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Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides
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A detailed first-principles study has been performed to evaluate the electronic and optical properties of
single-layer (SL) transition metal dichalcogenides (TMDCs) (MX2; M = transition metal such as Mo, W, and
X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring
electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs:
(i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the
band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities,
χ‖ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is
directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties
we also find magnetic signatures (local magnetic moment of ∼μB ) in MoSe2 in the presence of the Mo vacancy,
which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple
qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with
an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the
LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass
boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory
to derive the optical selection rules between LDS for both χ‖ and χ⊥.
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I. INTRODUCTION

Single-layer (SL) transition metal dichalcogenides
(TMDCs) have attracted a lot of attention due to their
intriguing electronic and optical properties, with a wide range
of promising applications [1,2]. SL TMDCs are direct-band-
gap semiconductors [3,4], which can be used to produce
smaller and more energy efficient devices, such as transistors
and integrated circuits. Moreover, the band gap lies in the
visible region, which makes them highly responsive when
exposed to visible light, a property with potential applications
in optical detection. In contrast to graphene, SL TMDCs
exhibit large intrinsic spin-orbit coupling (SOC), originating
from the d orbitals of transition metal atoms. The presence
of considerably high SOC (up to few hundred meV) [5–7]
makes them a candidate material for exploring spin physics
and spintronics applications.

Wafer-scale production of SL TMDCs is required to fully
appreciate their technological potential. The most common
experimental techniques used to produce large chunks of SL
MoS2 are (i) mechanical exfoliation, (ii) chemical vapor depo-
sition, and (iii) physical vapor deposition. It has been observed
that samples produced by all of these techniques have consider-
ably lower carrier mobility than the theoretically predicted val-
ues [8,9]. It has recently been suggested that this discrepancy
between the predicted and observed values of carrier mobility
is due to the presence of impurities created during the growth
process [10,11]. The most common and energetically favorable
types of impurities are vacancy defects (VDs) [12]. Defects
usually play an important role in tailoring various electronic
and optical properties of two-dimensional materials and have
been the subject of intense research over the last few decades.

VDs in semiconductors act as trapping centers for charge carri-
ers and their interaction with charge carriers becomes stronger
at reduced dimensionalities. Point defects in SL TMDCs have
been explored both theoretically and experimentally [13–
18]. Recent photoluminescence (PL) experiments [16–18]
reveal that localized excitonic states related to VDs can
serve as single-photon emitters in WSe2. Magnetism in low-
dimensional systems is another area of interest [19,20]. It has
been shown [21] that certain localized defect states (LDS)
related to VDs can induce ferromagnetism in SL TMDCs,
suggesting that they could be good candidates for spin channels
in spintronic devices. In addition, LDS can be used to open
and tune a band gap in graphene [22] and SL MoS2 [23,24].
Various atomic defects can be realized artificially by using
different experimental techniques. It has been shown that
hexagonal pits (3 × MoS2) can be removed through etching of
MoS2 crystals by using XeF2 as a gaseous reactant [23]. Point
defects can be induced by irradiating the SL TMDCs with α

particles or by thermal annealing [25]. Several experimental
studies have been reported regarding the effects of point defects
or of grain boundaries on SL TMDCs [26–28]. Strong PL
enhancement has been observed as a result of oxygen adsorp-
tion at sulfur vacancy sites [27]. Also, sulfur vacancies are
observed in MoS2 through transmission electron microscopy
experiments [28].

Pristine TMDCs are invariant with respect to the reflection
σh about the Mo or W plane of atoms (z = 0 plane). Therefore,
electron states can be classified into two categories: even and
odd or symmetric and antisymmetric with respect to the z = 0
plane. We found that the even and odd bands in TMDCs have
two different band gaps, Eg‖ and Eg⊥, respectively [29]. Eg⊥
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TABLE I. Calculated in-plane and out-of-plane band gaps Eg‖
and Eg⊥ and spin-orbit splitting �SO of the highest occupied valence
band at K point.

System MoS2 WS2 MoSe2 WSe2

Eg‖[eV] 1.716 1.684 1.438 1.37
Eg⊥[eV] 3.109 3.263 2.516 2.66
�SO [meV] 150 438 195 482

has been usually neglected for pristine TMDCs because of its
substantially larger value (Table I) and weak optical response
[Fig. 2(b)] as compared with Eg‖. Earlier studies [24,29] show
that the presence of VDs gives rise to LDS, in addition to
the normal extended states present in conduction or valence
bands in SL MoS2. These LDS appear within the band-gap
region and they can also be present deep inside the valence
band, depending on the type of VD. Optical transitions
between LDS across the Fermi level appear as resonance
peaks, both in χ‖ and χ⊥, which shows that odd states are
necessary for understanding the properties of VDs in SL MoS2

[29].
In this paper, our aim is fourfold. First, we provide a

comprehensive study of VDs in four types of SL TMDC
materials: MoS2, MoSe2, WS2, and WSe2. Second, we provide
detailed analytical models about the description of LDS within
the Dirac equation formulation and by using the tight-binding
model. Third, we include the effects of SOC on VDs, which
has not been considered so far. As mentioned earlier, SOC
in these materials is large and therefore needs to be taken
into account in order to obtain a better understanding of the
electronic and optical properties of TMDCs. Fourth, we briefly
discuss defect-induced magnetism in some cases. Throughout
this work, we consider three types of VDs: (i) single X vacancy,
(ii) X2 vacancy, and (iii) M vacancy.

This paper is organized as follows. Section II describes
the numerical results obtained for band structures. Sections III
and IV describe qualitative models for the existence of defected
states. Section V deals with the optical response of defected
SL TMDCs.

II. BAND STRUCTURE

The model system consists of a periodic two-dimensional
(2D) superlattice of TMDCs [Figs. 1(a)–1(c)]. All numerical
calculations are carried out using density functional theory
(DFT). The local density approximation (LDA) is used

FIG. 1. Different types of vacancy defects. Yellow sphere is X

while blue sphere is M: (a) X vacancy in a 7 × 7 × 1 supercell, (b)
X2 vacancy consisting of a pair of X atoms (surrounded by M atoms)
removed in a 7 × 7 × 1 supercell, and (c) M vacancy (surrounded by
X atoms) in a 7 × 7 × 1 supercell.

with the Perdew-Zunger (PZ) parametrization [30] of the
correlation energy of a homogeneous electron gas calculated
by Ceperley-Alder [31]. The calculations are implemented
within ATOMISTIX TOOLKIT 2015.1 [32] in order to be able to
perform DFT calculations on large supercells in a reasonable
amount of time. The periodic structure of the superlattice
allows one to characterize the electron states by the band
structure εn(k), where k is the vector in the first Brillouin
zone of the superlattice and n enumerates different bands. We
consider a 7 × 7 × 1 (Fig. 1) supercell having 147 number
of atoms with an edge length of 21.354 Å. The Brillouin
zone of the supercell is sampled by a 3 × 3 × 1 k-mesh.
All the structures are geometrically optimized with a force
tolerance of 0.05 eV/Å. SOC is taken into account via the
norm-conserving pseudopotentials [33,34]. Band structures
are calculated along the � − M − K − � path. Band
structures of SL TMDCs for the pristine cases are plotted in
Fig. 2 and calculated values are given in Table I. The results
are in good agreement with previously reported values both
for band-gap and SOC energy [5,6,35,36]. We consider LDA
because it is computationally less expensive and therefore
allows us to perform DFT calculations on large supercells.
A drawback of the generalized gradient approximation (GGA)
is that the Atomistix Toolkit 2015.1 gives rise to an indirect
band gap for SL TMDCs, which is in contradiction to the
already established results for TMDCs. Nonetheless, we obtain
approximately the same values for both the band gap and
SOC using either LDA or GGA. Figures 3 and 4 show the
band structure of various SL TMDCs in the presence of
vacancies. The black lines denote regular electronic states
within the valence or conduction bands while colored lines
denote the LDS. Vertical arrows show some of the allowed
optical transitions observed in the optical spectra (see Fig. 5).

III. TIGHT-BINDING MODEL AND SYMMETRIES

A. General considerations

The simplest qualitative model that can explain the
existence of LDS in the band structure due to VDs
is the tight-binding model (TBM). Within the TBM
approximation the electron wave function can be presented
as |ψ〉 = ∑

j,μ∈Oj
ψ

(j )
μ ϕ

(j )
μ (r − R(j )), where j enumerates

atomic positions surrounding the vacancy and μ runs over
the atomic orbitals Oj . In our tight-binding analysis only the
atoms surrounding the VD are considered in order to make
the calculations simple enough for capturing the essential
physical properties of the problem. The three VDs can be
classified into two groups on the basis of symmetries. The
X vacancy lacks spatial inversion symmetry with respect
to the M plane of atoms, i.e., the σh symmetry is broken
and is therefore described by the group C3v . In contrast,
the X2 and M vacancy preserve the σh symmetry of the
crystal and thus can be described by the group D3h [7,37].
For the latter the electronic states break down into even
and odd parity with respect to the σh : z �→ −z symmetry.
d-orbitals of the transition metal and p(t,b)- orbitals (t and
b denoting the top and bottom layers) of the chalcogen
atoms give the largest contribution to the conduction and
valence band structure of TMDC [35,38]. Based on the σh

symmetry, the even and odd atomic orbitals are spanned by the
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FIG. 2. (a) Band structures and (b) electrical susceptibility of pristine MX2 monolayers. Band gaps E‖
g (blue), E⊥

g (red), and spin-orbit
splitting �SO in the valance band are given in Table I. Spin splitting can also be seen in the diagonal electric susceptibility in the in-plane
component Im(χ‖).

bases {dx2−y2 ,dxy,dz2 ,pe
x,y = (p(t)

x,y + p(b)
x,y)/

√
2,pe

z = (p(t)
z −

p(b)
z )/

√
2} and {dxz,dyz,p

o
x,y = (p(t)

x,y − p(b)
x,y)/

√
2,po

z =
(p(t)

z + p(b)
z )/

√
2}, respectively. We also include the effects

of intrinsic SOC of the form ∼L · S. The resulting spin-orbit
states transform according to irreducible representations (IRs)
of the double groups CD

3v and DD
3h. Group representation

theory is an efficient tool for determining the allowed optical
transitions across the Fermi level in solids. This will be
discussed in detail in the last section. The aim of this section
is to present a qualitative description of LDS appearing
in the band structure [Figs. 2(b)–2(d)]. Here, following
Refs. [[6,29,38]] we first develop the TBM Hamiltonian
by allowing the hopping between atomic orbitals of the
atoms surrounding the VD only. Also, we consider a large
supercell in order to suppress the intervacancy couplings.
Consequently, the effects of SOC are considered as VD on-site
couplings.

B. X and X2 vacancy

Both X and X2 vacancies are surrounded by three M atoms,
as shown in Fig. 6. As mentioned earlier for M atoms, d orbitals
provide the main contribution. Considering three atomic sites
A,B,C with five d orbitals on each site, we have 15 species of d

electrons. We will suppress the spin indices and denote electron
operators collectively as a vector by ψ = (ψ1,ψ2,ψ3,ψ4,ψ5),
with ψτ = (dA

τ ,dB
τ ,dC

τ ), where dP
τ denotes the annihilation

operator of electrons for orbital τ at site P with τ = 1,2,3,4,5
standing for dz2 ,dxy,dx2−y2 ,dxz,dyz, respectively. The spinless
representation of the Hamiltonian can be expressed in block
form as

Ĥ T BM
X2

=
(

ĤX2
e 0̂9×6

0̂6×9 ĤX2
o

)
, (1)

where ĤX2
e and ĤX2

o are 9 × 9 and 6 × 6 blocks with even
(e) and odd (o) parity, respectively, with respect to σh, and

FIG. 3. Band structures of 7 × 7 × 1 MX2 SL TMDCs with X vacancy (a) and X2 vacancy (b). The Fermi level is set at εF = 0 eV.
Red (blue) horizontal lines show odd (even) states with regard to σh, while green horizontal lines in (a) represent the states with no definite
symmetry. Different LDS transform according to IRs D1/2, 2S2, and 2S1 (E1/2 and E3/2) of the double group DD

3h (CD
3v).
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FIG. 4. (a) Band structures of 7 × 7 × 1 MX2 SL TMDCs with M vacancy. The Fermi level is set at εF = 0 eV. Red (blue) lines show odd
(even) states with respect to σh. Different LDS transform according to IRs D1/2, 2S2, and 2S1 of double group DD

3h. (b) Spin-polarized density
of states of 7 × 7 × 1 MX2 SL TMDCs with M vacancy for spin-up (down) are shown in red (blue).

0̂m×n denotes a zero matrix of dimension m × n. Here we take
advantage of the inversion symmetry σh by decoupling the
orbitals with opposite parities. Also, orthogonality between
different orbitals on the same atomic site is enforced. The
submatrices in Eq. (1) are given by

ĤX2
e =

⎛⎜⎝Ĥ 1,1
e Ĥ 1,2

e Ĥ 1,3
e

Ĥ 2,1
e Ĥ 2,2

e Ĥ 2,3
e

Ĥ 3,1
e Ĥ 3,2

e Ĥ 3,3
e

⎞⎟⎠, ĤX2
o =

(
Ĥ 4,4

o Ĥ 4,5
o

Ĥ 5,4
o Ĥ 5,5

o

)
,

(2)

where each of Ĥ
i,j

e(o) is a 3 × 3 matrix i,j = 1,2,3,4,5. The
blocks in the above Hamiltonians read

Ĥ
α,β

e(o) =

⎛⎜⎝ ε
α,β

e(o) t
α,β

e(o)e
iθ t

α,β

e(o)e
−iθ

t
α,β

e(o)e
−iθ ε

α,β

e(o) t
α,β

e(o)e
iθ

t
α,β

e(o)e
iθ t

α,β

e(o)e
−iθ ε

α,β

e(o)

⎞⎟⎠. (3)

The diagonal elements ε
α,β

e(o) (0 for α 
= β) and the off-diagonal

elements t
α,β

e(o) are phenomenological parameters describing the
on-site energy and hopping between d orbitals at different
atomic sites, respectively. It can be easily shown that Hamil-
tonian (3) is invariant under σh and C3 symmetry operations,

FIG. 5. Resonances of Imχ‖(ω) (blue) and Imχ⊥(ω) (red) (a) for X vacancy, (b) X2 vacancy, and (c) M vacancy for different TMDCs.
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FIG. 6. X2 vacancy surrounded by M atoms at atomic sites A, B,
and C. The defect has a rotational symmetry at angles 2π/3 (or 4π/3)
along the z axis passing through O.

for θ = 0, ± 2π/3. But, in addition to σh and C3 symmetry
operations, the D3h group also contains σv symmetry oper-
ations, i.e., reflection by the planes perpendicular to the xy

plane and passing through the lines OA, OB, and OC (Fig. 6).
σv demands all the complex factors appearing in Eq. (3) to
be 1 or equivalently, θ = 0. Equations (2) and (3) provide an
initial insight into the nature of LDS. One can easily show
that, e.g., the ĤX2

o has a pair of three eigenvalues, i.e., ε̄ + t −√
(δε + h)2 + 4t2

h , ε̄ − t/2 −
√

(δε − h/2)2 + t2
h , ε̄ − t/2 −√

(δε − h/2)2 + t2
h and ε̄ + t +

√
(δε + h)2 + 4t2

h , ε̄ − t/2 +√
(δε − h/2)2 + t2

h , ε̄ + t/2 −
√

(δε − h/2)2 + t2
h , where ε̄,

δε are related to addition and subtraction of on-site energies
for orbitals dxz, dyz; t , h are related to addition and subtraction
of hopping parameters of the same orbitals at different sites;
and th is the hopping parameter of different orbitals at different
atomic sites. Each pair contains a twofold doublet, which
explains the existence of triplets within the band structure [29].
However, the apparent twofold degeneracy, which arises from
the overlap of neighboring atomic orbitals, is lifted in the
presence of SOC. Here we emphasize that each d orbital
appears in the form of triplets in the band structure. Thus,
there is a total of 15 LDS (in the absence of SOC) for the case
of the X2 vacancy. It may appear that the simplest TBM may
contradict the numerical results in Fig. 3, where calculations
show a lower number of LDS. A closer inspection of the
numerical results, however, resolves this contradiction in favor
of the TBM. In fact, in addition to the LDS appearing within
the band-gap region, there are also LDS deep inside the valence
bands, with a possibility to mix with the extended states in the
bulk.

SOC in the Hamiltonian is included by a pure atomic
term [6], and for simplicity we consider only the on-site con-
tribution arising from the M atoms surrounding the vacancy.
Using the basis |dz2 ,↑〉,|dxy,↑〉,|dx2−y2 ,↑〉,|dxz,↑〉,|dyz,↑〉 and
|dz2 ,↓〉,|dxy,↓〉,|dx2−y2 ,↓〉,|dxz,↓〉,|dyz,↓〉, we can write the
SOC Hamiltonian as

Ĥ SOC
X2

= �

2
L · S = �

2

(
L̂z L̂−
L̂+ −L̂z

)
, (4)

where

L̂z =

⎛⎜⎜⎜⎜⎜⎜⎝

0̂3 0̂3 0̂3 0̂3 0̂3

0̂3 0̂3 2i × Î3 0̂3 0̂3

0̂3 −2i × Î3 0̂3 0̂3 0̂3

0̂3 0̂3 0̂3 0̂3 −i × Î3

0̂3 0̂3 0̂3 i × Î3 0̂3

⎞⎟⎟⎟⎟⎟⎟⎠, (5)

L̂+ =

⎛⎜⎜⎜⎜⎜⎜⎝

0̂3 0̂3 0̂3

√
3 × Î3 i

√
3Î3

0̂3 0̂3 0̂3 −i × Î3 −1 × Î3

0̂3 0̂3 0̂3 −1 × Î3 i × Î3

−√
3 × Î3 i × Î3 Î3 0̂3 0̂3

−i
√

3 × Î3 Î3 −i × Î3 0̂3 0̂3

⎞⎟⎟⎟⎟⎟⎟⎠,

(6)

and L̂− = L̂
†
+. The off-diagonal elements L̂± in Eq. (4) couple

the even to the odd blocks of the Hamiltonian matrix shown
in Eq. (1) and are related to the spin-flip processes due to the
SOC, which give rise to virtual transitions [39]. Because of the
large spatial anisotropy of an atomically thin layer of TMDC,
for the pristine case these off-diagonal terms can be neglected,
which is substantiated by our DFT calculations (see below). A
generalized SOC state has the form

|�〉 = α|ζ 〉|↑〉 + β|ξ 〉|↓〉. (7)

Here, |ζ 〉 and |ξ 〉 are orbital states of the spin-up and spin-down
states |↑〉 and |↓〉, respectively, and α, β are probability
amplitudes for the up and down spinors. DFT calculations
reveal that for SOC Bloch states corresponding to LDS,
either α 
 β or α � β in the majority of cases (Fig. 7),
corresponding to strong polarizations of the LDS in z direction
(b), which is due to the large spatial anisotropy. It can be
calculated that LDS are spin polarized for the X2 vacancy
or the Bloch states for the X2 vacancy preserve the σh

symmetry. Therefore we anticipate that the effects of L̂± can
safely be neglected for the X2 vacancy. The full tight-binding
Hamiltonian can be written as

ĤX2 = I2 ⊗ Ĥ T BM
X2

+ Ĥ SOC
X2

=
(

Ĥ T BM
X2

+ �
2 L̂z 0̂9×9

0̂9×9 Ĥ T BM
X2

− �
2 L̂z

)
. (8)

The Hamiltonian appears to be block diagonal, which indicates
that spin states in z direction are not mixed by spin-flip
processes and therefore the spin in z direction is still a good
quantum number due to σh symmetry. As mentioned above,
the absence of spin-flip processes can be attributed to the 2D
character of TMDCs or due to the large anisotropy between
the xy plane and the z axis. In the case of the X vacancy,
due to the lack of σh symmetry, defect states appear with no
definite parity [Fig. 7(a)]. Therefore, here we argue that for
the X vacancy the off-diagonal terms L̂± in Eq. (4) need to be
taken into account.

In the absence of SOC each energy band is doubly
degenerate (spin-up and spin-down states at each K point).
SOC lowers the symmetry and can break the spin degeneracy
at K points away from the high-symmetry points. However,
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FIG. 7. Bloch states corresponding to a LDS: (a) X and (b) X2 vacancy, and (c) M vacancy in MoS2. E1/2 and 2S2 and D1/2 are corresponding
IRs. Both the top (xy plane) and side (yz plane) views are presented. Bloch states are spin polarized in each case β � α.

time-reversal symmetry leads to the condition that ε(k,↑) =
ε(−k,↓), commonly known as Kramers degeneracy. This
degeneracy is reflected in the band structure (Fig. 3), where
each energy level is doubly degenerate for both types of
vacancies. In solids or 2D surfaces spin splitting depends both
on the size of atomic SOC and of the gradient of electric
potential [40]. This difference in the gradient of electric
potential leads to the different spin splittings for the same
types of defects in different TMDCs, as shown in Fig. 3 and
in Table II.

C. M vacancy

There are six chalcogen X atoms in the top and bottom
layers, surrounding the transition metal M vacancy. Thus,
there are 18 species of electrons corresponding to six possible
combinations of p orbitals (three of them even and three
odd with respect to σh) at three in-plane atomic positions.
Proceeding as before the TBM for the M vacancy can be
written as

Ĥ T BM
M =

(
ĤM

e 0̂9×9

0̂9×9 ĤM
o

)
, (9)

ĤM
e =

⎛⎜⎝Ĥ 6,6
e Ĥ 6,7

e Ĥ 6,8
e

Ĥ 7,6
e Ĥ 7,7

e Ĥ 7,8
e

Ĥ 8,6
e Ĥ 8,7

e Ĥ 8,8
e

⎞⎟⎠, (10)

ĤM
o =

⎛⎜⎝ Ĥ 9,9
o Ĥ 9,10

o Ĥ 9,11
o

Ĥ 10,9
o Ĥ 10,10

o Ĥ 10,11
o

Ĥ 11,9
o Ĥ 11,10

o Ĥ 11,11
o

⎞⎟⎠, (11)

TABLE II. SOC splitting �X,X2,M in LDS appearing above the
Fermi level for X, X2, and M vacancies, respectively, in different
TMDCs.

System MoS2 WS2 MoSe2 WSe2

�X[meV] 51 192 34 173
�X2 [meV] 78 278 60 251
�M [meV] 32.5 130 54 100

where each Ĥ
j

e(o) is a 3 × 3 matrix corresponding to even
(odd) combinations of p orbitals, with j = 6, 7, 8, 9, 10, 11
being indices reserved for the pe

x, p
e
y, p

e
z, p

o
x, p

o
y, p

o
z orbitals,

respectively. Each Ĥ
β

e(o) in Eq. (10) has the same form as in
Eq. (3).

SOC is included by considering the Hamiltonian described
in Eq. (4). The M vacancy also preserves the σh symmetry.
Again, the L̂zSz term gives the largest contribution due to the
large anisotropy. The Bloch states are shown in Fig. 7, from
which it can be concluded that LDS are spin polarized also in
the case of M vacancy. The matrices for operators L̂z and L̂±
in the case of the M vacancy can be written as

L̂z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0̂3 −i × Î3 0̂3 0̂3 0̂3 0̂3

i × Î3 0̂3 0̂3 0̂3 0̂3 0̂3

0̂3 0̂3 0̂3 0̂3 0̂3 0̂3

0̂3 0̂3 0̂3 0̂3 −i × Î3 0̂3

0̂3 0̂3 0̂3 i × Î3 0̂3 0̂3

0̂3 0̂3 0̂3 0̂3 0̂3 0̂3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(12)

,

L̂+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0̂3 0̂3 0̂3 0̂3 0̂3 −1 × Î3

0̂3 0̂3 0̂3 0̂3 0̂3 i × Î3

0̂3 0̂3 0̂3 Î3 −i × Î3 0̂3

0̂3 0̂3 −1 × Î3 0̂3 0̂3 0̂3

0̂3 0̂3 i × Î3 0̂3 0̂3 0̂3

Î3 −i × Î3 0̂3 0̂3 0̂3 0̂3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(13)

and L̂− = L̂
†
+. The DFT calculations show that the Kramers

degeneracy is preserved for MoS2 and WS2, while it is
broken for MoSe2 and WSe2. In Ref. [21], it has been shown
that the presence of Mo vacancies in MoSe2 can induce
spin polarization and results in long-range antiferromagnetic
coupling between local magnetic moments, even at a distance
above 13 Å, due to the large spatial extensions of spin
density. The local magnetic moment on each M vacancy
breaks the time-reversal symmetry and therefore lifts Kramers
degeneracy in MoSe2 in the presence of Mo vacancies. In
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FIG. 8. (a) Isosurface plot of the spin density of MoSe2 monolayer with one Mo vacancy. The black and yellow balls represent Mo and Se
atoms, respectively. The red isosurface shows the spin density. The magnetic moment μ at neighboring and next-neighboring sites surrounding
the vacancy is also calculated, which gives a total μ of 0.6 in units of μB . (b) Spin-polarized band structure of 7 × 7 MoSe2 with one Mo
vacancy, red and blue lines show states for spin-up and -down, respectively. (c) Magnetic moment μ vs defect density ρ.

Fig. 4(b) we show plots for the density of states (DOS) obtained
by the local spin density approximation (LSDA) method
for the M vacancy in different TMDCs in order to confirm
that indeed the Mo vacancy in MoSe2 exhibits magnetic
signatures. Our spin-polarized DFT calculations show that the
exchange correlation potential leads to a spin splitting only
for the MoSe2 system. In Fig. 8(a) the isosurface plot for
the spin density is shown along with the magnetic moment
μ calculated by means of the Mulliken population analysis
at all the nearest-neighboring atomic sites (Se atoms) and
the next-nearest-neighboring sites (Mo atoms) surrounding
the vacancy. Our results show that the main contribution
to the magnetism is due to the p orbitals localized at the Se
atoms and the d orbitals localized at the next-nearest Mo atoms
surrounding the Mo vacancy. The electronic band structure
calculated by using LSDA is shown in Fig. 8(b). The spin
states of the LDS are split, whereas the bulk states do not show
any magnetic moment. The magnetic moment of the LDS is
governed by the unpaired electron spins according to Hund’s
rules, which is 1 μB [inset of Fig. 8(b)]. The calculations
yield a slightly smaller magnetic moment of 0.6μB , which
is acceptable within standard DFT limits. Finally, we plot the
magnetic moment μ vs defect density ρ in Fig. 8(c), where
the localization of the magnetic moment is demonstrated for
densities ρ < 25 × 1012 cm−2. We also notice splittings in
the case of WSe2, but no magnetic signatures are found.
We attribute this splitting as a result of interaction between
adjacent vacancies due to large spatial extensions of W and Se
orbitals.

IV. DEFECT STATES WITHIN THE DIRAC EQUATION
FORMALISM

The main analytical tool for describing properties of
electron states in transition metal monolayers is the Dirac
equation, which emerges within the k · p approximation as the
two-band model [5,41,42]. Such a description is valid when
the main role is played by low-lying excitations near the band
edges. This assumption, however, is ill justified for the case
of vacancies and, indeed, as will be demonstrated below, the
Dirac equation fails to reproduce many important features of
the defect states. At the same time, the Dirac equation allows
one to establish several important features and, first of all, the

sole existence of the states bound to vacancies. For example,
within the framework provided by the Schrodinger equation,
the vacancy is naturally represented by a repulsive potential
that cannot support bound states. The Dirac equation, in turn,
provides more options for describing defects and, as shown
below, when the special boundary conditions are enforced
at the boundary of the defect, the states localized near the
boundary appear.

The formalism of the Dirac equation can be introduced
as follows. Within the k · p approximation the electron states
are described by �(r)eiK·r, where �(r) is a smooth function
of coordinates. Adopting the two-band approximation, �(r)
is presented as a two-component spinor, which satisfies a
2D Dirac-like equation. For example, for MoS2 the two-band
approximation is often implemented retaining only the domi-
nating contribution of Mo’s d orbitals [5,6], so that near the in-
equivalent K points of the Brillouin zone, Kτ = τK with τ =
±1, spinors �τ (r) are spanned by |dx2−y2 − iτdxy〉 and |dz2〉,
the states representing the top of the valence band and the bot-
tom of the conduction band, respectively. Spinors �τ , thereby,
satisfy [σz� + v(τσxpx + σypy)]�τ (r) = ε�(r), where 2�

is the width of the gap and ε is the energy counted from the
center of the gap εc.

In order to eliminate the valley dependence of the Hamilto-
nian governing the spatial distribution of �τ , it is convenient to
introduce �+ = �+ and �− = σy�−, which satisfy Hτ�τ =
ε�τ , where

Hτ = τσz� + vσ · p. (14)

Thus solutions for electrons in different valleys are related by
simply reverting the sign of �. Combining �± into a single
4-spinor,

� = �+ ⊕ �−, (15)

the equations of motion for different valleys can be presented
in a unified form H� = ε� with

H = τz ⊗ σz� + vτ0 ⊗ σ · p, (16)

where τi with i = x, y, z and τ0 are the Pauli matrices and the
identity matrix, respectively, acting on the valley space.

Hamiltonian (16) possesses the cylindrical symmetry,
which can be employed by presenting σ · p = −iσr∂/∂r −
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ir−1σφ∂/∂φ, where

σr =
(

0 e−iφ

eiφ 0

)
, σφ =

(
0 −ie−iφ

ieiφ 0

)
. (17)

The explicit angular dependence is eliminated by introducing
�̃τ = eiσzφ/2�τ , which accounts for rotation of the spinors
�τ while encircling the origin. It should be noted that due to
the relation �− = σy�−, the rotation directions of �+ and
�− are different: �̃τ = eiτσzφ/2�τ . Thus the winding numbers
of spinors corresponding to electrons belonging to different
valleys have opposite signs.

Spinors �̃τ satisfy

H̃τ �̃τ = ε�̃τ , (18)

where H̃τ = eiσzφ/2Hτ e
−iσzφ/2 has the form

H̃ = τσz� − iv

[
σx

(
∂

∂r
+ 1

2r

)
+ σy

1

r

∂

∂φ

]
. (19)

Equation (18) is solved by separating the variables
�̃τ (r,φ) = ∑∞

m=−∞ �̃τ ;m(r)eimφ . For amplitudes �̃τ ;m(r), we
find the general solution

�̃τ ;m(r) =
√

Qr

×
(

1√
ε−τ�

[
aτ ;mh

(1)
m−1(Qr) + bτ ;mh

(2)
m−1(Qr)

]
i√

ε+τ�

[
aτ ;mh(1)

m (Qr) + bτ ;mh(2)
m (Qr)

] )
,

(20)

where h(1,2)
m (Qr) are the spherical Hankel functions, Q =

v−1
√

�2 − ε2, and aτ ;m, bτ ;m are arbitrary constants.
We are interested in bound states and, therefore, in solutions

of Eq. (18) corresponding to energies inside the gap. For such
energies, we have Q = iκ with non-negative κ = √

�2 − ε2.
From the regularity condition at infinity, it follows that b(m)

τ =
0, while a(m)

τ are determined from the normalization condition.
The solution can be written as

�̃+,m = N+,m

(
1√

�−ε
gm−1(κr)

i√
�+ε

gm(κr)

)
, (21)

where we have denoted the normalization constant by N+,m.
The functions gm(z) are related to the modified spherical

Hankel functions gm(z) = 2km(z)/π and for m > 0 can be
presented as

gm(z) = (−z)m
(

d

zdz

)m
e−z

z
. (22)

Taking into account the relation

g−m(z) = gm−1(z), (23)

we can use Eq. (22) for finding gm(z) with m < 0 as well. With
the help of this relation, one can show, starting from Eq. (20),
that

�̃−,−m = cσx�̃+,m, (24)

where c is a phase factor, |c| = 1. Such connection between
solutions corresponding to electrons from different valleys
allows us to limit our attention to τ = +1.

The functions gm(z) can be shown to be non-negative. Thus,
we can rewrite

�̃+,m = Ñ+,m

(
cos(χm/2)

i sin(χm/2)

)
, (25)

with 0 � χm � π . This representation shows that at any
chosen distance from the center of the vacancy, the defect states
have the form of a spin coherent state [43,44] lying in the plane
perpendicular to nB , the vector normal to the boundary of the
anti-dot and directed outward. The angle χm = 2 arctan(Fm),
where

Fm = gm(κr)
√

� − ε

gm−1(κr)
√

� + ε
, (26)

has the meaning of the polar angle of the vector characterizing
the direction of the spin coherent state. Its dependence on m

is illustrated by Fig. 9, which shows that χm monotonously
increases from χ−∞ = 0 to χ∞ = π . It is also a monotonous
function of r (increasing for m < 0 and decreasing for m > 0)
and a monotonously increasing function of energy. Taking into
account Eq. (23) one can see the important symmetry

Fm(ε) = 1/F−m(−ε). (27)

Thus, the states with τ = 1 lie in the half plane corre-
sponding to the positive projection on the vector tangent to the

FIG. 9. The polar angle χm characterizing the defect state. (a) Dependence of χm on m. Curves (1), (2), and (3) correspond to (ε − εc)/� =
−0.99,0,0.99, respectively, where εc stands for the center of the gap. The distance from the center of the anti-dot is taken r�/v = 1 (it is assumed
that r > r0). (b) For the fixed energy (ε − εc)/� = 0.4 the dependence χm on r is shown for m; from top to bottom m = 5,1,0, − 1, − 5. (c)
For r�/v = 1 the dependence of χm on energy is shown for the same set of m as in (b).
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boundary eφ = ez × nB , while the states with τ = −1 have
the opposite orientation, due to 〈�̃−,m|�̃+,m〉 = 0, which can
be easily checked.

The energies of the defects states (and their sole existence)
are determined by the boundary condition on the boundary
of the anti-dot. The general form of the condition is found
requiring that the radial component of the probability current
must vanish at the boundary [45,46] 〈�(r0)|nB · J|�(r0)〉 = 0,
where J = vτ0 ⊗ σ . This condition is equivalent to M� = �,
where � is the 4-spinor defined by Eq. (15) and the Hermitian
matrix M has the eigenvalues ±1 and anticommutes with
the radial component of the current operator {J · nB,M} = 0.
Within the infinite mass model [45,46], the anti-dot is repre-
sented as a region with renormalized width of the gap � →
�(1 + d(r)), with d(r) = 0 for r > r0 and d(r) → ∞ when
r < r0, so that in this case M = (τ · ez) ⊗ (σ · eφ). In other
words, within this model in order to have decaying electron
distribution inside the anti-dot �̃τ (r) must be proportional to
|τeφ〉 as r approaches r0.

The condition �̃+,m(r0) ∝ |eφ〉, or χm = π/2, constitutes
the condition imposed on the energy of the bound state:

Fm(ε,r0) = 1. (28)

In virtue of Eq. (27), if for some m there exists a bound solution
with the energy ε, then there is the solution corresponding to
m′ = −m with the energy −ε. Thus within the infinite mass
model the spectrum of the defect states is symmetric with
respect to the center of the gap.

For m = 0, Eq. (28) has the simplest form F0 =√
� − ε/

√
� + ε = 1 with the solution

ε0 = 0. (29)

Thus the anti-dot independently of its size supports a bound
state with the energy at the center of the gap.

States with |m| > 0, in turn, appear only when the defect
is sufficiently large. In order to find the condition of sup-
porting the state with some m we notice that Fm(ε,r0) is a
monotonously decreasing function of energy while ε changes
from −� to �. Since gm(z → 0) ≈ (2m − 1)!!/zm+1, we find
that the energy of the mth state is inside the gap if

r0 > Rm = v

�

(
|m| − 1

2

)
. (30)

Conversely, for the given radius r0 the number of bound defect
states is given by N = 4 + 8�r0�/v + 1/2�, where 4 accounts
for states from different valleys and with different spins at
m = 0 and the second term accounts for states with m > 1;
here �. . .� denotes taking the integer part and 8 in addition to
the spin and valley degeneracies accounts for the symmetry
m → −m. The dependence of energies of the defect states on
the radius of the anti-dot is shown in Fig. 10.

The spatial electron distribution corresponding to the defect
state is conveniently characterized by the probability density
ρτ,m(r) = 〈�τ,m|�τ,m〉 and the vector of orientation of the
(pseudo)spin coherent state Sτ,m = 〈�τ,m|σ |�τ,m〉/ρτ,m. As
follows from Eq. (25), the pseudospin state is transversal, Sr =
0, with the spatial variation of the projection of Sτ,m onto the
(eφ,ez) plane depending on m.

In the simplest case m = 0 the pseudospin remains in
the plane of the layer, Sτ,z = 0. States with nonzero m

1 2 3
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FIG. 10. The dependence of the spectrum of defect states on the

normalized radius of the anti-dot, r0v/�. The dashed lines show the
edges of the gap. The section at particular r0 presents the spectrum
of the defect states in the infinite mass model. The central line
corresponds to m = 0, and states with increasing |ε − εc| correspond
to states with increasing |m|. Thus curves for m = −4, . . . ,4 are
shown. The spectral lines outside the gap correspond to scattering
resonances with complex energies.

are characterized by the out-of-plane distribution of the
pseudospin (for r > r0). The angle of maximum deviation
from the plane is

tan

(
β

2

)
= τ

√
� + ε − √

� − ε√
� + ε + √

� − ε
. (31)

Thus for τ = 1 the pseudospin “sticks out” of the plane for
ε > 0 (that is for m > 0) and has the negative projection on the
z axis for ε < 0. For τ = −1 the direction of the pseudospin
is reversed.

V. OPTICAL RESPONSE

The presence of LDS in the band structure gives rise
to sharp peaks in the optical spectrum. In Ref. [47] the
relative dielectric functions εr of various TMDCs have been

TABLE III. Character table of the group C3v . E, C3, σv are the
single-group IRs and E1/2, E3/2 are the corresponding double-group
IRs.

C3v E C3 3σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0
E1/2 2 − 2 1 − 1 0 0
E3/2 2 − 2 −2 2 0 0
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TABLE IV. Character table of the group D3h. E, σh, 2C3, 2S3,
3C2, and σv are the single-group IRs, and D1/2, 2S1, and 2S2 are the
corresponding double-group IRs.

D3h E σ2 2C3 2S3 3C2 3σv

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 −1

A′′
2 1 −1 1 −1 −1 1

E′ 2 2 −1 −1 0 0
E′′ 2 −2 −1 1 0 0
D1/2 2 − 2 0 1 − 1

√
3 − √

3 0 0
2S1 2 − 2 0 −2 2 0 0 0 0
2S2 2 − 2 0 1 −1 −√

3
√

3 0 0

measured experimentally, which in turn are related to the
electric susceptibilities by the standard formula εr = 1 + χ .
In Fig. 5 results for both in-plane χ‖ and out-of-plane χ⊥
components of the electric susceptibility are presented for
different VDs in TMDCs. The electric susceptibility provides
valuable insight into the optical selection rules for transitions
between states across the Fermi level. We are interested in
transitions involving states with energy near the gap edges or
inside the gap. The electric susceptibility tensor is evaluated
using the Kubo-Greenwood formula,

χij (ω) = − e2h̄4

m2ε0V ω2

∑
p,q

f (Eq) − f (Ep)

Epq − h̄ω − ih̄�
πi

pqπ
j
qp, (32)

where π
j
pq = 〈ψp|xj |ψq〉 is the j th component of the dipole

matrix element between states p and q, V the volume, f the
Fermi function, and � is the broadening, which is set to be
0.01 eV. The appearance of states inside the band gap Eg or
close to the band edges leads to the resonances at single energy
Epq = |Ep − Eq |. The dipole matrix element π

j
pq determines

the strength of an optical transition and whether it is allowed
or prohibited by symmetries.

When considering defects in a crystal, the LDS transform
according to the IRs of the symmetry group of the crystal
site in which the defect resides. While the translational
symmetry of the crystal is broken, point-group symmetries
are partially or completely preserved. M and X2 vacancies
keep the D3h symmetry, whereas the X vacancy exhibits the
lower C3v symmetry. The character tables for C3v and D3h

with single- and double-group IRs are shown in Tables III
and IV, respectively. Table V contains the decomposition of
the direct products of the single-group representations with the
representation according to which the spin matrices transform,
i.e., E1/2 and D1/2, respectively. In Fig. 11 band structures for
WS2 with S and W vacancies are shown with and without SOC.
Following Refs. [48] and [49], in Fig. 11 we show how the
single-group IRs in the absence of SOC can be mapped to the

corresponding double-group IRs in the presence of SOC. Note
that due to the nature of the DFT calculation, the superlattice
defined by the supercell introduces an artificial translational
symmetry, which in some cases leads to artificial splittings.
These can be typically recognized by systematically changing
the size of the supercell.

The appearance of LDS inside the band gap leads to sharp
resonances in χ‖ and χ⊥ at frequencies corresponding to the
energy differences between LDS. However, not all transitions
are allowed. Instead, several transitions are prohibited due
to symmetry, i.e., when π

j
pq does not transform according

to the symmetric representation of the symmetry group of
the superlattice. In the matrix element χ

j
pq , the initial state

ψp, the final state ψq , and the position operator xj transform
according to the IRs �(ψp), �(ψq), and �(xj ), respectively.
An electric dipole transition between two states is allowed
if the direct product �(ψp) ⊗ �(xj ) ⊗ �(ψq) includes �(I )
in its decomposition in terms of a direct sum. �(I ) denotes
the IR for the identity, i.e., A1 and A′

1 for C3v and D3h,
respectively. This is strictly related to the polarization of
the radiation. One needs to consider separately the in-plane
and out-of-plane components of π

j
pq because they transform

according to different IRs of C3v and D3h. The selection rules
for electric dipole transitions for the double-group IRs are
summarized in Table VI.

The presence of SOC couples the spin and orbital angular
momenta, thereby requiring the consideration of the double-
group IRs. In our case, we need to consider D1/2 ⊗ C3v and
D1/2 ⊗ D3h, where D1/2 is the 2D spin representation. The
electromagnetic field couples to the orbital part of the state,
i.e., either to |ζ 〉 or to |ξ 〉 [see Eq. (7)]; polarizations induced
by electromagnetic waves will not be changed in the presence
of SOC. The role of the SOC is to lift some degeneracies,
which gives rise to extra absorption peaks compared with
the case without SOC [29]. In the susceptibility, these extra
peaks lie close to the energies predicted by the susceptibility
without SOC. It is important to take care when dealing with
selection rules described by double groups because double
groups may allow some transitions that are prohibited by the
single groups. Then such selection rules must be discarded.
One such example is the π transition for the X vacancy. In
the absence of SOC, the π transition is allowed only between
states with the IRs E, i.e., E ⊗ A1 ⊗ E = A1 ⊕ A2 ⊕ E; this
transition is not allowed since orbitals of the IR E exist
above the Fermi level only. In the presence of SOC the π

transition is allowed by the double group, i.e., E1/2 ⊗ A1 ⊗
E3/2 = A1 ⊕ A2 ⊕ E, but is not seen in the susceptibility
including SOC. This can be understood as the artefact of
double groups, since π transitions are prohibited in the absence
of SOC.

As a final note, as mentioned earlier, all samples are geomet-
rically optimized before performing electronic calculations.
Geometrical optimization may break certain symmetries and

TABLE V. Double-group representations obtained from single-group representation for C3v and D3h.

�i(C3v) A1 A2 E �i(D3h) A′
1 A′

2 A′′
1 A′′

2 E′ E′′

�i × E1/2 E1/2 E1/2 E3/2 + E1/2 �i × D1/2 D1/2 D1/2 2S2 2S2 2S1 + 2S2 2S1 + D1/2
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FIG. 11. Band structures without (a) and with SOC (b) for WS2.
The mapping of the LDS from the band structure without SOC to the
band structure with SOC follows the mapping of the single-group IRs
to the double-group IRs including spin, as explained in Table V.

can affect certain selection rules or can result in concealing of
some of the resonances.

VI. CONCLUSION

In this paper we have provided numerical and analytical
descriptions of electronic and optical properties of SL TMDCs
in the presence of VDs. We have shown that the presence
of LDS gives rise to sharp transitions both in χ‖ and χ⊥.
In order to understand these transitions, odd states need to

TABLE VI. Electric dipole selection rules in C3v and D3h

symmetry. σ represents in-plane transitions while π represents
out-of-plane transitions.

C3v E1/2 E3/2 D3h D1/2 2S1 2S2

E1/2 σ,π σ D1/2 σ σ,π

E3/2 σ σ,π 2S1 σ π σ

2S2 σ,π σ

be considered in addition to even states. A central result
of our paper is that group theory can be used to derive
strict selection rules for the optical transitions, which are in
excellent agreement with the susceptibility calculated using
the Kubo-Greenwood formula with the DFT orbitals. SOC-
induced splitting is observed in LDS and is seen to be larger
for VDs in WX2 than in MoX2. Interestingly, our findings
suggest magnetic properties of MoSe2 in the presence of Mo
vacancy, which may be enhanced by increasing the density
of defects. In order to provide a qualitative explanation of
the existence of LDS, we performed analytical calculations
based on the TBM and 2D Dirac formulation. All these results
considerably improve the understanding of VDs in SL TMDCs
and should benefit their potential applications in optoelectronic
and nanoelectronic devices.
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