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Two-dimensional percolation transition in two atomic layers of Fe on W(110): Direct measurement
of a static percolation critical exponent in a two-dimensional Ising system
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When the coverage of the second atomic layer of Fe in an Fe/W(110) ultrathin film reaches a critical value, the
system moves suddenly from a frustrated magnetic state without long-range order to an in-plane ferromagnetic
state with long-range order, and displays many features of a percolation transition. Measurements of the magnetic
susceptibility as the films are grown at 255 K show power-law scaling that is limited by noise at low deposition
and by the dynamics of the paramagnetic, frustrated state at high deposition. Because the measurements represent
a system driven by a finite field oscillating at a finite frequency, it is demonstrated that the threshold deposition
for percolation is bounded by the depositions where the real and imaginary components of the susceptibility have
maxima. Fitting for the critical exponent of the static susceptibility at these bounds gives a bounded value for
γp = 2.39 ± 0.04, in agreement with theory.
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I. INTRODUCTION

Despite a long history, the percolation phase transition
continues to be an active and relevant field of research. As
materials physics moves increasingly to nanoscale systems
and ultrathin film structures, the importance of the long-range
connectivity of the structures, and how this affects their
material properties, has become more prominent. Examples
include the growth of an ultrathin film [1,2] and its material
and transport properties [3,4]. In addition, recent theoretical
interest has been motivated by the finding that percolation
(or dilution) can create unusual behavior in the quantum
phase transition of the 2D Ising model [5]. Although the
most striking results are restricted to T = 0, or exponentially
close to zero [6], the treatment of the percolation transition at
zero temperature as a multicritical point implies that quantum
fluctuations may influence the nature of the phase transition at
finite temperature [7]. Thus there is a search for experimental
systems in which these effects might be exhibited [8].

Given the practical importance of percolation and the
efforts to detect departures from the classical values of the
percolation exponents due to quantum effects, it would be
natural to expect that robust experimental measurements
have confirmed the classically predicted behavior at finite
temperature. However, this seems not to be the case, even
for the “textbook” case of two-dimensional (2D) percolation
of a 2D Ising model system [9]. The foundational experimental
study of this universality class used neutron scattering [10,11]
to investigate the quasi-2D diluted Ising antiferromagnet
Rb2CocMg1−cF4. These experiments employed a series of
three-dimensional (3D) samples of fixed dilution c close to
the percolation threshold and determined the critical exponent
of the correlation length as a function of temperature νT

through the temperature variation of the magnetic scattering.
They then inferred that the crossover exponent φ = νT /νp = 1
by comparison to the theoretical value of νp, the critical
exponent of the correlation length as a function of dilution.
Through further analysis of the correlation length as a function
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of temperature in the paramagnetic phase, they investigated
γT , the critical exponent for the susceptibility (mean island
size in percolation), as a function of temperature. They
reported three disparate values for three samples with different
dilutions and declined to reach a conclusion. Rather, the
authors noted that an “optimistic extrapolation” to the expected
percolation concentration yielded a value in agreement (within
the uncertainty) with the theoretical value expected if φ = 1.

This important study was limited by the inevitable difficulty
in studying percolation as a function of dilution in 3D samples
of fixed composition. In this regard, an ultrathin film is the
ideal system in which to study 2D percolation, since the
film can be continuously monitored and followed through
the percolation transition as it is deposited. Thus continuous
measurements can be made parallel to both the temperature
and the concentration axes. Yet, to our knowledge, the only
experimental determination of a static percolation exponent as
a function of deposition for a 2D film is early work summarized
in Ref. [12]. These experiments on ultrathin Co/Cu [13–15]
and Fe/InAs [16] used hysteresis loops to determine a handful
of data points that were fit to power-law scaling.

This situation has been partially addressed in recent
experiments [17] studying Fe/W(110) ultrathin films, which
has been clearly shown to be a 2D Ising system [18–
20]. Studies of the structural and magnetic properties of
Fe/W(110) films provide evidence of two distinct percolation
transitions as a function of coverage [21], one when the
first layer percolates and another when the second layer
percolates. For the latter case, experiments show that islands
in the second atomic layer of Fe/W(110) have perpendicular
anisotropy [22,23], likely due to the large strain induced by
pseudomorphic growth. It appears that neighboring islands are
coupled antiferromagnetically through some interaction that is
mediated by the first atomic layer of Fe and the W substrate.
The coexistence of these perpendicularly magnetized islands
with the continuous in-plane magnetized first atomic Fe layer
creates a frustrated state that shows no long-range magnetic
order. At the critical coverage, long-range in-plane magnetic
order suddenly returns, and the Curie temperature observed in
remanence increases rapidly with deposition.
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It has recently been demonstrated [17] that this second
transition can be robustly detected in magnetic susceptibility
measurements as a function of temperature and as a function
of deposition. In both cases, the transition was marked by
a strong, narrow peak consistent with a second-order phase
transition. These peaks were used to map out the phase
transition line in the (p,T ) plane. The transition was confirmed
to be a percolation transition by quantitative comparison to the
theoretical expression [9] for the percolation transition line of
a 2D Ising system.

The present article follows up these investigations and
reports further measurements of the magnetic susceptibility
as a function of deposition as the second Fe layer of the
film percolates. Growing the films very slowly increases the
signal-to-noise ratio so that the data allow a direct experimental
determination of the critical exponents γp = 2.39 ± 0.04,
consistent with an experimental finding for the crossover
exponent φ = 1. Section II outlines the experimental methods
by which the real and imaginary parts of the susceptibility are
measured in the presence of a small driving field. Section III
reviews relevant theory, presents the experimental results, and
outlines the method of analysis. The final section summarizes
the findings.

II. EXPERIMENTAL METHODS

The experimental methods and procedures have been
described in detail in a previous publication that investigated
the phase transition line for this percolation transition [17].
The chief difference in the present experiments is that the
films were grown at a much slower rate.

The experiments were performed in an ultrahigh-vacuum
environment, with the substrate W(110) crystal cleaned by
oxygen treatments and flashing to white heat. Cleanliness of
the crystal surface was established using Auger electron spec-
troscopy (AES) and low-energy electron diffraction (LEED).
The substrate could be heated by electron bombardment or
radiation and cooled by a copper braid running to a liquid
nitrogen reservoir. The films were deposited by thermal
evaporation from the tip of a pure Fe wire, with a beam
of evaporant created by a pair of collimating apertures [24].
Since a certain proportion of the evaporated atoms is ionized,
a current of order nA was produced on the final aperture. By
monitoring this current, the Fe flux could be kept constant.

Under normal conditions for film growth, the monitor
current can be calibrated to provide a measure of the total
deposition [25] in nA min/ML. This works well for monitor
currents larger than about 0.25 nA that produce deposition rates
of about 5–7 min/ML. However, the present studies required
slow film growths where the monitor current was significantly
less than 0.1 nA. While this small current was found to be
stable, a leakage current comprised some portion of the total
current, and the leakage current varied from one day to the
next. This made calibration of the total deposition unreliable.
As a result, the susceptibility measurements are presented as
a function of deposition time t rather than deposition θ . (θ , in
ML, is the total deposition required to form a film of as many
atomic layers if the film indeed grew as complete layers.)
When necessary, the results of the previous study [17] are
used to calibrate the deposition as 1.24 ± 0.4 ML at the peak in

the susceptibility corresponding to the percolation transition at
255 K. Due to the constant rate of deposition (especially during
the restricted time period corresponding to the critical range
of the transition), the variables p for fractional coverage, θ for
deposition, and the deposition time t are all linearly related.
Substituting one for another involves only a change in the
prefactor to the critical power-law scaling.

The magnetic susceptibility was measured [26] via the
longitudinal magneto-optic Kerr effect (MOKE) using a HeNe
laser beam reflected from the sample surface at close to
45◦. The light passed through a polarizing crystal and a
UHV window, reflected from the sample, passed through
another UHV window and an analyzing crystal that was almost
crossed with respect to the polarizer, and struck a photodiode.
An optical compensation procedure ensured that the light
exiting the second UHV window was linearly polarized [27].
This allowed a very small Kerr rotation of <10 nrad to be
detected and for the calibration of the susceptibility in absolute
(nonmagnetic) units of μrad/Oe. The scattering plane of the
light included the W(110) surface direction, which is the easy
axis for ultrathin Fe/W(110) films when they are magnetized
in-plane [28]. A pair of air coils aligned with this direction
produced a 210 Hz a.c. magnetic field at the crystal, and lock-in
detection was used to isolate the portion of the photodiode
signal at the frequency of the field. This signal is proportional
to the susceptibility; the in-phase component corresponds to
Reχ and the out-of-phase component to Imχ .

In order to measure the susceptibility as the film grew,
it was necessary to align the evaporator with the laser spot,
which had a radius of about 0.7 mm. This was accomplished
by use of micrometers on a tripod attached to the evaporator.
AES measurements confirmed a uniform film thickness over
a radius of at least 3 mm. An example of a susceptibility
measurement made during film growth, as the film passed
through the percolation transition, is shown in Fig. 1(a). This
measurement was made at a constant temperature of 255 K.

III. ANALYSIS AND EXPERIMENTAL RESULTS

A. Theoretical background

The experimental determination of static critical exponents
is particularly sensitive to the identification of the range over
which critical scaling is exhibited and of the transition point.
In fact, the largest source of uncertainty in the value of
the exponent is usually the uncertainty in the value of the
transition point. For this reason, the following brief review pays
particular attention to the effects of finite size, finite applied
field, and measurement frequency effects that are present in
all experiments.

In the initial stages of growing an ultrathin film, deposited
atoms fill a fraction p of the substrate lattice sites and the
atoms aggregate to form disconnected 2D islands. With further
growth, the islands begin to coalesce, and at the critical
fractional coverage pc, corresponding to percolation, at least
one island becomes effectively infinite in extent. According
to theory, the zero-temperature percolation transition in a 2D
system is a second-order phase transition with universal critical
exponents [9]. If the atoms have Ising magnetic moments
interacting through a local exchange coupling, there is a
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FIG. 1. Magnetic susceptibility of a Fe/W(110) film measured as
a function of time as the film was grown at a constant rate at 255 K.
(a) The real and imaginary components are presented with opposite
signs, consistent with Eq. (9). The insets have the same axis titles as
the main figure and show cubic fits to the Re and Im peaks to determine
their locations and separation �t . (b) Reχ is plotted on a ln-ln scale
vs reduced time, where t∗ is the deposition time corresponding to the
coverage at percolation, p∗. The dashed vertical lines (which appear
in other parts of the figure) show the region of power-law scaling.
The linear fit in the scaling region is shown by the solid line and by
the corresponding fitted line in part (a). (c) The relaxation time from
Eq. (10) is plotted on a ln-ln scale. The apparent range of power-law
scaling is indicated by the solid vertical lines (which appear in other
parts of the figure). The dynamic scaling begins where the scaling of
Reχ ends in part (b), once (ωτ )2 ≈ 0.06.

mapping of a magnetic transition onto the percolation transi-
tion which preserves its universal properties. It is assumed that
the moments within the isolated islands are ferromagnetically
aligned and that the islands themselves are too small to
support internal magnetic domains—that is, the system is
superparamagnetic. Then a paramagnetic-to-ferromagnetic
transition accompanies percolation as the magnetic correlation
length diverges. As a result, the standard results of the critical

scaling hypothesis for thermal transitions [29] can be applied
directly by substituting the reduced coverage ρ = (pc − p)/pc

for the reduced temperature ε = (T − Tc)/Tc. For clarity, the
critical exponents for the percolation transition are indicated
by a subscript p to distinguish them from the more familiar
exponents for a thermal transition. Note that this description
applies directly to the paramagnetic phase but that possible
effects of magnetic domains must be considered in the
percolated, ferromagnetic phase [30].

According to the critical scaling hypothesis [29], the
magnetic susceptibility χ (ρ,H ), measured in a magnetic field
H , scales with coverage as a generalized homogenous function
F of these two variables. This can be expressed as a scaling
with coverage

χ (ρ,H ) = ρ−γpF

[
+ 1,

H

ρβp+γp

]
, (1)

where γp is the exponent of the susceptibility (corresponding
to mean island size) and βp is the exponent of the magneti-
zation (corresponding to the fraction of atoms in the infinite
percolated island). The index +1 in the first argument of F

corresponds to the sign of ρ in the paramagnetic state. For an
ideal system of infinite extent, measured in the limit H → 0,
this gives the familiar result

χ (ρ) = F [+1,0]ρ−γp ≡ χ+ρ−γp . (2)

Percolated systems have by their nature structural in-
homogeneities, and the present measurements use a finite,
low-frequency field to drive the system. In this case, the
magnetic susceptibility will not diverge but will saturate
through some combination of finite-size and finite-field effects.
If the percolation cascade effectively ends at a length scale L,
then the susceptibility will saturate in the paramagnetic phase
at ρmax = L−1/νp . (νp is the critical exponent of the correlation
length.) It will still be possible to observe the approach to the
characteristic divergence in Eq. (1), as long as ρ > ρmax, such
that

H

ρβp+γp
→ 0+. (3)

An important question, that can only be answered through
experiment, is what ranges of H and ρ will satisfy Eq. (3) but
still remain in the critical region where Eq. (2) applies.

Even in a structurally ideal system, the susceptibility may
saturate because of the finite size of the applied field. The
universal properties of the susceptibility can also be expressed
as a scaling in the applied magnetic field [29]:

χ (ρ,H ) = H−γp/(γp+βp)G

[
ρ

H 1/(βp+γp) ,1

]
, (4)

where G is a different scaling function. This relation is
normally considered in the limit ρ = 0, where it characterizes
the critical “isotherm” [isocoverage (?) in the present case].
However, when a finite field is used to drive the system, the
maximum of the susceptibility does not occur at ρ = 0 but
rather at the locus of points ρmax(H ) in the paramagnetic phase
that meet the condition [31,32]

ρmax

H 1/(βp+γp) = C, (5)
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where C is a constant. The saturated value of the susceptibility
at these locations is

χ (ρmax,H ) = H−γp/(γp+βp)G[C,1]. (6)

The above analysis describes classical percolation at zero
temperature. Percolation at finite temperature is described
using the theory of a bicritical point [9,33]. The percolation
point at (pc,T = 0) may be approached along the T = 0 axis
as a function of deposition, or along a continuous line of
phase transitions that connects it to the limit of a thermal
transition of a complete 2D film at (p = 1,T = Tc). The
finite-temperature phase transition line is given by p∗(T )
and is determined by the competition between the thermal
correlation length ξT and the percolation correlation length ξp,
which diverge with critical exponents νT and νp, respectively.
For a percolating 2D Ising magnetic system, the correlation
lengths in the critical region are determined by fragile 1D
chains of Ising spins that connect 2D islands to make larger
islands [34]. A 1D Ising chain is a particularly straightforward
geometry, as it requires only one site to break the chain.
Loosely speaking, the system is indifferent to whether the
break is geometric (due to a missing atom) or magnetic (due to
a thermally reversed Ising spin). Because of this, νT = νp and
the crossover exponent φ = 1 [34]. This leads to the simple
result that the finite-temperature, equilibrium susceptibility
χeq(ρ∗

T ,H ) is given by the zero-temperature results outlined
above with pc replaced by p∗(T ) so that

ρ → ρ∗
T = p∗(T ) − p

p∗(T )
. (7)

In particular, the value of the critical exponent γp does not
depend upon the temperature of a path at constant temperature,
so long as p∗(T ) − pc is not “too large.”

Finally, it is necessary to account for the fact that the finite
field used in the experiments oscillates at a finite frequency.
Dynamic scaling theory [35] makes the independent hypoth-
esis that critical slowing down within the paramagnetic phase
follows universal behavior, according to the dynamical model
that is applicable. Dynamic scaling proposes a characteristic
time of an Ising system τ that diverges as

τ (ρ∗
T ) = τ+ ρ∗

T
−zpνp , (8)

where τ+ is the amplitude of the diverging relaxation time
in the paramagnetic state and zp is the dynamical exponent.
The explicit dependence of τ on H has been suppressed
under the assumption that if a deposition range can be found
that satisfies the requirements of Eq. (3) for χeq(ρ∗

T ,H ), it
will also satisfy a similar requirement for τ . A number of
theoretical [36] and computational [37,38] studies suggest that
if the magnetic dynamics is based upon the local, independent
reversal of spins, the dynamical exponent of a 2D percolating
Ising magnetic system at finite temperature is not universal
and that an effective value for zp is measured. Whether or not
this is the case, the ability of the system to relax to equilibrium
depends upon the relative size of τ and the angular frequency
ω of the measurement. In the relaxation approximation, the
susceptibility becomes [39]

χ (ρ∗
T ,H ) = 1 − iωτ

1 + (ωτ )2
χeq(ρ∗

T ,H ). (9)

This equation illustrates that driving the system creates a phase
lag and results in an imaginary component of the susceptibility.
The real component of the susceptibility corresponds to the
equilibrium susceptibility only when (ωτ )2 � 1.

So long as the relaxation approximation applies, the
dominant relaxation time of the system can be accessed by
susceptibility measurements through the phase lag α, where
Eq. (9) yields

tan α ≡ Imχ (ρ∗
T )

Reχ (ρ∗
T )

= ωτ (ρ∗
T ). (10)

B. Determining the range of scaling

The present experiments measure the susceptibility with a
finite field that drives the system at a frequency of 210 Hz. The
deposition range over which Eq. (2) will apply depends upon
the values of the field and measurement frequency.

The range of power-law scaling of Reχ for a representative
data set can be seen in the ln-ln plot in Fig. 1(b), where it
is marked by vertical dashed lines. On the right-hand (lower
deposition) side of the range, the signal diminishes and noise
becomes noticeable. At some point, a noise fluctuation reduces
the signal to such an extent that ln[Reχ ] falls dramatically and
marks the end of the useful data range. This limit, in principle,
could be extended by increasing the amplitude of the applied
field and, with it, the signal. However, too large a field would
not satisfy Eq. (3) for the scaling range of ρ∗

T .
In order establish the allowable field range, a series of

measurements of χ using different applied field amplitudes
H were made on films as they were grown at a relatively quick
rate of deposition. Figures 2(a) and 2(b) show a representative
sample of these measurements, each labeled by the field
amplitude. In Fig. 2(c) the maximum values of Reχ and of
Imχ are plotted as a function of H , using solid symbols
and open symbols, respectively. Each symbol represents a
single film, except for the points at 0.92 Oe, where the
error bar gives the standard deviation of the peak height
measured for six films. This error estimate is expected to
apply proportionately to the measurements made with other
field amplitudes. Concentrating for the moment on Reχ , it
can be seen that the peak height is independent of the field
amplitude for H � 1.3 Oe, indicating that Eq. (3) is satisfied
at ρ∗

T = ρ∗
T ,max, and therefore at the larger values of ρ∗

T within
the scaling region of Fig. 1(b). Also, comparison with Eq. (6)
indicates that the susceptibility is not limited by the use of too
large a field. The departure from linearity for field amplitudes
H � 0.35 Oe is due to the loss of signal compared to the noise
level. These are the limits within which the field can be varied,
and it is clear that is not possible to extend the limit of scaling
by increasing the field. As a result, the data in Fig. 1, and all
the data that is analyzed later in this article, were taken in the
linear region with H = 0.92 Oe.

On the left-hand (higher deposition) side of Fig. 1(b),
the limit of scaling is determined by the dynamics of the
paramagnetic system. This is illustrated in Fig. 1(c), where
ωτ is presented on a ln-ln plot in accordance with Eqs. (8) and
(10). An apparent region of dynamic scaling is indicated by
the vertical solid lines, and clearly begins just as the region of
scaling in Reχ ends. The changeover occurs when (ωτ )2 ≈
0.05−0.07, consistent with earlier studies of the critical
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FIG. 2. A series of susceptibility measurements as films were
grown at 255 K, more quickly than in Fig. 1, using different
field amplitudes H but the same deposition rate. The real (a) and
imaginary (b) components of selected curves are plotted against
a scale normalized to the position of the peak in Reχ . The field
amplitudes are given for each curve. (c) The maximum value of
the Re and Im components are plotted against the applied field,
using solid and open symbols, respectively. For H � 1.33 Oe, the
linear susceptibility is measured. The imaginary component increases
linearly from a nonzero limit at H = 0, indicating additional losses
due to domain wall motion. (d) The normalized separation of the peak
locations of the Re and Im components as a function of the applied
field.

susceptibility at the thermal transition [20]. In principle, the
scaling region can be moved closer to p∗(T ) by reducing the
measurement frequency. In practice, the frequency of 210 Hz
was chosen to avoid mechanical resonances of the apparatus

and a noise floor due to 1/f noise, and cannot be reduced
substantially on a logarithmic scale.

With the range of scaling determined by field and fre-
quency limitations of the experiment, the most objective and
straightforward method to proceed is to make a ln-ln plot
of Reχ , such as in Fig. 1(b), and perform a multivariate
least-squares fit for the three correlated parameters χ+, γp,
and t∗. Unfortunately, for the present measurements on a
percolating system, least-squares fitting does not find a global
minimum for all three correlated parameters. Because the
scaling region in Reχ is relatively far from t∗, it turns out that
a statistically better fit is always found by pushing the fitted t∗
to higher and higher values that are clearly unphysical, with a
corresponding adjustment in χ+ and γp.

C. Determining bounds on the percolation threshold

The failure of a purely statistical method to determine t∗
does not mean that nothing is known about it. There are also
constraints on its value that arise from further consideration
of finite-field and finite-size effects. In the following it is
demonstrated that these effects influence the coverages where
the maxima of Reχ and Imχ occur, and that these peak
positions set bounds on t∗. Then the value of γp can be bounded
by two separate least-squares fits for two parameters.

First consider the real part of the susceptibility. As was
discussed previously in reference to Eqs. (1) and (3), finite-size
effects displace the maximum of Reχ into the paramagnetic
phase. These finite-size effects are commonly encountered
and create a “tail” in the magnetization curve into the
paramagnetic phase [28]. This phenomenon is well understood
from simulations of phase transitions on a finite lattice [40].
A careful study of the thermal transition on a high-quality
Fe/W(110) film by Elmers et al. [41] showed even in this case
a displacement of the peak of χ (T ) by �T/Tc ≈ 2 × 10−3

into the paramagnetic phase.
The use of a finite field for the susceptibility measurements

also limits the divergence of χeq(ρ∗
T ,H ). As is seen in Eq. (5),

the maximum of the equilibrium susceptibility occurs in the
paramagnetic phase. This phenomena is more familiar in
measurements of the magnetization curve. For example, a
detailed study of the thermal transition in Fe/W(110) by Back
et al. [18] illustrates how a static dc field displaces the point of
inflection in M(T ) into the paramagnetic phase. For a field of
about 1 Oe, the displacement is again of order �T/Tc ≈ 10−3.

Finally, as will be discussed below, there are domains in the
ferromagnetic state that are not considered in the description
in Sec. III A [30]. The onset of the driven dynamics of the
domain walls by the finite field significantly increases the
dissipation as the system moves through the transition with
increasing deposition. This new source of dissipation increases
the phase angle α of the lag between the Re and Im parts
of the susceptibility. This preferentially reduces Reχ in the
ferromagnetic state compared to the paramagnetic state and
reinforces the effects of the finite size and finite field.

These factors are difficult to quantify individually. In
particular, the use of a low-frequency ac field will produce
some averaged effect compared to the static fields considered
in Eqs. (3) and (5). However, the main point for the present
purposes is that all the factors work in the same direction to
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produce a maximum in Reχ within the paramagnetic phase.
The deposition at this maximum can thus be used as a lower
bound on the deposition at the transition point.

Now consider the imaginary component of the susceptibil-
ity. Nonequilibrium effects characterized by the phase lag α

show up directly as Imχ and cause it to have a peak position
that is different than Reχ . Imχ represents dissipation, and
dissipation is greater in the ferromagnetic state than in the
paramagnetic state due to the driven dynamics of magnetic
domains [30]. This can be seen in Fig. 2(c). In the range
of applied field amplitudes where Reχ is independent of
the field, Imχ grows linearly with the applied field, with a
projected nonzero peak height at zero field amplitude. The
imaginary response at the limit of zero applied field is a pure
phase lag because the paramagnetic system cannot follow the
applied field quickly enough. The linear increase with H from
this point represents the additional contribution of hysteresis
losses in the ferromagnetic phase [42,43]. For a given field
amplitude, Imχ increases through the transition as the size of
the minor loop that can be traversed increases. Further into the
ferromagnetic state, the growth of the coercive field overcomes
the applied field and Imχ falls, forming a peak. As a result,
the deposition where the peak of Imχ occurs is within the
ferromagnetic state and can be used as an upper bound on the
deposition at the transition point.

These two bounds are consistent with previous determi-
nations of the critical exponents of the thermal transition
in Fe/W(110), where the critical temperature could be more
accurately determined by statistical measures of fitting [19,20].
They are confirmed for the present study in Fig. 2(d). Since a
larger coercive field is required to overcome a larger applied
field, the peak of Imχ is expected to move further into the
ferromagnetic state as the applied field amplitude increases.
Similarly, Eq. (5) shows that a larger field amplitude moves
the peak of Reχ further into the paramagnetic phase. The
top ≈1/4 of the peaks in the data set in parts (a) and (b) of
Fig. 2 were fitted to a cubic polynomial to find the positions
of the maxima. [An example of the method is seen in the
insets to Fig. 1(a).] The separation of the peak positions for
Reχ and Imχ are then plotted in normalized units against the
amplitude of the applied field. Because the film depositions
are not calibrated absolutely, the shifts are referenced to the
peak of Reχ for each curve. Each point in Fig. 2(d) represents
a single experiment, except for at 0.92 Oe, where the error
bar is calculated from six different films. This error estimate
is expected to apply proportionately to all the points. It can
be seen that the separation of the peak positions does in fact
increase with H , as expected.

With t∗ bounded by the locations of the two peaks, it is
possible to use two two-parameter fits to calculate bounds on
γp.

D. Experimental determination of γ p

A series of susceptibility measurements were made on films
as they were grown at 255 K. In a previous investigation of the
phase transition line for this system [17], quantitative fitting of
the phase transition line showed that θ∗

T − θc = 0.006 ML at
this temperature, confirming that the measurements are made
close to the limit of the T = 0 percolation transition. The

FIG. 3. Four data sets (one of which is shown in Fig. 1), measured
at a slow growth rate at 255 K, are plotted on a ln-ln scale. The curves
are displaced vertically for clarity. The left end of the fitted regions
is determined by (ωτ )2 = 0.06 and the right end by the obvious
influence of noise that causes Reχ to become negative. (The resulting
trailing tails seen on the plot are not included in the fits.) Parameters
from the fitted lines are presented in Table I.

deposition rate was about 0.05 ML/min, calculated after the
fact.

The four data sets that were suitable for further analysis are
presented in Fig. 3 in a logarithmic plot. The main difficulty
was obtaining data sets with a range of at least 1.0 in ln(1 −
t/t∗). The curves in Fig. 3 extend on the left-hand side to the
limit of (ωτ )2 = 0.06, set by the dynamics of the paramagnet.
Obtaining a satisfactory range in ln(1 − t/t∗) then depended
on extending the right-hand limit as far as possible into the
paramagnetic tail of Reχ . As can be seen in Fig. 1(a), this
in turn depended upon the random nature of the measurement
noise, so that on occasion a large noise fluctuation did not occur
during this crucial part of the measurement and the data set
was acceptable. The traces in Fig. 3 show for illustration that
eventually a noise fluctuation occurred and ended the scaling
region. These large noise excursions are not included in the
subsequent fitting for γp.

The value of t∗ used to plot Fig. 3 is midway between
the deposition where the peaks in Reχ and Imχ occur. The
results for least-squares fitting for γp and the amplitude χ+
are presented in Table I. Values are given for fits using the
values t∗ = t∗+ at the peak of Reχ and t∗ = t∗− at the peak
of Imχ . The stated uncertainty ±0.03 in the first column is
due the individual, two-parameter least-squares fitting alone.
Subsequent rows in the table give the mean value of γp and
the range of γp between these bounds for each data set. Since
the bounded ranges of γp for all four data sets overlap, and are
similar in size, a final average value is obtained from simple
averaging of the four means and reducing the range by

√
N =

2. This yields γp = 2.39 ± 0.04. This result is in agreement
with the theoretical value [9] of 43/18 = 2.388...

IV. CONCLUSIONS

The magnetic phase transition that occurs as the deposition
of the second layer of Fe atoms on W(110) reaches a
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TABLE I. The parameters for the linear fits in Fig. 3. There are
two least-squares fits to Eq. (2) on logarithmic scales to define bounds
on the parameters. One fit uses t∗ = t∗

+ at the peak of Reχ (t); the other
fit uses t∗ = t∗

− at the peak of Imχ (t).

Data set 1 2 3 4

γp ± 0.03 @ t∗
+ 2.340 2.318 2.252 2.313

γp ± 0.03 @ t∗
− 2.516 2.470 2.389 2.536

Mean 2.428 2.394 2.321 2.425
Bounded range ±0.088 ±0.076 ±0.069 ±0.112
Average γp = 2.39 ± 0.04

ln(χ+) ± 0.1 @ t∗
+ –18.90 –18.75 –18.29 –18.84

ln(χ+) ± 0.1 @ t∗
− –19.10 –18.97 –18.48 –19.20

Mean –19.00 –18.86 –18.39 –19.02
Bounded range ±0.10 ±0.11 ±0.10 ±0.18
Average ln(χ+) = −18.82 ± 0.06

critical value provides an unusual opportunity to study the 2D
percolation transition. Isolated second-layer islands that are
perpendicularly magnetized are coupled antiferromagnetically
via the first layer of Fe and the W substrate, by mechanisms
that are not well understood. This produces a magnetically
frustrated state with no long-range order. During percolation
of the second-layer, long-range in-plane order arises and can
be detected as a narrow, robust peak in the magnetic suscep-
tibility, as is expected for a second-order transition. Although
questions remain at the microscopic level, experimental studies
have shown that the transition is described quantitatively by
the universal characteristics of a 2D percolation transition at
finite temperature. This includes the quantitative description
of the transition line in the (p,T ) plane and the quantitative
form of the paramagnetic susceptibility near percolation,
χ (ρ∗

T ≈ 0,T ), measured as a function of temperature [17]. The
present article adds to this characterization the determination
of the critical exponent of the magnetic susceptibility (mean
island size) as γp = 2.39 ± 0.04, in agreement with the theory
of 2D percolation. This measurement, in conjunction with the
previous measurements of χ (ρ∗

T ≈ 0,T ), are consistent with
a crossover exponent of φ = 1. An definitive experimental
finding for φ is not possible because of the experimental
uncertainty in the absolute deposition for the measurements
as a function of temperature [17].

The particular difficulties that arise in the experimental
determination of static critical exponents were addressed using
objective criteria based upon the fact that the experiments were
performed using a finite field amplitude oscillating at a finite
frequency, and that the percolated sample is not uniform. These
effects made it possible to determine bounds on the percolation
deposition, rather than fitting for it. All relevant parameters are
determined independently from within each data set with no
uncertainty due to absolute calibration, and the four acceptable
data sets show reproducible results. These procedures have
allowed the evaluation of a small uncertainty of 1.7% on the
experimentally determined value of γp. We are unaware of a
previous experimental measurement of a static 2D percolation
critical exponent as a function of deposition/dilution that meets
similar criteria.

Although the universal static behavior of this percolation
transition is established, there remain interesting questions at
the microscopic level. On the one hand, the transition conforms
to the description of percolation of a 2D Ising system at finite
temperature, where the properties of fragile one-dimensional
Ising chains linking larger islands play a crucial role in the
critical region for percolation [34]. On the other hand, the
frustrated magnetic state from which the long-range in-plane
ferromagnetic state derives upon percolation appears to be
mediated by the continuous basal layer of Fe atoms and
W substrate even before percolation occurs [22]. While it
is not yet clear whether or not this is a contradiction, it
is certainly significant to the dynamics of the system. This
can be seen from the fact that the transition due to the
percolation of the second-layer Fe atoms is detected using
low-field susceptibility measurements as the films are grown
(even in experiments below 230 K), but the more conventional
transition due to the percolation of first-layer Fe atoms is not.
Insight into these questions might be found by investigating the
critical slowing down, which is dependent on the underlying
dynamics of the system.
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