
PHYSICAL REVIEW B 95, 245432 (2017)
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We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel
quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The
dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From
here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal
setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients
which account for the interplay between interactions (charging energy) and level quantization. In the case of
systems with two and three terminals we derive formulas for the power factor Q and the figure of merit ZT for
a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency
of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study
the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases,
focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We
then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum
limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing
appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy
can increase the output power.
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I. INTRODUCTION

The study of thermoelectric effects in nanostructures
[1–4] is attracting increasing interest. Heat-to-work conversion
based on thermoelectricity promises an enhanced efficiency as
a consequence of the reduction of the phonon contribution to
thermal conductance in disordered nanostructures [5] and of
the “energy filtering” effect that can result from confinement
and quantum effects [6,7]. In particular, an increase of the
electron contribution to the figure of merit ZT (which controls
the maximum efficiency and the efficiency at maximum power)
is possible if one can “filter” the electrons participating in the
transport to a narrow energy range [7].

A heat engine composed of a quantum dot (QD) is a
paradigmatic example, since it is characterized by a spectrum
of discrete levels which maximizes energy filtering. The
thermoelectric properties of QD systems [8–30] and the
performance of QD-based heat engines [31–62] has been
studied theoretically by a number of authors (see Ref. [63] for a
review). The vast majority of the papers dealing with QD-based
heat engines consider a single degenerate energy level or
two nondegenerate levels [31–37,39,41,42,44–53,55–62]. The
case of QDs with many levels has been addressed only
in a few papers [38,40,43,54]. Moreover, the performance
of QD-based heat engines has been mostly studied within
the linear response regime [31–33,36,38–40,42,45,46,48,51–
53,55–57,61,62], where the thermoelectric performance of
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the system is entirely characterized by ZT . The case of an
interacting multilevel QD beyond the linear response has not
been addressed so far. On one hand, the presence of many levels
is expected to yield important consequences. Indeed, already
in the linear-response regime they have an impact on the
thermopower, the thermal conductance, and ZT [9,15,17,38].
On the other hand, nonlinear effects, relevant when larger
temperature and voltage biases are applied, are important as
far as power and efficiency are concerned. We emphasize that a
number of experiments assessing the thermoelectric properties
of QDs have been reported in Refs. [64–84].

In this paper we fill this gap by studying the thermoelectric
properties and heat-to-work conversion performance of a
multilevel QD in a multiterminal configuration within the
Coulomb blockade regime. We consider the limit of small
tunneling rates (sequential tunneling regime) and we study
both the linear and nonlinear response regimes. Coulomb
interaction among electrons is accounted for by a finite
and small capacitance C whose associated energy scale is
its charging energy (Ne)2/2C, where N is the number of
electrons in the QD and e is the electron charge. More-
over, we consider a generic multiterminal structure, whereby
the QD is connected to many (two or more) reservoirs.
We will concentrate only on the optimization of the ther-
moelectric properties of the electronic system, neglecting
the parasitic phononic contribution to heat transport. Our
results therefore set an upper bound to the thermoelectric
efficiency of the QD, approachable only in the limit in which
suitable strategies to strongly reduce phonon transport are
implemented.
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Generalizing Refs. [8,9] to the multiterminal case, by
solving a set of kinetic equations one can determine
the probability of occupation of the energy levels of
the QD in a multiterminal setup, thus allowing us to
calculate the charge and heat currents for given values
of the electrochemical potentials and temperatures of the
reservoirs.

In the linear response regime, where voltage and temper-
ature biases are small, we derive closed-form expressions for
the charge and heat currents and specify their limits of validity.
We define local and nonlocal transport coefficients and express
them in terms of a generating function under the assumption
that the tunneling rates are energy independent. We then derive,
in the low temperature limit, analytical expressions for all
transport coefficients as a function of the electrochemical
potential μ. Along with the main features of the transport
coefficients (located around values of μ equal to the dominant
transition energies required to add or remove an electron from
the QD), such expressions also describe a fine structure arising
from the interplay between interaction and level quantization
(controlled by the two energy scales: charging energy and
level spacing). Furthermore, for the calculation of the thermal
conductance we find that it is crucial to consider the presence
of many levels. Within the linear response, we consider both
the two-terminal and the three-terminal system aiming at
addressing the performance of heat-to-work conversion. In
the former case we obtain analytical expressions for the power
factor Q and the figure of merit ZT finding, remarkably, that
those quantities are simultaneously maximized for values of
the electrochemical potential which differ by about 2.40 kBT

with respect to the dominant transition energies. In addition,
ZT shows a fine structure of secondary peaks whose height
is independent of the system’s parameters and can take values
as large as ZT = 9. We compare the figure of merit with
a noninteracting system, finding that Coulomb interactions
dramatically increase ZT by strongly suppressing the thermal
conductance. For the case of three terminals with energy-
independent tunneling rates, we derive analytic expressions
for the maximum power and corresponding efficiency, finding
that the addition of a third terminal at an intermediate
temperature decreases the efficiency at maximum power but
can increase the power. We also find particular intermediate
temperatures where the third terminal increases the maximum
power and achieves the same efficiency of a two terminal
system.

We analyze the regime beyond the linear response by
numerically solving the kinetic equations, focusing on the
two-terminal setup. Going beyond the linear response, i.e.,
considering large temperature and voltage biases, �T and
V , is interesting for various reasons. On one hand, it allows
us to increase the Carnot efficiency ηC and the power
generated by a heat engine [in our case the peak power
scales approximately as (�T )2 also beyond the linear response
regime]. On the other hand, the efficiency at maximum power
is not bounded by ηC/2, as in the linear response, and can
even go above the Curzon-Alhborn efficiency [85–89]. In
literature, the scattering theory of nonlinear thermoelectric
transport in quantum conductors has been developed only
recently [90–92]. The regime beyond linear response for
QD-based heat engines has been theoretically addressed in

Refs. [34,35,37,41,43,44,47,49,50,54,58–60] but limited to
single or double level quantum dots.

In discussing the results, we first focus on the behavior of the
nonlinear Seebeck and Peltier coefficients aiming at assessing
the interplay between charging energy and level spacing on
these two quantities and how the Onsager reciprocity relation
that connects them is violated beyond linear response. Second,
we study the efficiency and output power of a heat engine. In
particular, we calculate the maximum efficiency and maximum
power by maximizing such quantities with respect to the
applied bias voltage, for fixed values of temperature bias
and electrochemical potential. The maximum efficiency shows
only quantitative changes, with respect to the linear response,
by increasing the temperature bias. The efficiency at maximum
power instead develops peaks which go beyond the ηC/2
linear-response limit and approach ηC for large temperature
differences. Remarkably, the maximum power, normalized
to its peak value, only slightly depends on the temperature
bias and can be well approximated by the analytic expression
obtained for the linear response regime. Moreover, we find
that efficiency at maximum power and maximum power take
approximately their peak values simultaneously, under the
same conditions found for the linear response. Finally, we
assess the impact of interactions by comparing the efficiency
at maximum power in two situations, namely the case of
a doubly degenerate level with interaction and the case of
two nondegenerate levels without interaction. We find that,
especially when charging energy and level spacing are of the
order of the thermal energy, the efficiency at maximum power
is much higher in the interacting case and goes above the
Curzon-Alhborn efficiency. We also find that in the doubly
degenerate interacting case the maximum power is enhanced
by almost a factor 2 with respect to the nondegenerate case.

The paper is organized as follows: in Sec. II we describe the
system under investigation and we detail the theoretical model.
In Sec. III the model is specified to the linear response regime.
Here we report analytic expressions obtained in the quantum
limit, Sec. III A, and calculate power and efficiency in the cases
of a two-terminal system, Sec. III B (with the efficiencies of
interacting and noninteracting QDs compared in Sec. III C),
and of a three-terminal system, Sec. III D. Section IV is devoted
to the discussion of the regime beyond the linear response in
a two-terminal system: In Sec. IV A we study the nonlinear
Seebeck and Peltier coefficients and in Sec. IV B we discuss
efficiency and output power of a heat engine. Finally, in Sec. V
we draw our conclusions and discuss future developments. In
addition, the paper includes four appendices where the details
of some calculations and the analytic nonlinear study of a
single energy level QD system are reported.

II. MULTILEVEL INTERACTING QD

In this section we briefly outline the formalism used
to describe the thermoelectric properties of a multilevel
interacting QD. We will only consider electron transport,
neglecting any contribution due to phonons. As shown in Fig. 1
(top), the QD is tunnel coupled to N electron reservoirs, each
characterized by a given temperature Tα and electrochemical
potential μα , so that the occupation of the electrons within
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FIG. 1. Top: A quantum dot (QD) is tunnel coupled to N
reservoirs, each kept at a temperature Tα and at an electrochemical
potential μα , with α = 1,...,N . Arrows represent charge, energy,
and heat currents (J c

α , J u
α , and J h

α , respectively) flowing from the
reservoirs α to the QD. Bottom: Schematic energy representation of
a multilevel QD. E1, E2, etc. are the single-electron energy levels of
the QD, while μ1 and μα are the electrochemical potentials relative
to reservoir 1 and α, respectively.

reservoir α follows the Fermi distribution

fα(E) =
[

1 + exp

(
E − μα

kBTα

)]−1

, (1)

where kB is Boltzmann’s constant. In Fig. 1 (bottom), Ep

(with p = 1,2, . . . labeled in ascending order) are the QD
single-electron energy levels. These levels can be shifted by
means of an applied gate voltage.

The QD is weakly coupled to the reservoirs through large
tunneling barriers. More precisely, we assume that thermal
energy kBT , level spacing, and charging energy are much
larger than the coupling energy between reservoirs and QD
[h̄

∑
α �α(p), where �α(p) is the tunneling rate from level p

to reservoir α, which we assume independent of the number
N of electrons inside the dot]. As a consequence, the charge
on the QD is quantized, i.e., each energy level Ep can have
either zero or one electron, np = 0 or np = 1 (any degeneracy,
like electron spin, can be taken into account counting each
level multiple times), and transport occurs due to single-
electron tunneling processes (sequential tunneling regime).
The electrostatic energy associated with the electrons within
the QD is given by U (N ) = ECN2, where EC = e2/2C,
N = ∑

i ni is the total number of electrons within the QD, and
C is the capacitance of the QD. The QD is described by states
characterized by a set of occupation numbers {ni} relative to
the energy levels. The QD changes state whenever a single-
electron tunneling process takes place. The nonequilibrium
probability for a given state {ni} to occur, P ({ni}), can be
computed [8,93] by writing a straightforward set of balance
equations for P ({ni}). Our aim is to compute in stationary
conditions the charge, energy, and heat currents out of the
electron reservoirs [denoted in Fig. 1 (top) by J c

α , J u
α , and J h

α ,
respectively], induced by the temperature and electrochemical
potential differences.

A. Kinetic equations

In what follows we describe a generalization of the method
put forward by Beenakker in Refs. [8,9]. The single-electron
tunneling processes that contribute to changing over time the
probability P ({ni}) are due to electrons that tunnel from the
QD to the reservoirs and vice versa. For an electron exiting the
QD, initially with N electrons, from energy level Ep and going
into reservoir α at energy Efin, energy conservation imposes
that

Ep + U (N ) = Efin(N ) + U (N − 1). (2)

On the contrary, for an electron that tunnels from an initial
state in reservoir α at energy Ein to the level Ep in the QD that
initially had N electrons, energy conservation imposes that

Ein(N ) + U (N ) = Ep + U (N + 1). (3)

P ({ni}) can then be determined by the following set of kinetic
equations, one for each configuration {ni}:

∂

∂t
P ({ni}) = −

∑
pα

δnp,0P ({ni})�α(p)fα(Ein(N )) −
∑
pα

δnp,1P ({ni})�α(p)[1 − fα(Efin(N ))]

+
∑
pα

δnp,0P ({ni},np = 1)�α(p)[1 − fα(Efin(N + 1))] +
∑
pα

δnp,1P ({ni},np = 0)�α(p)fα(Ein(N − 1)), (4)

where we have introduced the notation
P ({ni},np = 1) = P ({n1, . . . ,np−1,1,np+1, . . . }) (5)

and

P ({ni},np = 0) = P ({n1, . . . ,np−1,0,np+1, . . . }) (6)

for the QD states. The first term in Eq. (4) accounts for the
decrease of the probability P ({ni}), with the QD initially in
the state {ni}, due to an electron coming from a reservoir and
occupying an empty level in the QD. The rate of electrons
coming from reservoir α will be given by a sum over all empty
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levels p (such that np = 0) of the tunnel rate �α(p), multiplied
by the probability of finding the QD in this state, P ({ni}),
and multiplied by the reservoir’s occupation fα(Ein(N )) at the
correct energy Ein(N ) to tunnel to level p. The second term
accounts for the decrease of the probability P ({ni}), with the
QD initially in the state {ni}, due an electron leaving the QD
from an occupied level to tunnel into a reservoir. The third
term accounts for the increase of the probability P ({ni}) if
the QD is in a state with an extra electron in level p with
respect to {ni}, and if this electron leaves the QD, tunneling
to the reservoirs. The fourth term accounts for the increase of
the probability P ({ni}) if the QD is in a state with a missing
electron in level p with respect to {ni}, and if this electron
enters the QD in level p, tunneling from the reservoirs. The
stationary solution of the kinetic equations, obtained imposing
∂P/∂t = 0, together with the normalization request∑

{ni }
P ({ni}) = 1 (7)

provides a complete set of equations that uniquely defines
P ({ni}). The sum over {ni} means the sum over ni = 0,1, with
i = 1,2,....

B. Charge, energy, and heat currents

Charge J c
α and energy J u

α currents flowing from reservoir
α to the QD can be calculated as the sum of all possible
tunneling processes, since the QD can be in any state {ni} with
probability P ({ni}) and an electron can tunnel into or out of
any energy level Ep. More precisely, for the charge current we
have

J c
α = e

∞∑
p=1

∑
{ni }

P ({ni})�α(p)
{
δnp,0fα(Ein(N ))

− δnp,1[1 − fα(Efin(N ))]
}
, (8)

e being the electronic charge, while for the energy current we
have

J u
α =

∞∑
p=1

∑
{ni }

P ({ni})�α(p)
{
δnp,0fα(Ein(N ))Ein(N )

− δnp,1[1 − fα(Efin(N ))]Efin(N )
}
, (9)

Ein(N ) [Efin(N )] being the energy carried by an electron en-
tering (exiting) the QD. The heat currents exiting the reservoirs
can be calculated as J h

α = J u
α − μα

e
J c

α . Using Eqs. (8) and (9),
we find that

J h
α =

∞∑
p=1

∑
{ni }

P ({ni})�α(p){δnp,0fα(Ein(N ))[Ein(N ) − μα]

− δnp,1[1 − fα(Efin(N ))][Efin(N ) − μα]}. (10)

In order to numerically determine the stationary probability
distribution P ({ni}) from the kinetic equations, we will
consider a finite number L of energy levels [94]. By organizing
the values of P ({ni}) into a 2L-components vector �P (two
choices ni = 0,1 for each level), the kinetic equations (4)
for the stationary probability distribution, ∂ �P

∂t
= �0, can be

represented as the homogeneous linear system M �P = �0,

where M is a 2L × 2L matrix. M must have a null space of at
least dimension 1, otherwise the only possible solution would
be the trivial one ( �P ≡ 0). This is demonstrated in Appendix A
by showing that summing together all the stationary kinetic
equations yields zero. We can thus find the probabilities by
including the normalization condition, Eq. (7).

By defining Ñ = ∑
i �=p ni it is possible to show that the

kinetic equations for the stationary probability distribution can
be written as∑

p

(
δnp,1 − δnp,0

)
[P ({ni},np = 0)AÑ,p

−P ({ni},np = 1)BÑ,p] = 0, (11)

where

AÑ,p =
∑

α

�α(p)fα(Ein(Ñ )) (12)

and

BÑ,p =
∑

α

�α(p)[1 − fα(Ein(Ñ ))]

=
∑

α

�α(p) − AÑ,p. (13)

To derive Eq. (11) we have used the fact that Ñ = N , for
the terms in the kinetic equations proportional to δnp,0, and
Ñ = N − 1, for the terms in the kinetic equations proportional
to δnp,1, and the identity

Efin(N + 1) = Ein(N ), (14)

stemming from Eqs. (2) and (3). It is worth mentioning that
using the kinetic equations in the form of Eq. (11), it is possible
to prove that the kinetic equations always allows a nontrivial
solution (see Appendix A).

C. Detailed balance equations

It is clear that the kinetic equations (11) are automatically
satisfied when the following set of equations

P ({ni},np = 0)AÑ,p − P ({ni},np = 1)BÑ,p = 0 (15)

is fulfilled for all values of p and for all sets of occupation
numbers {ni}. Following Ref. [8], Eqs. (15) are hereafter
referred to as detailed balance equations (DBEs). Equations
(15) represent a set of L × 2L−1 equations, since p can take
L values and, at a given p, all other occupation numbers
(n1, . . . ,np−1,np+1, . . . ,nL) can be chosen in 2L−1 different
ways. Of course, if a solution to the DBEs exists, than it is also
a solution of the kinetic equations. We can show, however,
that the DBEs are not in general consistent, i.e., no set of
P ({ni}) exists that can simultaneously satisfy all the DBEs (see
Appendix B). This is also true in the linear response regime.
In this case, however, we could prove (see Appendix C) that
the DBEs are consistent if EC = 0, or if �Tα = 0 for all α, or
when the tunneling rates are proportional to each other, namely
when �α(p) = kα�1(p), for α > 1, kα being constants. Note
that this condition is trivially satisfied when the rates �α do
not depend on p. As a result, the DBEs do not allow in general
a solution, but when they do they are useful in computing
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analytically the energy and heat currents in the linear response
regime (see Sec. III).

D. Level balance equations

We will now derive a set of equations that is always
consistent and that can be used in the general case to obtain
a closed-form expression of the charge current in the linear
response regime (see Sec. III). We impose that, in stationary
conditions, the rate of electrons entering any given QD energy
level p must equal the rate of electrons leaving that energy
level. For electrons tunneling into the QD, initially with N

electrons, from any reservoir, one has to require that level p

is empty and must consider all possible states ({ni},np = 0),
where Ñ = N . The total rate of electrons entering energy level
Ep is given by∑

α,{ni }i �=p

P ({ni},np = 0)�α(p)fα(Ein(N )). (16)

For electrons tunneling out of the QD, initially with N

electrons, to any reservoir one has to require that level p is
occupied and must consider states with ({ni},np = 1), where
Ñ = N − 1. The total rate of electrons leaving level Ep is
given by∑

α,{ni }i �=p

P ({ni},np = 1)�α(p)[1 − fα(Efin(N ))]. (17)

If we equate the rates of electron entering and leaving level
p, and use the notation introduced in Eqs. (12) and (13), we
obtain∑

{ni }i �=p

[P ({ni},np = 0)AÑ,p − P ({ni},np = 1)BÑ,p] = 0.

(18)

We will refer to this set of L equations (one for each energy
level p) as the level balance equations (LBEs) [95]. Note that,
using an argument similar to that put forward in Appendix A,
it is possible to prove that Eqs. (18) can be obtained from the
kinetic equations, thus the LBEs are always consistent with the
kinetic equations. However, the number of LBEs (equal to L)
is smaller than the number of kinetic equations (equal to 2L),
and they might not be sufficient to determine the probabilities
P ({ni}). Note that one can prove that Eqs. (18) yield charge
current conservation:

∑
α J c

α = 0.

E. Output power and efficiency

Under steady-state conditions, the output power P of a
multiterminal system is given by the sum of all the heat currents

P =
N∑

α=1

J h
α . (19)

If P > 0, the system behaves as a heat engine, i.e., converting
heat into work. In this situation the efficiency η is defined as
the ratio between the output power and the total heat current
absorbed by the system

η = P∑
α′ J

h
α′

, (20)

where the sum over α′ runs over all positive heat currents.
For a two-terminal system the efficiency cannot exceed the
Carnot efficiency defined as ηC = 1 − T1/T2, with T2 > T1.
In addition, for a multiterminal system η cannot go beyond
the two-terminal Carnot efficiency [53] calculated using the
hottest and coldest temperatures among T1,T2,...,TN .

We define the temperature and electrochemical potential
differences as Tα = T + �Tα and μα = μ + �μα , with α =
1,...,N , and choosing reservoir 1 as the reference value,
i.e., �T1 = �μ1 = 0. In what follows we fix the values of
�Tα and calculate the maximum output power Pmax and
maximum efficiency ηmax by varying �μα . We also consider
the efficiency at maximum power, η(Pmax), which is the
efficiency when the values of �μα are chosen to maximize
the power.

For a two-terminal system within the linear response
regime, i.e., when the charge and heat currents depend linearly
on the temperature and electrochemical potential differences,
both the output power and efficiency can be written in terms of
the transport coefficients, namely the electrical conductance G,
the thermopower S, and the thermal conductance K , which will
be defined in Eqs. (34), (35), and (36) by setting α = β = 2.
Defining �T ≡ �T2 > 0, we have the following relations
[4,96]

Pmax = 1

4
Q�T 2, (21)

η(Pmax) = ηC

2

ZT

ZT + 2
, (22)

ηmax = ηC

√
1 + ZT − 1√
1 + ZT + 1

, (23)

where Q = GS2 is the power factor and ZT = GS2T/K is the
(dimensionless) figure of merit. As we can see in Eqs. (22) and
(23), both η(Pmax) and ηmax are monotonous growing functions
of ZT ; the only restriction imposed by thermodynamics is
ZT � 0. When ZT = 0 both ηmax and η(Pmax) vanish, while
for ZT → ∞, ηmax → ηC , and η(Pmax) → ηCA, where ηCA =
ηC/2 is the so-called Curzon-Ahlborn efficiency [85–89] in
linear response.

III. LINEAR RESPONSE REGIME

As already mentioned above, in the linear response regime
the applied temperature and electrochemical potential biases
are small enough so that the currents depend linearly on them.
Assuming that |�Tα| 	 T and |�μα| 	 kBT , we follow
Refs. [8,9] and suppose the probability P ({ni}) to differ from
its equilibrium distribution Peq({ni}) in the following way:

P ({ni}) = Peq({ni})[1 + ψ({ni})], (24)

where ψ is a “small” function. In Eq. (24)

Peq({ni}) = 1

Z
exp

⎡⎣− 1

kBT

⎛⎝ ∞∑
p=1

Epnp + U (N ) − μN

⎞⎠⎤⎦
(25)

is the Gibbs distribution in the grand canonical ensemble, when
all reservoirs have the same temperature and electrochemical

245432-5



ERDMAN, MAZZA, BOSISIO, BENENTI, FAZIO, AND TADDEI PHYSICAL REVIEW B 95, 245432 (2017)

potential, with grand partition function given by

Z =
∑
{ni }

exp

⎡⎣− 1

kBT

⎛⎝ ∞∑
p=1

Epnp + U (N ) − μN

⎞⎠⎤⎦.

(26)

In our expressions we will consider terms up to first order
in ψ , �Tα/T , and �μα/kBT . By linearizing the LBEs with
respect to the above small quantities, Eq. (18), one finds the
relation∑

{ni }i �=p

Peq({ni},np = 0)f (Ep + (2Ñ + 1)EC)

×
∑

α

�α(p)

{
ψ({ni},np = 0) − ψ({ni},np = 1)

+ 1

kBT

[
(Ep+ (2Ñ + 1)EC − μ)

�Tα

T
+ �μα

]}
= 0,

(27)

where f (E) stands for the Fermi distribution at temperature
T and electrochemical potential μ. By expressing P ({ni}) in
terms of ψ({ni}) and linearizing Eq. (8), we can use Eq. (27)
to remove ψ({ni}) from the charge current, and we find the
following closed-form expression:

J c
α = e

kBT

∞∑
p=1

∞∑
N=1

Peq(N )Feq(Ep|N )[1 − f (ε(N,p))]

×
∑

β

�α(p)�β(p)

�tot(p)

[
(ε(N,p) − μ)

�Tα − �Tβ

T

+ (�μα − �μβ)

]
, (28)

where �tot(p) = ∑
α �α(p), and

ε(N,p) = Ep + U (N ) − U (N − 1) = Ep + (2N − 1)EC

(29)

is the energy needed to add to the QD, initially occupied by
N − 1 electrons, the N th electron to level p (and equivalently
for the inverse process). In Eq. (28) the quantity

Peq(N ) ≡
∑
{ni }

Peq({ni})δ∑
ni ,N (30)

is the equilibrium probability of finding N electrons in the QD,
and

F (Ep|N ) ≡ Peq(Ep ∩ N )

Peq(N )
=

∑
{ni } Peq({ni})δnp,1δ

∑
ni ,N

Peq(N )

(31)

is the equilibrium conditional probability of finding level
p occupied, when N electrons are in the QD. Note that
expression (28) coincides with the one that can be derived
using the DBEs. However, the above derivation which uses
the LBEs shows that Eq. (28) is always valid within the linear
response regime.

Unfortunately, we were able to derive a closed-form
expression for the energy current using Eq. (27) only in

the absence of interaction (EC = 0). For EC �= 0, the energy
current J u

α can be derived using the relation

∑
α

�α(p)

{
ψ({ni},np = 0) − ψ({ni},np = 1)

+ 1

kBT

[
(Ep + (2Ñ + 1)EC − μ)

�Tα

T
+ �μα

]}
= 0,

(32)

obtained by linearizing the DBEs, Eq. (15) [which is equivalent
to removing the sum over {ni} from Eq. (27)]. Thus, in the
domain of validity of the DBEs, the heat current can be written
as

J h
α = 1

kBT

∞∑
p=1

∞∑
N=1

Peq(N )Feq(Ep|N )

× [1 − f (ε(N,p))][ε(N,p) − μ]

×
∑

β

�α(p)�β(p)

�tot(p)

[
(ε(N,p) − μ)

�Tα − �Tβ

T

+ (�μα − �μβ)

]
. (33)

We can now define the transport coefficients, namely the
electrical conductance Gαβ , the thermopower Sαβ , and the
thermal conductance Kαβ for the multiterminal case, as [53]

Gαβ =
(

eJ c
α

�μβ

)
�Tγ = 0 ∀γ,

�μγ = 0 ∀γ �= β

, (34)

Sαβ = −
(

�μα

e�Tβ

)
J c

γ = 0 ∀γ,

�Tγ = 0 ∀γ �= β

, (35)

and

Kαβ =
(

J h
α

�Tβ

)
J c

γ = 0 ∀γ,

�Tγ = 0 ∀γ �= β

. (36)

Note that index β takes values in the range 2,...,N , since
reservoir 1 is chosen as the reference. Local and nonlocal
transport coefficients are distinguished depending on whether
the two indices are, respectively, equal or different.

The expressions for the currents [(28) and (33)] have an
intuitive interpretation. Indeed, the currents depend on the
probability that a given energy level of the QD is occupied
[Peq(N )Feq(Ep|N )] times the probability that there is an empty
state with the correct energy in the reservoir [1 − f (ε(N,p))].
The sum over all energy levels p and over the total number of
electrons N in the QD accounts for all the various tunneling
processes that can occur. Moreover, as far as the energy current
is concerned, ε(N,p) is the energy carried by an electron that
leaves the QD from level p when N electrons are present
before the tunneling process, or equivalently, ε(N,p) is the
energy carried by an electron that enters the QD into level p

increasing the number of total electrons to N . We recall that
Eq. (28) for the charge current is always valid, while Eq. (33)
holds only when the DBEs are valid (see Appendix C). The
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expressions for the charge and heat currents, in the case of two
terminals, coincide with the ones obtained in Refs. [8,9,15].

If we assume that the tunneling rates do not depend on p,
i.e., �α(p) = �α , we can rewrite the charge and heat currents
in Eqs. (28) and (33) as follows:

J c
α = e

kBT

∑
β

�α�β

�tot

×P
[

(ε − μ)
�Tα − �Tβ

T
+ �μα − �μβ

]
, (37)

and

J h
α = 1

kBT

∑
β

�α�β

�tot

×P
[

(ε − μ)

(
(ε − μ)

�Tα − �Tβ

T
+ �μα − �μβ

)]
,

(38)

where P is the linear functional

P[x] ≡
∞∑

p=1

∞∑
N=1

Ptot(N,p)x(N,p), (39)

with

Ptot(N,p) = Peq(N )Feq(Ep|N )[1 − f (ε(N,p))]. (40)

For a two terminal system it is possible to define analogous
equations that do not require the tunneling rates to be energy
independent [97], but we will not consider this case. We can
thus use the definitions of the transport coefficients given in
Eqs. (34), (35), and (36) to write them in terms of the functional
P as

Gαβ = e2

kBT

(
δαβ�α − �α�β

�tot

)
P[1],

Sαβ = 1

eT
δαβ

P[ε − μ]

P[1]
,

Kαβ = 1

kBT 2

(
δαβ�α − �α�β

�tot

)
×

(
P[(ε − μ)2] − P2[ε − μ]

P[1]

)
. (41)

These expressions only require the calculation of P[(ε − μ)k],
with k = 0,1,2, and make manifest various properties of
the transport coefficients. Namely, (i) all three transport
coefficients are symmetric matrices (as required by the
Onsager relations in the presence of time-reversal symmetry);
(ii) Gαβ and Kαβ have nonlocal terms, while the thermopower
is only local (nonzero nonlocal Sαβ occur when relaxing the
assumption for which the tunneling rates do not depend on the
energy levels [53]); (iii)

∑
α Gαβ = ∑

α Kαβ = 0, stemming
from charge and energy conservation.

By defining the generating function

�[λ] ≡ lnP[eλ(ε−μ)], (42)

 

                                       3                                      5      
... ...

  p=1   2     3     4               p=1   2     3     4                  p=1    2    3     4  

∆  ∆  ∆  

N=1 N=2 N=3 

FIG. 2. Schematic representation of the transition energies
ε(N,p) as N and p vary. In this figure we are assuming EC � �E and
equidistant energy levels, Ep − Ep−1 = �E. The bold lines represent
the dominant transition energies ε̃(N ) = ε(N,p = N ).

we can write the transport coefficients as follows:

Gαβ = e2

kBT

(
δαβ�α − �α�β

�tot

)
e�[0],

Sαβ = 1

eT
δαβ

∂�

∂λ

∣∣∣∣
λ=0

,

Kαβ = 1

kBT 2

(
δαβ�α − �α�β

�tot

)
e�[0] ∂

2�

∂λ2

∣∣∣∣
λ=0

. (43)

In the next subsection, we will compute an analytic expression
for �[λ] in the quantum limit.

A. Quantum limit

The quantum limit is characterized by having the energy
spacing between levels of the QD and the charging energy
much bigger than kBT [while kBT � h̄�α(p)]. We start by
observing that the sum over p and N in Eq. (39) accounts
for the fact that electrons can enter or leave the QD with
energy ε(N,p) through, in principle, any energy level Ep

with the QD being occupied by any number of electrons
N . The transition energies ε(N,p) are schematically shown
in Fig. 2. At low temperatures we expect the lowest energy
levels of the QD to be occupied, so that, if there are initially
N − 1 electrons in the QD, electrons can flow mainly through
level p = N . Such process gives the dominant contribution to
transport and is represented by the dominant transition energy
ε̃(N ) ≡ ε(N,p = N ) (depicted in bold in Fig. 2). Therefore,
in the quantum limit one expects to get the sum over N and
p appearing in P [Eq. (39)] reduced to few dominant terms
[the three equilibrium probabilities Peq(N ), Feq(Ep|N ), and
f (ε(N,p)) becoming very sharp functions].

Following Ref. [9], one finds (see Ref. [97] for details)
that the dominant contribution to Ptot in Eq. (39) occurs when
N = Nmin is the integer that minimizes the quantity

|ε̃(N ) − μ|, (44)

and for values of p such that ε(Nmin,p) is between the elec-
trochemical potential μ and the dominant transition energy,
i.e., such that ε̃(Nmin) � ε(Nmin,p) < μ or μ < ε(Nmin,p) �
ε̃(Nmin). In the former case, p = Nmin,Nmin + 1,Nmin +
2,...,p̄, where p̄ is the largest integer such that ε(Nmin,p) < μ.
In the latter case, p = Nmin,Nmin − 1,Nmin − 2,...,p̄ where p̄

is the smallest integer such that ε(Nmin,p) > μ. We then find
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that Eq. (39) becomes

P[x] = 1

4 cosh2
(

�min
2 kBT

) p̄∑
p=Nmin

x(Nmin,p), (45)

where we have defined �min ≡ ε̃(Nmin) − μ. Equation (45)
only keeps the dominant terms in the low-temperature limit.

This approximation must be improved when p̄ = Nmin, that
is, the sum inP in Eq. (45) reduces to the single term p = Nmin

and transport is provided by the dominant transition energy
ε̃(Nmin) only. If in this case one imposes that J c

α = 0, then

one obtains J h
α = 0, since J h

α ∝ J c
α . As a consequence one

gets Kαβ = 0 [98]. Thus, when p̄ = Nmin, we improve our
approximation of P by extending the sum over p to the two
nearest integers, p = Nmin ± 1. We have numerically verified
that this approximation is valid when 2EC > �E.

In order to obtain analytical expressions for the transport
coefficients, hereafter we focus on the case of equidistant
levels, Ep − Ep−1 = �E. After introducing the parameter

ξ ≡ 4 cosh2(�min/2kBT )

e�E/kBT
(46)

and defining the integer NJ ≡ p̄ − Nmin, we obtain

�[λ] = − ln

[
4 cosh2

(
�min

2kBT

)]
+ λ�min

+ ln

[
eλ�E(|NJ |+1)sign(NJ ) − 1

esign(NJ )λ�E − 1
+ ξδNJ ,0

(
cosh (λ�E) − tanh

(
�min

2 kBT

)
sinh (λ�E)

)]
. (47)

Using Eqs. (43) and (47), we finally obtain the multiterminal transport coefficients

Gαβ =
(

δαβ�α − �α�β

�tot

)
e2

4 kBT cosh2
(

�min
2 kBT

) (1 + |NJ |),

Sαβ = δαβ

1

eT

(
�min + �E

2
NJ

)
,

Kαβ =
(

δαβ�α − �α�β

�tot

)
kB

(
�E

kBT

)2
{ 1

12e−|�min|/kBT |NJ |(|NJ | + 1)(|NJ | + 2) if NJ �= 0,

1
e�E/kB T +4 cosh2(�min/2 kBT )

if NJ = 0.
(48)

We have computed Gαβ and Sαβ setting ξ = 0, since the term
proportional to ξ in Eq. (47) only yields minor corrections
that make these quantities more “smooth” as a function of μ;
the calculation of Kαβ instead requires a non-null value of ξ .
Equations (48) exhibit a number of interesting features. First
of all, Gαβ shows peaks as a function of the electrochemical
potential μ every time �min = 0, namely when μ = ε̃(N ). For
example, the N th peak corresponds to μ equal to the N th
dominant transition energy,

μ = μN ≡ (N − 1)�E + (2N − 1)EC. (49)

We set Ep = (p − 1)�E, for p = 1,2, . . . , and therefore the
separation between two nearby peaks is given by �E + 2EC .
Due to the factor cosh−2( �min

2 kBT
) in Gαβ , these peaks have a

bell shape with amplitude of the order of kBT . On the other
hand, the thermal conductance Kαβ has plateaus of width
2�E around μN [15], corresponding to the second line of
the expression of Kαβ for NJ = 0. For NJ �= 0, the thermal
conductance Kαβ is then exponentially suppressed due to the
term e−|�min|/kBT . The local thermopower Sαα vanishes at the
values μN where the electrical and thermal conductances Gαα

and Kαα exhibit a maximum. Sαα has a linear dependence
on μ with slope dSαα/dμ = −1/eT , with jumps when either
Nmin or NJ change by one. Therefore we have, for EC � �E,
main oscillations of period �E + 2EC , and a fine structure
with spacing �E [9]. We note that the fine structure is present
also for Gαβ and Kαβ , but in these cases the amplitude of the
fine structure oscillations is exponentially small.

B. Two-terminal system

In the two-terminal case, the matrices Gαβ , Sαβ , and
Kαβ reduce to the familiar transport coefficients, namely the
electrical conductance G = G22, the thermopower S = S22,
and the thermal conductance K = K22. From Eqs. (48) we
recover the formulas for G and S well-known in literature
[9], while our expression for K coincides for NJ = 0 with
the result of Ref. [15], but also provides the fine structure
oscillations for NJ �= 0. Although such oscillations are not
appreciable in K as a function of μ, we will see below that
they give rise to a visible fine structure in ZT .

As we have shown in Sec. II E, within the linear response
regime the relevant quantities to characterize the performance
of a thermoelectric device are the power factor Q and the figure
of merit ZT . From the expressions of the transport coefficients
in Eqs. (48), specified for the two-terminal case, one can
compute Q and ZT analytically within the quantum limit.
The obtained expressions are given below and compared with
a numerical calculation performed using the kinetic equations.

1. Power factor

Let us start by studying the power factor Q. Within the
quantum limit, we find that

Q = γ (1 + |NJ |)
4 kBT 3 cosh2 (�min/2 kBT )

(
�min+ NJ

2
�E

)2

,

(50)
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FIG. 3. Power factor Q (a) and figure of merit ZT (b) are plotted
as a function of the electrochemical potential μ. For both quantities
the analytical quantum limit [given by Eqs. (50) and (53)] is plotted as
a red dashed curve, while the numerically calculated result is plotted
as a black solid curve. All curves are calculated at EC = 50 kBT ,
�E = 10 kBT , and h̄�1(p) = h̄�2(p) = (1/100) kBT .

where we have defined γ ≡ �1�2/(�1 + �2). As for G, the
power factor Q is dominated by a fast decrease, given by
the term cosh−2 (�min/2 kBT ), thus becoming vanishingly
small within a few kBT around μ = μN [see Fig. 3(a)]. In
fact the fine structure, given by the terms with NJ , is not
visible in Fig. 3(a) due to the rapid suppression given by the
cosh−2 (�min/2 kBT ) term in Eq. (50). Differently from G,
the power factor vanishes at μ = μN , due to the fact that in
this point the thermopower S = 0. So as μ moves away from
μN , Q increases quadratically due to the linear growth of the
thermopower with μ, and then it rapidly decreases within a
few kBT due to the cosh−2(�min/2 kBT ) term. Hence there
are two symmetric peaks around μ = μN , within a few kBT .
These double peaks are the dominant feature of Fig. 3(a) and
identify the optimal values of �min (and consequently of μ)
to obtain the absolute maximum power Ppeak, namely when
the power factor Q is maximum, Q = Q∗. From Eq. (50), we
obtain that Q is maximum for values �∗

min of �min such that

�∗
min

2 kBT
= coth

(
�∗

min

2 kBT

)
. (51)

The numerical solution is �∗
min � ±2.40 kBT , which corre-

sponds to μ = μN ± 2.40 kBT . This result does not depend on
any energy scale of the system except for kBT and coincides
with the noninteracting single-level case (see Appendix D).
The value Q∗ of Q in these points is

Q∗ � 0.44
γ kB

T
, (52)

so that the peaks of the power factor only depend on γ and
on the reference temperature. In conclusion, if we want to
extract maximum power from this system, we must choose
μ = μN ± 2.40 kBT . We will now show that also ZT reaches
a maximum at these same values of the electrochemical
potential confirming that these are the optimal values for heat to
work conversion in the quantum limit linear response regime.

2. Figure of merit

Let us now study the figure of merit ZT in the quantum
limit. To obtain a more manageable analytical expression,
we compute K from the function �[λ] expanded to the
first order in ξ [this corresponds to approximating K with a
constant plateau when NJ = 0, namely 4 cosh2(�min/2 kBT )
is neglected with respect to e�E/kBT in the last line of
Eqs. (48)]. We then obtain

ZT =
⎧⎨⎩

1
4

(
�min
�E

)2 e�E/kB T

cosh2
(

�min
2 kB T

) if NJ = 0,

3|NJ |
2+|NJ |

(
1 − 2 |�min|

�E|NJ |
)2

if NJ �= 0,
(53)

which implies that the behavior of ZT is different for the two
cases |μ − μN | < �E (NJ =0) and |μ−μN | > �E (NJ �= 0).
In the former case K exhibits a plateau, so that ZT is directly
proportional to Q and therefore it has the same double peak
structure at μ = μN ± 2.40 kBT . This is clearly shown in
Fig. 3(b) where ZT is plotted as a function of μ.

The value of ZT in these points is

ZT ∗ ≈ 0.44
e�E/kBT

(�E/kBT )2
. (54)

This result has been obtained also in Ref. [101]. Equation
(54) shows that in the limit �E/kBT → ∞, we have that
ZT → ∞. For example, for �E = 6 kBT , we reach ZT ∗ ≈
5; for �E = 10 kBT , we reach ZT ∗ ≈ 97, and so on. This is
consistent with Mahan and Sofo’s observation [7] that a narrow
transmission function yields ZT → ∞. Furthermore, these
peaks in ZT correspond to peaks in Q, so in these points we
can maximize Pmax and η(Pmax) simultaneously. Instead, when
NJ �= 0, ZT has a discontinuity every time μ = ε(N,p) with
p �= N , which means with a �E spacing. This fine structure is
the origin of the saw-tooth oscillations of Fig. 3(b). The value
of ZT in each μ = ε(N,p) is given by

ZTp =
{

3 |N−p|+1
|N−p|−1 if |N − p| � 2,

1 if |N − p| = 1.
(55)

The height of these peaks, as opposed to ZT ∗, has no
dependance on the parameters of the system. The highest peak
is obtained for |N − p| = 2, where ZTp=N±2 = 9. For values
of p distant from N , the height of the peak decreases to an
asymptotic value of ZT∞ = 3.

C. Comparison with a noninteracting QD

Here we compare the efficiency of an interacting QD
(with 2EC > �E) with the efficiency of a noninteracting
QD (EC = 0) that has the same energy spacing �E; the
comparison is performed within the linear response quantum
limit for a two-terminal setup. The generating function in
Eq. (47) cannot be used in the case EC = 0 since it requires
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2EC > �E � kBT . The generating function for EC = 0 will
be denoted as �NI[λ] (where NI stands for “noninteracting”)
and calculated as follows. As we can see from Eq. (42), we
must compute P[exp {λ(ε(N,p) − μ)}] using the definition
of P given in Eq. (39). When EC = 0, ε(N,p) = Ep, so the
transition energies correspond to the energy levels of the QD,
and they do not depend on the number of electrons in the
QD. As a consequence, there is no dependance on N in the
argument of P , so we can explicitly perform the sum over N

in Eq. (39) yielding the following expression:

PNI[x(p)] ≡
∞∑

p=1

1

4 cosh2[(Ep − μ)/2 kBT ]
x(p). (56)

Each term in the series in Eq. (56), as a function of μ, is a
bell-shaped function centered around Ep of width set by kBT .
Therefore, within the quantum limit we can restrict the sum
over p to the three bell-shaped functions closest to μ, namely
p = Nmin,Nmin ± 1 [Nmin, defined as in Eq. (44), is such that
ENmin is the closest energy level to μ]. This approximation
allows us to find

�NI[λ] = − ln

[
4 cosh2

(
�min

2kBT

)]
+ λ�min

+ ln

[
1 + 2ξ cosh

(
λ�E − �min

kBT

)]
, (57)

where �min in the noninteracting case reduces to the distance
between μ and the nearest energy level: �min = ENmin − μ.

Let us now compare Eq. (57) with its interacting coun-
terpart, Eq. (47), setting NJ = 0, thus neglecting the fine
structure. We notice that the two expressions are identical
when ξ = 0; this implies that Gαβ and Sαβ are equal in the
interacting and noninteracting case [in Eqs. (48) Gαβ and Sαβ

are calculated at ξ = 0], while Kαβ is different in the two
cases, since it is determined by the term proportional to ξ in
Eqs. (47) and (57). We find that

K
(NI)
αβ = 2kB

(
δαβ�α − �α�β

�tot

)(
�E

kBT

)2

e−�E/kBT

× 2ξ + cosh (�min/kBT )

1 + 2ξ cosh (�min/kBT )
. (58)

A comparison between the interacting and noninteracting
thermal conductances is plotted for a two-terminal system in
Fig. 4, using Eqs. (48) and (58) at equal �E = 10 kBT . In
this figure the dominant transition energy of the interacting
system is located, see Eq. (49), at μ = μN=2 = 160 kBT ,
while the energy levels of the noninteracting system are chosen
as Ep = (p − 1)10 kBT so that in both cases G has a peak in
μ = 160 kBT . We have verified that a numerical calculation is
in very good agreement with Eq. (58) using the parameters of
Fig. 4. As we can see from Fig. 4, K (NI) = K

(NI)
22 and K = K22

are very different. While K has a plateau of width 2�E

centered in μN=2, K (NI) has a minimum in μN=2 and reaches a
maximum value for μ between two energy levels. Furthermore,
by comparing Eq. (58) with the last line of Eqs. (48), we see
that K (NI) ≈ 2 cosh (�min/kBT )K , so the minimum of K (NI),
occurring at �min = 0, is twice the maximum of K , and K (NI)

increases exponentially with respect to K as �min increases.
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FIG. 4. Comparison between K (NI) = K
(NI)
22 and K = K22, given,

respectively, by Eqs. (58) and (48), plotted as a function of μ. Both
cases have been computed with the parameters used in Fig. 3, except
for setting EC = 0 in the noninteracting case. The interacting thermal
conductance has been multiplied by a factor 70. In particular, its
maximum value is half the minimum of K (NI).

Intuitively, the striking difference between the two models
can be explained as follows. As discussed in Appendix D, if
we consider a single energy level QD the thermal conduc-
tance vanishes (K = 0) since K is computed at zero charge
current and charge and heat currents are proportional in this
case. However, K can be finite when at least two energy
levels are available and gets bigger by increasing the flux
of electrons tunneling at different energies. Now, Coulomb
interaction produces a correlation between electrons tunneling
at different energies. Namely, if one electron enters the QD
the electrostatic energy increases by 2EC , preventing other
electrons from entering the QD at any other energy level.
Therefore, until that electron tunnels out of the QD, all other
processes are blocked: This is a manifestation of Coulomb
blockade. On the contrary, in the noninteracting case all
tunneling events are independent. This correlation is thus
responsible for suppressing simultaneous tunneling through
different energy levels in the interacting case, which results
in a suppression of K . So in general K is much smaller than
K (NI). As a consequence of these observations, we expect ZT

to be suppressed in the noninteracting case.
By setting ξ = 0 in Eq. (58), we find

ZTNI = 1

8

(
�min

�E

)2
e�E/kBT

cosh2
(

�min
2 kBT

)
cosh

(
�min
kBT

) . (59)

Comparing Eq. (59) with Eq. (53), we see that, for NJ =
0, ZT = 2 cosh (�min/kBT )ZTNI, so ZTNI is exponentially
suppressed as �min increases. Given this suppression, the max-
imum of ZTNI occurs at �∗

min ≈ ±1.36 kBT , corresponding to

ZT ∗
NI ≈ 1

13.8

e�E/kBT

(�E/kBT )2
.

This value is approximately 6 times smaller than ZT ∗ for the
interacting case, see Eq. (54).
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Furthermore, since K is “flat” around the dominant transi-
tion energies in the interacting case, the peak power Ppeak and
the figure of merit ZT ∗ are reached at the same electrochemical
potential, �∗

min ≈ ±2.40 kBT , so ZT (Ppeak) = ZT ∗. Instead
in the noninteracting case these two quantities are not
simultaneously maximized, due to the strong dependance of
K (NI) on μ, so we have that

ZTNI(Ppeak) ≈ 1

25.3

e�E/kBT

(�E/kBT )2
,

which is approximately 11 times smaller than ZT (Ppeak), see
Eq. (54). In conclusion, within the linear response quantum
limit, an interacting QD (with 2EC > �E) has a considerably
higher ZT with respect to a noninteracting QD both at peak
efficiency, and at peak power, while having the same power
factor (G and S being equal).

At last we will study how these two models violate the
Wiedemann-Franz law, which states that for macroscopic
ordinary metals the Lorenz ratio L = K/GT is a constant
equal to the Lorenz number L0 = (kB/e)2(π2/3). Using
Eqs. (48) and (58), we find that

L = L0

π2

(
�E

kBT

)2
{|NJ |(|NJ | + 2) if NJ �= 0,

12e
− �E

kB T cosh2 �min
2 kBT

if NJ = 0,
(60)

and

LNI = L0

(
�E

kBT

)2 24

π2
e
− �E

kB T cosh2 �min

2 kBT
cosh

�min

kBT
, (61)

where L refers to the interacting case, and the expression of
K , for simplicity, has been computed at ξ = 0. In both cases
the Wiedemann-Franz law is strongly violated: At �min = 0,
the Lorenz ratio is exponentially smaller than L0 thanks
to (�E/kBT )2 exp (−�E/kBT ) (this has been noticed in
Ref. [101] for the interacting model). In both cases the Lorenz
ratio exponentially increases with �min. In the noninteracting
model the exponent is 2�min/(kBT ) (twice the interacting
case), and the maximum value, achieved at �min = �E/2,
is of the order of LNI ≈ (�E/kBT )2L0. Interestingly, in the
interacting case [Eq. (60)], when |�min| > �E, i.e., NJ �= 0,
we find plateaus whose height increases with NJ .

D. Three-terminal system

In this section we consider the case of a three-terminal
system, which allows us to study the nonlocal transport
coefficients and the influence of an additional terminal on
the thermoelectric performance of the system. We focus on
the simplest case when the couplings to the reservoirs are
energy independent, that is, the rates �α do not depend on p,
and we will consider an equidistant QD spectrum. Analytical
expressions in the quantum limit for the power and the
efficiency at maximum power can be obtained also in this
case on the basis of the expressions written in Ref. [53] and
of Eqs. (48) for the transport coefficients. All considerations
made in this section are valid for both interacting and
noninteracting systems.

In a three-terminal setup with time reversal symmetry
we have nine independent coefficients: three electrical con-
ductances G22, G33, and G23, three thermopowers S22, S33,

and S23, and three thermal conductances K22, K33, and K23.
According to the expressions in Eqs. (48), valid in the quantum
limit when the couplings to the leads are independent of
energy, one finds that the local and nonlocal electrical (thermal)
conductances are characterized by peaks (plateaus) located
in the same positions as for the two-terminal case. The two
local electrical (thermal) conductances G22, G33 (K22, K33)
can have different heights if the coupling to reservoirs 2 and
3 are different (�2 �= �3), while the nonlocal conductances,
G23 and K23, are negative. On the other hand, the local
thermopowers S22 and S33 are equal and exhibit the same
fine structure as in the two-terminal case. Moreover, the
nonlocal thermopower S23 vanishes, as a consequence of
energy independent tunneling rates.

The power and efficiency of a three-terminal system are
defined in Eqs. (19) and (20). For definiteness, let’s consider
T3 � T2 � T1, so �T3 � �T2 � 0. In general, Carnot’s effi-
ciency cannot be written only in terms of the temperatures
T1, T2, and T3, but it depends on the details of the system
[53]. Nonetheless, if we fix the temperature of the hottest
and coldest reservoir, that is, T3 and T1, it can be shown that
ηC � η

(2)
C , where η

(2)
C = 1 − T1/T3 is the Carnot efficiency

of the two-terminal system; the equal sign can be achieved
when two reservoirs have the same temperatures. So adding a
third terminal at an intermediate temperature cannot increase
the maximum efficiency beyond the two terminal Carnot’s
efficiency.

Also in the three terminal case the efficiency at maximum
power cannot go beyond the linear response Curzon-Ahlborn
efficiency ηCA = η

(2)
C /2. Our aim is to maximize the power P

with respect to �μ2 and �μ3, at given temperature differences.
Then we will consider a fixed value of �T3, and we will
study the maximum power Pmax and the efficiency at maximum
power η(Pmax) varying T2 between the fixed T1 and T3. These
calculations can be performed by writing the currents in terms
of the temperature and electrochemical potential differences
through the Onsager matrix Lij [53]; in turn, Lij can be related
to the transport coefficients. By rewriting Eqs. (43) as

Gαβ = MαβG, Sαβ = δαβS, Kαβ = MαβK, (62)

where

Mαβ = δαβ�α − �α�β

�tot
, (63)

and by defining

ZT = GS2T

K , �ij = �i + �j , (64)

we can write the currents as

(
J c

2 /�2

J c
3 /�3

)
= G

e�tot

(
�13 �13 −�3 −�3

−�2 −�2 �12 �12

)⎛⎜⎜⎜⎝
�μ2

eS�T2

�μ3

eS�T3

⎞⎟⎟⎟⎠,

(65)
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(
J h

2 /�2

J h
3 /�3

)
= K

�tot

(
�13 �13 −�3 −�3

−�2 −�2 �12 �12

)⎛⎜⎝ 0
�T2

0
�T3

⎞⎟⎠
+ST

(
J c

2 /�2

J c
3 /�3

)
. (66)

Note that the quantities G, S, K, and ZT only depend
on the properties of the QD, which can be interacting or
noninteracting, and on the reference electrochemical potential
μ; they do not depend on the number of reservoirs nor on the
tunneling rates.

The electrochemical potential differences that maximize P

at given reservoir temperatures can be written as

�μα = − 1
2eS�Tα. (67)

Inserting these expressions into P yields

Pmax = 1

4

Q
�tot

[
�1�2�T 2

2 + �1�3�T 2
3 + �2�3(�T3 − �T2)2

]
,

(68)

where Q = GS2. The maximum power is thus an always
positive quantity and, in the same manner as in the two-
terminal case, see Eq. (21), it is proportional toQ and quadratic
in the temperature differences. Furthermore, the properties
of the QD and the chosen μ are all contained in the Q
term, while the coupling to the reservoirs and the temperature
differences are separately accounted for in the term between
square parentheses in Eq. (68). The efficiency at maximum
power instead is given by

η(Pmax) = η
(2)
C

2

ZT

ZT + 2

[
�1�2�T 2

2 + �1�3�T 2
3 + �2�3(�T3 − �T2)2

]
×

{ 1
�1�T3(�2�T2+�3�T3) if �3

�1+�3
�T3 � �T2 � �T3,

1
�3�T3[�1�T3+�2(�T3−�T2)] if 0 � �T2 � �3

�1+�3
�T3.

(69)

It is interesting to notice that in this equation the term
before square parenthesis, which does not depend on �α ,
is exactly equal to the two terminal efficiency at maximum
power, see Eq. (22), since ZT = ZT for a two terminal
system. The remaining part of Eq. (69) takes into account the
particular temperatures and couplings to the three terminals.
Furthermore the efficiency at maximum power, also in this
three terminal system, only depends on ZT . There are three
limiting cases we will first study: �T2 = 0, �T2 = �T3 and
�T2 = �T3�3/(�1 + �3).

If �T2 = 0, T1 = T2, so we have one hot reservoir at
temperature T3 and two cold ones at the same temperature.
In this case we obtain

Pmax = 1

4
Q�T 2

3
(�1 + �2)�3

(�1 + �2) + �3
, (70)

η(Pmax) = ηC

2

ZT
ZT + 2

. (71)

Note that for a two-terminal system the maximum power,
obtained by inserting Eq. (62) into Eq. (21), is given by

P (2)
max = 1

4
Q�T 2

2
�1�2

�1 + �2
. (72)

Comparing Eq. (72) with Eq. (70), and Eq. (22) with Eq. (71),
we notice that the three terminal system is formally equivalent
to a two-terminal system with temperature difference �T3,
with tunneling rate �1 + �2 instead of �1, and �3 instead
of �2.

If �T2 = �T3, T2 = T3, so we have two hot reservoir at
temperature T3 and one cold reservoir at temperature T1. In

this case we obtain

Pmax = 1

4
Q�T 2

3
�1(�2 + �3)

�1 + (�2 + �3)
, (73)

η(Pmax) = ηC

2

ZT

ZT + 2
. (74)

As in the previous limiting case, this system behaves like a two
terminal with temperature difference �T3 and with tunneling
rate �2 + �3 instead of �2.

If �T2 = �T3�3/(�1 + �3), reservoir 2 has an intermedi-
ate temperature such that J h

2 = 0. In fact this specific value of
�T2 distinguishes the two regimes where J h

2 > 0 and J h
2 < 0.

In this case we obtain

Pmax = 1

4
Q�T 2

3
�1�3

�1 + �3
, (75)

η(Pmax) = ηC

2

ZT

ZT + 2
. (76)

As in the other two limiting cases, this system behaves like
a two-terminal system, where reservoir 2 has been removed;
this is to be expected because at this particular temperature,
no heat flows through the second reservoir.

According to Eq. (69), all values of �T2 other than the three
cases discussed above decrease the efficiency at maximum
power with respect to the two-terminal case. The maximum
power instead, at given tunneling rates, is increased with
respect to the two-terminal case. In fact the maximum power is
formally equal to that of a two-terminal system, coupled to the
same QD, with increased tunneling rates. So if we have fixed
values of �1, �2, and �3, we achieve the largest maximum
power by choosing �T2 = 0 if �1 < �3 and �T2 = �T3 if
�1 > �3. In Fig. 5, Pmax and η(Pmax) from Eqs. (68) and
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FIG. 5. (a) Maximum power, Eq. (68), normalized to Q and (b)
efficiency at maximum power, Eq. (69), normalized to Carnot’s
efficiency, plotted as a function of �T2/�T3. Curves computed
with ZT = 10, �T3/T = 10−4, h̄�1 = 0.02 kBT , h̄�2 = h̄�3 =
0.01 kBT .

(69) are plotted as a function of �T2/�T3, choosing h̄�1 =
0.02 kBT and h̄�2 = h̄�3 = 0.01 kBT . As we can see in panel
(a), the power is maximum when �T2 = �T3 (this result is
expected since �1 > �3). Furthermore the three maxima in
panel (b) correspond to the three limiting cases previously
studied, where η(Pmax) reaches the two-terminal performance.

IV. NONLINEAR RESPONSE

The linear response theory describes correctly the ther-
moelectric properties of bulk materials in most experimental
conditions. However, as discussed for instance in Ref. [102],
nonlinear effects are important in nanoscopic setups, since the
temperature difference is applied across very small elements
of the order of tens or hundreds of nanometers. As far as heat-
to-work conversion is concerned, there is a practical reason to
consider the nonlinear response, namely efficiency and power
output may increase with increasing temperature difference.
Furthermore, for systems with time-reversal symmetry the
efficiency at maximum power can overcome the limit of ηC/2
only beyond the linear response [103].

In this section we will consider a two-terminal QD
system and discuss the numerical results obtained solving the
kinetic equations (4) as discussed in Sec. II. We will focus
our discussion on the thermoelectric properties, and on the
efficiency and power produced by a QD-based heat engine. Let
us define the charge current J c ≡ J c

2 = −J c
1 , thanks to charge

current conservation, and the average reservoir temperature
T̄ = (T1 + T2)/2, which determines the typical thermal energy
scale of the system beyond linear response (all energies will
be given in units of kBT̄ ). Furthermore, �μ ≡ �μ2 = eV ,
with V applied voltage, �T ≡ �T2, and assume equidistant

energy levels with spacing given by �E. In order to describe
the potential drop between the QD and the two reservoirs,
we will assume that the set of energy levels is shifted as
Ep(V ) = Ep + (1 − θ0)eV , where 0 � θ0 � 1 is the fraction
of potential V that drops over the tunnel barrier which couples
reservoir 2 to the QD.

Regarding charge transport, we recall that in the linear
response, within the quantum limit, the conductance exhibits
peaks occurring at the dominant transition energies, i.e., when
μ = μN , of width given by kBT̄ . By applying a finite voltage
bias V , in the absence of a temperature difference (�T = 0),
the differential conductance, defined as

G =
(

∂J c

∂V

)
, (77)

exhibits the typical Coulomb diamond structure, with visible
excited states, as a function of V and μ, see for instance
Ref. [104].

A. Nonlinear Seebeck and Peltier coefficients

In the nonlinear regime the thermopower (Seebeck coeffi-
cient) can be defined as follows

S = − V

�T

∣∣∣∣
J c=0

, (78)

i.e., as the ratio between the thermovoltage V that develops
as a result of a finite �T applied, at open circuit (J c = 0).
In Fig. 6, S is plotted as a function of μ for various values of
�T/T̄ . The black solid curve (calculated for �T/T̄ = 10−4) is
the linear-response reference that is well approximated by the
expression given in Eqs. (48). As discussed in Sec. III A, the
black solid curve presents main oscillations of period �E +
2EC , and a fine structure with a �E spacing [9]. Since we
have chosen an equidistant energy spectrum, all curves share a
number of features with the linear-response reference. Namely,
(i) S crosses zero with positive slope at the main transition
energies μN and is periodic with periodicity �E + 2EC (in
Fig. 6 μ = 290 kBT̄ corresponds [see Eq. (49)] to μN=3);
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ΔT/T̄ = 1

ΔT/T̄ = 1.95

FIG. 6. Nonlinear thermopower S plotted as a function of
μ for various values of �T/T̄ , and �E = 20 kBT̄ ,EC =
50 kBT̄ ,h̄�L(p) = h̄�R(p) = 0.01 kBT̄ ,θ0 = 1/2.
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(ii) in the range of μ considered, S is antisymmetric with
respect to μ = 290 kBT̄ ; (iii) S vanishes for values of μ in
the middle points between two dominant transitions μN and
μN+1 (in Fig. 6 such points are located at μ = 230 kBT̄ and
μ = 350 kBT̄ ). Moreover, since we set θ0 = 1/2, the linear
increase of S for μ � μN does not depend on the ratio �T/T̄ ,
i.e., it is well described by the linear-response proportionality
coefficient 1/(|e|T̄ ). Interestingly, such features (except for
the fine structure oscillations) can be understood in terms of a
noninteracting model (see Appendix D), which also explains
the reduction of the negative slope of S at the middle points as
the ratio �T/T̄ increases.

Let us now discuss the behavior of S when departing from
the linear response regime. Figure 6 shows that for all values
of �T the thermopower deviates from the linear-response
curve only for μ above 310 kBT̄ (or below 270 kBT̄ ). A
sharp departure already occurs at �T/T̄ = 0.5 (red curve).
This can be understood from the fact that, for μ > 310 kBT̄ ,
S is of the order of 15kB/|e| which corresponds to a value of
the thermovoltage (V = −7.5 kBT̄ /|e|) such that |eV | � kBT

[105]. Note that μ = 310 kBT̄ roughly corresponds to the first
step of the fine structure in linear response. In particular, while
the first step hardly moves by increasing �T from its position
in linear response, the second step, occurring at μ = 330 kBT̄

in the linear response, shifts to a smaller value for increasing
�T/T̄ , eventually disappearing or merging with the first step.
This behavior may be attributed to the combination of the
following two effects. On one hand, the thermovoltage V ,
which determines the transport energy window, depends on
μ and increases with �T according to the definition (78).
On the other hand, an increase of �T/T̄ moves the lowest
temperature (T1) towards absolute zero, thus sharpening the
Fermi distribution function f1(E). This last effect is also
responsible for the sharpening of S(μ) as �T/T̄ increases.
Note furthermore that the extremal values of S decrease as
�T/T̄ increases.

Let us now consider the nonlinear Peltier coefficient
defined, for a given voltage V , as

� = J h
2

J c

∣∣∣∣
�T =0

. (79)

Our aim is to assess the failure of the Onsager reciprocity
relation � = T S, which holds in the linear response regime.
Beyond linear response, for a single-level noninteracting
QD, one finds a “corrected” reciprocity relation, namely
� + V/2 = T̄ S in the case where θ0 = 1/2 (see Appendix D).
To single out the effect of interactions in a multilevel QD, in
Fig. 7 we plot the ratio r = (� + V/2)/(T̄ S) as a function
of μ for various values of �T/T̄ and |e|V/(kBT̄ ) (�T/T̄ is
used to compute S, while |e|V/kBT to compute �). Figure 7
shows that the ratio r departs significantly from 1, the linear
response result (blue thin line), only far enough from the
dominant transition energy μN=3 = 290 kBT̄ . In particular,
when � is in the linear response regime and S is not (black
solid curve) the strong deviations occurring for μ around the
middle points between dominant transition energies, namely
μ = 230 kBT̄ and μ = 350 kBT̄ , can be explained by a
two-level noninteracting model (see Appendix D). However,
the deviations occurring in the range of values of μ between
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FIG. 7. Ratio r = (� + V/2)/(T̄ S) plotted as a function of μ for
various values of |e|V/kBT (for the Peltier coefficient) and of �T/T̄

(for the thermopower), for the same parameter values as in Fig. 6.
The blue thin line is the reference r = 1.

250 kBT̄ and 330 kBT̄ can be imputed to interaction effects.
In the opposite case, where S is in the linear response and
� is not (red curve), the deviations of r from 1 are entirely
due to interaction effects and r takes values between 0 and
1 in the entire range of values of μ. When both S and �

are beyond linear response the two behaviors discussed above
coexist giving rise to the black dashed curve [106].

B. Efficiency and output power

In this section we consider the efficiency for heat-to-work
conversion and output power in a two terminal system.
Specifying Eq. (20) to a two terminal system where �T > 0,
we have that

η = P

Jh
2

, (80)

where P > 0 is the output power, defined in Eq. (19), and
J h

2 > 0 is the heat current absorbed by the system. Apart from
the system’s parameters, η depends on V and �T .

Let us first consider the maximum efficiency ηmax, obtained
by maximizing the efficiency η with respect to the applied
voltage V , at given �T . ηmax is plotted, normalized to ηC ,
in Fig. 8(a) as a function of μ for different values of �T/T̄ .
All plots show pairs of peaks close to μN , whose maximum
is very close to ηC , and secondary peaks of smaller height.
The solid black curve, relative to the linear response regime
(�T/T̄ = 10−4), is related through Eq. (23) to the plot of ZT

[Fig. 3(b)] [107] discussed in Sec. III B. For the black curve a
pair of maxima approaching ηC occur at μ = μN ± 2.40 kBT̄ ,
while ηmax vanishes at the dominant transition energies (and at
the middle points between two dominant transition energies).
Moreover, a fine structure of secondary peaks, with spacing
�E, appears for intermediate values of μ. Moving away
from the linear response, the main observation is that an
increase of �T/T̄ > 0.1 produces only quantitative changes
to the curves. As shown in Fig. 8(a), the main peaks of ηmax

are still approximately located at μ = μN ± 2.40 kBT̄ and
approaching the Carnot efficiency, while the peaks’ width
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FIG. 8. (a) Maximum efficiency, normalized to Carnot’s effi-
ciency, (b) maximum output power Pmax, normalized to its peak value
Ppeak, and (c) efficiency at maximum power η(Pmax), normalized to
ηC , plotted as a function of μ for various values of �T/T̄ , for the
same parameter values as in Fig. 6.

reduces slightly with increasing �T , and the fine structure
of the secondary peaks gets simply distorted.

Another important quantity in heat-to-work conversion is
the maximum output power generated Pmax, which is obtained
by maximizing the output power with respect to the applied
voltage V . It turns out that Pmax exhibits pairs of peaks
approximately located at μ = μN ± 2.40 kBT̄ whose height
increases approximately quadratically with �T , as long as
�T/T̄ is not too close to 2. Interestingly, Fig. 8(b) shows
that the maximum output power Pmax, when normalized to
its peak value Ppeak, only very weakly depends on the ratio
�T/T̄ . In particular, Pmax/Ppeak is well approximated by the
linear-response result, whose analytical expression is obtained
by substituting Eq. (50) into Eq. (21).

The efficiency at maximum power η(Pmax) can now be
calculated by taking, for each value of μ, the value of V which
maximizes the power. η(Pmax) is plotted, as a function of μ, in
Fig. 8(c) for various values of the ratio �T/T̄ . By increasing
such a ratio starting from the linear response [solid black curve,
related to the plot of ZT in Fig. 3(b) through Eq. (22)] one
finds that the peak values, again occurring approximately at
μ = μN ± 2.40 kBT̄ , increase well above ηC/2 (the upper
limit for the linear response). On the contrary, the efficiency
at maximum power for values of μ away from μN , relative
to the fine structure, decreases with increasing �T/T̄ beyond
the linear response but is only slightly different moving from
�T/T̄ = 1 (red curve) to �T/T̄ = 1.95 (black dashed curve).

0.80 0.85 0.90 0.95 1.00
ηC

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η
(P

pe
ak

)

EC = 10.0kB T̄

EC = 1.5kB T̄

ΔE = 20kB T̄

ΔE = 3kB T̄

ηCA

ηSS

0 1
0

1

FIG. 9. Efficiency at maximum power η(Ppeak) plotted as a
function of ηC for various values of EC , with �E = 0 (solid curves)
and for various values of �E, with EC = 0 (dashed curves). Thin
solid curves represent the CA and SS efficiencies, see text. Tunneling
rates are h̄�1(p) = h̄�2(p) = 0.01kBT̄ . The inset shows the same
curves on the entire range ηC ∈ [0,1].

It is now interesting to compare the peak values of the
efficiency at maximum power with various reference values,
such as the Curzon-Alhborn (CA) efficiency [88] ηCA =
1 − √

1 − ηC and the Schmiedl-Seifert (SS) efficiency [108]
ηSS = ηC/(2 − ηC) [109]. To do so we calculate the peak
power, i.e., maximizing the power with respect to V and
μ, and plot the corresponding efficiency as a function of
ηC (determined by the temperature difference) in various
situations, see Fig. 9. In particular, we consider the case
of a QD with one doubly degenerate level with a finite
charging energy (solid thick curves) and the case of a QD
with two nondegenerate levels and zero charging energy
(dashed curves). The parameters are chosen such that the
two situations can be compared, namely �E = 2EC , i.e., the
differential conductance consists of two peaks separated by
the same electrochemical potential. Figure 9 (inset) shows
the following general feature for small ηC , i.e., in the linear
response regime: η(Ppeak) increases linearly with ηC with
slope determined by the value of ZT [see Eq. (22)]. In
particular, the two black curves (relative to EC = 10 kBT̄

and to �E = 20 kBT̄ ) virtually coincide, and are equal to
the one for a single noninteracting level QD [see Appendix D
and the first line of Eqs. (D13)], since the parameters are such
that kBT̄ 	 EC,�E, where the transport is mostly accounted
for by a single energy level. On the contrary, the two red
curves (relative to EC = 1.5 kBT̄ and to �E = 3 kBT̄ ) differ
by a large extent, with the interacting case (solid red curve)
exhibiting larger efficiency at maximum power with respect
to the associated noninteracting case (dashed red curve).
Note that the efficiency at maximum power relative to the
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FIG. 10. Correlation between efficiency and output power calcu-
lated for a few points of the plots in Fig. 9, both for the doubly
degenerate interacting case (solid curves) and the nondegenerate
noninteracting case (dashed curves). Curves obtained by increasing
the value of V from zero to the thermovoltage value, corresponding
to the open-circuit situation, for various values of ηC . Panel (a) refers
to �E = 20 kBT̄ (with EC = 0, dashed curves) and to EC = 10 kBT̄

(with �E = 0, solid curves), while panel (b) refers to �E = 3 kBT̄

(with EC = 0, dashed curves) and to EC = 1.5 kBT̄ (with �E = 0,
solid curves).

interacting case goes beyond the CA efficiency, when ηC is
larger than about 0.5, for all values of EC between 1.5 kBT̄

and 10 kBT̄ . Finally, we find that the SS efficiency is never
overcome.

To complete the analysis, we show the correlation between
efficiency and power corresponding to a few points (i.e., a few
values of ηC) in the curve of Fig. 9. More precisely, Fig. 10
shows how the value of the power P and the efficiency η evolve
by increasing the applied voltage V from zero (where both P

and η vanish) to the thermovoltage (where P vanishes as a
consequence of the fact that the charge current vanishes) [110].
In particular, panel (a) refers to the case �E = 20 kBT̄ (dashed
curves) and EC = 10 kBT̄ (solid curves), while panel (b) refers
to the case �E = 3 kBT̄ (dashed curves) and EC = 1.5 kBT̄

(solid curves). We checked that in the linear response (when
ηC 	 1) the power reaches its maximum when the efficiency
is nearly equal to ηC/2. By increasing ηC , for all the curves in
the figure, both maximum power and efficiency at maximum
power increase. For large values of ηC (green curves), the
efficiency remains close to the Carnot efficiency when V is
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FIG. 11. Maximum power, normalized to the peak value, plotted
as a function of μ for different values of ηC with EC = 10 kBT̄ ,
�E = 0, and considering a single doubly degenerate energy level.
Surprisingly, not only the linear-response curve (black) is very well
approximated by the analytic expression in Eq. (81) (black dashed
curve) valid in the quantum limit. Tunneling rates are h̄�1(p) =
h̄�2(p) = 0.01 kBT̄ .

increased beyond the point of maximum power. The general
feature is that in the interacting case (solid curves) the power
is much larger than in the associated noninteracting situation
(dashed curves). When �E and EC are of the same order as
kBT̄ [Fig. 10(b)], both the maximum power and the efficiency
at maximum power are increased in the interacting case as
compared with the noninteracting case. A remarkable property
of both regimes discussed in panels (a) and (b) is that in the
strongly nonlinear regime, the maximum power is obtained for
values where the efficiency is high and close to the maximum
efficiency.

We finally discuss a peculiarity of the maximum power
output considering a doubly degenerate energy level in the in-
teracting case [111] (as we will point out, some considerations
are also valid in the nondegenerate case). Figure 11 shows the
maximum power, normalized with respect to the peak value,
as a function of μ for different values of ηC including the
linear-response case (parameter values are the same as for
Fig. 9, with EC = 10 kBT̄ ). The first remarkable feature is
that the two peaks around a dominant transition energy have
different heights (here μN=1 = 10 kBT̄ and μN=2 = 30 kBT̄ );
in the absence of degeneracy, within the quantum limit all
the peaks have the same height (see Fig. 3). More precisely,
see Eq. (81), the external peaks, displaced of 2.53 kBT̄ from
μN are higher with respect to the internal peaks, displaced
of 2.32 kBT̄ from μN , whose height is almost equal to the
nondegenerate (interacting) case. The second feature is that
all curves, apart from the case of very large ηC (blue curve),
are well approximated by the linear-response quantum limit
expression (black dashed curve in Fig. 11)

Pmax =
√

2γ

16kBT̄

(
�T

T̄

)2
�2

min

cosh
(

�min

2kB T̄
± log 2

2

)
cosh

(
�min

2kB T̄

) .

(81)
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The plus (minus) sign in Eq. (81) is to be taken when Nmin

is even (odd). Equation (81) allows us to find that level
degeneracy gives rise to an enhancement of output power
of about 1.77 times with respect to the nondegenerate case,
independently of the parameter values (see also Ref. [61]).
Equation (81) also makes clear that the origin of the asymmetry
for �min → −�min and of the difference in peaks’ height
is the term ± log 2/2 occurring in the presence of degener-
acy. The case of EC = 1.5 kBT̄ (not shown), which is not
within the quantum limit, produces a much more asymmetric
behavior. We have verified that also in the nondegenerate case
the analytic formula derived in the linear response regime [see
Eq. (50)] well describes the maximum power also beyond the
linear response regime.

V. CONCLUSIONS

We have studied the thermoelectric properties of a multi-
level interacting QD in the sequential tunneling regime, in a
multiterminal setup, both in the linear response regime and
beyond. In particular, we have

(1) generalized the sequential tunneling method put for-
ward by Beenakker in Refs. [8,9] to a multiterminal configu-
ration and set the range of validity of the expressions for the
charge and heat currents in the linear response regime;

(2) found simple analytic formulas for the multiterminal
transport coefficients in the low temperature limit;

(3) found simple analytic formulas for the power factor Q

and the figure of merit ZT in the low temperature limit for a
two-terminal setup;

(4) found that Q and ZT can be simultaneously maximized
for suitable values of the electrochemical potential;

(5) found that Coulomb interactions can dramatically
enhance ZT by suppressing the thermal conductance;

(6) found that both the interacting an noninteracting
models strongly violate the Wiedemann-Franz law;

(7) found analytic expressions for the maximum power and
for the efficiency at maximum power in a three terminal setup;

(8) investigated the nonlinear Seebeck and Peltier coef-
ficients in a two-terminal setup, identifying features of the
breakdown on the Onsager reciprocity relation;

(9) computed numerically the maximum efficiency, the
maximum power, and the efficiency at maximum power in
the nonlinear regime, finding optimal system parameters for
heat-to-work conversion such that the efficiency at maximum
power can go beyond Curzon-Alhborn’s efficiency;

(10) compared the case of a doubly degenerate level with
interaction and the case of two nondegenerate levels without
interaction finding that the interacting case enhances the power
output and, especially when charging energy and level spacing
are of the order of the thermal energy, it increases the efficiency
at maximum power that can go beyond Curzon-Alhborn’s
efficiency;

(11) found that the nonlinear maximum power is well
approximated by the analytic linear response expression;

(12) found that QDs with degenerate energy levels and
Coulomb interactions achieve higher efficiency and output
power than nondegenerate QDs; in particular the maximum
power is enhanced almost of a factor 2;

(13) calculated the transport coefficients for a nonlinear,
noninteracting QD with 1 and 2 energy levels (Appendix D);

(14) found approximate analytic expressions for the maxi-
mum power and efficiency at maximum power for a nonlinear,
noninteracting QD with 1 energy level (Appendix D).

The multiterminal formalism developed in this paper and
the expressions we have obtained for charge and heat currents,
transport coefficients, power, and efficiency could be used
to design and analyze experimental data. Extensions of the
studies presented in this paper could include level spacings
different from the equidistant and regimes beyond the quantum
limit. Finally, a comprehensive description of the thermo-
electric properties and performance of a QD should assess
the role of quantum coherence going beyond the sequential
tunneling limit and the relevance of phonon contribution to
heat transport.
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APPENDIX A: THE KINETIC EQUATIONS ALWAYS
ALLOW A NONTRIVIAL SOLUTION

To prove this statement, let us consider the kinetic equations
as written in Eq. (11). This equation is made up of a sum over
p of the following expression:(
δnp,1 − δnp,0

)
[P ({ni},np = 0)AÑ,p − P ({ni},np = 1)BÑ,p],

(A1)

which is a function of a generic configuration {ni}. Let us
sum this expression for the two particular configurations:
({ni},np = 1) and ({ni},np = 0). When np = 1, the first term
in round parenthesis gives a plus sign, while when np = 0,
it gives a minus sign. The rest of the expression does not
depend on np, since Ñ = ∑

i �=p ni , thus the sum over the above
configurations exactly vanishes. Now let us go back to Eq. (11),
and let us sum over the two configurations ({ni},nk = 1)
and ({ni},nk = 0), k being a given index. According to the
argument given above, the term in the sum where p = k

vanishes, and we obtain∑
nk=0,1

∑
p �=k

(
δnp,1 − δnp,0

)
[P ({ni},np = 0)AÑ,p

−P ({ni},np = 1)BÑ,p] = 0. (A2)

Thus by summing over a given occupation number nk = 0,1
we have removed the case p = k in the sum over p. If we
now sum over all occupation numbers, we will remove all
terms from the sum, yielding zero [112]. The sum over all
occupation numbers {ni} is the sum of all 2L equations of the
kinetic equations: This demonstrates that any equation in the
kinetic equations is linearly dependent from the other ones.
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Thus the matrix M defined by the kinetic equations has a null
space of dimension at least 1, since we demonstrated that the
rows of M are not linearly independent. Furthermore, if we
perform the same sum over all occupation numbers to the time
dependent kinetic equations, given in Eq. (4), we find that:

∂

∂t

⎛⎝∑
{ni }

P

⎞⎠ = 0. (A3)

This is an obvious but important property that says that the
probability normalization does not depend on time.

APPENDIX B: THE DBEs ARE NOT CONSISTENT
IN GENERAL

In general, if EC �= 0, the DBEs are not consistent. This
means that no set of P ({ni}) exists that can simultaneously
satisfy all the DBEs. In Appendix (C) we will discuss
which conditions guarantee their consistency within the linear
response regime.

Here let us demonstrate their inconsistency in the special
case L = 2. Let us start from Eq. (15) and consider non-null
temperature and electrochemical potential differences. We
will show that these equations form an over-complete set for
P ({ni}) that in general does not allow any non-null solution.
Since L = 2, we have 2L = 4 unknown probabilities, and the
number of DBEs is 2L−12 = 4. In this case, the DBEs can be
represented in matrix form as follows

MD
�P ≡

⎛⎜⎝A0,1 −B0,1 0 0
0 0 A1,1 −B1,1

A0,2 0 −B0,2 0
0 A1,2 0 −B1,2

⎞⎟⎠
⎛⎜⎝P00

P01

P10

P11

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠,

(B1)

where Pn2n1 ≡ P (n2,n1) and the coefficients are defined in
Eqs. (12) and (13). In order to show that this linear algebra
problem does not allow a non-null solution, we will show that
the determinant det(MD) is in general not zero. We have

det(MD) = �tot(1)�tot(2)(A0,2A1,1 − A0,1A1,2)

+�tot(1)A0,2A1,2(A0,1 − A1,1)

+�tot(2)A0,1A1,1(A1,2 − A0,2), (B2)

where �tot(p) = ∑
α �α(p). It is pretty clear that since �α(p),

Ep, and EC are arbitrary, this determinant cannot be in general
zero. For instance, choosing a two terminal system with
�1(p) = �2(p) = �, �μ2 = 4 kBT , E1 = 1/2 kBT , E2 =
3/2 kBT , μ = �T2 = 0 we obtain det(MD)/�4 � 0.20. It is
interesting to notice that at equilibrium (�μ2 = �T2 = 0),
the DBEs are all exactly satisfied by the grand canonical
distribution. Furthermore, in the noninteracting limit EC = 0,
the coefficients AÑ,p and BÑ,p depend only on p, so that
we can drop the Ñ argument. Thus det(MD) = A2A1B1B2 −
A1A2B2B1 ≡ 0.

The proof can be extended to any number L of levels as
follows. We rewrite the DBEs, Eq. (15), as

ln P ({ni},np = 0) − ln P ({ni},np = 1) = ln
BÑ,p

AÑ,p

. (B3)

This equation has the same form as the LDBEs (C1) which we
will consider in Appendix C, where the unknown probabilities
are replaced by the logarithm of the probabilities, and where

δp(Ñ ) = ln
BÑ,p

AÑ,p

. (B4)

As we shall show in Appendix C, these equations are
consistent if δp(Ñ) satisfies property (C3). This is the case
if EC = 0, since AÑ,p and BÑ,p are then independent of Ñ .
Then condition (C3) is trivially fulfilled with c = 0 and the
DBEs are consistent.

To summarize, as we will see in Appendix C, the DBEs
are not consistent in general, but they are if we set EC = 0
or �μα = �Tα = 0 for all α. Furthermore, within the linear
response regime, they are valid in many more cases, for
example if the tunneling rates are proportional, i.e., �α(p) =
kα�1(p) for α = 2,3, . . . ,N .

APPENDIX C: CONDITIONS OF VALIDITY
OF THE LINEARIZED DBEs

In this appendix we will assess under which conditions the
linearized DBEs are consistent. We start by rewriting Eq. (32)
in the following way:

ψ({ni},np = 0) − ψ({ni},np = 1) = δp(Ñ), (C1)

where

δp(Ñ ) ≡ − 1

kBT

∑
α

�α(p)

�tot(p)

×
[

(Ep + (2Ñ + 1)EC − μ)
�Tα

T
+ �μα

]
. (C2)

We will prove that the linearized DBEs, written in Eq. (C1),
are consistent if δp(Ñ ) satisfies the property

δp(N ) − δp(M) = c(N − M), (C3)

where c is a constant that does not depend on p, N , or M .
This statement will be explicitly proven for a two energy level
system, then it will be extended to L energy levels by induction.

Property (C3) is in general satisfied if the tunneling rates are
proportional, i.e., �α(p) = kα�1(p), or if EC = 0, or if �Tα =
0 for all α. Furthermore, in a three terminal system, property
(C3) is satisfied also if �T2 = 0 and �3(p) = k�tot(p), or
if �T3 = 0 and �2(p) = k�tot(p). These conditions can be
generalized to a generic N -terminal system by requiring that

EC

∑
α

�α(p)

�tot(p)
�Tα (C4)

is independent of p.

1. Two energy level system (L = 2)

We will prove that if property (C3) is satisfied, then the
linearized DBEs allow a solution. Equation (C1) represents
a linear algebra problem for ψ({ni}). For L = 2, ψ({ni}) =
ψ(n2,n1) ≡ ψn2,n1 . Let �ψ be the vector (ψ00,ψ01,ψ10,ψ11) and
let B be the corresponding matrix such that Eq. (C1) can be

245432-18



THERMOELECTRIC PROPERTIES OF AN INTERACTING . . . PHYSICAL REVIEW B 95, 245432 (2017)

written as

B �ψ =

⎛⎜⎝1 −1 0 0
0 0 1 −1
1 0 −1 0
0 1 0 −1

⎞⎟⎠
⎛⎜⎝ψ00

ψ01

ψ10

ψ11

⎞⎟⎠ =

⎛⎜⎝δ1(0)
δ1(1)
δ2(0)
δ2(1)

⎞⎟⎠ ≡ �δ.

(C5)

Matrix B has a null space of dimension 1, generated by
�ψ = (1,1,1,1), thus it is not invertible. This vector actually
represents the equilibrium distribution: When �Tα = �μα =
0, δp(Ñ ) = 0, so �ψ = (1,1,1,1) satisfies Eq. (C5). Since
P = Peq(1 + ψ), P = 2Peq. Normalizing the probabilities
yields P ≡ Peq, so we have demonstrated that the equilibrium
distribution is in fact given by the grand canonical distribution.
Equation (C5) will allow a solution if and only if vector
�δ belongs to the image of matrix B. The dimension of the
image of matrix B is 3, so there is a one-dimensional space
orthogonal to the image of B that cannot be obtained by linear
combinations of B’s columns. Vector

�v0 =

⎛⎜⎝ 1
−1
−1
1

⎞⎟⎠ (C6)

is orthogonal to the columns of B, so it is a generator of this
one-dimensional space. Thus a solution �ψ will exist if and
only if vector �δ only belongs to the image of B, thus it cannot
have a projection on �v0. The projection is zero when

0 = �v0 · �δ = δ1(0) − δ1(1) − δ2(0) + δ2(1) (C7)

which is satisfied using property (C3).
As we have shown in Sec. III, Eq. (28) for the linearized

charge current is correct in general, instead the linearized heat
current given in Eq. (33) is correct only if the linearized DBE
are consistent. We verified numerically all these statements
computing exactly, for small temperature and electrochemical
potential differences, the charge and heat currents using both
the DBEs and the kinetic equations. As demonstrated by
Fig. 12, which shows the heat current as a function of μ for
a choice of tunneling rates that are not proportional to each
other, a particular subset of DBEs leads to an incorrect result
(red dashed curve) which differs from the one obtained using
the kinetic equations (black solid curve). On the other hard,
there is no difference when plotting the charge current using
the same parameters as in Fig. 12.

2. L energy level system

We extend the previous demonstration to a generic system
with L energy levels. We will use the following notation and
conventions:

(1) {ni} indicates a generic set of occupation numbers, con-
ventionally ordered the following way: {nL,nL−1, . . . ,n2,n1}.

(2) (np = 1,{ni}) is a shorthand notation for:
{nL, . . . ,np+1,1,np−1, . . . ,n1}.

(3) (np = 0,{ni}) is a shorthand notation for:
{nL, . . . ,np+1,0,np−1, . . . ,n1}.

(4) (np = 1,{0}) is a shorthand notation for:
{0, . . . ,0,1,0, . . . ,0}, where the 1 is relative to np = 1.

(5) (np = 0,{0}) is equivalent to: {0, . . . ,0}.
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Kinetic Eq.
Detailed Balance Eq.

FIG. 12. Heat current computed using Eq. (10) and using non
equilibrium probabilities found solving exactly the kinetic equations
(black solid line) and a subset of independent DBEs (red dashed line),
as a function of the electrochemical potential μ. The parameters used
are: �T/T = 10−4, �μ = 0, EC = kBT , five equidistant energy
levels with �E = 0.2 kBT , h̄�1(p) = (5)p−1 kBT , and h̄�2(p) =
(0.01)p−1 kBT .

(6) �ψi is the component of vector �ψ with index i.
(7) Each linearized DBE in Eq. (C1) can be uniquely

defined by specifying p and {ni}, so [p|{ni}] is a shorthand
notation to indicate that given equation.

(8) Let A be a matrix written in block form, for example:

A =
⎛⎝B 0

0 C

D E

⎞⎠, (C8)

where B, C, D, and E are matrices. By “block row” we intend
the set of rows in the block. For example, the first block row
of A is (B,0), the second block row of A is (0,C), and so on.

In order to represent the linearized DBE, given in Eq. (C1),
in matrix form, we will put the 2L unknowns ψ({ni})
into a vector as follows: �ψI ({ni }) ≡ ψ({ni}), where I ({ni}) =∑L

i=1 ni2i−1.
Let us define B(L) as the L2L−1 × 2L matrix such that

Eq. (C1) can be represented as follows:

B(L) �ψ = �δ(L), (C9)

where �δ(L) is a vector containing the various values of δp(Ñ ).
Each row of B(L) contains zeros except for a +1 and a −1
in the position corresponding to ψ(np = 0,{ni}) and ψ(np =
1,{ni}). Let’s notice that B(L) has the following property:

B(L)

⎛⎜⎝1
...
1

⎞⎟⎠ =

⎛⎜⎝0
...
0

⎞⎟⎠. (C10)

This property is trivial since, as we just discussed, each row of
B(L) only has a +1 and a −1.

a. Recursive decomposition

We want to write B(L) in terms of B(L − 1). We will thus
order the rows in B(L), and accordingly the elements of �δ(L),
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starting from those LDBE [p|{ni}] where p < L, then we will
add the ones involving level L. In particular, we will first
put equations [p|(nL = 0,{ni})] with p < L, then we will add
equations [p|(nL = 1,{ni})] with p < L, and at last we will
add equations [L|{ni}], which are the ones involving level L.
For example, B(2) will be written as in Eq. (C5).

This ordering allows us to relate B(L) to B(L − 1). The first
set of equations [p|(nL = 0,{ni})], with p < L, represents all
possible LDBE between elements of �ψ with nL = 0, so they
are equivalent to the LDBE for L − 1 levels. Since nL = 0,
according to our indexing convention, these rows involve all
indexes of �ψi with 0 � i < 2L−1, which corresponds to the
first half of vector �ψ . Instead, the equations [p|(nL = 1,{ni})],
with p < L, represents all possible LDBE between elements
of �ψ with nL = 1, so also these equations are equivalent to
the LDBE for L − 1 levels. Since nL = 1, according to our
indexing convention, these rows involve all indexes of �ψi with
i � 2L−1, which corresponds to the second half of vector �ψ .
At last, equations [L,{ni}] relate components of ψ where only
the occupation number nL is changed. Since I (nL = 1,{ni}) =
I (nL = 0,{ni}) + 2L−1, these equations relate indexes of �ψ
that are distant 2L−1, thus they mix elements between the first
and second half of �ψ . We will thus have the following block
representation:

B(L) =
⎛⎝B(L − 1) 0

0 B(L − 1)
Id (L − 1) −Id (L − 1)

⎞⎠, (C11)

where Id (L) is the 2L × 2L identity matrix. Since we trivially
have that B(1) = (1, − 1), Eq. (C11) can be used to define
B(L) recursively, yielding a precise row ordering. For exam-
ple, as we can see in Eq. (C5), B(2) can be obtained by applying
Eq. (C11) to B(1).

Also �δ(L) allows a decomposition in terms of �δ(L − 1).
The first block row in Eq. (C11), (B(L − 1),0), corresponds to
equations [p|(nL = 0,{ni})] with p < L. Recalling Eq. (C2),
we will notice that δp(Ñ ) depends on level L only through:

Ñ (L) =
L∑

i �=p

ni =
L−1∑
i �=p

ni = Ñ (L − 1), (C12)

since nL = 0. So in the first block row we have that �δ(L) =
�δ(L − 1). The second block row, (0,B(L − 1)), corresponds
to equations [p|(nL = 1,{ni})] with p < L. So this time the
presence of level L will change the values of Ñ the following
way:

Ñ (L) =
L∑

i �=p

ni = 1 +
L−1∑
i �=p

ni = 1 + Ñ (L − 1), (C13)

since nL = 1. So in the second block row �δ(L) is given by
�δ(L − 1) replacing Ñ with Ñ + 1. Using property (C3), we
have that:

δp(Ñ + 1) = δp(Ñ) + c, (C14)

where c is a constant that does not depend on p or Ñ . So in the
second block row we will have that �δ(L) = �δ(L − 1) + c. The
last row (Id (L − 1), − Id (L − 1)) in Eq. (C11) corresponds
to equations [L|{ni}], which involve level L. So let us define

�∂(L) as the vector that corresponds to �δ(L) in the third block
row.

Using these observations and Eq. (C11), we can rewrite
Eq. (C9) using the following decomposition:⎛⎝B(L − 1) 0

0 B(L − 1)
Id (L − 1) −Id (L − 1)

⎞⎠( �ψ(nL = 0,{ni})
�ψ(nL = 1,{ni})

)

=
⎛⎝ �δ(L − 1)

�δ(L − 1) + c
�∂(L)

⎞⎠. (C15)

This decomposition will be the main tool to perform a
demonstration by induction.

b. The independent part of B(L)

Among the L2L−1 rows of B(L), we will explicitly show
how to extract 2L − 1 linearly independent rows; we will
later show that all other rows can be obtained by linear
combinations. Let’s define B̃(L) as the matrix containing only
the rows of B(L) corresponding to equations [p|{ni}] with
ni = 0 for i < p; these are 2L − 1 rows. We will now prove
by induction that all the rows of B̃(L) are linearly independent.

Since B̃(L) is made by selecting rows from B(L), we can
decompose it in terms of B̃(L − 1) just like we did for B(L) in
Eq. (C11). An interesting characteristic of B̃(L) is that it only
has one equation in the block [L|{ni}] involving ψ(0,0, . . . ,0)
and ψ(1,0, . . . ,0). So the decomposition becomes:

B̃(L) =
⎛⎝B̃(L − 1) 0

0 B̃(L − 1)
1,0, . . . ,0 −1,0, . . . ,0

⎞⎠. (C16)

We can use Eq. (C16) to define B̃(L) recursively noticing that
B̃(1) = B(1) = (1, − 1).

Now we can prove by induction over L the following
statement: All the rows of B̃(L) are linearly independent.
This statement is obvious for L = 1 and L = 2. We will now
assume that our statement is valid for L − 1, and we will
show that this implies that it is valid for L. The first block
row in Eq. (C16) contains rows that are linearly independent
by hypothesis. The same is true for the second block row.
Also putting together the first and second block row yields
2L − 2 independent rows, since the space generated by the
respective linear combinations are clearly orthogonal thanks
to the block decomposition. So we have to show that the last
row cannot be written as a linear combination of previous
rows. We will make a proof by contradiction. Let’s assume
that the last row �v = (1,0, . . . ,0| − 1,0, . . . ,0) can be written
as a linear combination of a vector belonging to the space
generated the first block row �w0 and of one belonging to the
second block row �w1:

�v = �w0 + �w1. (C17)

If we define �n = (1, . . . ,1|0, . . . ,0), we will have that:

�n · �w0 = 0, �n · �w1 = 0. (C18)

The first equation is zero because, as we have shown in
Eq. (C10), B(L) has the property that B(L)(1, . . . ,1)T = 0,
so it is true also for B̃(L). The second equation is zero because
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�n has zeros on all non-null components of �w1. So multiplying
each sides of Eq. (C17) by �n yields �n · �v = �n · ( �w0 + �w1) = 0,
which is absurd because �n · �v = 1. Thus we have completed
the proof by induction.

c. Consistency of the linearized DBEs

We will now show that if property (C3) is valid, the
linearized DBEs are consistent and allow a solution for ψ

given by a one-dimensional space; the unique solution can
then be found by imposing the normalization condition on
the probabilities. We will thus prove by induction over L

the following statement: If δp(N ) satisfies property (C3), all
equations in the linear algebra system in Eq. (C15) can be
written as linear combinations of the equations involving the
rows of B̃(L). Since there are 2L − 1 independent rows in
B̃(L), by virtue of Rouché-Capelli’s theorem we will have
a solution given by a 2L − (2L − 1) = 1 dimensional space.
This statement is trivially true for L = 1, since B(1) = B̃(1),
and we have proved it explicitly for L = 2, so we will show
that if it’s valid for L − 1, then it’s valid for L.

Let’s consider the subset of rows of Eq. (C15) where
B(L) = B̃(L). Among these equations, we will denote by
“set 0” those belonging to the first block row, and “set 1”
those belonging to the second block row. As we can see from
Eq. (C16), this leaves out one equation in the last block row,
which is:

ψ(0,0, . . . ,0) − ψ(1,0, . . . ,0) = δL(0). (C19)

By induction hypothesis, all equations in the first block row
of Eq. (C15) can be written as linear combinations of set 0.
Furthermore, if δp(N ) satisfies property (C3), also δp(N ) + c

satisfies the same property, so by induction hypothesis, also
all equations in the second block row of Eq. (C15) can be
written as linear combinations of set 1. So any row in the first
and second block row in Eq. (C15) can be written as linear
combinations of those equations involving B̃(L).

We are left to show that equations in the last block row of
Eq. (C15) can be written as linear combinations of equations
involving B̃(L). Thanks to what we have just demonstrated,
this is equivalent to showing that the equations in the last
block row are linear combinations of the first two block rows
of Eq. (C15) and of Eq. (C19). The equations of the last block
row of Eq. (C15) are of the form

ψ(nL = 0,{ni}) − ψ(nL = 1,{ni}) = δL(Ñ ). (C20)

Given any fixed set of {ni}, which fixes Ñ = ∑
i �=L ni , we will

now show how to obtain Eq. (C20) by relating ψ(nL = 0,{ni})
to ψ(nL = 1,{ni}) only using the equations of the first two
block rows of Eq. (C15) and Eq. (C19). We can first relate
ψ(nL = 0,{ni}) to ψ(nL = 0,{0}) using the equations in the
first block row Ñ times, each time changing a non-null ni to
zero. We will obtain the following result:

ψ(nL = 0,{ni}) − ψ(nL = 0,{0}) = −
Ñ∑

i=1

δpi
(Ñ − i),

(C21)

where pi is the energy level whose occupation number has
been changed to zero at step i; the argument Ñ − i is given

by the fact that at each step we use a linearized DBE where∑
i �=pi

ni decreases by one. Using Eq. (C19) we obtain

ψ(nL = 0,{ni}) − ψ(nL = 1,{0}) = δL(0) −
Ñ∑

i=1

δpi
(Ñ − i).

(C22)

Now we can relate ψ(nL = 1,{0}) to ψ(nL = 1,{ni}) using the
equations of the second block row to set each non-null ni back
to 1. If we do this in the exact same order as we did in the
previous step, we will obtain

ψ(nL = 0,{ni}) − ψ(nL = 1,{ni})

=
Ñ∑

i=1

δpi
(i) + δL(0) −

Ñ∑
i=1

δpi
(Ñ − i). (C23)

The “new” term has the same set of {pi}, and the argument i is
given by the fact that

∑
i �=pi

ni increases by one at each step,
and it starts from 1 since now nL = 1. Equation (C20) is of
the same form, therefore the equations on the last block row
can be expressed as linear combinations of B̃(L) if and only if
they represent the same equation, which requires:

δL(Ñ) − δL(0) =
Ñ∑

i=1

[δpi
(i) − δpi

(Ñ − i)]. (C24)

Using property (C3), this last equation reduces to Ñ = Ñ ,
concluding the proof by induction.

APPENDIX D: NONINTERACTING QD:
NONLINEAR EFFECTS

In this Appendix we will study the transport coefficients,
maximum and peak efficiency, and efficiency at peak power
of a two-terminal noninteracting QD. We will first consider
a single-level QD and then a two-level QD (with energy-
independent tunneling rates).

Let us first consider a QD with a single energy level E1. In
this case, the kinetic equations with EC = 0 reduce to a single
simple equation, so it is possible to compute the currents.
Using the two-terminal notation introduced in Secs. III B and
IV we obtain

J c = eγ (f2 − f1),

J h
2 = (�̄min − θ0eV )γ (f2 − f1), (D1)

where

f1 = f

(
�̄min + (1 − θ0)eV

kBT1

)
,

f2 = f

(
�̄min − θ0eV

kBT2

)
, (D2)

�̄min = E1 − μ,

with the Fermi function f (x) = [1 + exp(x)]−1. Note that the
same result could be obtained using the Landauer-Büttiker
scattering formalism with a narrow in energy single-level QD
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FIG. 13. Thermopower S as a function of μ for a two-level
noninteracting QD with energies E1 = 290 kBT̄ and E2 = 410 kBT̄

(dashed lines) and of a multilevel interacting QD (solid lines),
considered in Sec. IV, with the same parameters used in Fig. 6.

transmission probability. Using Eq. (D1), we can compute

G ≡ ∂J c

∂V

∣∣∣∣
�T =0

= e2γ

4 kBT

[
θ0

cosh2
(

�̄min−θ0eV

2 kBT

)
+ 1 − θ0

cosh2
(

�̄min+(1−θ0)eV
2 kBT

)]. (D3)

Note that the value of θ0 can be determined by measuring G.
We can also compute S using Eq. (D1). The condition J c =

0 is satisfied when the arguments of the two Fermi distributions
f1 and f2 are equal, so we obtain

S ≡ − V

�T

∣∣∣∣
J c=0

= 1

eT ∗ �̄min, (D4)

where

T ∗ = θ0T1 + (1 − θ0)T2 (D5)

is the average reservoir temperature, weighed with θ0. As we
can see, the slope of S(μ) beyond the linear response regime
is strongly determined by θ0. In the linear response regime
T ∗ � T , where T is the average reservoirs’ temperature, so
once again we obtain the result we obtained in the quantum
limit linear response regime of an interacting QD neglecting
the fine structure oscillations, due to other energy levels.

It is now interesting to study the influence of a second
energy level on S. In Fig. 13 we show the comparison between
the thermopower of a noninteracting two energy level QD
(dashed lines) and the multilevel interacting QD considered
in Fig. 6 (solid lines), for different values of �T . For the
sake of comparison, we choose the value for the two energy
levels E1 and E2 to match the two dominant transition energies
of the multilevel interacting QD, in particular E1 = μN=3 =
290 kBT̄ and E2 = μN=4 = 410 kBT̄ . On one hand, the
noninteracting thermopower shows a linear dependence on μ

when μ is close to E1 or E2, whose slope is independent of �T

(only because θ0 = 1/2) and is the same as the interacting QD
when |�min| < �E. On the other, when μ is close to the middle
point μ∗ = (E1 + E2)/2 between E1 and E2, the thermopower

depends linearly on μ with a negative slope (S � αδμ, with δμ

being a small displacement with respect to μ∗) which depends
on the temperatures as

α = 1

e�T

T1 cosh2
(

�ε
4 kBT1

) − T2 cosh2
(

�ε
4 kBT2

)
θ0T1 cosh2

(
�ε

4 kBT1

) + (1 − θ0)T2 cosh2
(

�ε
4 kBT2

) ,

(D6)

where �ε = E2 − E1. Equation (D6) has been found by
expanding the charge current around μ = μ∗. Once again, the
slope of the interacting and noninteracting QDs are the same in
this region. In between instead the fine structure oscillations of
the interacting QD create a substantial difference that causes
the maximum value of S to decrease.

At last we can compute the Peltier coefficient for a single
energy level QD using Eq. (D1):

� ≡ J h
2

J c

∣∣∣∣
�T =0

= �̄min

e
− θ0V. (D7)

Surprisingly, we would have obtained the same result also
without setting �T = 0. On the other hand, it strongly depends
on V : Increasing the voltage shifts � by θ0V , so measuring this
shift would allow us to measure θ0. Furthermore, if we compute
� in the linear response regime, setting V = 0 in Eq. (D7), we
can explicitly verify that � = T S is respected. If we set θ0 = 0,
we see that � = T ∗S, even beyond the linear response regime,
for arbitrary temperature and voltage differences. Interestingly,
in the presence of two levels the Peltier coefficient beyond
linear response � still satisfies the relation (� + θ0V ) = T Slin,
where Slin is the linear-response thermopower (black dashed
curve in Fig. 13), so that (� + θ0V ) does not depend on V .

The linearization of G and S for a single-level noninter-
acting QD yields the same results obtained for a multilevel
interacting QD, in the quantum limit linear response regime,
if we restrict |�min| < �E. We could expect this result since
considering a single energy level is intuitively equivalent to
sending �E and EC to infinity in the interacting QD. On the
contrary, a single level QD model cannot be used to estimate
K since it predicts K = 0 [in fact, from Eq. (D1) we have that
J h

2 ∝ J c, so K , calculated at J c = 0, vanishes].
We now want to study the power and efficiency of a

single-level QD. Considering �T = T2 − T1 > 0 and insert-
ing Eq. (D1) into the definitions in Eqs. (19) and (20), we can
write the power and efficiency as

P = −V J c = −γ eV (f2 − f1), (D8)

η = P

Jh
2

= eV

θ0eV − �̄min
. (D9)

We will consider a fixed temperature difference �T = T2 −
T1 > 0, and a variable V such that the system behaves as a heat
engine (P > 0). The power is positive when V ∈ [0,Vstop],
where Vstop is the nonzero voltage that creates a null charge
current. Imposing this condition we find

Vstop = �̄min

−e

ηC

1 − θ0ηC

. (D10)

Without loss of generality, we can specify our analysis to the
region where μ < E1, E1 being the energy of the single energy
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level; thus �̄min > 0, so Vstop is positive, and our system will
behave as a heat engine when

0 � V � Vstop = �̄min

−e

ηC

1 − θ0ηC

. (D11)

Let us now discuss the peak efficiency of the system. We
have to maximize Eq. (D9) with respect to �̄min and V , at
fixed �T > 0, respecting �̄min > 0 and Eq. (D11). Since η is
a growing function of V for �̄min > 0, η will be maximum
when computed at the highest allowed voltage, Vstop. Inserting
Vstop in Eq. (D9) yields:

ηmax = ηC. (D12)

Thus a single level QD in the sequential tunneling regime
always achieves ηmax = ηC , regardless of the temperature
difference, θ0, and the distance between μ and E1 [99,100].
Using Eq. (D8) we can compute the power when η is
maximum, i.e., when V = Vstop: This yields P = 0. These
results agrees with the expectation that Carnot’s efficiency is
reached when the heat exchange is “reversible,” thus when the
power is vanishingly small.

Let us now study the efficiency at peak power, η(Ppeak).
Ppeak is obtained by maximizing the power with respect to �̄min

and V , at fixed �T > 0, imposing �̄min > 0 and Eq. (D11).
By imposing this request we obtain two coupled equations
that cannot be solved analytically [34]. However, the Fermi
function is always evaluated when the argument is positive,
and we approximate it with its exponential tail. By doing so,
we obtain

η(Ppeak) = ηC

ηC

ηC − (1 − ηC) ln (1 − ηC)
,

Ppeak = γ ēkB�T

× ηC

[1 + ē(1 − ηC)1−1/ηC ][ē + (1 − ηC)1/ηC ]
,

(D13)

where ē is Napier’s constant. These equations provide an
approximate expression of Ppeak and η(Ppeak) for a single
level QD, valid for any reservoir temperatures. Note how
η(Ppeak) only depends on ηC , while Ppeak depends on both
T1 and T2 through ηC and �T . Note η(Ppeak) → ηC/2 as
ηC → 0, as expected from the fact that ZT → ∞ for a narrow
transmission probability [7]. As we can see in Fig. 14, there
is a good agreement between η(Ppeak) given in Eq. (D13)
and a numerical calculation: The analytic expression slightly
underestimates η(Ppeak). Furthermore, we can see that the
efficiency at peak power goes beyond ηCA, while it remains
under ηSS . We have also verified that Ppeak given in Eq. (D13)
is in good agreement with the numerical calculation.

To further assess the validity of the approximate analytical
formulas (D13), we expand them around ηC = 0 and ηC = 1,
and compare the obtained results with the exact expansions
known in these limiting cases [34]. An expansion of Eq. (D13)
around ηC = 0 yields

η(Ppeak) = ηC

2
+ η2

C

8
+ 7

96
η3

C + O
(
η4

C

)
,

Ppeak = γ kBT
ē2

(1 + ē2)2

(
�T

T

)2

+ O((�T/T )3), (D14)
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FIG. 14. Comparison between η(Ppeak) computed numerically
and using Eq. (D13). Also ηCA and ηSS are displayed.

where T is the average temperature in the linear response
regime. Our result for η(Ppeak) has to be compared with exact
expansion of Ref. [34],

η(Ppeak) = ηC

2
+ η2

C

8
+ 7

96
(1 + 0.0627)η3

C + O
(
η4

C

)
.

(D15)

−10 −5 0 5 10 15 20 25 30
μ[kBT̄ ]

0.0

0.2

0.4

0.6

0.8

1.0

P
m

ax
/P

pe
ak

(a)

−10 −5 0 5 10
μ[kBT̄ ]

0.0

0.2

0.4

0.6

0.8

1.0

P
m

ax
/P

pe
ak

(b)

ηC = 0.02

ηC = 0.5

ηC = 0.76

ηC = 0.99

FIG. 15. Maximum power, normalized to the peak value, plotted
as a function of μ for different values of ηC with �E = 20 kBT̄

and EC = 0 (top panel) and with �E = 3 kBT̄ and EC = 0 (bottom
panel). Tunneling rates are h̄�1(p) = h̄�2(p) = 0.01kBT̄ .
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As we can see the first two orders are exactly the same,
while the third order only has ≈ 6% correction, confirming that
Eq. (D13) slightly underestimates the exact result. The expan-
sion of Ppeak instead confirms that in the linear response regime
the peak power depends on �T 2. Furthermore, evaluating the
coefficient numerically yields Ppeak ≈ 0.105γ kBT (�T/T )2,
which is in very good agreement with the result obtained
in Eq. (52) for a multilevel QD in the quantum limit linear
response regime (note that Ppeak = Q∗�T 2/4).

An expansion of Eq. (D13) around ηC = 1 yields

η(Ppeak) ≈ 1 + (1 − ηC) ln (1 − ηC), (D16)

Ppeak ≈ γ kB�T

1 + ē

(
1 + ē

1 + ē
(1 − ηC) ln (1 − ηC)

)
, (D17)

to be compared with the exact expansion [34]

η(Ppeak) ≈ 1 + (1 − ηC) ln (1 − ηC)

1.278
. (D18)

There is a good agreement between the two formulas, and
we can see that Eq. (D13) slightly underestimates η(Ppeak).
We stress that the expression of Ppeak for ηC ≈ 1, Eq. (D17),
shows that the peak power is proportional to �T , as opposed
to �T 2 as in the linear response regime. Furthermore the

peak power approaches its maximum value given by Ppeak =
γ kB�T/(1 + ē) when ηC = 1.

At last, we have computed numerically the maximum power
Pmax in the case of a two-level noninteracting QD. Pmax is
computed by maximizing the power only over V ; the peak
of Pmax as a function of μ will thus yield Ppeak. In Fig. 15
Pmax/Ppeak is plotted as a function of μ for �E = 20 kBT

and �E = 2 kBT , respectively, in panels (a) and (b). Each
curve corresponds to a different value of ηC , starting from
the linear-response case (black solid curve) to the extremely
nonlinear behavior (black dashed curve) at ηC = 0.99. In panel
(a), representing the quantum limit, all curves nearly coincide
with the linear-response one (apart for very large values of
ηC). For each value of ηC the height of the four peaks is equal,
contrary to the case where interaction is present (see Fig 11).
This is to be expected, since the two energy levels do not
influence each other in the quantum limit in the absence of
interaction, so the behavior is essentially dictated by a single
level. In the bottom panel instead, representing a case away
from the quantum limit, the external peaks are much higher
with respect to the internal peaks, especially for small values
of ηC . This is due to the fact that �E is of the order of kBT̄ and
therefore we cannot consider a single energy level at a time,
and this produces the peak asymmetry.
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[52] I. Weymann and J. Barnaś, Phys. Rev. B 88, 085313 (2013).
[53] F. Mazza, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio, and

F. Taddei, New J. Phys. 16, 085001 (2014).
[54] A. Agarwal and B. Muralidharan, Appl. Phys. Lett. 105,

013104 (2014).
[55] S. Donsa, S. Andergassen, and K. Held, Phys. Rev. B 89,

125103 (2014).
[56] Y.-C. Tseng, D. M.-T. Kuo, Y.-C. Chang, and C.-W. Tsai,

arXiv:1504.06082.
[57] E. Taylor and D. Segal, Phys. Rev. B 92, 125401 (2015).
[58] B. Szukiewicz, U. Eckern, and K. I. Wysokiński, New. J. Phys.
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