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Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory
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The quantum hydrodynamic theory is a promising method for describing microscopic details of macroscopic
systems. The hydrodynamic equation can be partially obtained from a single-particle Kohn-Sham equation and
improved by adding a viscoelastic kinetic-exchange-correlation tensor term, so that broadening of collective
excitation can be taken into account, as well as a correction to the plasmon dispersion. The result is an accurate
self-consistent and computationally efficient hydrodynamic description of the free-electron gas. A very accurate
agreement with full quantum calculations is shown.
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I. INTRODUCTION

Plasmonic nanosystems have enabled the possibility to
macroscopically probe effects that are generally confined to the
microscopic realm [1–8]. Nonlocal electron response [9–11]
and quantum tunneling [12–15] have been experimentally
observed in plasmonic systems characterized by subnanometer
dielectric gaps. The advances of fabrication techniques allow
one to control the features of such systems at the angstrom
scale [16–18]. In this context, it becomes very important to
develop simulation techniques to take into account quantum
microscopic features at the scale of billions of atoms. Density
functional theory (DFT) methods are generally unsuitable
because their computational cost grows as fast as O(N3

e ) such
that their reach is limited to systems with few thousands
of electrons [6]. Conversely, methods based on effective
descriptions have also been proposed [19,20], although their
applicability depends on a priori calculations usually relying
on a different method and it is limited to the linear response
regime.

A promising alternative is given by orbital-free techniques
[21–23] where electron energy functionals are expressed in
terms of the electron density, n(r,t), rather than the single
electronic orbitals. To this category belongs the hydrodynamic
theory (HT), in which the quantum dynamics is solved via
macroscopic observable quantities, such as n and the current
density J(r,t) or the velocity v(r,t). The HT has a long history
[24–26] and it has been applied to a variety of problems
[27–30] including absorption of metallic nanoparticles (NPs)
[31,32] and nonlinear optics [33–36].

Recently, the HT has vigorously reemerged in the context of
nanoplasmonics [37–39], strongly fueled by the proliferation
of self-assembling colloidal plasmonic structures [9,14,16–
18]. Because of the complexity of the systems involved,
however, the HT has usually been considered within the limit
of the Thomas-Fermi (TF) approximation with the assumption
of a constant ground density, neglecting essential effects such
as electron spill-out and quantum tunneling. The TF-HT,
however, can be greatly improved by adding a ∇n-dependent
contribution—the von Weizsäcker (vW) correction—to the
TF kinetic energy of the free-electron gas. In this way, a
space-dependent ground density can be easily taken into
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account. In conformity with the recent literature I will refer to
this model to as the quantum hydrodynamic theory (QHT).
A self-consistent approach based on the QHT coupled to
Maxwell’s equations was recently introduced by Toscano
et al., who applied it to show size-dependent blueshift in small
noble metal nanowires [40]. Systematic comparisons of QHT
with DFT results [41,42], however, pointed out that in order
to describe well both near- and far-field features of plasmonic
systems, one might need to sacrifice the self-consistency of
the method [42]. A precise prediction of the fields near the
surface is in fact extremely important for tunneling regimes and
nonlinear applications. Moreover, in its present form the QHT
does not take into account size-dependent broadening of the
plasmonic resonances, although a recent effort in this direction
[43] suggested the use of a density-dependent damping rate. It
is worth noting that although the exact hydrodynamic form of
the many-body time-dependent Schrödinger equation has been
known (in a nonclosed form) for a long time [44], its actual
implementation has been very difficult due to the fact that the
functional dependence of the stress tensor on the density and
the currents is still unknown. As for all orbital-free methods,
the challenge is to find an appropriate approximate functional
that correctly accounts for the electron gas total energy. In
recent years, efforts in this direction have increased [45–50].

In this paper, I first show that the QHT equation in the
limit of TF-vW approximation can be formally derived from
the single-particle Kohn-Sham (KS) equation. This derivation
clearly shows the degree of approximations that are made
when using the QHT. As the second step, a correction of the
form of a kinetic viscous tensor is introduced empirically in
order to take into account Landau-damping effects. Moreover,
because the QHT intrinsically describes both longitudinal
and transverse fields, it is then possible to include in the
Hamiltonian a current-dependent exchange-correlation (XC)
vector potential. Such potential has been developed by Vignale
and Kohn [51] in the context of the current density functional
theory (CDFT). The peculiarity of this functional is that it
has the form of a divergence of a viscoelastic stress tensor.
The result is a self-consistent theory that can be applied to
much larger scale problems compared to DFT techniques,
with comparable accuracy. The theory correctly predicts
size-dependent plasmon energies and broadening, as well as
near-field properties. Application to NP dimers also shows
good agreement with DFT calculations previously published,
down to the tunneling regime.

2469-9950/2017/95(24)/245434(10) 245434-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.245434


CRISTIAN CIRACÌ PHYSICAL REVIEW B 95, 245434 (2017)

II. QUANTUM HYDRODYNAMIC EQUATION

The HT is formally exact solely for a single- or two-particle
system in which the particles lay in one identical state,
and in this case its equations can be easily derived from
Schrödinger’s equation [24]. Such a procedure cannot be
applied for many-particle systems, and in this case the HT
equations are usually approximated either by deriving the first
N moments of the collisionless Boltzmann equations [52–54]
or assuming a certain expression for the total energy of the
system in a variational formulation [29,40,55]. Here, we would
like to derive the QHT equations from the single-particle KS
equation. In order to do so, let us consider a system of Ne

noninteracting particles in the presence of an electromagnetic
field generated by the scalar and vector potentials ve(r,t)
and Am(r,t), and in the presence of the XC potential energy
vXC(r,t) and vector potential AXC(r,t). The system is described
by a set of time-dependent KS equations for the single orbitals
ϕj (r,t), j = 1 . . . Ne:

ih̄
∂ϕj

∂t
=

[
(ih̄∇ − eA)2

2m
− eve + vXC

]
ϕj , (1)

where h̄ is the reduced Planck constant, m and e are the
electron mass and charge (in absolute value), respectively, and
A = Am + AXC. The electromagnetic potentials are related to
the usual electric and magnetic fields as E = − ∂Am

∂t
− ∇ve and

B = ∇ × Am, respectively.
Without loss of generality we can write the complex

eigenfunctions as ϕj = φje
iχj with φj (r,t) and χj (r,t) purely

real functions of space and time [24]. Our goal is to express
Eq. (1) as a function of the global macroscopic variables n(r,t)
and J(r,t), which are defined as

n =
∑
j∈occ

φ2
j , J = −e

∑
j∈occ

φ2
j vj − ne2

m
A, (2)

where the sum is performed over all occupied states and
vj = h̄

m
∇χj . Multiplying Eq. (1) by ϕ∗

j , summing over the
occupied states and separating the real part of the resulting
equation gives, after using the definition of Eq. (2), the
following equation:

∂J
∂t

= ne2

m
E − e

m
J × (B + ∇ × AXC)

+ ne

m

(
∇vXC − e

∂AXC

∂t

)
+ e

m
∇ · �, (3)

where the momentum flux tensor � is given by

�μν = h̄2

2m

⎛
⎝−δμν

2
∇2n + 2

∑
j∈occ

∂φj

∂rμ

∂φj

∂rν

⎞
⎠

+m
∑
j∈occ

φ2
j

(
vμ,j + e

m
Aμ

)(
vν,j + e

m
Aν

)
, (4)

with subscripts μ and ν spanning the Cartesian directions and
δμν being the Kronecker delta.

It is useful to extract from the sums in Eq. (4) the known
quantities. To do so, let us write the single orbitals as the
difference, φ̃j , with respect to an average orbital φ = √

n
Ne

,

so that we have φj = φ + φ̃j . Analogously, for the velocities
we have vj = v + ṽj , where v = J/(−en) − eA/m (note that
by construction

∑
j∈occ φ2

j ṽj = 0). After the new definitions,
Eq. (3) can be written as

∂J
∂t

= ne2

m
E − e

m
J × (B + ∇ × AXC)

+ ne

m

(
∇vXC − e

∂AXC

∂t

)
+ ne

m
∇ δTW

δn

+ 1

e

(
J
n
∇ · J + J · ∇ J

n

)
+ e

m
∇ · �′, (5)

where δTW
δn

= h̄2

8m
(∇n·∇n

n2 − 2∇2n
n

) is the vW kinetic potential,
and the remaining part of the momentum flux tensor is

�′
μν = h̄2

m

∑
j∈occ

∂φ̃j

∂rμ

∂φ

∂rν

+ ∂φ

∂rμ

∂φ̃j

∂rν

+ ∂φ̃j

∂rμ

∂φ̃j

∂rν

+m
∑
j∈occ

φ2
j ṽμ,j ṽν,j . (6)

It is worth noting that no approximations have been made up
to this point. In particular, the vW potential has been exactly
derived from Eq. (1). This allows one to exactly define the
prefactor λ that usually precedes the vW term. This number
varies in the literature from 1/9 to 1. It is clear from the
presented derivation that the right choice should be λ = 1 as
already suggested in previous publications [41,42] by direct
comparisons with DFT results.

Moreover, for the simple case of Ne = 2 (single orbital)
it easy to show that �′

μν = 0. In fact because there is one
occupied orbital φ1 = √

n/2, the electrons move in phase,
hence ṽ1 = 0. Equation (5) is then an exact hydrodynamic
description of the two-electron system. Solving this equation
would give the exact same result as Eq. (1). In general,
however, �′

μν �= 0 and Eq. (5) cannot be solved without
knowing the single orbitals φj .

Our next step is then finding an approximation for �′
μν

that will allow its evaluation without having to solve for the
orbitals φj . Let me anticipate that such approximation is in
fact the TF contribution to the kinetic energy. In particular, I
will show that ∇ · �′ � n∇ δTTF

δn
, where TTF = cTFn

5/3, with

cTF = h̄2

m
3
10 (3π )2/3.

Since we are interested in describing structures that are
constituted by a large number of electrons, in first approxima-
tion we can consider the electronic system as a homogeneous
electron gas whose orbitals are ϕk = eik·r

V 1/2 , with V the occupied
volume in real space. It is easy to identify h̄k = mṽj (without
the net contribution induced by the external fields), so that the
sum over j becomes a sum of k:

∂�′
μν

∂rν

� m
∂

∂rν

∑
j∈occ

φ2
j ṽμ,j ṽν,j � 2h̄2

mV

∂

∂rν

∑
k∈occ

kμkν, (7)

where the first sum in Eq. (6) is zero because the amplitudes
associated to the orbitals ϕk are constant. Note, however, that
even if every term in Eq. (7) seems to be constant, taking the
divergence of the sum will not give equally zero, because, as
will be clear later, the number of occupied states will depend
on the local density n(r). Since there are many occupied states,

245434-2



CURRENT-DEPENDENT POTENTIAL FOR NONLOCAL . . . PHYSICAL REVIEW B 95, 245434 (2017)

we can replace as usual the sum by an integral:

2h̄2

mV

∂

∂rν

∑
k∈occ

kμkν

� h̄2

m4π3

∂

∂rν

∫ kF

0
k4dk

∫ π

0

∫ 2π

0
k̂μk̂ν sin θ dθ dφ, (8)

where we used dn = V
8π3 dk and kF(r) = (3π2n)1/3. Evaluating

the integrals gives

∇ · �′ � h̄2

mπ2

1

15

∂

∂rν

(
δμνk

5
F

) = 10

9
cTFn

2/3∇n. (9)

It is easy now to show that the last term in the previous equation
is exactly equal to n∇ δTTF

δn
, as was anticipated.

III. BEYOND THE THOMAS-FERMI KINETIC ENERGY

The derivation performed in the previous section demon-
strates that the error committed using the QHT is solely given
by the approximation (9). We can write then

∇ · �′ = n∇ δTTF

δn
+ ∇ · �′′, (10)

with �′′ being a tensor that accounts for a correction to the
TF potential. This tensor can be further decomposed in a
contribution P that depends on the instantaneous density, as
well as a dynamical term �:

�′′ = P(n) + �(n,ω). (11)

P is important in the static case since it guarantees the
calculation of the exact ground-state density, while � ensures a
proper frequency-dependent response. Unfortunately it is still
a major issue being able to derive good expressions for P and
� without knowing the exact orbitals [56–58]. In this paper I
will focus on the dynamical component � and consider P = 0
for simplicity.

An important effect due to � is the broadening of the
plasmonic resonance in bounded systems, such as metallic
nanoparticles. In particular, the broadening is the result of
exciting single particles into electron-hole pairs. In fact, the
myriad of states existing at the surface of small particles
provides a broad range of possible transitions that translate
into a broadening of the collective plasmon resonance. In the
HT electrons are assumed to lay in identical states and single-
particle excitations cannot be exactly taken into account.

It is possible to assume, however, that the broadening of
the collective resonance is due to the increase of effective
collisions in the electron gas. These new collisions may be
thought intuitively as the result of the different phase velocity
between electrons in different states. An expression for �

within the HT has been proposed by Tokatly, who derived
a generalized HT by expanding the kinetic equation for the
distribution function to high-order moments [53]. Tokatly
obtained an expression of the form

�μν = −σ (k)
μν = −ηk

(
∂vμ

∂rν

+ ∂vν

∂rμ

− 2

3
δμν∇ · v

)
, (12)

where ηk is a phenomenological parameter that is in general a
function of the density n. σ (k)

μν has the form of a viscous stress

tensor [53] and since it depends only on the induced velocity
v it represents a dynamical correction to the kinetic energy
functional. In Tokatly’s theory the correction in Eq. (12) was
derived for a homogeneous electron gas and it is limited to
low frequencies; here it is assumed that such expression holds
also at high frequencies to account for the extra collisions due
to the presence of surface states. This assumption is supported
by direct comparison to TD-DFT results in Sec. V.

It can be useful to regroup the total force exerted on the
volume element due to the kinetic energy as

F = −n∇
(

δTTF[n]

δn
+ δTW[n,∇n]

δn

)
+ ∇ · σ (k). (13)

It is interesting to notice that in the limit of a uniform electron
density, Eq. (13) reduces to the generalized nonlocal term
presented in Ref. [59], with an extra contribution proportional
to ∇2J, in addition to the term ∇∇ · J. The main difference,
however, is that the authors of Ref. [59] attribute such
correction to a somewhat arguable diffusion mechanism, rather
than a much more intuitive viscouslike behavior of the electron
gas.

IV. CURRENT-DEPENDENT XC POTENTIAL

It remains now to give an explicit expression for the XC
potentials. For the scalar potential vXC the usual local density
approximation is assumed [60]. That is, we approximate the
XC scalar potential vXC as a function of the instantaneous local
density:

vXC[n(r,t)] = δ

δn
[nεXC(n)], (14)

where εXC = εx + εc is the XC energy per particle of a
homogeneous electron gas with density n and the exchange
and correlation energies are defined, respectively, as [38]

εx(n) = −(Eha0)
3

4

(
3

π
n

)1/3

,

εc(n) = Eh

{
ac ln (rs) + bc + ccrs ln (rs) + dcrs, rs < 1

α
1+β1

√
rs+β2rs

, rs � 1,

(15)

where Eh = h̄2

ma2
0

is the Hartree energy, a0 is the Bohr radius,

a0rs = ( 3
4πn

)
1/3

is the Wigner-Seitz radius, and the coefficients
are ac = 0.0311, bc = −0.048, cc = 0.002, dc = −0.0116,
α = −0.1423, β1 = 1.0529, and β2 = 0.3334. Equation (15),
as well as other formulas in this paper, are in S.I. units;
expressions in atomic units (a.u.) can also be easily obtained
by considering that Eh = a0 = m = h̄ = 1.

The XC potential, however, is an intrinsically nonlocal
functional of the density, namely, it does not admit a gradient
expansion in n without sacrificing some basic symmetries
[51,61]. Fortunately, Vignale and Kohn have shown in the
context of CDFT that a local gradient expansion is still possible
in terms of J, and have provided an explicit approximated
expression for the XC vector potential AXC [51]. It was later
shown that the XC vector potential can be arranged into a more
intuitive form [61], so that it is expressed as the divergence of
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the viscoelastic stress tensor, namely,

∂AXC

∂t
= 1

en
∇ · σ (xc), (16)

where σ (xc) is the classical viscoelastic stress tensor:

σ (xc)
μν = η̃xc

(
∂vμ

∂rν

+ ∂vν

∂rμ

− 2

3
δμν∇ · v

)
+ ζ̃xcδμν∇ · v,

(17)

with η̃xc and ζ̃xc generalized complex viscosities that depend
on the density n and the frequency ω, and can be related to
the k → 0 limit of the XC longitudinal and transverse kernel
functions fXC,L(T)(ω,k) [61]. The caveat is that the kernel
functions are not known exactly, although several interpolation
formulas have been developed [62–65].

In this work the interpolation proposed by Conti and
Vignale (CV) is used [66]. Let us write the complex viscosities
as

η̃xc(ω,r) = ηCV (r) − μCV (r)

iω
,

ζ̃xc(ω,r) = ζCV (r) − KCV (r)

iω
, (18)

where all the coefficients are real quantities independent
of the frequency, whose interpolation formulas in the CV
approximation are

ηCV(r) = h̄
(
60r−3/2

s + 80r−1
s − 40r−2/3

s + 62r−1/3
s

)−1
n,

KCV(r) = (Eh)n2 d2

dn2
[nεXC(n)],

ζCV(r) = 0,

μCV(r) = Eh

(
ar−2

s + br−1
s + c − b

rs + 20

)
n, (19)

with a = 1
5 ( 9π

4 )
2/3

, b = 1
10 ( 3

2π
)
2/3

, and c = 0.12.
Expression (17) with the complex coefficients (18) is only

valid if a time-harmonic dependence is considered. In general,
however, the tensor (17) can be decomposed into a viscous and
an elastic term so that we have

σ (xc)
μν = ηCV

(
∂vμ

∂rν

+ ∂vν

∂rμ

− 2

3
δμν∇ · v

)

+μCV

(
∂uμ

∂rν

+ ∂uν

∂rμ

− 2

3
δμν∇ · u

)
+ KCVδμν∇ · u,

(20)

with u being the displacement vector such that u̇ = v.
Equation (20) is very similar to Eq. (12) and does not

add any degree of complexity to the problem. The XC
vector potential provides a further dissipation mechanism

contributing to the lifetime of collective excitations [67–69],
although it is usually small compared to the contribution of
the kinetic component. More importantly, Eq. (20) adds an
elasticlike behavior to the electron gas (not present in the
viscouslike kinetic term) that partially affects the position of
the collective resonance.

V. RESULTS

Before showing some applications of the model obtained,
let us summarize all the elements into a single equation. By
combining Eq. (5) with Eqs. (11) and (12) and Eq. (20) we
obtain

∂J
∂t

= ne2

m
E + ne

m
∇ δG

δn
+ e

m
∇ · σ (kxc)

+ 1

e

(
J
n
∇ · J + J · ∇ J

n

)
− e

m
J × (B + ∇ × AXC),

(21)

where δG
δn

= δTTF
δn

+ δTW
δn

+ vXC, and σ (kxc) = σ (k) + σ (xc) is
the viscoelastic kinetic-XC tensor. Equation (21) coupled to
Maxwell’s equations describes self-consistently the linear and
nonlinear electromagnetic response of a free-electron gas. A
similar equation can also be obtained from Euler’s equation
[33,35] where the total internal energy term is limited to a
scalar pressure (i.e., TF approximation) and the viscoelastic
tensor is neglected. We can identify, in fact, on the right-hand
side of Eq. (21), the Coulomb force term (∝nE), the convective
terms (∝J∇ · J and J · ∇J), and the Lorentz force term
(∝E × B). These terms are important in the study of the
nonlinear optical response of metallic systems [33,35,36]. In
addition to previously published results, Eq. (21) introduces
several new (nonlinear) terms that are hidden in the total
internal energy expression, which is in general a nonlinear
function of the electron density and in the viscoelastic term,
aside from the Lorentz-like term associated to the XC vector.
These terms are expected to be important in the nonlinear
response of nanogap plasmonic systems [16,70,71].

More importantly, the viscoelastic term contains an effec-
tive k-dependent mechanism for dissipating energy. This is
associated to an increase of electron-electron collisions near
the particle surface where, in fact, the gradient of the velocity
is larger. This term is not only expected to strongly impact
the spectral width of linear response resonances but also the
optical nonlinear signals generated at the metal surface.

It is worth noting that while the XC component of the
viscoelastic tensor was explicitly given in Eqs. (19) and (20),
the coefficient ηk associated with the kinetic viscous tensor is
yet to be specified. Finding a rigorous expression for ηk as a
function of the density n is a very challenging problem and a
more rigorous study is remitted to future works. For simplicity,
in this paper, let us assume that ηk ∝ ηCV. It is found that
the particular choice of ηk = 14ηCV gives a great degree of
predictability in terms of near- and far-field properties, as is
shown below.

As a first application of Eq. (21), let us consider the linear
optical response of single jellium nanospheres. By linearizing
Eq. (21), coupling it to Maxwell’s equations, and remembering
that ∂P/∂t = J and v = J/(−en), we obtain in the frequency
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FIG. 1. Properties of jellium spheres (rs = 4 a.u.) of different
sizes: (a) absorption cross-section; (b) imaginary part of the normal-
ized induced charge density; (c) plasmon resonance as a function of
the sphere diameter; in the inset, the broadening of the resonance
for QHT. Peak positions and widths were calculated by fitting the
spectra with a Lorentzian-shaped function; TD-DFT data are taken
from Ref. [42].

domain the following system of equations:

∇ × ∇ × E − ω2

c2
E = ω2μ0P,

−n0e

m
∇

(
δG

δn

)
1

+ e

m
∇ · σ (kxc) − (ω2 + iωγ )P = n0e

2

m
E,

(22)

where n0(r) is the equilibrium density, μ0 and c are the
magnetic permeability and the speed of light in vacuum,
respectively, ( δG

δn
)1 is the first-order term for the potential

(whose explicit expressions can be found in Ref. [42]). In
writing the second Eq. (22) the phenomenological damping
rate γ has been introduced in order to take into account losses
occurring in the bulk regions.

The ground state n0 can be calculated self-consistently (see
Appendix A 1 for details) by solving the following differential
equation [40]:

∇2

(
δG[n]

δn

)
n=n0

+ e2

ε0
(n0 − n+) = 0, (23)

where ε0 is the electric permittivity and n+ is the homogeneous
ion density. Note that since σ (kxc) affects only the dynamical
response, Eq. (23) and the properties of its solution n0 remain
unchanged with respect to Ref. [42].

The system of Eqs. (22) and Eq. (23) are numerically
solved with a commercial software based on the finite-element
method, COMSOL MULTIPHYSICS [72]. In particular, the 2.5D
technique [73] has been used, which allows one to efficiently
compute absorption spectra for axis symmetric structures (see
Appendix A 2).

Absorption spectra for different jellium Na (rs = 4 a.u.)
nanospheres are shown in Fig. 1(a). The first thing to notice is
that as the particle size shrinks the broader are their plasmonic
resonances. One important difference with previous QHT
results [42] is the absence of higher energy resonances. These
resonances are the analog of Rydberg states for atoms. They
are associated with very delocalized states and are numerically

affected by the finiteness of the simulation domain size. With
the introduction of the viscosity, these states are no longer
supported as would be expected for jellium spheres [39].

In Fig. 1(b) the QHT-induced charge densities correspond-
ing to plasmon energy are compared to the time-dependent
(TD) DFT results. Although oscillations appearing in the
TD-DFT case in the bulk region are not reproduced, the main
induced peak is very well described by the QHT. Note that this
is not necessarily the case for the approach used in Ref. [43].
Because γ ∝ n

−5/6
0 diverges near the particle surface, the

induced density results prematurely damped at the surface.
In Fig. 1(c) the plasmon resonances obtained with the

present QHT model are compared against TD-DFT results
[42], for NP diameters D ranging from ∼0.85 to ∼7.25 nm
(Ne = 8 to Ne = 5032). For D > 3 nm (Ne > 398) QHT
reproduces DFT plasmon energies with great accuracy, with
QHT resonances marking almost exactly the mean trajectory
of DFT data. Also striking is the comparison of the broadening
of the resonance shown in the inset. The reference curve in this
case is given by the known formula [74] γ = γ0 + vF/R where
vF is the Fermi velocity for the homogeneous electron gas and
R = D/2. The agreement is very good for all the diameters
except the smallest ones for which the analytical formula is
not expected to hold.

A. Nanoparticle dimer

Another important system to consider is the NP dimer. As
the distance between two closely spaced NPs reduces, four
different effects come simultaneously into play [1,6,9,12]:
(i) hybridization of the plasmonic modes; (ii) nonlocality
character of the optical response; (iii) broadening of the
resonance, which is intrinsically due to nonlocal absorption
(since the size of the spheres remains unchanged); and (iv)
tunneling effects due to the bonding of the electron density
tails. The NP dimer represents then an important test of the
QHT presented here.

Let us consider a dimer of Na spheres of D � 3 nm (Ne =
398) and separated by a distance g that goes from 2 to 0 nm.
The dimer is excited by a plane wave propagating orthogonally
to the dimer axis whose electric field is polarized along z, as
depicted in Fig. 2(a). The ground-state charge density has
been self-consistently calculated using Eq. (23) for each value
of the distance g. The map of Fig. 2(b) shows the absorption
spectrum of the dimer as a function of the gap size. As the
gap shrinks the plasmon resonance undergoes a redshift up to
the point (g � 0.4 nm) where tunneling effects kick in and
the resonance broadens and the shift pushes back to higher
energies. Note that without the kinetic-XC viscosity the QHT
would have predicted an unnoticeable broadening.

In Fig. 2(c) are reported the equilibrium charge density n0,
the induced density n1, and the electric field norm distribution,
respectively, for three critical situations labeled in the map [in
Fig. 2(b)]. These results can be directly compared to results of
Ref. [75] in which TD-DFT calculations for the same jellium
Na dimer are reported. It can be seen that all quantities are
well reproduced. It is worth noting that in DFT there is no
intrinsic broadening mechanism for each spectral line and a
phenomenological value of γ (usually much larger than the
bulk value) has to be taken into account in order to produce a
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FIG. 2. Dimer of Na spheres constituted by Ne = 398 electrons
each. (a) Scheme of the system; (b) absorption efficiency spectra as
a function of the interparticle distance g; (c) near-field properties
corresponding to the points depicted in (b) (g = 1.0,0.4,0 nm). The
densities n0 and n1 are in atomic units, while |E| is normalized to
the incident field amplitude. (d) Equilibrium density taken along the
dimer axis at distances g = 1.0,0.4,0.01 nm.

continuous spectrum. In Fig. 2(d) the equilibrium density n0

taken along the dimer axis for gaps approaching and entering
the tunneling regime is reported. It can be clearly seen for the
smallest gap that the resulting density is not simply a sum of
the single-particle densities as would be expected.
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FIG. 3. Properties of a dimer of Na spheres constituted by Ne =
107 electrons each, placed at a distance of 2 nm. In (a), extinction
spectra obtained using different methods. The maps in (b) depict the
field enhancement around the structure, with a magnification of the
gap region shown for each method. (c) Electric field norm along
the gap for the various models. The imaginary part of the induced
charge density for the QHT is also plotted.

B. A “macroscopic” system

In order to show the full potential of the QHT method let
us consider a structure whose size makes it unapproachable by
DFT techniques. Let us consider a dimer of Na spheres con-
stituted by Ne = 107 electrons each (diameter of ∼91.2 nm)
placed at a distance of 2 nm as depicted in the inset of Fig. 3(a).
The QHT calculation is compared to local response and HT-TF
calculations. As would be expected, the energy of the main
plasmonic peak is slightly redshifted with respect to fully
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classical calculations. On the contrary, the HT-TF predicts
a slight blueshift.

Figure 3(b) shows the different near-field features in
the region nearby the gap and the relative maximum field
enhancement. It is interesting to notice that while the local and
HT-TF calculations predict the same amount of maximum
field enhancement with respect to the incident amplitude
|E|/E0 � 455, the QHT predicts a ∼15% stronger field inside
the gap region, |E|/E0 = 527 as is highlighted in Fig. 3(c).
This result might be surprising, since the presence of nonlocal
or quantum effects is usually associated to a detrimental effect
on the field enhancement [6,9,15]. The result is, however, in
agreement with previously published systematic studies on
closely spaced nanowires [8]. Teperik et al. have shown, in
fact, that by changing the effective gap size it is possible to
retrieve the spectral features of various methods. In particular,
for local or TF-FT models to reproduce TD-DFT results for
Na coupled nanowires, it is necessary to reduce the effective
gap size. This is in accord with an increase of the maximum
fields since a smaller gap would correspond to a higher local
field enhancement. Teperik and co-workers found that for
small wires the variation of the gap is of the order of 2δ,
where δ � 0.9 Å. Although this would seem a small correction,
I have verified that the increase in the field enhancement
corresponding to the local model in which the gap is reduced
by 2δ gives similar results as the QHT model for the system
considered.

It is worth noting that the increase of the local field
enhancement observed in Na jellium sphere dimers might not
be generally valid, in particular for noble metal systems. For
silver and gold, in fact, the effective screening charge is inside
the jellium edge and the effective gap size might result as larger
than the actual separation between the jellium edges [8].

VI. CONCLUSION

I have presented a QHT model that is able to accurately and
self-consistently describe far-field and near-field properties of
plasmonic systems in most extreme conditions. This model
represents a general theory that is also valid in the nonlinear
regime [61] and could be used for the investigation of optical
nonlinear surface effects.

Although the approximation introduced for the kinetic
stress tensor lacks an analytical microscopic derivation, the
model offers a great degree of predictability, even in situations
where quantum tunneling cannot be neglected, and it might
play an important role in the development of the field.

Finally, I believe this work offers a valid and efficient
solution for studying in detail electron dynamics of mesoscopic
structures. The computational scaling in fact does not depend
on the number of electrons Ne in the system (as in DFT) but
rather on the complexity of the equilibrium density function
which is being discretized. The QHT self-consistent density
results are constant in the bulk region and only fast-varying at
the metal boundaries. The computational cost would then scale
in principle as a function of the boundary area, rather than the
volume, providing an extremely efficient computational tool.
This gives access to an unparalleled regime of light-matter
interactions, which in turn might lead to novel and unexploited
effects.
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APPENDIX: NUMERICAL IMPLEMENTATION

1. Ground-state density

The static quantum hydrodynamic equation for the calcu-
lation of the ground density can be obtained from Eq. (21):

∇
(

δG[n]

δn

)
n=n0

− eE0 = 0, (A1)

where the subscript “0” indicates the zero frequency depen-
dence. In order to be solved, this equation must be coupled to
Gauss’s law:

∇ · E0 = − e

ε0
(n0 − n+), (A2)

where n+ is the positive background charge, which is assumed
to be constant inside the jellium sphere while it abruptly drops
to zero outside the jellium edge. By taking the divergence of
Eq. (A1) and using Eq. (A2) it is possible to obtain one single
nonlinear differential equation:

∇2

(
δG[n]

δn

)
n=n0

+ e2

ε0
(n0 − n+) = 0. (A3)

I solved this equation using a commercially available soft-
ware based on the finite-element method (FEM), COMSOL

MULTIPHYSICS [72]. It was found that convergence is more
easily achieved by solving for the transformed variable ξ =√

n0, and since FEM techniques usually require one to write
the differential problem into its weak form, by multiplying
Eq. (A3) by the test function ξ̃ and integrating over the
simulation domain � we obtain the following weak form:∫

�

−∇
(

δG[ξ 2]

δn

)
ξ=√

n0

· ∇ξ̃ + e2

ε0
(ξ 2 − n+)ξ̃ dV = 0,

(A4)

where it is assumed zero contribution from the integral over
the boundaries of the domain �. I solve Eq. (A4) iteratively
using COMSOL’s built-in nonlinear solver based on Newton’s
method. The initial guess value for n0, in the case of a single
sphere, was taken of the form n0(r) = nb

1+exp(κr−R) with nb the
bulk density and R the radius of the sphere. For the dimer case
I used the solution for the single sphere and slowly reduced
the gap from g = 2 to 0.01 nm.

2. The linear response

For the linear response I solved the system of Eqs. (22) in
the main text. In particular, I used for the polarization equation
the following weak expression:∫

V

e

m

(
δG

δn

)
1

(n0∇ · P̃ + ∇n0 · P̃) + iω

m

∑
μ,ν

σμν

∂P̃μ

∂rν

+
[

(−ω2 + iωγ )P − ne2

m
E

]
· P̃ dV = 0, (A5)
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where P̃ is the test function and the viscoelastic stress tensor σ as a function of the equilibrium density n0 and the polarization
vector P is

σμν = η̃

[
∂

∂rν

(
Pμ

n0

)
+ ∂

∂rμ

(
Pν

n0

)
− 2

3
δμν

∂

∂rl

(
Pl

n0

)]
+ ζ̃ δμν

∂

∂rl

(
Pl

n0

)
. (A6)

Note that because we distributed the derivatives to the test functions P̃ we do not need to evaluate the gradient of the functional
( δG

δn
)
1
, nor the divergence of the viscoelastic stress tensor σ . Explicit expressions for ( δG

δn
)
1

can be found in Ref. [42].
In order to take advantage from the symmetry of the geometry, I have implemented our equations assuming an azimuthal

dependence of the form e−imφ with m ∈ Z. That is, for a vector field V, we have V(ρ,φ,z) = ∑
m∈Z V(m)(ρ,z)e−imφ . Maxwell’s

equation and the polarization equation are written assuming the following definitions:

∇ · V(m) ≡
(

1

ρ
+ ∂

∂ρ

)
V (m)

ρ − im

ρ
V

(m)
φ + ∂V (m)

z

∂z
,

∇ × V(m) ≡ ρ̂

(
−∂V

(m)
φ

∂z
− i

m

ρ
V (m)

z

)
+ φ̂

(
∂V (m)

ρ

∂z
− ∂V (m)

z

∂ρ

)
+ ẑ

(
V

(m)
φ

ρ
+ ∂V

(m)
φ

∂ρ
+ i

m

ρ
V (m)

ρ

)
,

∇V(m) ≡

⎛
⎜⎜⎜⎝

∂V (m)
ρ

∂ρ

∂V
(m)
φ

∂ρ

∂V
(m)
z

∂ρ

−im
V (m)

ρ

ρ
− V

(m)
φ

ρ
−im

V
(m)
φ

ρ
+ V (m)

ρ

ρ
−im

V
(m)
z

ρ

∂V (m)
ρ

∂z

∂V
(m)
φ

∂z

∂V
(m)
z

∂z

⎞
⎟⎟⎟⎠. (A7)

The test functions are assumed to have a dependence of the form eimφ so that the derivative with resect to φ gives a factor +im.
It is possible then to reduce the initially three-dimensional problem into 2mmax + 1 two-dimensional problems. For each m the
system of equations to solve reads

2π

∫
(∇ × E(m)) · (∇ × Ẽ(m)) − (

k2
0E(m) + μ0ω

2P(m)
) · Ẽ(m)ρ dρ dz = 0,

− 2π

∫
e

m

(
δG

δn

)(m)

1

(n0∇ · P̃(m) + ∇n0 · P̃(m)) + iω

m
σ [n0,P(m)] · ∇P(m)

− [
(ω2 − iγ ω)P(m) + ε0ω

2
p

(
E(m) + E(m)

inc

)] · P̃(m)ρ dρ dz = 0, (A8)

For the case of an incident plane wave propagating along the z axis, one has to solve the problem just for m = ±1. Moreover by
taking into account field parities, the solution for m = 1 can be related to the solution for m = −1, so that a single two-dimensional
calculation becomes necessary [4,55]. For the dimer structure, on the other hand, the incident wave propagates perpendicularly
to the z axis, so that the problem has to be solved for m = 0 . . . mmax. Because, however, the system is deeply subwavelength
only few terms (m � 2) give a non-negligible contribution.

Note that since the expression of the energy functional contains second-order derivatives, working variables associated to
extra equations must be introduced so that the system only contains first-order derivatives [42].
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