

+ 1

2
(C11 − C12)

η2
6

2
+C12η1η2+C13η1ξ+C13η2ξ.

(A16)

For large strains, the expansion in Eq. (A16) is not sufficient
and instead, TOECs have to be included as well. The expansion
of the strain energy up to the third order in strain is given in
Eq. (A17), in which the terms P are given in Eq. (A18). Note
that in Eq. (A17), the symmetry of the SOECs and TOECs has
been incorporated to simplify the resulting expression.

ρ0E(η) = C11P1 + C12P2 + C13P3 + C33P4 + C44P5

+C111P6 + C222P7 + C333P8 + C133P9 + C113P10

+C112P11 + C123P12

+C144P13 + C155P14 + C344P15, (A17)

P1 = η2
1

2
+ η2

2

2
+ η2

6

4
, (A18a)

P2 = −η2
6

4
+ η1η2, (A18b)

P3 = η1ξ + η2ξ, (A18c)

P4 = ξ 2

2
, (A18d)

P5 = η2
4

2
+ η2

5

2
, (A18e)
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P6 = η3
1

6
+ η1η

2
2

2
− η1η

2
6

4
+ η2η

2
6

4
, (A18f)

P7 = η3
2

6
− η1η

2
2

2
− η2η

2
6

8
+ 3

η1η
2
6

8
, (A18g)

P8 = ξ 3

6
, (A18h)

P9 = η1ξ
2

2
+ η2ξ

2

2
, (A18i)

P10 = ξη2
1

2
+ ξη2

2

2
+ ξη2

6

4
, (A18j)

P11 = η2
1η2

2
+ η1η

2
2

2
− η2

6η1

8
− η2

6η2

8
, (A18k)

P12 = η1η2ξ − ξη2
6

4
, (A18l)

P13 = η1η
2
4

2
+ η2η

2
5

2
− η4η5η6

2
, (A18m)

P14 = η2η
2
4

2
+ η1η

2
5

2
+ η4η5η6

2
, (A18n)

P15 = ξη2
4

2
+ ξη2

5

2
. (A18o)

Similarly to the cubic materials, we now invoke the
symmetry of the material and the specifics of the loading
condition to simplify the resulting expressions that relate
stress, strain, and elastic constants. As a hexagonal material
is loaded uniaxially along c by a strain ξ , it contracts or
expands in the basal plane by an amount η1 = η2 = η̄. In
addition, no shear strain can result from this type of loading,
hence η4 = η5 = η6 = 0. These constraints simplify Eq. (A17)
considerably, to the expression shown in Eq. (A19):

ρ0E(η) =
(

2C111

3
+ C112 − C222

3

)
η̄3

+ (C11 + C12 + C113ξ + C123ξ )η̄2

+ (C113ξ
2 + 2C23ξ )η̄ + C333

6
ξ 3 + C33

2
ξ 2. (A19)

The equilibrium strain in the basal plane due to the
application of ξ is obtained by a strain-energy minimization
of Eq. (A19) with respect to η̄. This equation and the resulting
solution of the type η̄ = η̄(ξ ) are rather long and are not shown
here.

Similarly to the case of a cubic crystal, the component S33 of
the second Piola-Kirchhoff stress tensor can be obtained from
Eq. (A7) and is shown in Eq. (A20). All other components in
S are zero and the same is true for σ .

S33 = 2C23η̄+C33ξ+(C113 + C123)η̄2 + C333

2
ξ 2 + 2C133η̄ξ.

(A20)

The Cauchy (true) stress component σ33 can now be
calculated for every strain ξ from Eq. (A9). The detailed
procedure is summarized below:

(1) Consider an applied strain ξ .
(2) Compute the resulting strain (Poisson contraction) η̄

from Eq. (A19).

(3) Compute S33 from Eq. (A20).
(4) Compute σ33 from Eq. (A9).

APPENDIX B: DERIVATION OF WALLACE TENSORS

The Wallace tensor is defined in Eq. (B1), where the
terms C ′

ijkl represent the elastic constants in the deformed
configuration and σij are the components of the Cauchy
(true) stress tensor. Further, δ is the Kronecker delta function.
The eigenvalues of the symmetrized Wallace tensor govern
the mechanical stability of a solid under stress and its
eigenvectors describe the type of deformation (e.g., shear or
tensile deformation modes).

For the loading situations considered in this work, the
Cauchy stress tensor can be written out as in Eq. (B1). Note
that σ33 can be expressed as a function of only the SOECs,
TOECs, and ξ [see Eq. (B2)]. Similarly, C ′

ijkl can be expressed
in terms of the SOECs, TOECs, and ξ [see Eq. (B2)]. Hence,
the formalism proposed in this work can be used to express
the mechanical stability of any solid under uniaxial loading in
terms of material constants and the applied strain.

Bijkl = C ′
ijkl + 1

2 (σilδjk+σjlδik+σikδjl + σjkδil − 2σij δkl),
(B1)

σ = σ (Cijkl,Cijklmn,ξ ), (B2)

C ′
ijkl = C ′

ijkl(Cijkl,Cijklmn,ξ ), (B3)

σ =
⎡
⎣0 0 0

0 0 0
0 0 σ33

⎤
⎦, (B4)

B̄ij = 1
2 (Bij + Bji). (B5)

Note that the Wallace tensor as defined in Eq. (B1) does
not in general lead to a symmetric tensor. The stability
is in fact governed by the symmetrized Wallace tensor,
denoted by B̄, and defined in Eq. (B2) (in Voigt notation).
The simplicity of Eq. (B4) allows Eq. (B1) to be written
in a particularly simple form. Expressions are derived
specifically for cubic and hexagonal materials. Note that
the term 1

2 (σilδjk + σjlδik + σikδjl + σjkδil − 2σij δkl) in the
Wallace tensor will be identical for cubic and hexagonal
materials considered in this work, and the difference comes
in only in the symmetry of C ′

ijkl . In Voigt notation, the term
1
2 (σilδjk + σjlδik + σikδjl + σjkδil − 2σij δkl) is shown in
Eq. (B6):

1
2 (σilδjk + σjlδik + σikδjl + σjkδil − 2σij δkl)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

−σ33 −σ33 σ33 0 0 0
0 0 0 σ33

2 0 0

0 0 0 0 σ33
2 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B6)

1. Cubic crystal system

For cubic materials, 3 independent SOECs exist, which are
taken here to be C11, C12, and C44. Further, 6 independent
TOECs exist, chosen here as C111, C112, C123, C144, C155,
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and C456. Employing Eq. (1) and subsequently symmetrizing according to Eq. (B5) yields the symmetrized Wallace tensor (in
Voigt notation) as shown in (B7):

B̄ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C ′
11 C ′

12 C ′
13 − σ33

2 0 0 0

C ′
12 C ′

11 C ′
13 − σ33

2 0 0 0

C ′
13 − σ33

2 C ′
13 − σ33

2 C ′
33 + σ33 0 0 0

0 0 0 C ′
44 + σ33

2 0 0

0 0 0 0 C ′
44 + σ33

2 0

0 0 0 0 0 C ′
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B7)

2. Hexagonal crystal system

Similarly to cubic materials, the Wallace tensor for hexagonal materials can be expressed in terms of the Cauchy stress
component σ33 and the deformed elastic constants, both of which can be derived from the SOECs, TOECs, and the applied strain
ξ along the c axis. For this crystal system, we have 5 independent SOECs, taken to be C11, C12, C13, C33, and C44. Employing
Eq. (1) and subsequently symmetrizing according to Eq. (B5) yields the symmetrized Wallace tensor (in Voigt notation) as shown
in (B8):

B̄ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C ′
11 C ′

12 C ′
13 − σ33

2 0 0 0

C ′
12 C ′

11 C ′
13 − σ33

2 0 0 0

C ′
13 − σ33

2 C ′
13 − σ33

2 C ′
33 + σ33 0 0 0

0 0 0 C ′
44 + σ33

2 0 0

0 0 0 0 C ′
44 + σ33

2 0

0 0 0 0 0 C ′
11−C ′

12
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B8)

APPENDIX C: DERIVATION OF DEFORMED
ELASTIC CONSTANTS

In this Appendix, derivations are presented for the deformed
elastic constants and their dependence on the undeformed
elastic constants, the TOECs, and the strain state experienced
by the material.

1. General considerations

A priori, we know that the tensor representing the TOECs
can have 63 = 216 possible unique elements. This number,
however, does not reflect Voigt symmetry. We start by noting
that the completely diagonal elements, Ciiiiii , for example,
have only one possibility. Hence, this gives 6 unique elements.
The next type of entry has two identical indices, and 1 different
index. There are six ways to choose the repeated index, and
5 ways to choose the lone index. This implies that are 30
unique elements here as well. Each of these elements, however,
corresponds to 3 of the elements Cmnp for a total of 90 elements
of the general Voigt tensor.

The remaining elements all have unique n, m, p. There are 6
ways to choose the first element, 5 ways to choose the second,
and 4 ways to choose the third, for a total of 120 ways to choose
these. However, the choices are repeated, so that there are only
20 possibilities. Each of these 20 possibilities, however, can
be represented six times for a total of 120 elements in the form
Cnmp.

Adding all these elements together yields 6 + 90 + 120 =
216, so we appear to have found them all. The net result is
that there are potentially 56 unique elements of the third-order

elastic constants tensor. We can use this to simplify the rules
that come out of the generic analysis.

We propose the following structure for defining the unique
56 elements that might appear in our tensor. The Voigt diagonal
elements will be given by the only possibility. The tensor
elements that have a repeated index will have that repeated
index appear in the first two entries. The tensor elements that
have three unique indices will always be sorted so that the
indices are in increasing order.

In relating tensor components to each other, the following
transformation relations are used extensively. For generic
second-order tensors Lij (e.g., stress tensors, thermal
conductivity tensors), that are acted on by a transformation
matrix Tij , it is well known that they transform according to

Lij = TikTjlLkl. (C1)

By enumerating all possible transformations under the
elements of a crystallographic group, it is then possible to
obtain restrictions on the components of the tensor, e.g.,
relations among components or certain components being
identically equal to zero. This is the basis of Neumann’s
principle. Similar transformation rules apply to tensors of order
4 (e.g., SOECs) and order 6 (e.g., TOECs):

Cijkl = TimTjnTkoTlpCmnop, (C2)

Cijklrs = TimTjnTkoTlpTrqTstCmnopqt . (C3)

The deformed elastic constants can be obtained by consid-
ering a large deformation strain characterized by the tensor η0,
with a small symmetric deformation strain tensor β applied on
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top of that. A point in the solid with no applied strain is defined
as X . X is mapped to a point (x0) under a finite strain of η0 by

the deformation gradient F 0
jm = ∂x0

j

∂Xm
. In addition, X is mapped

to a point (x) in the combined finite and infinitesimal strain
state, denoted as η, by the deformation gradient Fjm = ∂xj

∂Xm
.

Because β is an infinitesimal strain,

xj = x0
j + βjmx0

m. (C4)

With these three strain states defined the deformed elastic
constants can be defined as

C ′
klmn = ρ(η0)

(
∂2E

∂βkl∂βmn

)
β ′,η0

. (C5)

By substituting Eq. (A4) into Eq. (C5), the deformed elastic
constants can be derived purely in terms of the SOECs, TOECs,
and η0, provided that the deformation gradients can be written
in terms of the applied finite strain [see Eqs. (A5) and (A6)].

2. Cubic crystal system

Below is a list of the generators used in the cubic
calculations. They correspond to a fourfold rotation along the
[001] axis, a mirror plane operating on (010), and a threefold
rotation along [111]:

R4[001] =
⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠, (C6)

Rm(010) =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, (C7)

R3[111] =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (C8)

The size of the resulting group is 48, and each of these
elements corresponds to a transformation matrix. We now use
the tensor transformation rules and consider all possible trans-
formations, imposed by the symmetry-group operations. We
use the equations for the tensor transformations and consider
all possible transformations, imposed by the symmetry-group
operations.

Writing out the transformation equations for the tensor of
order 6, Cijklrs , and using all 48 elements of the group we
obtain a grand total of 48 × 36 = 34 992 equations relating
the components of this tensor. Many of these equations are
however not independent. Mathematica is used to find the
independent constraint equations, of which there are 50 in total.
This implies that there are 56 − 50 = 6 independent TOECs.
Here, the following 6 independent TOECs are chosen (note
that this choice is not unique) in Voigt notation: C111, C112,
C123, C144, C166, C456.

The deformed elastic constants are finally obtained using
Eq. (C5) and are given as follows:

C ′
11 = C11 + η(3C11 + C111 + C112 + C12)

+ ξ (−C11 + C112 + C12), (C9a)

C ′
12 = C12 + 2η(C112 + C12) + ξ (C123 − C12), (C9b)

C ′
13 = C12 + η(C112 + C123) + ξ (C112 + C12), (C9c)

C ′
33 = C11 + 2η(−C11 + C112 + 2C12) + ξ (4C11 + C111),

(C9d)

C ′
44 = C44 + η

(
1
4C11 + 3

4C12 + C144 + C166
)

+ ξ
(

1
4C11 + 1

4C12 + C166 + C44
)
, (C9e)

C ′
66 = C66 + η

(
2C166 + 1

2C11 + 1
2C12 + 2C66

)
+ ξ

( − C66 + 1
2C12 + C144

)
. (C9f)

3. Hexagonal crystal system

For the HCP system, the space group is P 63/mmc with a
point group of 6/mmm. We choose the following 3 generators
and multiply them all together to form a group:

R1 =

⎛
⎜⎝

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎞
⎟⎠, (C10)

R2 =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, (C11)

R3 =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠. (C12)

It can easily be established that the length of the resulting
group is 24, as it should be. Each of these elements corresponds
to a transformation matrix. We now use the tensor transforma-
tion rules and consider all possible transformations, imposed
by the symmetry-group operations.

Writing out the transformation equations for the tensor of
order 6, Cijklrs , and using all 24 elements of the group we
obtain a grand total of 24 × 36 = 17 496 equations relating
the components of this tensor. Many of these equations are
however not independent. Mathematica is used to find the
independent constraint equations, of which there are 46 in total.
This implies that there are 56 − 46 = 10 independent TOECs.
Here, the following 10 independent TOECs are chosen (note
that this choice is not unique) in Voigt notation: C663, C662,
C661, C553, C552, C551, C333, C332, C222, C223. In addition, the
following set of relations is found that can be used to convert
between the various choices of independent TOECs:

C111 = C222 − C661 + C662, C133 = C332,

C113 = C223, C112 = C222 − 2C661 − 2C662,

C123 = C223 − 2C663, C144 = C552,

C155 = C551, C344 = C553,

C654 = 1
2 (C551 − C552), C344 = C553. (C13)
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The deformed elastic constants are finally obtained using
Eq. (C5) and are given as follows:

C ′
11 = C11 + η(3C11 + C12 + C111 + C112)

+ ξ (−C11 + C113 + C13), (C14a)

C ′
12 = C12 + η

(
2C12 + 5

3C112 + 1
3C111 − 4

3C166
)

+ ξ (−C12 + C123), (C14b)

C ′
13 = C13 + η(C123 + C113) + ξ (C13 + C133), (C14c)

C ′
33 = C33 + η(2C13 − 2C33 + 2C133) + ξ (4C33 + C333),

(C14d)

C ′
44 = C44 + η

(
1
4C11 + 1

4C12 + 1
2C13 + C144 + C155

)
+ ξ

(
C44 + C355 + 1

4C33 + 1
4C13

)
, (C14e)

C ′
66 = 1

2 (C ′
11 − C ′

12). (C14f)

APPENDIX D: DETAILS OF CALCULATING TOECs

General method

If the TOEC contains Voigt symmetry, but no point
symmetry other than the identity, the sixth-order elastic tensor
will consist of 56 unique constants. Evaluating the second
derivative of the stress components with respect to η for 21
unique strain states defined in Eqs. (D1),

η1 = (η 0 0 0 0 0), (D1a)

η2 = (0 η 0 0 0 0), (D1b)

η3 = (0 0 η 0 0 0), (D1c)

η4 = (0 0 0 2η 0 0), (D1d)

η5 = (0 0 0 0 2η 0), (D1e)

η6 = (0 0 0 0 0 2η), (D1f)

η7 = (η η 0 0 0 0), (D1g)

η8 = (0 η η 0 0 0), (D1h)

η9 = (η 0 η 0 0 0), (D1i)

η10 = (η 0 0 2η 0 0), (D1j)

η11 = (η 0 0 0 2η 0), (D1k)

η12 = (η 0 0 0 0 2η), (D1l)

η13 = (0 η 0 2η 0 0), (D1m)

η14 = (0 η 0 0 2η 0), (D1n)

η15 = (0 η 0 0 0 2η), (D1o)

η16 = (0 0 η 2η 0 0), (D1p)

η17 = (0 0 η 0 2η 0), (D1q)

η18 = (0 0 η 0 0 2η), (D1r)

η19 = (0 0 0 2η 2η 0), (D1s)

η20 = (0 0 0 2η 0 2η), (D1t)

η21 = (0 0 0 0 2η 2η), (D1u)

results in a vector, τ , containing 126 terms that consist of the
56 TOEC. Writing the TOEC as a 56 × 1 array, ξ , the 126 × 56
matrix, A, can be defined as

Aik = ∂τi

∂ξk

. (D2)

Defining B to be the pseudoinverse of A the TOEC can be
written as

ξi = Bikτk. (D3)

The components of τ were evaluated numerically using the
finite-difference method. A 9-point central difference stencil
about η = 0 was used to calculate the second derivative
of the 2nd Piola-Kirchhoff stress components. While the
maximum strain used in the finite-difference calculations is
system-dependent and determined from convergence testing
with respect to the TOEC, a maximum strain of ηmax = 0.05
has been found for the systems considered in this work to be
appropriate for most systems studied.

In the calculation of the TOEC no considerations with
regards to symmetry are given. In the case where the point
group of the crystal is larger than the identity or it is desired to
approximate the closest tensor of a higher symmetry (such as
in the case of a solid solution), the TOEC must be symmetrized
as follows:

Ĉijklmn = 1

nG

nG∑
α=1

a
(α)
ip a

(α)
jq a

(α)
kr a

(α)
ls a

(α)
mt a

(α)
nu Cpqrstu, (D4)

where nG is the number of elements in the group, and a
(α)
ip is

the transformation matrix associated with the αth element of
the group. Note that Einstein summation is applied to all Latin
subscripts.
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