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Anisotropic superfluidity of two-dimensional excitons in a periodic potential
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We study anisotropies of the helicity modulus, excitation spectrum, sound velocity, and angle-resolved
luminescence spectrum in a two-dimensional system of interacting excitons in a periodic potential. Analytical
expressions for anisotropic corrections to the quantities characterizing superfluidity are obtained. We consider
particularly the case of dipolar excitons in quantum wells. For GaAs/AlGaAs heterostructures as well as
MoS2/hBN/MoS2 and MoSe2/hBN/WSe2 transition-metal dichalcogenide bilayers estimates of the magnitude
of the predicted effects are given. We also present a method to control superfluid motion and to determine the
helicity modulus in generic dipolar systems.
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I. INTRODUCTION

Bose systems below quantum degeneracy temperature are
extensively studied now both theoretically and experimentally.
In the last decades many phenomena theoretically predicted for
weakly interacting Bose gases (Bose-Einstein condensation
(BEC), the Berezinskii-Kosterlitz-Thouless (BKT) transition
[1] to the superfluid state in two-dimensional systems, and
related effects) have been confirmed by experiments with
ultracold atoms or molecules in optical or magnetic traps
[2–5]. Actively studied are also the superfluidity and BEC
in systems of excitons [6], bound states of an electron and a
hole in semiconductor nanostructures, or exciton-polaritons,
mixed states of an exciton and a photon in an optical
cavity [7]. An important advantage of these systems over
the atomic/molecular ones is the low effective mass of the
particles, which leads to degeneracy temperatures on the order
of 1 K for excitons and tens of K for exciton-polaritons
compared to nK for the atomic systems. However, their
drawback is the finite lifetime of the particles which makes
the inclusion of kinetic effects in consideration necessary.

Systems of indirect, dipolar excitons are of particular
interest. Their important virtue is the considerably long
lifetime due to the small overlap of electron and hole wave
functions which suppresses recombination. In contemporary
studies the most widespread are 2D dipolar excitons [6,8,9] in
coupled quantum wells (CQWs) [8] and wide single quantum
wells (SQWs) [10,11] in a polarizing normal electric field.
After a pump pulse creating 2D dipolar excitons in a QW they
thermalize locally quite fast [12,13]. The excitons can then cool
down to low temperatures [14] due to the interaction with the
semiconductor lattice [15], as their lifetime is sufficiently long
[10,16]. Disorder (due to impurities and interface roughness)
[17,18], inevitably present in semiconductors, is screened by
the interexcitonic interactions [19] and is usually weak in wide
SQWs [10,20]. Fermionic (electron/hole) exchange effects in
exciton-exciton interactions [21] which destroy the “Bose-
ness” of excitons [22] and are disastrous [23–25] for the BEC
are suppressed at low densities if the dipole-dipole interaction
of excitons is sufficiently strong [26,27]. Excessive carriers
[28] also suppressing BEC [29,30] can be compensated by
injection of carriers with an opposite charge [10].

Finally, in the spatially separated [31,32] continuous wave
pumping regime, cooled (charge compensated [33]) excitons
flow to the studied area of the QW. They can be cooled addi-
tionally by evaporative techniques [34]. Due to the persistent
inflow of cooled excitons even the degrees of freedom lowest
in energy thermalize after a sufficiently long time [35]. These
considerations show that the BEC [29] (or at least mesoscopic
BEC [29] or quasicondensation [36]) of 2D dipolar excitons
is experimentally feasible [6,37].

The remarkable experiments on exciton BEC have mo-
tivated rapid development of theoretical ideas [38]. Many
interesting effects have been predicted for exciton BECs:
the existence of nondissipative electric currents [39] and the
internal Josephson effect [40], roton instability [41], autolo-
calization [42] and (mesoscopic [43]) supersolidity [44,45],
BKT transition [46] (crossover [47]) and vortex formation
[48], features of angle-resolved photoluminescence [49] and
nonlinear optical phenomena [50], as well as topological
excitons [51], dipole superconductivity [52], and the Casimir
effect [53]. Another interesting topic is exciton spin effects
that have been predicted to lead to a multicomponent BEC
[22], which has been recently observed experimentally [54].

Important progress has been also achieved for other re-
alizations: electron-electron bilayers in a quantizing magnetic
field [55], graphene bilayers [56] (including realizations with a
band gap [57]), topological insulator films [58], and cyclotron
spin-flip excitons in wide GaAs single quantum wells with a
2D quantum Hall electron gas at a filling factor of ν = 2 [59].

A high-temperature BEC phase of excitons [60] can occur
in 2D transition-metal dichalcogenides [61] based on [62,63]
MoSe2-WSe2 or [64] MoS2-MoS2 bilayers if an hBN film
is sandwiched in between two monolayers of a bilayer
[60].

Various types of electrostatic [65,66] and other [31,67] traps
for excitons are analogous to laser and magnetic traps for the
atomic ensembles, e.g., flat traps [68] where during exciton
lifetime an equilibrium density profile of excitons is formed
[69]. Specially designed electrostatic [70,71] and magnetic
[72] lattices allow one to create an external periodic potential
for excitons. Application of various voltage patterns [73]
can be used to create different types of potentials: confining
[65], random one-dimensional, and dividing the system with
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a barrier [74]. Superimposing two striped patterns [75] or
using more complex structures [71] allows one to construct
2D potentials of various forms for excitons. Varying the
in-plane landscape of an electrode [66] allows one to create
potentials [76] and traps [77] of different types as well as
potential energy gradients [78]. There is also another method
of controlling excitons: creating deformation waves [79]. A
stationary periodic potential in this case can be realized with
a standing acoustic wave.

BEC and superfluidity in periodic potentials is actively
investigated for bosonic atoms. Considerable success in this
field has been attained with atomic systems in laser traps [81]:
excitation spectrum measurements by Bragg spectroscopy
were performed [82], a roton-maxon form of the excitation
spectrum has been demonstrated [83], processes similar to
Bloch oscillations in crystals have been observed [84]. From
the theory side the ground state and excitation spectrum
have been calculated for models with a one-dimensional
periodic potential [85] and effects similar to the ones for
electrons in a crystal have been predicted, such as Bloch
oscillations [86]. The formation of new phases by spontaneous
symmetry breaking is also studied, in particular for dipole-type
interacting systems [87,88].

The majority of works, however, rely on the Bose-Hubbard
model corresponding to a very strong periodic potential. This
regime is hardly attainable for excitons for the following
reasons. In the deep-modulation regime, the effective exciton
mass is exponentially large [89]. Consequently, the superfluid
transition temperature is exponentially low, and even more
importantly, the sensitivity to disorder [90,91] and free carriers
increases greatly, setting very stringent constraints on the
sample quality.

We consider thus the experimentally relevant case of
excitons in a weak periodic potential which is opposed to the
Bose-Hubbard approximation. For a macroscopically ordered
excitonic system in the weak-modulation regime we show that
anisotropic superfluidity takes place, i.e., the dependence of the
superfluid system observables on the direction in space. The
superfluid density in this case turns out to be a tensor instead
of a scalar. This precludes an interpretation of the superfluid
density as being proportional to the number of particles in the
condensate, which is always a scalar [92].

One of the most famous examples of an anisotropic
superfluid system is liquid 3He [93–95]. Anisotropy there is
caused by a condensate of atomic pairs with nonzero spin
formed at low temperatures. Anisotropic superfluidity has
been observed in atomic systems in optical lattices [96,97]
due to asymmetry x ↔ y of the lattice potential. In this case
anisotropy can be controlled: the reciprocal lattice vector
sets the selected direction and the amplitude of the potential
governs the strength of anisotropic effects.

There are the following observable effects related to
anisotropic superfluidity:

(1) Changes in the vortex shape: nondissipative currents
around the vortex core flow in ellipses rather than circles. In
the 3D case this leads to an elliptical form of vortex loops [97].
Vortex cores become elliptical as well [98].

(2) Anisotropic optical coherence due to anisotropy of
correlations [99]: visibility of the interference pattern in
Young’s experiment [29] depends on the mutual orientation

of the condensate areas emitting light [100]. In particular,
coherence length may depend on the direction in space
[80].

(3) In the strong-anisotropy limit a finite system can
effectively change its dimensionality [101]. Thus a long
quasi-1D strip can behave like a 2D system [96] so that its
transition to the normal phase can be of BKT type. In 3D
systems vortex loops can collapse to 2D vortex-antivortex
pairs, dissociation of which leads to a BKT-type transition
[97,102].

(4) Finally, let us mention effects caused by the anisotropy
of interparticle interactions rather than the superfluid density:
anisotropies of sound [103], Landau critical velocity [104],
dissipation [105], and of vortex properties: shape of the vortex
core and intervortex interactions [106], as well as appearance
of complex vortex structures [107].

The aim of our work is to demonstrate the anisotropic su-
perfluidity in a model of a weakly interacting two-dimensional
Bose gas in a periodic potential, namely the effect of anisotropy
of the potential on the superfluid motion characteristics and
the elementary excitations. We will concentrate our attention
on the dynamical/superfluid properties, and their anisotropic
character. In the present article we consider a system of 2D
dipolar excitons as an experimental realization of the model
studied, though qualitative conclusions can be generalized
to ultracold atomic systems. We present estimates of the
magnitudes of the effects related to anisotropic superfluidity
for the chosen physical realization.

The article is organized as follows. In Sec. II the tensor
character of the superfluid density and anisotropic effects
are discussed qualitatively. In Sec. III a theoretical model is
considered and analytical expressions for observable quantities
are obtained. In Sec. IV physical realizations of the studied
model are described and qualitative manifestations of the
anisotropic superfluidity are discussed. In Sec. V we present
estimates for the experimental effects proposed. An outlook of
the results obtained is presented in Sec. VI.

II. ANISOTROPIC SUPERFLUIDITY

In this work we consider three types of anisotropy: of sound
velocity Cs and of quantities related to linear response—
superfluid mass density ρs and helicity modulus Ys [108].
Anisotropy can have effect not on all the quantities; e.g., for
bosons with an anisotropic interaction the critical velocity
turns out to be anisotropic while the sound velocity is not
[104].

Quantity Cs can be deduced from the single-particle
excitation spectrum ε(p) of the system. In the isotropic
case energy of the excitations depends only on magnitude
of the vector p; we will show that in the presence of
an anisotropic potential the excitation spectrum as well
as Cs also depend on the direction of p. A direct mea-
surement of Cs or ε(p) is needed to detect this type of
anisotropy.

Quantities ρs and Ys are linear response coefficients
connecting macroscopic flow parameters of the system such
as current J, total momentum P, and energy E to infinitesimal
probe velocity v or momentum P transferred to each particle.
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In the isotropic case one has

J

S
= h̄

2miS

∫
〈�̂+(r)∇�̂(r) − [∇�̂+(r)]�̂(r)〉dr = YsP,

P

S
= 1

S

∫
〈�̂+(r)(−ih̄∇)�̂(r)〉dr = ρsv, (1)

E

S
= E(P = 0)

S
+ YsP2

2
= E(P = 0)

S
+ ρsv2

2
,

where S is the system’s area, P = mv is the probe momentum,
and a “phase twist” [108] condition is implied onto the field
operator �̂(r): �̂(r + L) = exp (iPL/h̄)�̂(r), where L is the
linear size of the system. It is natural to assume that definitions
of ρs and Ys through momentum/current and energy coincide,
though a general proof (including anisotropic case) for this
statement has not been found by the authors but for the model
we consider it follows from direct verification of the relation
J = dE/dP.

Quantities ρs and Ys can be presented in the following form:
ρs = nsm and Ys = ns/m, where m is the mass of particles
and ns is the superfluid density. Temperature and external
fields can lead to ns being smaller than full density n. This
effect can be interpreted as being due to presence of a “normal
component,” which can be subject to dissipation and does not
take part in the superfluid motion.

Let us discuss qualitatively what differences will be there
for a system in an anisotropic external potential. For a single-
particle problem it is known that a periodic potential leads
to a change of the initial particle’s mass to an effective mass
tensor. Noticing that ρs and Ys play a role similar to mass in the
expression for energy of the multiparticle system (coefficient
with the square of velocity/momentum) we assume that ρs

and Ys are also anisotropic tensor quantities. In this case for
infinitesimal P, v energy of the system per unit area will have
the form

E

S

∣∣∣∣
P→0

≈ E(P = 0)

S
+

∑
ij

(ρs)ij vivj

2

= E(P = 0)

S
+

∑
ij

(Ys)ijPiPj

2
, (2)

or after substitution P1 = |P| cos φ, P2 = |P| sin φ:

E

S

∣∣∣∣
P→0

≈ E(P = 0)

S
+ Ys(φ)P2

2
. (3)

Total momentum P and current J will be related to probe
momentum and velocity in a similar way:

Ji

S
=

∑
j

(Ys)ijPj ,

Pi

S
=

∑
j

(ρs)ij vj . (4)

In particular, it follows from (4) that the probe velocity can
be noncollinear with the total momentum. Quantity ns can be
defined similarly to the isotropic case ρjl = m2Yj l = mn

jl
s ;

however, it will also be a tensor quantity which complicates
the usual interpretation of the system as a mixture of “normal”
and “superfluid” components. Let us mention that in the case

when the initial mass of the particles is taken to be anisotropic
(e.g., for a semiconductor with noncubic lattice) ns can be a
nonsymmetric tensor unlike ρs and Ys for which symmetry
follows from the definition (2).

Let us discuss methods to measure the helicity modulus and
superfluid mass density experimentally. To determine them
one should transfer a uniform momentum P or velocity v to all
the particles. Both options can be implemented: momentum
can be transferred to excitons in crossed magnetic and electric
fields by an adiabatic switch of the last one (see Sec. IV)
and velocity, by setting the external potential into motion
V (r) → V (r − vt). In the first case there will also be an
effective addition to the exciton mass although it is negligibly
small in sufficiently weak magnetic fields. Transforming the
Hamiltonian to a moving reference frame one can show
the equivalence of these approaches and that the transferred
momentum is related to velocity through P = mv, where m

is the exciton mass. What is left is to propose a method of
measuring the system’s current and momentum which is done
in Sec. IV for a dipolar excitonic system.

Concluding the above one can see that to determine the
parameters of anisotropic superfluidity one has to find mean
values of Hamiltonian 〈Ĥ 〉 and current or momentum for
the system in a state corresponding to a uniform motion
with single-particle momentum P or velocity v and also the
excitation spectrum ε(p).

III. THEORETICAL ANALYSIS

Let us proceed to the theoretical model formulation. We
will work with the following assumptions:

(1) The density of excitons is low enough and repulsion
between the particles is sufficiently strong so that their
composite fermionic structure can be ignored. Therefore, the
excitons are considered to be strictly bosons.

(2) Correlations are weak so that (N − N0)/N � 1, where
N is the total number of particles and N0 is the number of
particles in the condensate [109].

(3) Modulation of the condensate profile by the periodic
external field is weak. Specifically, we assume that V0 is small
compared to μ.

(4) Interparticle interactions do not involve spin and thus
we ignore spin degrees of freedom for excitons [110].

Thus, the considered system is a gas of weakly interacting
bosons in an external periodic potential. The Hamiltonian of
the system (after change of variables from particle number to
the chemical potential μ) is

Ĥ − μN̂ =
∫

�̂+(r)

(
− h̄2

2m
� + V (r) − μ

)
�̂(r)dr

+ 1

2

∫
�̂+(r)�̂+(r′)U (r − r′)�̂(r′)�̂(r)dr′dr,

(5)

where V (r) = V0 cos qr is the external potential and U (r −
r′) is the interparticle potential, which we consider to be
symmetric under transformation r ↔ r′. We also assume the
initial mass of the particles to be isotropic (it is true for, e.g.,
excitons in GaAs-based structures). In what follows we will
consider the system at T = 0.
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For weakly correlated 2D bosons a standard Bogoliubov
approach is applicable, provided one replaces bare interaction
with an effective one arising from the summation of ladder
diagrams [111]. The condensate contribution to the energy of
the system is

Econd =
∫

�∗(r)

(
− h̄2

2m
� + V (r)

)
�(r)dr

+ 1

2

∫
�∗(r)�∗(r′)U (r − r′)�(r)�(r′)dr′dr. (6)

Condensate wave function �(r) satisfies the Gross-
Pitaevskii equation (with μ being determined by normalization
condition):(

− h̄2

2m
�+ V (r) − μ+

∫
U (r − r′)|�(r′)|2dr′

)
�(r) =0,

∫
|�(r)|2dr = N0. (7)

One should keep in mind that N is the problem parameter
while N0 is not. They are connected through the relation N =
N0 + N ′, where N ′ is the number of particles depleted from
the condensate which will be defined later in the article; both
N0 and N ′ can depend on P. We seek the solutions of Eq. (7)
as a power series in V0. For a uniformly moving condensate
the zeroth-order solution is taken as constant × eikr, where
k = P/h̄. The solution for �(r) and μ up to the second order
in V0 is

�(r) ≈ √
n0e

ikr

× [(
1 − V 2

0 ��0
) − V0�+eiqr − V0�−e−iqr],

�± = T ∓ α

2κ
, ��0 = �2

+ + �2
−

2
,

μ = h̄2k2

2m
+ n0U0 − V 2

0 T
T 2 − α2

2κ2
, (8)

where notations are introduced as follows: n0 = N0/S, Uq =∫
U (r)eiqrdr, U = n0Uq, T = h̄2q2/2m, α = h̄qP/m, κ =

T 2 + 2T U − α2. We have omitted the terms ∼e2iqr, e−2iqr

as their contribution to the quantities calculated further in text
(condensate energy, excitation spectrum, etc.) is of higher than
second order in V0. In the case P = 0 the solution takes the
form

�(r) ≈ √
n0

(
1 − V 2

0

4(T + 2U )2
− V0

T + 2U
· cos qr

)
, (9)

which clearly demonstrates periodic modulations of the
condensate’s density (with period determined by the external
potential), i.e., diagonal long-range order.

In Fig. 1 we compare the approximate solution (9) with a full
numerical solution. The approximation (9) gives a reasonably
good result (average relative error <10%), particularly taking
into account rather large anisotropic effects (see Table II) for
the same set of parameters. In what follows we use (8) to obtain
closed analytical expressions for the quantities of interest.

0
0

0.5

1

1.5

2

qx

Φ
)x (

n 0
√

π/2 π 3π/2

FIG. 1. Solution of the Gross-Pitaevskii equation (7) with the
parameters taken for the MoS2/hBN/MoS2 structure (see Table I).
Red dashed line is the approximate solution (9); solid blue line is the
numerical solution of (7).

Substituting the obtained solution into the expression for
the energy (6) one has

Econd

S
= Econd(P = 0)

S
+ P2

2m
n0

+ 1

2

[
n2

0 − n2
0(P = 0)

]
U0 − mV 2

0 n0α
2

h̄2q2(T + 2U )2
.

(10)

It is also possible to calculate the condensate contribution to
the current J:

Jcond

S
= P

m
n0 − V 2

0 n0αh̄q
mT (T + 2U )2

. (11)

Let us move on to the noncondensate part. We use the
Bogoliubov transformation:

�̂ ′(r) =
∑

l

[ul(r)âl − v∗
l (r)â+

l ], (12)

where operators âl and â+
l satisfy Bose commutation relations.

Diagonalizing the noncondensate Hamiltonian we obtain
equations for ul(r) and vl(r):

T̃ ul(r) − Ũvl(r) = εlul(r),

T̃ v∗
l (r) − Ũu∗

l (r) = −εlv
∗
l (r), (13)

where

T̃ f (r) ≡
(

− h̄2

2m
� + V (r) − μ

+
∫

|�(r′)|2U (r − r′)dr′
)

f (r)

+�(r)
∫

�∗(r′)U (r − r′)f (r′)dr′,

Ũf (r) ≡ �(r)
∫

�(r′)U (r − r′)f (r′)dr′.

One can show that if the above equations are satisfied then the
excitation Hamiltonian takes the form

(Ĥ − μN̂ )′ =
∑

l

εl â
+
l âl −

∑
l

εl

∫
|vl(r)|2dr,
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and the mean noncondensate density is

n′ = 1

S

∫
〈�̂ ′+(r)�̂ ′(r)〉dr = 1

S

∫ ∑
l

|vl(r)|2dr.

Equations (13) are solved (and the excitation spectrum is found) approximately up to the second order in V0. The Bogoliubov
coefficients u, v are then

ul(r) = 1√
S

upe
i(k+p)r, vl(r) = 1√

S
vpe

i(−k+p)r,

up = u0
p − V0(u+

p eiqr + u−
p e−iqr) + V 2

0 �u0,

vp = v0
p − V0(v+

p eiqr + v−
p e−iqr) + V 2

0 �v0, (14)

u0
p = 1

2

(√
2mε0

p

h̄2p2
+

√
h̄2p2

2mε0
p

)
,v0

p = 1

2

(√
2mε0

p

h̄2p2
−

√
h̄2p2

2mε0
p

)
,

ε0
p =

√(
h̄2p2

2m

)2

+ n0Up
h̄2p2

m
,

where v±
p and u±

p are given by

u±
p = A±

(
T± + n0Up±q + ε0

p ∓ α
) + B±n0Up±q(

ε0
p±q

)2 − (
ε0

p ∓ α
)2 ,

v±
p = A±n0Up±q + B±

(
T± + n0Up±q − ε0

p ± α
)

(
ε0

p±q

)2 − (
ε0

p ∓ α
)2 ,

A± = u0
p
T 2 − α2

2κ
− T n0(Up + Up±q)

2κ
f− ± αn0

Upf− − Up±qf+
2κ

, (15)

B± = v0
p
T 2 − α2

2κ
+ T n0(Up + Up±q)

2κ
f− ± αn0

Upf− + Up±qf+
2κ

,

f+ =
√

2mε0
p

h̄2p2
, f− =

√
h̄2p2

2mε0
p
,

where T± = h̄2(p ± q)2/2m. The second-order corrections �v0
p and �u0

p are

2v0
p�v0

p = n0Up

2
(
ε0

p

)2

(
Av0

p + Bu0
p

) + C
(
v0

p

)2
,

2u0
p�u0

p = n0Up

2
(
ε0

p

)2

(
Av0

p + Bu0
p

) + C
(
u0

p

)2
,

A = T 2 − α2

2κ
(u+

p + u−
p ) − T 2 − α2

2κ2
T u0

p + n0Up[(�2
+ + �2

−)f− + �+v−
p + �−v+

p − �+u+
p − �−u−

p ]

+ n0Up+q�−
(
�+v0

p − �−u0
p + v+

p − u+
p

) + n0Up−q�+
(
�−v0

p − �+u0
p + v−

p − u−
p

)
, (16)

B = T 2 − α2

2κ
(v+

p + v−
p ) − T 2 − α2

2κ2
T v0

p + n0Up[−(�2
+ + �2

−)f− + �+u+
p + �−u−

p − �+v−
p − �−v+

p ]

+ n0Up+q�+
(
�−u0

p − �+v0
p + u+

p − v+
p

) + n0Up−q�−
(
�+u0

p − �−v0
p + u−

p − v−
p

)
,

C = (v+
p + u+

p )(v+
p − u+

p ) + (v−
p + u−

p )(v−
p − u−

p ).

The excitation spectrum is given by

εp = ε0
p + h̄p

P
m

+ V 2
0 �εp,

�εp = −(
u0

pA + v0
pB

)
. (17)

In Fig. 2 we present a spectrum for one of the structures described in Secs. IV and V. At low p it has the linear Bogoliubov form
with anisotropic sound velocities (see also Table II). For p ‖ q one can see a characteristic flattening starting near p ≈ q/2. This
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is a signature of the spectrum splitting near the edge of the Brillouin zone defined by the external potential. The expression (17)
is not applicable in this region. In what follows we consider the superfluid properties of the system, which are determined by the
low-p part of the spectrum, so we do not consider the effects induced by the splitting and the corresponding region is omitted
in the figure. Another interesting detail is a developing roton-minimum-like feature for p ⊥ q. However, it is clearly far from an
instability and we do not study this feature in detail, as it does not affect the superfluid properties that we consider below.

For the depleted density we have

n′ = n − n0 = 1

(2π )2

∫
dp

{∣∣v0
p

∣∣2 + V 2
0 |v+

p |2 + V 2
0 |v−

p |2 + 2V 2
0 v0

p�v0
p

}

= 1

(2π )2

∫
dp

{∣∣v0
p

∣∣2 + V 2
0 n0Up

Av0
p + Bu0

p

2
(
ε0

p

)2 + V 2
0 (|v+

p |2 + |v−
p |2)u2

0(p) − V 2
0 (|u+

p |2 + |u−
p |2)v2

0(p)

}
. (18)

Thus, taking into account N0 + N ′ = N we have an equation
for N0. For an arbitrary potential the integral in (18) cannot be
evaluated analytically; however, one can study its convergence.
For convergence at p → 0 and p → ∞ it is sufficient for the
potential Up to be finite. In the second order in V0 there are
also two problematic points where εp = εp+q ∓ α. For P = 0
(α = 0) the singularity can be integrated in the principal value
sense without taking splitting into account. In the case when
P �= 0 this is not possible because the singularity is 1/x2.
However, taking splitting into account will certainly lead to a
finite result. Then it turns out that condensate depletion in the
system is finite and consequently there is a nonzero condensate
fraction for the weakly correlated system [112].

The contribution of the depleted particles to the energy of
the system takes the form

〈Ĥ ′〉 = μN ′ −
∑

l

εl

∫
|vl(r)|2dr

= μn′S− S

(2π )2

∫
dpε(p)

{∣∣v0
p

∣∣2 + V 2
0 n0Up

Av0
p + Bu0

p

2
(
ε0

p

)2

+V 2
0 (|v+

p |2 + |v−
p |2)

(
u0

p

)2 − V 2
0 (|u+

p |2 + |u−
p |2)

(
v0

p

)2
}
.

(19)

Let us discuss the convergence of expression (19). The
first term diverges at large momenta for potentials finite
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FIG. 2. Spectrum of elementary excitations [Eq. (17)] for the
MoS2/hBN/MoS2 structure (see Table I). Shown are the excitation
energies depending on the value of the momentum p measured in
units of the reciprocal vector of the periodic potential q for p along
and across q. For p ‖ q the region where the splitting effects become
important (see text) is omitted.

at p → ∞; however, this is resolved by taking the second
Born approximation for the interaction potential into account.
For convergence of the remaining terms at p → ∞ it is
necessary to put a more stringent condition than before on Up:
2Up − Up+q − Up−q = O( 1

|p|β ), β > 0, |p| → ∞. However,
even for a delta-function potential it is clearly fulfilled. For
real physical potentials this condition is met because of the
finite size of the particles, inside which large repulsion forces
act, e.g., in a model potential for dipolar excitons constructed
in accord with the results of a numerical simulation (see
Appendix A 1).

It is also not possible to give an analytical answer for (19)
in the general case but it is possible to draw conclusions on the
dependence of 〈Ĥ ′〉 on P. It turns out [113] that for small P

〈Ĥ ′〉 ≈ 〈Ĥ ′〉 |P→0 +aE′α2,

n′ ≈ n′ |P→0 +an′α2, (20)

where aE′ and an′ are constants. Now one can show using the
expression (10) that the total energy of the system takes the
form

E

S

∣∣∣∣
P→0

≈ E(P = 0)

S
+ P2

2m
n + aE

2
(qP)2

= E(P = 0)

S
+

∑
ij

(
n

m
δij + aEqiqj

)
PiPj/2, (21)

where aE is a constant. Comparing with helicity modulus
definition (2) we have (Ys)ij = (n0/mδij + aEqiqj ). To obtain
superfluid mass density ρs one should express momentum
P through velocity and substitute into (21). Comparing
with the definition we have (ρs)ij = m2(Ys)ij = (n0mδij +
aEm2qiqj ). Thus we have shown that the system under study
is superfluid and the helicity modulus and the superfluid mass
density are anisotropic tensor quantities.

One can come to similar conclusions starting from defini-
tions (4). The noncondensate contribution to the total current
is then given by

J′

S
= h̄

2miS

∫
〈�̂ ′+(r)∇�̂ ′(r) − [∇�̂ ′+(r)]�̂ ′(r)〉dr

= P
m

n′ + 1

m(2π )2

∫
dpp

{∣∣v0
p

∣∣2 + V 2
0 |v+

p |2

+V 2
0 |v−

p |2 + 2V 2
0 v0

p�v0
p

} + h̄qV 2
0 {|v+

p |2 − |v−
p |2}.
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From the calculations above we can quantitatively discuss
anisotropy of sound velocity. It can be obtained from the
spectrum (17) as Cs = ∂εp/∂p|

p,P=0 yielding

Cs =
√

n0U0

m

(
1 − V 2

0

(T + 2U )2
cos2 ϕ + V 2

0 (T − U )Uq

U0(T + 2U )3

)
,

(22)

where ϕ is the angle between p and q. One can see the
presence of an anisotropic contribution in (22). It is interesting
to note that corrections to (17) due to periodic potential become
unimportant as p → ∞. One can prove that �εp → constant
if |p| → ∞, becoming negligible compared to ε0(p).

To demonstrate the physics of anisotropic superfluidity we
would also like to calculate Ys . The calculation can be carried
out properly with the help of the relation [91]

Cs(φ) =
√

dμ

dn
Ys(φ),

dμ

dn
= dμ

dn0

(
dn

dn0

)−1

, (23)

where φ is the angle between q and v and all the quantities are
taken at P = 0.

The condensate depletion is n′ ≈ n0mU0/(2πh̄2); i.e., we
have n0(dn/dn0) = n. One obtains using (22)

Ys(φ) = n

m

(
1 − 2

V 2
0

(T + 2U )2
cos2 φ

)
. (24)

As is discussed in Sec. II [see Eqs. (2), (4)], the helicity
modulus is in general case a tensor. To illustrate this we rewrite
Eq. (24) in tensor form [114]:

||Ys || = n

m

(
1 − 2�s 0

0 1

)
, (25)

where the x axis is along the wave vector and the anisotropy
parameter �s is defined as follows:

�s = V 2
0

(T + 2U )2
. (26)

It is useful to consider a particular case where the form of
Ys(φ) is known. Let us consider a case when |q| → ∞, Up =
U0 = constant. In this case it should be possible to explain
the anisotropy of Ys from an effective mass point of view.
The effect of an external potential V (r) is then reduced to
substitution of the initial mass with a tensor mij determined
from a single-particle problem in the potential V (r). With
accuracy up to the second order in V0 in coordinates where the
x axis is along q, mij has the form

mij = miδij , m1 = m + 8m3V 2
0 /(h̄q)4, m2 = m.

Energy calculation for motion with probe momentum P
leads us to

E

S

∣∣∣∣
P→0

≈ E(P = 0)

S
+ 1

2

∑
ij

(m)−1
ij PiPj .

Then we have from the definition (3)

Ys(φ) = n

m + 8m3V 2
0 /(h̄q)4

cos2 φ + ns

m
sin2 φ

≈ n

m

[
1 − 8m2V 2

0 /(h̄q)4 cos2 φ
]
,

which coincides with (24).

Thereby we have shown the presence of a BEC, super-
fluidity and a diagonal long-range order in the system and
demonstrated anisotropy of superfluid properties. However,
despite the occurrence of BEC, superfluidity, and diagonal
long-range order, the system it is not a real supersolid. Indeed,
the diagonal long-range order does not involve the possibility
of static deformations because the order is created artificially
by the external potential. In a true supersolid, on the contrary,
the modulations emerge due to self-organization, caused by
the instability of the homogeneous phase with respect to the
formation of periodic (crystalline) modulation in the density
profile, static deformations being possible.

The results obtained can be generalized for spatial lattices
additively for energy, spectrum, and condensate depletion
because all of the equations studied were linearized and
for energy and current cross terms stemming from different
modulation wave vectors vanish after integration. For a limit
|q| → ∞, Up = U0 = constant and a square or triangular
lattice one can see that anisotropy of helicity modulus and
superfluid mass density is absent. It is also convenient to
generalize results for three-dimensional systems; the only
peculiarity is an additional constraint 2Up − Up+q − Up−q =
O( 1

|p|1+β ), β > 0, |p| → ∞ for the noncondensate energy to
converge.

A straightforward generalization can be also obtained in
the case when there is an intrinsic mass anisotropy. An answer
for the helicity modulus can be obtained for this case by
transforming the tensor (25) to the frame where the mass tensor
is diagonal and changing the definition of �s :

||Ys || =
(

n0/m1 − A1 −A12

−A12 n0/m2 − A2

)
, (27)

where

A1 = 2
V 2

0 h̄2q2
1n0

T ′(T ′ + 2U )m2
1

, A2 = V 2
0 h̄2q2

2n0

T ′(T ′ + 2U )m2
2

,

A12 = V 2
0 h̄2q1q2n0

T ′(T ′ + 2U )m1m2
, T ′ = h̄2q2

1

2m1
+ h̄2q2

2

2m2
,

with q1 and q2 being the components of q in the principal axes
frame of the mass tensor and m1, m2 are its eigenvalues.

IV. PHYSICAL REALIZATION

To observe the effects described in Sec. III we propose to
use a system of dipolar excitons in a QW (or coupled QWs) in
an external electrostatic field created by electrodes sputtered
on the sample. A principal scheme of the realization discussed
is shown in Fig. 3. The bottom electrode is a flat layer of
a doped semiconductor. The top one consists of periodically
arranged (with period a + b) metallic stripes of width a, with
the separation between them being b. We assume the thickness
of the stripes to be small enough for the top electrode to be
semitransparent for recombination radiation of photons.

The inhomogeneous electrostatic field appearing when
voltage is applied to the electrodes creates a periodic potential
for the excitons in the QW plane by interacting with their
dipole moment. The period λ of the potential depends on the
overall period of the top electrode a + b as well as on the
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FIG. 3. Cross-sectional sample scheme. Dark areas on the top are
the metallic stripes of the upper electrode, shaded area in the middle is
the QW region, and shaded area at the bottom is the lower electrode.

distribution of voltages on them (for the case in which it is
not uniform). Magnitude of the applied voltage determines the
amplitude of potential oscillations V0 as well as the constant
component Eav = {0,0,Eav

z } of the electric field. The latter
determines the dipole moment of the excitons in single QWs
and their lifetime in the radiation zone [115].

The proposed realization has two important limitations.
First, for observing excitons in a superfluid state it is necessary
for them to be in thermodynamic equilibrium. This happens
only if the excitons’ relaxation time is not larger than their
lifetime determined by recombination processes. The second
limitation arises because of the presence of an electric field
component parallel to the QW plane in electrostatic traps. In
the case when dipole energy becomes on the order of the
exciton binding energy, the electron and hole may tunnel to
an unbound state which leads to large leakage and prohibits
observation of condensation [116].

Now we discuss experimental manifestations of anisotropic
superfluidity in the proposed realization following the results
of Sec. III. First of all we note that the density of the condensate
is periodically modulated [see (8), (9)]. In the case of direct
optical recombination of excitons this will lead to additional
features in their luminescence. For a uniform condensate
luminescence is normal to the QW plane [29] with wave
vector kz given by Eg/h̄c, where Eg is the excitonic gap
and c is the speed of light in vacuum. In the presence of
a modulation �(r) contains harmonics carrying momentum
±q. This momentum can be transferred to photons leading
to the appearance of two additional luminescence rays with
momentum (±q,

√
k2
z − q2). They will be directed at angles

θlum = ± arcsin(|h̄q|c/Eg) with respect to the normal to the
QW plane in the cross-sectional plane (see Fig. 4). The
intensity of these additional rays will be proportional to |�±|2
[see Eq. (8)]. In the case of an external potential consisting of
more than one harmonic, the above considerations lead to a
“fan” (in the 1D case) or a “lattice” of additional luminescence
rays (a similar effect has been predicted for stimulated
many-photon recombination of an exciton BEC in [50]). Note
that in our model the order parameter should contain higher
harmonics; however, their intensity is small. The magnitude
of the second harmonic should be ∼O([V0/(T + 2U )]2) and
thus the intensity of corresponding luminescence rays is on the
order of ∼O([V0/(T + 2U )]4) compared to the central ray.

As a direct consequence of the superfluid density
anisotropy, the shape of the angle-resolved luminescence

θlum

FIG. 4. Luminescence of a modulated excitonic condensate.
Additional rays appear due to the oscillations of the order parameter,
with the higher harmonics being suppressed. Thickness of the wavy
lines corresponds to the intensity of the radiation. The upper electrode
is semitransparent and its effect on the luminescence can be neglected.

profile close to the normal direction is elongated along q and
compressed in the perpendicular direction. At finite tempera-
tures the intensity of the quasicondensate luminescence can be
calculated by means of the hydrodynamic method in quantum
field theory [91,117–119] with the result being [120]

I (ϑ,ϕ) = K
(c̃Eg/cT )γ

[sin2 ϑ(1 − 2�s cos2 ϕ)]1−γ /2
,

(28)

K = K0EgmT η

(2πh̄)2τbright
, γ = mT

2πh̄2n
√

1 − 2�s

,

where ϑ is the angle between the luminescent ray and
the normal to the QW plane, c̃ = √

U0n/m, K0 ∼ 1 is a
dimensionless constant, τbright is the exciton lifetime in the
radiative zone, η = N0/N is the zero-temperature condensate
fraction, and T is the exciton temperature, which is assumed to
be finite, but low enough [121]. Rays corresponding to higher
harmonics of the anisotropic potential acquire analogous
anisotropic shape.

Moreover, the luminescence spectrum also acquires an
anisotropic form:

I (ϑ,ϕ,ω) = I 0
ϕϑδ(Eg + μ − εϕϑ − h̄ω),

I 0
ϕϑ = K0E

3
g

(2πh̄c)2τbright

∫
|vo|2 dr

S
, (29)

εϕϑ = (
Cπ/2

s

/
c
)
Eg sin ϑ

√
1 − 2�s cos2 ϕ,

where ox = qr sin ϑ cos ϕ, oy = qr sin ϑ sin ϕ, qr = Eg/h̄c,
the dependence of vo on r is given by (14), and C

π/2
s is

equal to Cs [see (22)] for ϕ = π/2. It is remarkable that
the luminescence frequency in (29) depends on the in-plane
angle ϕ. The frequency shift between the directions ϕ = 0 and
ϕ = π/2 is then given by

δω = (
Cπ/2

s /c
)
Eg sin ϑ(1 −

√
1 − 2�s), (30)
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(a) (b)

FIG. 5. Qualitative depiction of the propagation of a (a) circular
and (b) elliptic wave from a point source through isotropic and
anisotropic superfluid exciton BEC, correspondingly. Length of the
arrows corresponds to the magnitude of the sound velocity in the
corresponding direction. The smaller axes of the ellipses are directed
along q.

which is evidently nonzero and is determined by the anisotropy
parameter �s . A similar effect takes place for the rays
corresponding to higher harmonics of the order parameter as
well as for the luminescence along the normal to the QW plane
if an in-plane magnetic field is applied [122–124].

Anisotropy of the excitation spectrum (17) is at the heart
of a number of observable phenomena. First of all, one can
directly measure the spectrum experimentally. Techniques for
such measurements are known for systems of excitons [122]
and have been described in the literature. Anisotropy of sound
velocity (22) can be investigated by a direct measurement as
well [122]. A different option also exists: as a consequence
of the anisotropy of sound, circular waves should become
elliptic with the ratio between axes equal to Cx

s /C
y
s (Fig. 5).

An elliptical wave can be created by an abrupt change of
local chemical potential [125] caused by a voltage applied to a
region of the upper electrode [73,75]. The propagation of the
wave can be observed then in a time-resolved luminescence
experiment [126].

Another quantity we are interested in is the helicity modulus
(24). To determine Ys(φ) we propose to create 2D excitons
by spatially resolved continuous wave pumping, with an in-
plane magnetic field being applied in the QW plane during the
pump. As is known [123], the presence of crossed out-of-plane
electric and in-plane magnetic fields results in a shift of exciton
spectrum in the momentum space. The dispersion law takes
then the form

ε0(pB) = (pB − p0)2

2m
, p0 ≡ B‖ × d0/c. (31)

Here pB is the magnetic momentum, p0 is the shift momentum,
B‖ is the in-plane magnetic field, and d0 is the exciton dipole
moment. We also neglect the change in the exciton effective
mass due to the magnetic field because we assume B‖ to be
small and the correction is quadratic in B‖.

After the collisional relaxation (local thermalization inside
the exciton gas) [15,127] and the phonon relaxation (cooling of
the locally equilibrated exciton gas) [128] exciton occupancy
n(pB) “falls” down to the bottom of the shifted parabola (pB ≈
p0). In this state the exciton system is “cold” and the group
velocity of excitons averaged over n(pB) is zero [129]:

v0 ≡ 〈∂ε0(pB)/∂pB〉 = 〈pB − p0〉/m = 0. (32)

q

Pprobe

Vsys

θ
φ

B

ΔE

FIG. 6. Noncollinearity of the nondissipative flow and the probe
momentum in an anisotropic superfluid. φ is the angle between Pprobe

and the periodic potential orientation; θ is the angle between the
direction of the nondissipative flow and the probe momentum. The in-
plane magnetic field B (gray) is oriented perpendicularly to the probe
momentum, while the variation of the polarizing electric field δE
(dark blue) is oriented perpendicularly to the QW plane.

The system is then at rest despite the dispersion law shift. The
cooled excitons flowing to the examined area after their global
thermalization and transition into the superfluid state will thus
also have a shifted magnetic momentum 〈pB〉 = p0.

Suppose now that p0 changes with time p0 → p0 − P,
where P depends on time adiabatically slow. The normal
component will remain at rest due to relaxation processes
[130], while the superfluid component will be set into motion.
The resulting system velocity will be related to the probe
momentum P through the helicity modulus tensor [see Eq. (4)].
Thus the helicity modulus can be measured.

One way to implement the idea above is to change slowly
the polarizing electric field Eav

z → Eav
z + �Eav

z (t/τsw), where
τsw is the characteristic switching time. This results in a
change of the exciton dipole moment d0 → d′(t/τsw) ≡ d0 +
�d(t/τsw) and thus changes the bottom of the shifted parabola
[see (31)], i.e., the quantity P.

Let us discuss the limitations on the electric field switching
time. It is bound from above by the exciton lifetime because
in a stationary regime the excitons created by the pump will
replace the recombined ones leading to a large number of
excitons having momentum lower then the probe one in the
system. In contemporary exciton luminescence experiments
electric field switching occurs on time scales down to 100
picoseconds [131] which is guaranteed to be smaller than the
usual exciton lifetimes. The lower boundary follows from the
fact that in the course of a nonadiabatic perturbation transitions
to excited states may occur destroying superfluidity and even
heating the system.

As has been discussed in Sec. II, the total current in the
system is related to the probe momentum through the helicity
modulus tensor and can be noncollinear to it (Fig. 6). To
determine the total current one must know the total density
and the velocity of the system’s motion. Both quantities can be
measured from the recombination luminescence of excitons:
the intensity is proportional to the total density and the
direction and the magnitude of the velocity can be determined
by observing movement of the radiating excitonic spot. Thus
knowing the probe momentum from field parameters it is
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(b)(a)

π/3
γm

FIG. 7. Unit cell of the vortex lattice (a) without or (b) with an
external periodic potential. We assume that the periodic potential
wave vector is oriented along the small diagonal of the unit cell.

possible to determine the helicity modulus. Note that in
sufficiently high magnetic fields exciton recombination is sup-
pressed [122]; however, phonon-assisted luminescence [132]
should make the observation of exciton motion nevertheless
possible.

There is also a method to measure anisotropy of helicity
modulus indirectly. “Stirring” a condensate with a frequency
greater then a critical one is known to lead to formation of
quantized Feynman vortices in the system [133]. Such a “stir-
ring” can be performed for indirect dipolar excitons by a radial
in-plane magnetic field [48]. In an isotropic case the vortices
are expected to form a triangular lattice [see Fig. 7(a)] as a
consequence of radially symmetric intervortex interactions. In
a weak anisotropic case, however, the symmetry of equilateral
triangle type is lost [see Fig. 7(b)]. The unit cell is deformed
due to an effective rescaling of coordinates [96,102] x → x/η,
y → ηy, η = [(Ys)xx/(Ys)yy]1/4. Thus the difference between
the minimal angle γm of the unit cell and π/3 allows one to
measure the anisotropy of the helicity modulus.

V. ESTIMATION OF THE OBSERVABLE EFFECTS

Now we will consider four particular setups, based on
the existing structures for exciton condensation observations.
Parameters of these structures are given in the upper section
of Table I. In the two of these setups (GaAs/AlGaAs and
MoS2/hBN coupled QWs) applied voltage is uniform and thus
λ = a + b.

We have estimated the magnitude of the predicted effects
for experimental setups described in Table I. First of all
one needs to estimate parameters of the model (5). The
interaction between indirect excitons cannot be taken simply as
U0(r) = (2e2/ε)(1/r − 1/

√
r2 + D2), because in the dipolar

limit D → 0, eD = constant the Fourier transform of this
potential is singular. One has thus to take into account the
renormalizations stemming from ladder diagrams and related
to the scattering problem [111]. We use instead a model
potential U (p), which is defined as follows. Its “contact” part
U0 = U (0) is deduced from the results of a quantum Monte
Carlo simulation for a system of dipoles without periodic
modulation [124]. The “long-range” part of the potential
U (p) − U0 is then taken to be the same as for U0(r) (this
quantity does not diverge even in the dipolar limit). Details
of the estimates are given in Appendix A 1. Actually, the
form of the potential (A3), (A4) leads to interesting qualitative
results regarding the anisotropy parameter �s . In Fig. 8,
for the GaAs/AlGaAs/GaAs CQW structure q is small such
that �s ≈ [V0/(2U0n0)]2. Consequently, as D increases, the
dipole-dipole interactions become stronger and �s is strongly

TABLE I. Upper section: Material parameters for the coupled
GaAs/AlGaAs QWs [70], single GaAs/AlGaAs QW [10,134], cou-
pled MoS2/hBN QWs [60], and coupled MoSe2/hBN/WSe2 QWs
[62,63]. Given are the values for the excitonic gap Eg , the QW width
LQW and the barrier width LB, and the distances between QW(s)
and the bottom electrode z0 and between the top and the bottom
electrodes l. Lower section: Excitonic parameters for the model (5).
Given are the values for the exciton density n, n ≈ n0, the chemical
potential μ, the amplitude of the external periodic potential V0, the
characteristic kinetic energy contribution h̄2q2/2m, and the estimate
for Tc ≈ πh̄2ns/2m for the superfluid transition temperature, where
we set [136] ns = n0

√
1 − 2�s .

GaAs/ GaAs/ MoS2/ MoSe2/

AlGaAs/ AlGaAs hBN/ hBN/
GaAs MoS2 WSe2

Quantity CQWs SQW CQWs CQWs

Eg (eV) 1.55 1.51 1.8 1.3
LQW (nm) 8 40 0.333 0.333
LB (nm) 4 1.667 1
l (nm) 1000 120 11 11
z0 (nm) 100 60 8 8
a (nm) 500 60 6 6
b (nm) 500 70 7 6
λ (nm) 1000 130 13 12

n0 (1010 cm−2) 0.8 1 80 160
μ (meV) 0.5 1.1 16.9 27.0
h̄2q2/2m (meV) 6.8 × 10−3 0.40 8.9 11.9
V0 (meV) 0.15 0.40 8.1 7.8
Tc (K) 0.5 0.48 6.8 23.8

suppressed. For the MoS2/hBN/MoS2 CQW structure, on the
contrary, an increase or a very slow decrease of �s can be
observed. The explanation is that for this case the position of
a rotonic-like minimum of the function k2/2m + 2U (k)n0 is
very close to q. In strongly correlated systems the position
of the rotonic minimum is given by 2πh̄

√
n [124,135] which

nearly coincides with q = 2πh̄/λ for density 0.6 × 1012 cm−2

2 3 4 5 6 7 8 9
0

0,5
1

1,5
2

2,5

8 12 16 20
0

0,5

1

1,5
Δs Δ%, s,%

D,nm NB

Δs

[V0/(2U0n0)]2

n0=0.6 1012 cm-2

n0=0.8 1012 cm-2

(b)(a)

.

.

FIG. 8. Dependence of �s on the e-h separation distance.
(a) GaAs/AlGaAs/GaAs CQW structure with V0 = 0.05 meV. �s

approximately follows [V0/(2U0n0)]2. (b) MoS2/hBN/MoS2 CQW
structure, V0 = 1.4 meV, for two values of exciton densities 0.6 ×
1012 cm−2 (orange diamonds) and 0.8 × 1012 cm−2 (blue triangles).
Number of hBN barrier monolayers NB is used instead of D. For
parameters not given here see Table I.
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(λ = 13 nm from Table I, 1/
√

n = 12.9 nm). Thus, for this
case T + 2U is expected to decrease when interactions become
stronger, until an instability is reached [41]. Here we restrict
our considerations to systems without rotonic instability and
we have checked that for the parameters used in Table I the
excitation spectrum (17) is stable.

Let us move to calculations for realistic system parameters.
Calculation of the electric field configuration in the QW
plane (including estimates for Eav

z and V0) is presented in
Appendix A 2. Single-exciton properties, such as the electron-
hole separation, the lifetime, and the binding energy, have
been obtained from a numerical solution of the Schrödinger
equation. This is discussed in detail in Appendix A 3.

We turn now to the helicity modulus measurement pro-
cedure described in Sec. IV. If the direction of the probe
momentum constitutes an angle φ with the x axis the angle θ

between the system’s velocity vsys and probe momentum (see
Fig. 6) is

θ = arccos
1 − 2�s cos2 φ√

1 − 4�s cos2 φ + 4�2
s cos2 φ

, (33)

where �s is the anisotropy parameter defined in (26). This
angle is maximal at a certain φ = φm and has value θm:

φm = arccos
1√

2(1 − �s)
, θm = arccos

√
1 − 2�s

1 − �s

. (34)

Moreover, we have estimated the velocity acquired by the
system after the electric field switching procedure discussed
in Sec. IV. For GaAs structures it is 3.2 × 105 cm/sec for
coupled QWs and 9.6 × 105 for a single QW in magnetic field
B‖ = 8 T (see details in Appendix A 4). However, for the other
two structures this method has turned out to be unfeasible.
Alternative ways are to create a gradient of a local chemical
potential of excitons [78] or to move a macroscopically
coherent exciton system along a narrow channel [137].

Now we move onto the indirect effects discussed in Sec. IV.
Their magnitude can also be related to �s . Ratio of the axes of
an elliptical wave is Cx

s /C
y
s ≈ 1 − �s . Thus a good measure of

anisotropy is the quantity δCs/Cs = 1 − Cx
s /C

y
s . Calculation

of the minimal angle in the deformed vortex lattice unit cell
is also straightforward for the case when the period of the
vortex lattice is much larger than λ, as one can simply rescale
the parameters of the unit cell. We assume that the principal
axes of the helicity modulus tensor are along the diagonals of
the unit cell (which is a rhombus). If the x axis is along the
larger diagonal then it is contracted by a factor of

√
1 − 2�s .

It follows then that the minimal angle in the unit cell γm is

γm = arccos
1 + �s

2 − �s

. (35)

A measure of the anisotropy of quasicondensate luminescence
intensity for directions close to normal to the QW plane is
given by

δI/I = [I (ϑ,0) − I (ϑ,π/2)]/I (ϑ,0) = 2�s. (36)

The corresponding frequency shift between the luminescence
along and across q is given by (30).

All of the results of estimations discussed above are
summarized in Table II. One can see that the anisotropy effects

TABLE II. Estimates for the predicted effects for structures
described in Table I. Given are the values for the anisotropy parameter
�s , the angle of motion of superfluid component φm and the
anisotropy angle for the superfluid flow θm (34), the anisotropy of
the sound velocity δCs/Cs , the lowest angle in the triangular unit
cell of vortex lattice γm (35), the ratio of the diagonal components
of the helicity modulus tensor (Ys)yy/(Ys)xx , and the degree of the
quasicondensate luminescence intensity anisotropy δI/I (36) as well
as frequency anisotropy δω = ω(ϑ,0) − ω(ϑ,π/2) for ϑ = 5π/12
[see (30)].

GaAs/ GaAs/ MoS2/ MoSe2/

AlGaAs/ AlGaAs hBN/ hBN/
GaAs MoS2 WSe2

Quantity CQWs SQW CQWs CQWs

�s 2.9% 21.4% 31.1% 5.5%
φm 44◦ 37◦ 32◦ 43◦

θm 1.7◦ 15.8◦ 26.9◦ 3.3◦

vsys/v 0.97 0.76 0.61 0.94
δCs/Cs 3% 24% 39% 6%
γm 58.6◦ 47.1◦ 39.1◦ 57.2◦

(Ys)yy/(Ys)xx 1.06 1.8 2.6 1.1
δI/I 5.7% 42.9% 62.2% 10.9%
δω, μeV 2.9 35.8 126.9 17.4

are weak for large λ. However if λ becomes on the order of the
interexciton distance, the effects are considerably enhanced,
so that an intermediate anisotropy regime (Ys)yy/(Ys)xx ∼ 3
is realized.

In Sec. IV we have also discussed the limitations which our
system should satisfy. In Appendix B a detailed discussion of
these limitations is presented with the conclusions that setups
considered here do satisfy the necessary conditions.

VI. CONCLUSION

In the article, we have demonstrated anisotropy of the
helicity modulus, sound velocity and angle-resolved lumines-
cence spectrum for a moving two-dimensional gas of weakly
interacting bosons in a one-dimensional external periodic
potential. Analytical expressions for anisotropic corrections
to the excitation spectrum (17), sound velocity (22), and
helicity modulus (24), (25) have been obtained with the Bo-
goliubov technique at T = 0. An expression for angle-resolved
photoluminescence intensity (28) has been obtained at low
temperatures by means of quantum-field hydrodynamics. The
considered model can be used to describe a physical system
of dipolar excitons in a QW in an electrostatic lattice. Our
calculations can be also applied to systems of dipolar atoms
in optical lattices in periodic fields. Our results can be
straightforwardly generalized for more complicated forms of
periodic potentials as well as systems with intrinsic anisotropy
of mass (27). We have not taken exciton spin into account, as
in the considered regime (see Sec. III) these can be neglected.

We propose several qualitative manifestations of excitonic
anisotropic superfluidity:

(1) The photoluminescence of the excitonic system is orga-
nized into a pattern of discrete rays with intensity decreasing
away from the normal to the QW plane (see Fig. 4). At finite
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temperatures, due to luminescence of a 2D quasicondensate
of excitons each ray has a finite angular extent and an elliptic,
rather then circular, shape. This effect is directly related to the
anisotropy of the helicity modulus [see Eq. (28)].

(2) The unit cell of the triangular vortex lattice, appearing
in a radial magnetic field [48] in the QW plane, will not be
equilateral.

(3) Collisionless sound waves created by a pointlike source
will be elliptical instead of circular.

(4) The momentum transferred to the system will not be
collinear to the resulting nondissipative current.

(5) The frequency of the angle-resolved luminescence
arising from the noncondensate excitons depends on the
in-plane direction of the beam (i.e., polar angle ϕ). Moreover,
if an in-plane magnetic field is applied, the luminescence
frequency along the normal to the QW plane depends on the
direction of the field.

We have also proposed an experiment to determine the
helicity modulus tensor including a method for setting dipolar
particles into motion which is valid for other realizations such
as atomic systems. Using the results of simulations [124]
estimates for the magnitude of the predicted effects and man-
ifestations of anisotropic superfluidity have been given. For
one of the considered structures we have observed an increase
in anisotropy due to closeness of the position of a rotonic-
minimum-like feature in the interexciton potential U (p) to q
(Fig. 8). The magnitudes of anisotropic effects in Table II give
evidence for possibility of their observation and detection in
GaAs/AlGaAs heterostructures as well as MoS2/hBN/MoS2

and MoSe2/hBN/WSe2 bilayers in future experiments.
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APPENDIX A: DETAILS OF CALCULATIONS

1. Calculation of the exciton-exciton interaction potential

Neglecting fermionic and spin effects for the excitons, one
can write the Fourier transform Up of the pseudopotential U (r)

of the exciton-exciton interaction as

Up = U0 +
∫

dr
(
e− i

h̄
pr − 1

)
U (r), (A1)

where U0 = Up|p=0. In the second term in (A1) we substitute
U (r) with the bare interexciton interaction in an e-h bilayer:

U0(r) = 2e2

ε

(
1

r
− 1√

r2 + D2

)
. (A2)

As a result (A1) takes the form

Up = U0 + 4πd2

εD

(
1 − e−pD/h̄

pD/h̄
− 1

)
, (A3)

where d = eD.
We cannot, however, simply use U0 = ∫

U0(r)dr to cal-
culate U0 in (A3), because this function shows a diverging
behavior for dipolar interactions [U0(r) = d2/r3 has an unin-
tegrable singularity at r = 0]. Instead we use the results of an
ab initio modeling [124] performed for dipolar excitons:

U0 = h̄2

m

∂2

∂n̄2
n̄e0(n̄). (A4)

Here n̄ = nm2d4/(h̄4ε2), dimensionless density, and

e0(n̄) = ae exp(be ln n̄ + ce ln2 n̄ + de ln3 n̄ + ee ln4 n̄), (A5)

dimensionless ground-state energy per particle, where co-
efficients ae = 9.218, be = 1.35999, ce = 0.011225, de =
−0.00036, and ee = −0.0000281, correspond to an interval
1/256 � n̄ � 8. For all numerical estimates we replace n by
n0 in (A4) and (A5) due to the condition (N − N0)/N � 1
(see Sec. III).

2. Electric field distribution in QW plane

Electrostatic field configuration in the QW plane can be cal-
culated analytically: neglecting inhomogeneities in the charge
distribution over the stripes of the upper electrode the problem
is solved by the image method with respect to the bottom
electrode plane (see setup in Fig. 3). Assuming the thickness
of stripes to be small and denoting charge of a stripe per unit
area as σ we have

Ex(x,z) = σ

ε

∑
j∈Z

[
ln

(
[(x − a − jλ)/l]2 + [1 + z/l]2

[(x − jλ)/l]2 + [1 + z/l]2

)
− ln

(
[(x − a − jλ)/l]2 + [1 − z/l]2

[(x − jλ)/l]2 + [1 − z/l]2

)]
,

Ey(x,z) = 0,
(A6)

Ez(x,z) = 2σ

ε

∑
j∈Z

[
arctan

(
a/l

[1 − z/l][(x − jλ − a)(x − jλ)/(l − z)2 + 1]

)

+ arctan

(
a/l

[1 + z/l][(x − jλ − a)(x − jλ)/(l + z)2 + 1]

)]
,

where ε is the dielectric constant and σ = εEav
z λ/4πa.

We calculated the field configurations for four setups (see
Table I) with Eav

z given in Table III. Summation in (A6) was
carried out numerically with relative error estimate 10−13.
The result for the first structure is presented in Fig. 9.

One can see that the oscillations of the electric field have
a well-defined period equal to a + b. This means that if
we decompose Ez(x,z0) = E(0)

z + �Ez cos[2π (x − x0)/λ] +
E(2)

z cos[4π (x − x0)/λ] + · · · then E(n)
z � �Ez. We verified
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TABLE III. Electrostatic field parameters in the QW plane for the
structures in Table I. Eav

z is the constant component of the field; �Ez

and �Ex are the amplitudes of first harmonic along z and x.

GaAs/ GaAs/ MoS2/ MoSe2/

AlGaAs/ AlGaAs hBN/ hBN/
GaAs MoS2 WSe2

Quantity CQWs SQW CQWs CQWs

Eav
z (kV/cm) 40 5.8 256 447

�Ez (kV/cm) 0.11 0.22 40 58
�Ex (kV/cm) 0.06 0.22 41.8 60.0

this by numerical convolution with higher harmonics. For
all structures we found that the component along z has a
constant component Eav

z and an oscillating component with
amplitude �Ez, while the field along x is purely oscillatory
with amplitude �Ex (numerical values presented in Table III).

The role of the constant component Eav
z is to fix the dipole

moment of the excitons while �Ez determines V0 in the model
(5). Component Ex(x,z) is oriented in the QW plane and
can cause, as has been discussed above, dissociation of the
excitons. However, if the energy associated with this field is
less then the binding energy of an exciton, dissociation is
forbidden. For corresponding estimates see Appendix B.

3. Calculation of the electron-hole separation, the exciton
lifetime, binding energy, and radius

Electron-hole separation is given by

D =
∣∣∣∣
∫ (

ψ2
h(z) − ψ2

e (z)
)
zdz

∣∣∣∣,

Ex (kV/cm)

-2.0 -1.0 1.0 2.0

-0.08

-0.04

0.04

0.08

-2.0 -1.0 0.0 1.0 2.0
39.8

39.9

40.0

40.1

Ez (kV/cm)

x (µm)

x (µm)

(a)

(b)

FIG. 9. Coordinate dependence of the electric field in the QW
plane. (a) Component normal to the QW plane. (b) In-plane
component.

TABLE IV. Parameters used to solve the 1D Schrödinger equation
along z: the exciton effective mass m, the in-plane electron mass
me, the dielectric constant ε, the transversal effective masses for
the electron (hole) in the QW mw

e (mw
h ) and in the barrier mb

e (mb
h),

the corresponding barrier potential magnitude U 0
e and U 0

h for GaAs-
based structures, the tunneling barrier energy U 0

e − Ee
0 (U 0

h − Eh
0 ) for

MoS2/hBN structure, and the radiative lifetimes of an exciton τdir in
an electric field E = 0 and an indirect exciton τbright in the radiative
zone for E = {0,0,Eav

z }.

GaAs/ GaAs/ MoS2/

AlGaAs AlGaAs hBN
Quantity CQWs SQW CQWs

m/m0 0.22 0.22 1
me/m0 0.067 0.067 0.5
ε 12.5 12.5 6.7
mw

e /m0 0.067 0.067 0.5
mb

e/m0 0.067 0.067 0.5
mw

h /m0 0.4 0.4 0.5
mw

h /m0 0.4 0.4 0.5
U 0

e (eV) 0.3 0.3
U 0

h (eV) 0.15 0.15
U 0

e − Ee
0 (eV) 3a

U 0
h − Eh

0 (eV) 3a

τdir (ps) 100b 200c 0.4d

τbright (ns) 150 2 100

aReference [60].
bReference [13].
cReference [10].
dReference [139].

where ψe,h(z) are electron (hole) ground-state wave functions
which are satisfied by the following 1D Schrödinger equation:

(
− h̄2

2mz
e,h

d2

dz2
+ Ue,h(z) ± eEav

z z − E
e,h
0

)
ψe,h(z) = 0,

(A7)

and normalized according to
∫

ψ2
e,h(z)dz = 1. In Eq. (A7)

e > 0 is the absolute value of the particle charge (“+” is for
electron and “−” for hole), the z axis is along the normal
to the QW plane, Ue,h(z) is the QW potential for the electron
(hole), mz

e(h) and E
e(h)
0 are effective masses along the z axis and

ground-state energies for electron (hole), respectively [138].
Parameters of the QW structures used to solve (A7) are given
in Table IV.

Exciton lifetime τ is estimated to be τ ∼ 50 τbright for
GaAs-based structures and τ ∼ τbright for the MoS2/hBN
structure [140], as

τbright = M2τdir, M ≡
∫

ψe(z)ψh(z)dz, (A8)

where τdir is the lifetime of a direct exciton in zero electric
field.

Binding energy and average in-plane electron-hole sep-
aration are calculated as EB = −H (�xm) and rex = �xm,
respectively (see also variational calculation results [141]).
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TABLE V. Parameters for the proposed method of the condensate
acceleration: the in-plane magnetic field B‖, the magnitude of the e-h
separation change �D, and the resulting system velocity v.

GaAs/ GaAs/
AlGaAs AlGaAs

Quantity CQWs SQW

B‖ (T) 8 8
�D (nm) 0.5 1.5
v (cm/sec) 3.2 × 105 9.6 × 105

Excitons dark dark

Here [142]

H (�x) = h̄2

2mr�x2
− e2/ε√

D2 + �x2
, (A9)

mr = me(m − me)/m is the reduced mass of e and h, and �xm

corresponds to the minimum of function (A9).
We estimate the effective exciton diameter due to internal

electron-hole structure as twice the average distance between
the center of mass and the position of the lighter carrier:

aex = rex(1 +
√

1 − 4mr/m). (A10)

The exciton core diameter arising from dipole-dipole inter-
actions between excitons is given by the s-wave scattering
length. To improve the accuracy, we use an energy-dependent
[143] s-wave scattering length [27]:

add
s = aa

s exp
(
ba

s ln p + ca
s ln2 p + da

s ln3 p
)
, (A11)

where p ∼ √
2E/N , aa

s = 0.68845, ba
s = −0.45897, ca

s =
−0.03098, and da

s = 0.002096. For the considered regime
aex � add

s (see Table VI) the real exciton diameter is given
by add

s rather than aex.

4. Acceleration of the condensate with electric field switching

We have calculated the estimates for the velocity acquired
by excitons set into motion with the procedure described in
Sec. IV. Results are presented in Table V. We note that the
switching is fast enough to ignore the exciton recombination,
but slow enough to be considered adiabatic and ignore the
normal component.

(1) Exciton lifetime τ (see Table VI) is much larger than
the switching time τsw. Consequently, exciton recombination
does not affect the velocity of superfluid motion.

(2) On the other hand, τsw is much larger then τ norm
dissip, the

time of normal component dissipation [130]. Thus the normal
component is approximately at rest during switching.

(3) In the contemporary experiments [6,37] on exciton
BEC the characteristic size L of the system is on the
order of 10–100 μm and is much smaller than Ladiab

max ≡
πCsτsw. It follows then that the switching process does not
noticeably excite the system and thus can be considered as
adiabatical.

APPENDIX B: ANALYSIS OF EXPERIMENTAL
REALIZATION OF THE EFFECTS

Feasibility of the proposed experiments is supported by the
data summarized in Table VI.

(1) Cs for the excitonic system is larger than the sound
velocity c

phon
LA for longitudinal acoustic phonons in the QW

material. This enables efficient cooling of excitons by semi-
conductor lattice through emission of “Cherenkov” phonons.
Because of this excitons can cool down to temperatures as
low as T = 0.1 K [6] during their lifetime. This temper-
ature is evidently smaller than the estimate for superfluid
crossover Tc.

(2) Binding energy of an exciton EB is larger than the sum
of the chemical potential μ and the dissociation energy due
to an in-plane field E

in−plane
dissoc = eE0

xλ/π . This means that the
dissociation of an exciton by tunneling of e and h to neighbor-
ing nodes of the in-plane field Ex(x) = E0

x sin(2πx/λ) (which
is most profitable energetically) is forbidden.

(3) Effective exciton diameter aex is close to (or smaller
then) the energy-dependent s-wave scattering length add

s due to
the dipole-dipole interactions. It follows then that the overlap

TABLE VI. Parameters of the proposed realizations: the exciton
lifetime τ , the switching time for the electric field (see Sec. IV)
τsw, the normal component dissipation time τ norm

dissip, the maximal
system size for the electric field switching to be adiabatic Ladiab

max , the
sound velocity in the exciton superfluid Cs (average value neglecting
periodic potential), the sound velocity for longitudinal acoustic
phonons in a semiconductor csemic

LA , the dissociation energy by the
in-plane field E

in−plane
dissoc , the average in-plane electron-hole separation

rex, the effective exciton diameter aex, the energy-dependent s-wave
scattering length due to dipolar interactions add

s , the exciton binding
energy EB , and the maximal electric field for which the transition
of spatially indirect excitons into direct ones is allowed Eind−dir

z .
Structures are the same as in Table I.

GaAs/ GaAs/ MoS2/ MoSe2/

AlGaAs/ AlGaAs hBN/ hBN/
GaAs MoS2 WSe2

Quantity CQWs SQW CQWs CQWs

τ (μs) > 6 > 0.1 > 0.1 > 0.1a

τsw (ns) 8 5
τ norm

dissip (ps) 10 10
Ladiab

max (μm) 501 473
Cs (105 cm/sec) 20 30 57 74
csemic

LA (105 cm/sec) 5.36 5.36 7.11b 4.1c

E
in−plane
dissoc (meV) 2.0 0.9 17 23

rex (nm) 22 26 2.1 2.3
aex (nm) 30.7 36.1 2.7 2.3
add

s (nm) 30.0 34.3 3.7 2.2
EB (meV) 2.8 2.4 43.1 50.6
Eind−dir

z (kV/cm) 7d 4e ∼ 2000f ∼ 2000g

aReference [144].
bReference [145].
cReference [146].
dReference [13].
eReference [10].
fReference [60].
gReference [62].
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between the wave functions of the neighboring excitons is
not too large and the exchange effects can be neglected at
least for qualitative purposes (i.e., fermionic effects are not
too important and the excitons can be considered as bosons).

(4) In GaAs coupled QWs transformation of spatially
indirect excitons into direct ones does not take place. The
reason is that the maximal electric field Eind−dir

z for which
this is possible is smaller then the minimal value of Ez. In
MoSe2/hBN/WSe2 QWs an exciton ground state corresponds
to an indirect exciton. Therefore, since the maximal value of Ez

is smaller than Eind−dir
z , the indirect-direct exciton transition is

forbidden as well. In MoS2/hBN/MoS2 QWs, on the contrary,
for the parameters considered this transition is allowed.
The transition is nonresonant and must be accompanied by

emission of a phonon. This gives an additional nonradiative
channel of indirect exciton decay with characteristic time
set by scattering on acoustic phonons. In the case we have
considered it will be suppressed due to the relatively large
interwell distance.

(5) According to the results of our calculation in
the MoS2/hBN QW for electron-hole separation D = 2
nm, Eav

z = 256 kV/cm compensates the z component of
eEeh

z (D) = d[μ(z) − EB(z)]/dz|z=D; the electron-hole attrac-
tion in an indirect exciton. In this case disorder caused by
fluctuations of hBN barrier width is suppressed which is im-
portant for superfluid properties [91]. For MoSe2/hBN/WSe2

QWs, which have D = 1.333 nm, the field Eav
z = 447 kV/cm

also corresponds to compensation.
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