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We investigate the quantum tunneling and Andreev reflection in a top-gated quantum anomalous Hall insulator
proximity coupled with a superconductor junction. A quantized perfect crossed Andreev reflection with its
coefficient being integer 1 is obtained and all other scattering processes (the normal reflection, normal tunneling,
and local Andreev reflection) are completely suppressed when the topological superconductor phase with Chern
number N = 1 is realized. This perfect crossed Andreev reflection originates from the tunneling of the chiral
Majorana edge states, and the phase of tunneling amplitude only being 0 and π plays a decisive role. Furthermore,
because of the chiral characteristic of the Majorana edge states, the perfect crossed Andreev reflection is robust
against the disorder and can work in a wide range of system parameters.
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I. INTRODUCTION

With the expectation on the utilization of entanglement
effects in quantum communication and computation, quantum
entanglement has been an extremely active area attracting
many researchers [1–3]. One of the most key issues is searching
for the methods of creating entangled particles. A Cooper pair
in the superconductor is a pair of electrons bound together
in a certain manner, which are both spin and momentum
entangled. Thus a superconductor is deemed as a natural source
for generating nonlocal Einstein–Podolsky–Rosen electron
pairs [4,5]. A Cooper pair can be spatially separated with
the help of the crossed Andreev reflection (CAR) [6–10], a
process of converting an incoming electron from one terminal
into an outgoing hole at the other terminal. These spatially
separated entangled electrons are the key building blocks
for its promising application in quantum communication
and quantum computing [11–17]. Therefore, many Cooper-
pair splitters by coupling a superconductor with quantum
dots [9,18–21], carbon nanotubes [22,23], Luttinger liquid
wires [24], graphene [25–27], etc. [28], have been theoretically
put forward and experimentally implemented in part.

However, besides the CAR, there also exists local Andreev
reflection (LAR) [29], where the outgoing hole returns back
to the same terminal as the incoming electron. Since the
incoming electrons and outgoing holes in the LAR reside in
the same terminals, the LAR is usually stronger than the CAR.
Moreover, the CAR is often completely masked by another
nonlocal process known as quantum tunneling, which does not
involve Cooper pairs and is therefore a parasitic process [8,30].
In the experiment, impurities and disorders exist inevitably,
which cause the normal reflection and weaken the CAR.
Therefore, the coefficient of the CAR is usually very small. To
obtain a perfect CAR with its coefficient being 1, it is necessary
to propose a system where the LAR, normal tunneling, and the
normal reflection are all completely suppressed and then all
incident electrons are converted into holes in the other terminal.

*sunqf@pku.edu.cn

A quantum anomalous Hall insulator (QAHI) is a special
kind of material where quantum Hall effects can be realized in
the absence of an external magnetic field, and the unidirection-
ality of the chiral edge states promises the absence of backscat-
tering [31–35]. A QAHI in proximity to an s-wave supercon-
ductor can induce a topological superconductor (TSC) [36],
which supports topologically protected chiral Majorana edge
states [37,38]. In the past proposed system based on the QAHI
proximity-coupled with a superconductor junction [39], it
was found that the LAR could be completely suppressed and
the CAR could be considerably improved. But the normal
tunneling process exists, and the CAR is still not perfect.

In this paper, we investigate normal tunneling, the LAR,
and the CAR in a top-gated QAHI proximity coupled with a
superconductor, as shown in Fig. 1(a), in which the top-gated
voltage can moderate the transition of TSC phase with Chern
number from N = 2 to N = 1. We find that, in the TSC
phase with N = 1, a quantized perfect CAR occurs in which
the CAR coefficient shows a plateau with its value being
integer 1, and all other scattering processes, e.g., LAR, normal
tunneling, and normal reflection, are completely suppressed.
This perfect CAR originates from the tunneling of the
chiral Majorana edge states, and the phase of the tunneling
amplitude only being 0 and π plays a decisive role. Because
of the chiral characteristic of the Majorana edge states, the
perfect CAR is robust against the disorder and can survive
over a wide range of system parameters.

The rest of the paper is organized as follows: In Sec. II,
we present the model Hamiltonian of the QAHI-TSC-QAHI
junction and show the formulas of the tunneling coefficient,
the LAR coefficient, and the CAR coefficient. In Sec. III, we
investigate the quantum perfect CAR effect. At last, the results
are summarized in Sec. IV.

II. MODEL AND METHOD

For definiteness, we consider the simplest QAHI model
Hamiltonian realized with low-energy states near the � point:

HQAHI(p) =
(

m + Bp2 + μL A(px − ipy)
A(px + ipy) −m − Bp2 + μL

)
, (1)
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FIG. 1. (a) Schematic diagram of a QAHI-TSC-QAHI junction.
Red solid and dotted arrows label the propagating direction of the
chiral edge states and Majorana edge states. (b) Schematic diagram of
the propagating route for an electron incoming from the left terminal
to the QAHI-TSC-QAHI junction. Here the central TSC is at the
N = 1 phase. Red solid (dotted) arrows label the chiral electron
(Majorana) edge states. The blue dotted arrows describe the tunneling
from Majorana edge state γ1 to γ3.

where A, B, and m are material parameters, and μL is the
potential energy of the QAHI leads. The basis vector is
(c↑(p),c↓(p))T , where c↑(p) [c↓(p)] is the operator annihi-
lating an electron of momentum p and spin ↑ (↓). The sign
of m/B determines the topological properties of the system,
and the QAHI is obtained by setting m/B < 0. Since the
tight-binding representation is used in our calculations, the
Hamiltonian can be mapped onto a nearest-neighbor tight-
binding representation on a two-dimensional square lattice,

H =
∑

i

[ψ†
i T0ψi + (ψ†

i Txψi+δx̂ + ψ
†
i Tyψi+δŷ) + H.c.],

T0 = [m + (4Bh̄2/a2)]σz + μLσ0,
(2)

Tx = −(Bh̄2/a2)σz − (iAh̄/2a)σx,

Ty = −(Bh̄2/a2)σz − (iAh̄/2a)σy,

where ψi = (ci↑,ci↓)T and ci↑ (ci↓) is the annihilation operator
on site i with spin ↑ (↓). σ0 and σx,y,z are the unit 2 × 2 matrix
and the Pauli matrix for spin, a is the lattice length, and δx̂ (δŷ)
is the unit vector along the x (y) direction. In our calculations,
we set A = B = 1, the lattice length a = 1, and h̄ = 1.

In proximity to an s-wave superconductor, a finite pairing
potential � can be induced in QAHI. This gives us the
Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG = 1

2

(
HQAHI(p) + μS i�σy

−i�∗σy −H ∗
QAHI(−p) − μS

)
,

(3)

where μS is potential energy varied by the top-gated voltage
and the basis vector is (c↑(p),c↓(p),c†↑(−p),c†↓(p))T . For
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FIG. 2. (a) Band structure of TSC nanoribbon with μS = 1.5 and
(b)–(d) the wave functions 	i of Majorana edge states versus the
site i with the energy E = 0 for (b) μS = 0, (c) μS = 0.6, and (d)
μS = 1.7. The superconductor gap � = 0.35, m = −0.5, and the
ribbon width N = 100a.

m < −(�2 + μS
2)1/2, the TSC phase with N = 2 is obtained,

which owns two chiral Majorana modes [37]. Whereas the TSC
phase with N = 1 is realized by setting −(�2 + μS

2)1/2 <

m < (�2 + μS
2)1/2, which supports a single Majorana edge

state propagating at the edges of the sample. To directly
picture this edge state, we calculate the energy dispersion of
the TSC phase with N = 1 in Fig. 2(a). One can see that a
pair of chiral gapless edge-state modes traverses across the
bulk band gap. The corresponding wave functions 	i of edge
states are shown in Figs. 2(b)–2(d). One can see that the wave
functions 	i are completely localized at the system boundary
for μS = 0.0 and μS = 0.6. However, wave functions 	i

oscillates and its localization length is considerably increased
while |m| � μS . The reason is that the system at |m| � μS

is metal with a high density of states for � = 0. For m >

(�2 + μS
2)1/2, the system is in normal superconductor phase

of N = 0.
We now turn to analyze the scattering processes when

an incident electron with the energy E flows from the left
QAHI terminal into the central TSC region. By using the
nonequilibrium Green’s function technique [40], we can obtain
the normal tunneling coefficient T , the LAR coefficient TLAR,
and the CAR coefficient TCAR [41–43]:

T (E) = Tr
[
�L

eeG
r
ee�

R
eeG

a
ee

]
, (4)

TLAR(E) = Tr
[
�L

eeG
r
eh�

L
hhG

a
he

]
, (5)

TCAR(E) = Tr
[
�L

eeG
r
eh�

R
hhG

a
he

]
, (6)

where e (h) represents electron (hole), respectively, and
�L(E) = i[
r

L − 
a
L] and �R(E) = i[
r

R − 
a
R] are the

linewidth functions. Gr (E) = [E − HBdG − 
r
L − 
r

R]−1 is
the retarded Green’s function, where HBdG is the BdG
Hamiltonian of the central TSC region. 
a

L, 
r
L, and 
r

R are
the self-energies due to the coupling between the left (L) and
right (R) QAHI leads and the central TSC region and can be
numerically calculated [44].
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III. NUMERICAL RESULTS AND ANALYSIS

In this section, we investigate the normal tunneling coef-
ficient T , the LAR coefficient TLAR, and the CAR coefficient
TCAR. Figure 3 shows these coefficients as a function of μS ,
where the energy E = 0 of the incident electron is fixed.
From Fig. 3 one can see that, when μS is approximately
less than 0.35, both the LAR coefficient TLAR and the CAR
coefficient TCAR are zero and the normal tunneling coefficient
T shows a quantized plateau with value of integer 1. The
reason is that the TSC phase of N = 2 is obtained by setting
m < −(�2 + μS

2)1/2, in which there exist two branches of
chiral Majorana edge states in the central region and the TSC
is topologically equivalent to the QAHI with a single branch of
the chiral fermion edge state. Thus the edge current is perfectly
transmitted with the help of the edge states [37]. When the
condition m2 < �2 + μS

2 is satisfied by increasing μS >

(m2 − �2)1/2, the TSC phase transits from N = 2 to N = 1
and there only exists a chiral Majorana state on the edges
of the central region. Notice that the propagating directions
of the chiral Majorana states for the QAHI-TSC interface
and the vacuum-TSC interface are different. As shown in
Fig. 1, at the QAHI-TSC interface, the Majorana edge states
γ1 and γ3 propagate along the clockwise direction. Whereas
at the vacuum-TSC interface, γ2 and γ4 are anticlockwise.
In this case, the incident electron from the left terminal will
be separated into two Majorana fermions at the QAHI-TSC
interface, i.e., a1 =

√
2

2 (γ1 + iγ2), thus γ2 directly propagates
to the right terminal and γ1 returns back to the left terminal, i.e.,
γ1 →

√
2

2 (b1 + b
†
1) and γ2 →

√
2

2i
(b2 − b

†
2), where a1 (a2) is the

incoming edge mode in the left (right) terminal and b1 (b2)
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FIG. 3. The normal tunneling, LAR, and CAR coefficients as a
function of top-gated voltage μS where � = 0.35 and the energy
E = 0 of the incident electron. m = −0.5, the length of the central
TSC is L = 20a, and the ribbon width is (a) N = 80a, (b) 100a, and
(c) 150a. In panel (d), N = 100a and m = −0.8. The vertical dotted
line in panels (a)–(d) is the boundary of the TSC phases with N = 2
and N = 1.

is the outgoing edge mode in the left (right) terminal. So, the
four scattering processes, LAR, T , CAR, and normal reflection
have equal probability with value of 1/4 fraction [37], which
can be clearly seen in Fig. 3 with μS ∼ |m|.

Most importantly, with increasing μS , one can see that
normal tunneling and the CAR show oscillations as functions
of μS and alternately display a quantum plateau with a value
of integer 1 at μS > 1. The plateau TCAR = 1 means the
occurrence of the perfect CAR, and all other processes, the
normal tunneling, LAR, and normal reflection are totally
suppressed. Thus an electron incoming from the left terminal
is completely transformed into a hole outgoing to the right
terminal. In addition this perfect CAR is independent of the
ribbon width as shown in Figs. 3(a)–3(c), where the width of
sample varies from 80a to 150a.

The reason behind this observation is that there exists the
tunneling between Majorana edge modes γ1 and γ3 at certain
system lengths. Thus the outgoing Majorana state

√
2

2 (b1 + b
†
1)

in the left terminal can be written as

(
√

2/2)(b1 + b
†
1) = rγ1 + teiϕγ3, (7)

where teiϕ is the tunneling amplitude between γ1 to γ3

satisfying r2 + t2 = 1. Notice that the phase ϕ can only
take the value 0 or π because the Majorana fermion is a
self-Hermitian particle. Similarly, the other three outgoing
Majorana edge states are

(
√

2/2i)(b1 − b
†
1) = γ4, (8)

(
√

2/2)(b2 + b
†
2) = rγ3 + teiϕγ1, (9)

(
√

2/2i)(b2 − b
†
2) = γ2. (10)

This gives a scattering matrix⎛
⎜⎜⎝

b1

b
†
1

b2

b
†
2

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎝

r r t+ t−
r r t− t+
t+ t− r r

t− t+ r r

⎞
⎟⎠

⎛
⎜⎜⎝

a1

a
†
1

a2

a
†
2

⎞
⎟⎟⎠, (11)

where t± = teiϕ ± 1. So the normal reflection coefficient R =
r2

4 = 1−t2

4 , the LAR coefficient TLAR = r2

4 = 1−t2

4 , the normal
tunneling coefficient T = |t+|2/4 and the CAR coefficient
TCAR = |t−|2/4.

The results of Fig. 3 can be further illustrated as follows: For
μS ∼ |m|, the Majorana edge state is localized at the boundary
of the sample [see Fig. 2(b)], in this case the tunneling
amplitude t between γ1 and γ3 is almost zero, which leads to
T = R = TLAR = TCAR = 1/4. Whereas the wave functions
of Majorana edge state 	i oscillates and its localization length
is considerably increased for μS 	 |m| [see Figs. 2(b)–2(d)].
Thus for a short central TSC region, it is inevitable that γ1 could
arrive at the right terminal by tunneling itself to γ3 and the
tunneling amplitude t can almost be 1. In this case, the normal
reflection and LAR are completely suppressed, and the normal
tunneling or CAR coefficient is 1, which can be clearly seen
in Fig. 3. To be specific, in Fig. 1(b) we show the propagating
route of the carriers. When an electron a1 incoming from the
left terminal spreads to the interface between QAHI and TSC,
it will separate into two Majorana fermions γ1 and γ2. Here
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FIG. 4. The normal reflection coefficient R and the LAR coeffi-
cient TLAR as a function of μS . The parameters are the same as those
in Fig. 3(b).

γ2 directly propagates to the right terminal, and γ1 propagates
along the interface between QAHI and TSC. If the quantum
tunneling does not take place between the Majorana edge states
γ1 and γ3, γ1 will be reflected back to the left terminal once
it arrives at the upper edge of the sample. In fact, for a short
central TSC region, it is inevitable that γ1 could arrive at the
right terminal by tunneling it to γ3. Therefore the outgoing
states in the right terminal are γ2 and eiϕγ1. Note that here
ϕ can only be 0 or π due to the Majorana fermion being
a self-Hermitian particle. For ϕ = 0, the normal tunneling
coefficient T is 1 and the CAR coefficient TCAR is 0. In contrast,
for ϕ = π , the normal tunneling coefficient T is 0 and the CAR
coefficient TCAR is 1, i.e., the perfect CAR occurs and all other
processes (T , LAR, and R) are totally suppressed. Here we
would like to emphasize that ϕ can only be 0 or π is a decisive
factor for the appearance of the plateaus of TCAR and T .

In addition, from Eq. (11), we can see that the normal
reflection and LAR coefficients are always equal (R = TLAR =
1−t2

4 ) regardless of the system parameters and teiϕ , which is
also shown in the results of numerical calculations in Fig. 4.
One can see that the normal reflection and LAR coefficients
are exactly the same, although both R and TLAR change
complicatedly with the increase of μS . This is completely
consistent with the Eq. (11) and clearly indicates why the
physical picture for the quantum perfect CAR is reasonable.
It is noteworthy that the TSC phase is N = 2 whenever the
μS satisfies m < −(�2 + μ2

S)1/2. In this case, the normal
tunneling coefficient T always is 1, so R and TLAR still remain
equal to 0.

Next we investigate how the perfect CAR is affected by
the systemic parameters. Figures 3(a)–3(c) show the normal
tunneling coefficient T , the LAR coefficient TLAR, and the
CAR coefficient TCAR for the different width N . It can be
clearly seen that the CAR plateau with TCAR = 1 can well
keep with the change of width except for the very narrow case.
While the width is very narrow, there is the coupling between
the upper and lower Majorana edge states, which can reduce
TCAR. In addition, the perfect CAR can well survive with the
change of the parameter m [see Fig. 3(d)].
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FIG. 5. T , TLAR, and TCAR as a function of μS with (a) μL = 0.1,
(b) 0.2, (c) 0.4, and (d) 0.6. Other parameters are the same as those
in Fig. 3(b). The vertical dotted line in panels (a)–(c) is the boundary
of the TSC phases with N = 2 and N = 1.

Figure 5 shows the normal tunneling coefficient T , the
CAR coefficient TCAR, and the LAR coefficient TLAR versus
the potential energy μS for the different on-site energy μL of
the QAHI leads. The CAR plateaus with TCAR = 1 can well
hold at the small μL as shown in Figs. 5(a)–5(b). For a large μL,
the Fermi level is close to the bulk states, which could trigger
the LAR and normal reflection and weaken normal tunneling
and the CAR. In this case, T and the CAR show peaks with
the values less than 1 [see Fig. 5(c) with μL = 0.4]. Finally,
for a very large μL, the Fermi level is in the bulk states of
the QAHI, leading to an anomalous large LAR coefficient and
the vanishing CAR as the general normal lead-superconductor
system [see Fig. 5(d)].

Furthermore, Fig. 6 shows T , TCAR, and TLAR for the
different length L of the central TSC region. One can see
that the plateaus of T and TCAR are broken with the increase
of distance between the two terminals. Even in this case, the
larger μS is, the more robust is the plateau. For a long length L,
the tunneling probability t between the Majorana edge states
γ1 and γ3 is not equal to 1, thus both T and TCAR are not
also quantized. As the increasing L reaches a limit value,
t tends towards zero and the four coefficients tend towards
T = R = TLAR = TCAR = 1/4.

In Fig. 7 we plot T , TLAR, and TCAR as functions of the
superconductor pairing potential � at the different potential
energy μS . For the small μS , the normal tunneling shows a
quantized plateau with value of integer 1 and the other three
coefficients (R, TLAR, and TCAR) are zero [see Fig. 7(a)]. The
reason is that the central region is in the TSC phase of N = 2
when the condition m < −(�2 + μ2

S)1/2 is satisfied. Whereas
for m2 < �2 + μ2

S , the central region is in the TSC phase of
N = 1. Now the perfect CAR with TCAR = 1 can occur and all
other scattering processes are totally suppressed [see Figs. 7(b)
and 7(d)]. Thus the perfect CAR can exist in a wide range of
�. And the larger μS is, the wider is the plateau value of CAR
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FIG. 6. T , TLAR, and TCAR as a function of μS with the length of
the central TSC region (a) L = 30a, (b) 40a, (c) 50a, and (d) 60a.
Other parameters are the same as those in Fig. 3(b).

coefficient. In addition, the quantized normal tunneling can
also occur in m2 < �2 + μ2

S [see Fig. 7(c)] because of the
alternate appearance of TCAR = 1 and T = 1 with the change
of μS .

Next we consider the inevitable impurity scattering in the
real samples. In Fig. 8 we consider the Anderson disorder only
existing in the central TSC region. One can see that the perfect
CAR plateaus are robust against the disorder and the plateaus
can be well kept while the disorder strength is W � 2. In fact,
the perfect CAR originates from the Majorana edge states. As
soon as the ribbon is wide enough, the coupling between the
upper and lower edge states is suppressed, then the perfect
CAR always occurs. On the other hand, when the disorder
becomes stronger (e.g., W = 3.0), the Majorana edge state as
well as the TSC phase are destroyed because of the impurity
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FIG. 7. T , TLAR, and TCAR as a function of superconductor gap �

with (a) μS = 0.2, (b) 1.2, (c) 1.4, and (d) 1.6. Other parameters are
the same as those in Fig. 3(b).

0

0.5

1

T,
T C
A
R
,T
LA
R

0 0.5 1 1.5
0

0.5

1

μS
0 0.5 1 1.5 2

μS

T
AR

T

T
CAR

(c)

(a) (b)

(d)

FIG. 8. T , TLAR, and TCAR as a function of μS , with the disorder
strengths being (a) W = 0.5, (b) 1.0, (c) 2.0, and (d) 3.0. Other
parameters are the same as those in Fig. 3(b). Here the curves are
averaged over 1000 random configurations.

scattering, then the quantized CAR plateau is destroyed and
the CAR coefficient shows the peaks.

Up to now, we have demonstrated that a quantized perfect
CAR occurs in the QAHI-N = 1 TSC-QAHI system, in which
two electrons from a Cooper pair at TSC are split and certainly
go to two different leads. At last, we study the current in each
terminal. By solving the transmission coefficients, the current
IL (IR) from the left (right) QAHI terminal can be obtained
straightforwardly [41,42] as

Ii = e

h̄

∫
dE

2π
[(fi+ − fS)TiS + (fi+ − fi−)TLAR

+ (fi+ − fī−)TCAR + (fi+ − fī+)T ], (12)

where i = L (R) corresponds the left (right) ter-
minal, ī = R for i = L whereas ī = L for i = R,
fi±(E) = 1/{e[(E∓Vi )/kBT ] + 1}, and fS(E) = 1/{eE/kBT + 1}
are the Fermi distribution with bias Vi and temperature T . Here
the bias of TSC terminal has been set to zero. While |E| < �,
the tunneling coefficient TiS from the QAHI terminal to TSC
is zero. By setting the right QAHI terminal as a voltage probes
with IR = 0, we have VR = −VL and VR/IL tends infinity
while the quantized perfect CAR occurs. On the other hand,
we have VR = VL when T = 1. Thus with the change of μS ,
the TCAR and T alternately are 1 (see Figs. 3, 5, and 8), resulting
in the alternating bias of the right terminal with values of VL

and −VL.

IV. CONCLUSIONS

In summary, a quantized perfect crossed Andreev reflection
is found in the QAHI-TSC-QAHI system when the TSC phase
of N = 1 is realized. The coefficient of the crossed Andreev
reflection shows the plateaus with the value being integer 1, and
all other scattering processes, the normal reflection, the normal
tunneling, and the local Andreev reflection are completely
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suppressed. The quantized perfect crossed Andreev reflection
originates from the chiral Majorana edge states and the
tunneling between them, and it is robust against the disorder
and can work in wide range of system parameters.
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