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Spontaneous twisting and shrinking of carbon nanotubes
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Deformations of single-wall carbon nanotubes are investigated within the tight-binding model with
deformation-dependent hopping energies. We show that the nanotubes tend to twist and shrink spontaneously at
zero temperature. The explicit values of the deformation parameters are computed for a wide range of nanotubes
with varying diameter and chirality. The changes of the spectral gap associated with the spontaneous deformation
are shown to depend on the chirality of the nanotubes.
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I. INTRODUCTION

Carbon nanotubes are considered as one of the most
promising materials for the future of electronic devices [1].
They can be both metallic or semiconducting, depending on
the orientation of the lattice in their shells [2], and their
electronic properties can be further altered through mechanical
deformations [3].

Charge carriers in metallic nanotubes can propagate over
long distances without being scattered by impurities [4–7].
This effect is understood as a manifestation of Klein tunneling
in the carbon nanostructures [8,9]. However, when the gap
opens, the electrons acquire an effective mass, the backscat-
tering on the impurities takes place, and the conductance
decreases [10].

In the zone-folding approach [11], the electronic properties
of carbon nanotubes are deduced from those of planar
graphene. Within this scheme, the hopping energies associated
with the three nearest-neighbor bonds are considered to have
the same value. It was predicted that one-third of the nanotubes
are metallic, while the rest contain a gap in their spectrum
and are semiconducting. In a more realistic description, the
orientation of the bonds in the shell of the nanotube is taken
into account [3,12]. It was shown that, in this case, a gap
proportional to the inverse of the nanotube radius, 1

R
, opens

both in zigzag and chiral metallic nanotubes, leaving the
armchair nanotubes as the only candidates for a genuine
one-dimensional metal.

A long time ago, it was found by Peierls [13] that one-
dimensional metals are unstable under distortions that open
a gap at temperatures T < Tc. This phenomenon was studied
for metallic carbon nanotubes [14–18], and it was shown that
the dimerization of the interatomic bonds (Kekulé distortion)
opens a gap even in the armchair nanotubes. Estimates of the
transition temperature Tc, in which the deformation energy
is too large to be compensated by the gap opening, vary from
Tc < 1 K in [14] to several tens of kelvins in [19] or even to the
room temperature for thin nanotubes [16]. In [18] it was found
that the transition temperature decays exponentially with the
radius. Later, it was argued that electron-electron interactions
[16] can enhance the Peierls distortion such that the transition
temperature behaves rather like 1

R3 . The dimerization of a

*jakub@ujf.cas.cz
†perez-obiol@ujf.cas.cz

nanotube is associated with the optical phonons, in which the
atoms of the two triangular sublattices oscillate with opposite
phase. It was discussed, e.g., in [18] that the acoustic phonons,
called twistons, can open a gap in the spectrum.

In nature, axially twisted single-wall carbon nanotubes can
be found in bundles of nanotubes [20]. They have also been
realized in experiments, where they have served as torsional
strings [21]. By altering the spectral gap, the twist affects
the transport properties of the nanotubes. In particular, the
twist can cause conductance oscillations, producing metal-
semiconductor transitions [22]. The existence of topologically
nontrivial static configurations—solitwistons—that minimize
the free energy at T = 0, were discussed in [17,18,23,24].

In the current paper, we address the question of whether
single-wall carbon nanotubes, both metallic and semiconduct-
ing, get spontaneously twisted and dilated at zero temperature.
We employ a generalization of the zone-folding approach,
where the tight-binding model assumes a modification of the
hopping energies between the nearest-neighbor atoms due to
the curvature, chirality, and elastic deformation (the twist and
the dilation) of the nanotube [25]. The article is organized as
follows. In the next section, the model of the axially twisted
and dilated nanotube, based on the tight-binding Hamiltonian,
is presented. In Sec. II, we study the case of infinitely long
nanotubes, which prove to be a relevant approximation of
the realistic systems. The twists, dilations, and energy gaps
corresponding to the most stable configurations are found
numerically for different radiuses and chiralities. The results
are discussed in the Sec. IV.

II. TIGHT-BINDING HAMILTONIAN

The crystal structure of an undeformed nanotube (n,m) is
defined by its circumference (wrapping) vector C0

h = na1 +
ma2, where a1 and a2 are the primitive translation vectors of
the hexagonal lattice. The associated translation vector T0

h =
t1a1 + t2a2 along the nanotube is fixed as the shortest vector
that satisfies C0

h · T0
h = 0 with integer valued t1 and t2. It can

be written explicitly as T0
h = 2m+n

d
a1 − 2n+m

d
a2 where d is the

greatest common divisor of 2m + n and 2n + m; see [11] for
more details.

The surface of the nanotube is parametrized as τ 0 =
(ξ 0,ζ 0) = (R�0,ζ 0), where ξ 0 ∈ [0,|C0

h|], �0 ∈ [0,2π ], and
ζ 0 ∈ [0,L], with L being the length of the nanotube. In these
coordinates, the circumference and the translation vectors
are C0

h = (|C0
h|,0)t and T0

h = (0,|T0
h|)t , respectively, and the
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associated reciprocal vectors are K0
1 = ( 2π

|C0
h| ,0) and K0

2 =
(0, 2π

|T0
h| ), respectively.

The chiral angle χ between the nearest-neighbor vector and
the circumference vector Ch reads χ = arcsin n−m

2
√

n2+m2+nm
.

Due to the symmetry of the hexagonal lattice, we can take
χ ∈ [0,π/6]. The nearest-neighbor vectors τ 0

i = (ξ 0
i ,ζ 0

i ), i =
1,2,3, are written as

ξ 0
1 = − acc cos χ, ζ 0

1 = − acc sin χ,

ξ 0
2 = acc cos

(π

3
− χ

)
, ζ 0

2 = − acc sin
(π

3
− χ

)
,

ξ 0
3 = acc cos

(π

3
+ χ

)
, ζ 0

3 = acc sin
(π

3
+ χ

)
, (1)

where acc = 0.142 nm is the distance between the carbon
atoms.

Dilation and axial twisting of the nanotube change the
coordinates from τ 0 to τ through the matrix D,

τ = D(δ,ε)τ 0, D(δ,ε) =
(

1 − νε Rεδ

0 1 + ε

)
, (2)

where ν = 0.165 is the Poisson ratio for graphite [26], δ is
the twist per length in units of rad/nm, and ε is the dilation
parameter. The radius of the dilated nanotube is Rε = (1 −
νε)R, where R =

√
3

2π

√
n2 + m2 + nm. We assume that Rδ �

1 and ε � 1. A deformation changes both the circumference
vector and the translation vector of the nanotube,

Ch = D(δ,ε)C0
h, Th = D(δ,ε)T0

h, (3)

as well as the reciprocal vectors,

K1 = K0
1 D(δ,ε)−1, K2 = K0

2 D(δ,ε)−1. (4)

The free electrons in the nanotube are labeled by three
quantum numbers: the longitudinal momentum k, the angular
quantum number α that acquires integer values and fixes
the angular momentum kξ = α

Rε
, and the spin of electrons

σ = ± 1
2 .

In principle, the longitudinal momentum also gets quan-
tized by the boundary conditions that depend on the particular
ending of the nanotube [27,28]. However, in our work, we
assume that the nanotube is infinite and that k takes a
continuum of values. This is a reasonable approximation since
very long nanotubes can be isolated in experiments [29,30].

The tight-binding Hamiltonian can be written as

Htb = −
∑
k,α,σ

(a†
k,α,σ ,b

†
k,α,σ )

×
(

0
∑3

η=1 tηe
iϕη∑3

η=1 tηe
−iϕη 0

)(
ak,α,σ

bk,α,σ

)
. (5)

Here, the operators a
†
k,α,σ and b

†
k,α,σ create electrons with the

longitudinal momentum k, angular number α, and spin σ on
the triangular sublattices A and B, respectively. The phase
factors ϕη depend on the coordinates of the nearest-neighbor
vectors τη. Defining k = (kξ ,k), they read [12,25]

ϕη = k · τη = α�η + kζη, �η = R−1
ε ξη. (6)

The hopping energies tη are altered due to the curvature of
the cylindrical surface and due to the mechanical deformation.
They can be expressed in terms of the metric and curvature
tensors gij and Kij ,

g =
(

(1 − νε)2 (1 − νε)Rεδ

(1 − νε)Rεδ (1 + ε)2 + R2
ε δ

2

)
,

K =
( 1

Rε
0

0 0

)
, (7)

as

tη = γ0

(
1 − 1

8
τ 0
ηiτ

0
ηjKjkKilg

lk

)
− κβγ0

2a2
cc

τ 0
ηiτ

0
ηj (gij − δij )

= γ0

[
1 − (1 − νε)2

8R2
ε

(ξ 0
η )2

]
− κβγ0

2a2
cc

[(ξ 0
η )2νε(νε − 2)

+ 2ξ 0
η ζ 0

η Rεδ(1 − νε) + (ζ 0
η )2(R2

ε δ
2 + 2ε + ε2)]. (8)

γ0 = 2.7 eV is the nearest-neighbor hopping parameter for
planar graphene [31]. The constant β = − ∂ ln γ0

∂ ln acc
expresses

dependence of the nearest-neighbor hopping parameter on the
interatomic distance. Its value is estimated to be β ∼ 2 [32].
However, there are experiments that indicate that its value
can be smaller [33]. The coefficient κ = μ√

2(λ+μ)
, with λ =

240 eV/nm2 and μ = 990 eV/nm2 being the graphene Lamé
parameters [34,35]. The correction term in the first bracket in
(8) is due to the curvature of the nanotube, while the second
term arises due to the deformation; see [25] for more details.

Let us define b′
k,α,σ = bk,α,σ

∑
η tηe

−iϕη

| ∑η tηe
−iϕη | . Then Htb can be

diagonalized in terms of the operators uk,α,σ and vk,α,σ [12,25],

Htb =
∑
k,α

(E+
kαu

†
k,α,σ uk,α,σ + E−

k,αv
†
k,α,σ vk,α,σ ),

uk,α,σ = 1√
2

(ak,α,σ + b′
k,α,σ ),

vk,α,σ = 1√
2

(ak,α,σ − b′
k,α,σ ), (9)

where E±
kα is defined as

E±(k,α) = ± [
t2
1 + t2

2 + t2
3 + 2t1t2 cos(ϕ2 − ϕ1)

+ 2t2t3 cos(ϕ3 − ϕ2) + 2t1t3 cos(ϕ3 − ϕ1)
] 1

2 .

(10)

Both tη and ϕη depend on the deformation parameters δ and ε,
while only ϕη depends on k and α.

In the zone folding of the dispersion relations [11], the
momentum k acquires the form

k = αK1 + sK2, (11)

with

α ∈
{

− nc

2
+ 1, . . . ,

nc

2

}
, s ∈ [−1/2,1/2],

and where nc = t1m − t2n. Note that in a deformed nanotube,
K1 and K2 are not perpendicular. The twist and deformation
cause tilting of K1 and shrinking of K2; see Fig. 1. The
longitudinal momentum can be obtained as k = k · K2

|K2| .
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FIG. 1. Primitive rectangular and hexagonal cells in the reciprocal
space for a (16,4) nanotube. The blue dashed cells correspond to the
nondeformed case, while the solid red cells represent a deformation
with ε > 0 and δ > 0. A finite dilation ε > 0 prolongs and shrinks
the cells in the ξ and ζ directions, respectively, while a finite twist
δ > 0 shears the cells in the ξ direction.

III. SPONTANEOUS DEFORMATIONS AT T = 0

The Hamiltonian for a carbon nanotube can be divided into
the tight-binding Hamiltonian, Htb, and the Hamiltonian of the
crystal lattice, Hlat,

H (δ,ε) = Htb + Hlat. (12)

Htb describes the π electrons of the nanotube, as in Eq. (9),
while Hlat characterizes the atomic displacements and vibra-
tions: the phonons. The interaction of π electrons with phonons
is rather implicit in Htb. It can be traced in the form of the
hopping energies tη and the phase factors ϕη; see Eqs. (6)
and (8), respectively. The lattice Hamiltonian can be further
divided into

Hlat = U (δ,ε) + Hvib. (13)

U (δ,ε) represents the energy stored in the static deformation,
and Hvib the energy of the vibrations of the atoms around their
equilibrium positions.

The elastic energy depends on how the atoms in the
lattice are shifted due to deformation, which is indicated by
the deformation vector of every atom, defined as u(ξ,ζ ) =
τ − τ0 = (−νεξ + Rεδζ,εζ ); see Eq. (2). In the continuum
limit, U (δ,ε) can be expressed in terms of the strain tensor,
which describes how u(ξ,ζ ) changes through the nanotube,

uij = 1
2 (∂iuj + ∂jui) =

( −νε 1
2Rεδ

1
2Rεδ ε

)
. (14)

The static energy U (δ,ε) as a function of the strain tensor is
then

U (δ,ε) =
∫

dxdy 1
2

{
(λ + μ)(uxx + uyy)2

+ μ
[
(uxx − uyy)2 + 4u2

xy

]}
= π R L[μR2

ε δ2 + λ(1 − ν)2ε2 + 2μ(1 + ν2)ε2].

(15)

The equilibrium configuration of a particular nanotube
corresponds to the absolute minimum in its free energy. Fixing
the chemical potential of the electrons and phonons to zero

[36], the free energy F in terms of the partition function reads

F (δ,ε) = −kBT ln Z(δ,ε), Z(δ,ε) = Tre− H (δ,ε)
kB T , (16)

where kB is the Boltzmann constant. For T = 0, it coincides
with the inner energy Ein,

F =Ein =U+Evib−Lε

π

∑ nc
2

α=− nc
2 +1

∫ c(α)+|K2|

c(α)
E+(k,α)dk,

(17)

where c(α) = −|K2|
2 − α δ

(1+ε) and Lε = (1 + ε)L is the physical
length. The first term represents the energy of the static
deformation. The third term corresponds to the energy of the
valence band with all its levels occupied and multiplied by 2
to account for spin degeneracy. The second term, Evib, is the
sum of all phonon energies, which at T = 0 corresponds to
the zero-point vibrations. In the harmonic approximation, the
phonon frequencies are functions of phonon momenta but are
independent of the temperature and both δ and ε.

The condition for the minimum of F can be written as

∂δF (δ,ε) = ∂εF (δ,ε) = 0, ∂2
δδF (δ,ε) > 0,

∂2
δδF (δ,ε)∂2

εεF (δ,ε) − [∂2
δεF (δ,ε)]2 > 0. (18)

It implies that the terms independent of either δ or ε do not
alter the position of the extremum of F in the (δ,ε) plane.

Numerically minimizing F/L with respect to δ and ε we
find the most stable configuration for a particular carbon
nanotube (n,m). We have considered all the possible nanotubes
with radiuses in the range 0.5 nm < R < 1 nm. Radiuses
smaller than 0.5 nm are outside the scope of the model we
use, which is only valid for small curvatures [37]. Nanotubes
with radiuses larger than 1 nm seem to collapse [38,39].
In Fig. 2, the magnitude of the twists is shown depending
on the chiral indices (n,m). All but zigzag and armchair
nanotubes are found to spontaneously twist a few rad every
10 μm. The nanotubes with mod (n − m,3) = 1 twist in

(rad/nm)

−0.0002

−0.0001

0

0.0001

0.0002

0.0003

FIG. 2. Spontaneous twist for all nanotubes with 0.5 nm < R <

1 nm organized by their chiral indices (n,m).
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−0.03430

−0.03425

−0.03420

−0.03415

FIG. 3. Spontaneous shrink for all nanotubes with 0.5 nm < R <

1 nm organized by their chiral indices (n,m).

opposite directions than the rest; note that nanotubes with fixed
mod (n − m,3) are represented in Fig. 2 by the diagonals
with slope 1. The twists increase with decreasing chirality
and radius, the most twisted nanotubes being those with the

FIG. 4. Gap for all nanotubes with 0.5 nm < R < 1 nm, chiral
indices such that mod (n − m,3) = 0, and ordered by increasing
radius. The circles and squares correspond, respectively, to the gaps
without and with deformation

smallest, nonzero chiral angle and radius. The fact that zigzag
and armchair nanotubes do not twist can be understood by
expanding the free energy in powers of δ up to δ2. On the one
hand, these nanotubes are axially symmetric and the linear
terms in δ always vanish. On the other hand, the quadratic
term is found numerically to be always positive, obtaining
thus a minimum at δ = 0, independently of the radius and the
shrinking.

In Fig. 3 the magnitude of the parameter ε is plotted for
all the nanotubes considered. In this case, we find that all
nanotubes shrink about 3.4%. Within the small differences,
the shrinkages decrease with the radius, the specific magnitude
of each depending mainly on the value of mod (n − m,3).
Nanotubes with mod (n − m,3) = 0,2 increase their shrink-
age with chirality, while the opposite happens with nanotubes
with mod (n − m,3) = 1.

Once the most stable configurations for the set of nanotubes
with 0.5 nm < R < 1 nm are found, it is natural to ask how
their spontaneous deformations affect their dispersion relation,
and in particular their energy gaps. The couplings tη appearing
in the dispersion relation are modified differently depending
on the chirality and the deformation of the nanotube. More
precisely, they depend on the coordinates of the corresponding
coupling vectors τη [Eq. (1)], which define the separation
and direction of the pair of nearest neighbors coupled by tη.

FIG. 5. Gap for all nanotubes with 0.5 nm < R < 1 nm, chiral
indices such that mod (n − m,3) = 1, and ordered by increasing
radius. The circles and squares correspond, respectively, to the gaps
without and with deformation
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FIG. 6. Gap for all nanotubes with 0.5 nm < R < 1 nm, chiral
indices such that mod (n − m,3) = 2, and ordered by increasing
radius. The circles and squares correspond, respectively, to the gaps
without and with deformation

Neglecting the twist and terms of order O(ε2) or superior, the
difference between the couplings with and without deforma-
tion is

t εη − t0
η = κβγ0

a2
cc

ε[ν(ξ 0
η )2 − (ζ 0

η )2] + O(ε2). (19)

Since ε � −0.034 for all nanotubes, this equation shows that,
with spontaneous shrinking, the coupling between two first
neighbors becomes larger the more they are oriented in the
axial direction. The quantity t2

1 + t2
2 + t2

3 does not depend on
the chiral angle and is affected mainly by ε. We find that
it is about 3% larger than in the case without deformation
(corresponding approximately to 3γ 2

0 ).
The energy gaps are computed by finding the minima of

E+(k,α) and multiplying their values by two. We compute
them for all the nanotubes considered, first fixing δ and ε to
zero and second to the values corresponding to the spontaneous
deformation. In both cases the magnitude of the gaps strongly
depends on the value of mod (n − m,3), which determines
how far the momentum lines are separated from the Dirac
point. In the case of nondeformed nanotubes, the shortest
distance between the Dirac point and the nearest momentum
line is 0 for mod (n − m,3) = 0 and accγ0

3Rε
for mod (n −

m,3) = 1,2. In Figs. 4, 5, and 6 we plot the gap values for the
nanotubes with, respectively, mod (n − m,3) = 0, 1, and 2.

Nanotubes with mod (n − m,3) = 0 have the smallest
gap, of the order of meV in the nondeformed case. When
considering the spontaneous deformation for this group of
nanotubes, the gaps grow by more than a factor ∼10 (except
the armchair nanotubes). The gap for the armchair nanotubes
is exactly zero for both the nondeformed and deformed
cases. In this case the deformation does not modify the
gap because, as commented before, these nanotubes do not
twist, and the shrinking in armchair nanotubes only causes a
displacement of the the Dirac points in the direction parallel
to K2.

The gaps for the (undeformed) nanotubes with mod (n −
m,3) = 1,2 are of the order of ∼0.5 eV, and their specific value
decreases slightly with the radius. When spontaneously de-
formed, nanotubes with mod (n − m,3) = 1 decrease their
gap, whereas the ones with mod (n − m,3) = 2 increase it.
The particular magnitude of the change in the gap is more
correlated to the chirality than to the radius, as Figs. 4,
5, and 6 suggest; the larger the chirality the larger is the
increase/decrease in the gap.

IV. CONCLUSIONS AND OUTLOOK

In our study we have considered how the free energy of
the nanotube, consisting at zero temperature of the static
elastic energy and the energy of the valence band, depend
on the twist and dilation of the nanotube. We found that at
the equilibrium marked by the minimum of the free energy,
all the considered nanotubes are spontaneously deformed.
At zero temperature, all nanotubes are shrunk about 3.4%,
and all but the armchair and zigzag nanotubes are twisted,
even if only with a twist of the order of δ ∼ 10−4 rad/nm.
Consequently, our model predicts a modification of the energy
gaps and hence the electronic properties of the nanotubes.
We found that the sign of the change of the gap depends
on the value of mod (n − m,3) and the magnitude of the
change strongly depends on the chirality of the nanotubes; see
Figs. 4, 5, and 6. This effect is especially relevant for the nan-
otubes where mod (n − m,3) = 0, in which the gap grows
considerably.

We considered deformations where the two triangular
sublattices were shifted in the same direction. Dimerization
(Kekulé distortion), where sublattices shift in opposite di-
rections, were not included into our model. Hence, arm-
chair nanotubes remain perfectly metallic, and the rest are
found to contain a gap of the order of a few hundreds
of meV.

The equilibrium configurations for the considered carbon
nanotubes have been obtained through a minimization of
their free energies, which at T = 0 and within the harmonic
approximation, do not depend on the lattice vibrations. At
finite temperatures, the excited electrons and phonons also
contribute to the free energy. The analysis of spontaneous
deformation at nonzero temperatures requires a quantitative
calculation of these contributions, which goes beyond the
scope of this article.

However, let us make a qualitative assessment on the
relevant effects as the temperature increases from T = 0.
Considering L to be finite again to avoid integrals in the
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formula, the free energy at finite temperatures is

F = U − 2
∑
k,α

E(k,α) + 1

2

∑
q,p

h̄ω(q,p)

− 4kBT
∑

k

ln(1 + e−E(k,α)/(kBT ))

+ kBT
∑
q,p

ln(1 − e−h̄ω(q,p)/(kBT )). (20)

k and q are the quantized longitudinal momenta of electrons
and phonons, and ω(q,p) are the phonon frequencies with
momenta q and p. The last two terms do not contribute
relevantly to the free energy at low temperatures due to
the factor kBT . In the harmonic approximation of lattice
dynamics, the phonon frequencies are independent of the
temperature and of the static deformations [40]. Hence, within
this framework, the spontaneous twisting and shrinking of the

nanotube would persist despite increasing the temperature.
Calculations beyond the harmonic approximation show that
the independence of ω(q,p) on the deformation parameters is
rather reasonable for very low temperatures (see Refs. [17,18]),
where the renormalized phonon frequencies were computed. It
suggests that our model can be quite a sensible approximation
at these temperatures. When the temperature crosses a critical
value, the frequencies depend on the deformation parameters.
Then the third term in Eq. (20), corresponding to the zero-point
vibrations, does not vanish when inserted into Eq. (18), and
the spontaneous deformations become suppressed at larger
temperatures.
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