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Spin-valley skyrmions in graphene at filling factor ν = −1
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We model quantum Hall skyrmions in graphene monolayer at quarter filling by a theory of CP3 fields and
study the energy minimizing skyrmions in the presence of valley pseudospin anisotropy and Zeeman coupling.
We present a diagram of all types of skyrmions in a wide range of the anisotropy parameters. For each type
of skyrmion, we visualize it on three Bloch spheres, and present the profiles of its texture on the graphene
honeycomb lattice, thus providing references for the scanning-tunneling microscopy and spectroscopy imaging
of spin-pseudospin textures in graphene monolayer in the quantum Hall regime. Besides the spin and pseudospin
skyrmions for the corresponding degrees of freedom of an electron in the N = 0 Landau level, we discuss two
unusual types—the “entanglement skyrmion”, the texture of which lies in the space of the entanglement of spin
and pseudospin, as well as the “deflated pseudospin skyrmion” with partial entanglement. For all skyrmion types,
we study the dependence of the energy and the size of a skyrmion on the anisotropy parameters and perpendicular
magnetic field. We also propose three ways to modify the anisotropy energy, namely, the sample tilting, the
substrate anisotropy, and the valley pseudospin analog of Zeeman coupling.
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I. INTRODUCTION

A skyrmion, first introduced in high-energy physics in
the description of baryons [1], is a topologically nontrivial
configuration of a continuous field φ(x), which is localized, in
the sense that its gradient ∇φ(x) is significant only in a finite
spatial region �. Far away from �, the field φ(x) approaches
a uniform configuration, which is conveniently described by a
boundary condition at spatial infinity [2]. The Euclidean action
SE[φ(x)] usually has the form of the nonlinear sigma model
(NLSM), with the lower bounds of energy being guaranteed
by the Bogomol’nyi-Prasad-Sommerfield inequality [3]. Such
lower bound is proportional to |Q|—the absolute value of an
integer “topological charge” Q, which classifies the field φ(x)
as a continuous mapping. In the work of Skyrme [1], φ(x)
maps the (compactified) 3+1-dimensional space-time to the
manifold of Lie group SU(2) (which is isomorphic to S3, the
3-sphere), and the third homotopy group π3(S3) = Z provides
the topological charge Q, which was identified as a particle
number in that work.

After its introduction in high-energy physics, skyrmion
physics regained interest in the context of condensed-matter
physics as a topological object in a two-dimensional (2D)
ferromagnetic (FM) state. They have been discussed in
quantum Hall (QH) systems [4,5], and in chiral magnets [6–9]
and magnetic thin films [10–12]. While skyrmions have been
experimentally viewed in scanning-tunneling microscopy and
spectroscopy (STM/STS) in the latter two systems [13,14],
skyrmions in quantum Hall systems have mainly been iden-
tified through their magnetic properties in nuclear-magnetic-
resonance experiments [15], and a spectroscopic identification
is yet outstanding. Furthermore, skyrmions have been used to
describe special configuration of the superconducting order
parameter in superconductors [16,17]. The magnetization
or the superconducting order parameter, denoted as φ(x),
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usually maps the (compactified) two-dimensional plane to the
Bloch sphere S2. The second homotopy group π2(S2) = Z
provides the topological charge Q, which is the degree of
the mapping between two 2-spheres. A more familiar case is
the vortex configuration of the complex scalar field φ(x) on
the two-dimensional plane, which is punctured by the vortex
core. The phase of the complex scalar field lives in a ring
S1. Then the homotopy group π1(S1) = Z provides us the
topological charge Q, known as winding number. Some more
exotic cases appeal to the second homotopy group of [18]
CPN−1 that allows for skyrmions in N -component systems,
such as in Refs. [19] for N = 3 and [20–22] for N = 4, or,
to the homotopy group π3(RP2) = Z in Ref. [23,24]. In the
present paper, we choose a CP3 field on the two-dimensional
plane to model the static configuration of QH skyrmions in
graphene monolayer.

The distinguishing feature of the quantum Hall skyrmion
is that it carries electric charge of q = Q e, where Q is its
topological charge and e is the charge of an electron. Moreover,
such equality holds locally, i.e., the electric charge is smeared
in the texture of the QH skyrmion. The excess charge density
δρel(r) in a QH skyrmion is equal [4,5] to eρtopo(r), where
ρtopo(r) characterizes the spatial variation of the texture in
the QH skyrmion, and the integral

∫
ρtopo(r)d2r reproduces

its topological charge Q. As a consequence of the smeared
charge density, a QH skyrmion has a lower energy in the N = 0
Landau level (LL) than the quasiparticle of the same charge,
and therefore reduces the charge transport gap. A lattice of
QH skyrmions also has lower energy than the corresponding
Wigner crystal [25]. We finally notice that, as a consequence
of the intimate relation between the topological and the
electric charge, a skyrmion is a fermionic excitation in QH
systems, in contrast to most of the aforementioned magnetic
systems.

In this paper, we study the QH skyrmions in the N = 0 LL in
graphene monolayer. Besides the robust quantum Hall effects
in graphene in a wide range of temperature [26] and magnetic
field [27], there are several advantages to choosing graphene
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as the host system for QH skyrmions. First, the Dirac valley
of electron states can be described by a pseudospin degree of
freedom, and in the presence of strong perpendicular magnetic
field the Coulomb interaction is approximately symmetric
[28] under global SU(4) transformations in the spin ⊗ valley
space. In contrast, the layer pseudospin in the double-layer QH
system does not enjoy such a symmetric Coulomb interaction
in the spin ⊗ valley space, because the layer separation always
breaks the pseudospin symmetry of the Coulomb interaction.
In our approach, the SU(4) spin-valley symmetry is explicitly
broken by terms at lower-energy scales (compared to the
Coulomb energy), namely, the Zeeman coupling that couples
directly to the spin, and the valley pseudospin anisotropy.
As a second advantage of the graphene monolayer, one may
point out that the valley degree of freedom coincides with the
sublattice degree of freedom for the electron states in the N =
0 LL. Such a coincidence provides a convenient way to probe
the z component of the valley pseudospin directly—it can be
read off from the sublattice occupation, thus allowing a direct
imaging of the pseudospin texture via STM/STS experiments.
Moreover, the spin texture in graphene under QH conditions
can also be imaged by spin-resolved STM/STS experiments.
The combination of the lattice-resolved images for spin and
pseudospin textures thus allows for an identification of the
various skyrmion types in graphene. The fact that graphene is
naturally a surface system renders these states spectroscop-
ically more accessible than QH systems in semiconductor
heterostructures, where the two-dimensional electron system
appears at the interface between two types of semiconductors.
For STM/STS experiments in semiconductor heterostructures,
two-dimensional electron systems have been realized on an
n-doped InSb surface [29] albeit with a mobility that does
not reach that of the more common GaAs heterostructures or
graphene.

Our paper completes our previously obtained phase dia-
gram for QH skyrmions in graphene [30] in several respects.
Apart from a full description of the FM states one encounters
at ν = −1 (and ν = +1 by particle-hole symmetry), we
provide here a detailed characterization of skyrmions with
entanglement. In addition to a pure entanglement skyrmion,
one obtains an exotic type of deflated pseudospin skyrmions
with partial entanglement. We characterize all encountered
skyrmion types with the help of three different Bloch spheres
that describe spin, valley pseudospin, and entanglement,
respectively. Furthermore, all ferromagnetic and skyrmion
states are analyzed from their appearance in lattice-resolved
density plots that may be used as a guideline in an ex-
perimental STM/STS investigation. Finally, we discuss the
scaling relations of the skyrmion size and energy close to
the transitions between different underlying FM states—while
a critical behavior is obtained in the case of a symmetry
restoration at the transition, we find that the scaling is modified
in the other cases where a (subordinate) symmetry is not fully
restored. These scaling relations are then discussed in the
context of further modifications of the anisotropy parameters
that we vary to obtain the skyrmion phase diagram, e.g., in the
case of a tilted sample.

Our choice of variational method and hence the field theory
of a CP3 spinor field Z(r) in this paper is aimed at revealing the
topological nature of the CP3 skyrmions and displaying their

spatial profiles. The nonlinear sigma model arises naturally in
a system with (approximate) SU(4) invariance and supports
skyrmions as topologically nontrivial configurations. There
are other methods available for the study of QH skyrmions.
For instance, Ref. [31] solved a Hartree-Fock Hamiltonian
for a single additional electron or hole above the integer-
filled Landau level and found the wave functions for spin
skyrmions and antiskyrmions. Reference [32] employed exact
diagonalization to study spin skyrmions in QH systems. In
Ref. [33] the author investigated the connections of the three
methods. Reference [34] provides quantitative comparison of
the three methods. While the field theory approach used in
the present paper provides useful results for large skyrmions,
higher-order gradient terms would be necessary for small
skyrmions, in which case the Hartree-Fock method would be
better choice.

The paper is organized as follows. In Sec. II we propose an
anisotropic energy for the ferromagnetic state in the N = 0 LL
at quarter filling, and discuss the CP3 representation of the QH
ferromagnetic states. There are four types of ferromagnetic
ground states for the anisotropic Hamiltonian. Each type is
described by a CP3 spinor that contains six angular variables
and visualized on the spin, pseudospin, and entanglement
Bloch spheres. We also visualize them on the honeycomb
lattice. In Sec. III we discuss the energy functional and ansatz
for the CP3 skyrmion on top of the QH ferromagnetic states,
and present the skyrmion-type diagram, which is obtained by
minimization of the energy functional with the ansatz and
under various input parameters of the model. The detailed
analysis of the minimization result is presented in Sec. IV.
We visualize the skyrmion CP3 field on three Bloch spheres
in the same manner as for the QH ferromagnetic states.
These visualizations explicitly demonstrate that the skyrmions
can be viewed as a wrapping of the xy plane on Bloch
spheres. Besides, the CP3 skyrmion is also visualized on the
honeycomb lattice, in order to show the difference between
two types of skyrmions. The lattice-resolved profiles of the
CP3 skyrmion serve as references for the STM/STS imaging
of spin-pseudospin textures in graphene monolayer under QH
conditions. The qualitative discussion on the CP3 skyrmions
is followed by quantitative discussions in Sec. V, where
we present the dependence of size and energy of the CP3

skyrmions on the input parameters of the model. Finally in
Sec. VI, we discuss three ways to modify the anisotropic
energy of the CP3 skyrmions. We demonstrate how the type
of a CP3 skyrmion is altered by these modifications. These
modifications are relevant in certain experimental regimes.

II. QUANTUM HALL FERROMAGNETIC STATE

A multicomponent quantum Hall system is characterized by
the n-fold degeneracy of the Landau levels which originates
from internal degrees of freedom of 2D electrons in a strong
magnetic field. For example, when the Zeeman energy is much
smaller than the Coulomb interaction, one may first neglect the
Zeeman coupling of the electron spin to the applied magnetic
field and consider spin as an internal degree of freedom
which yields a twofold degeneracy of the Landau levels. At
half filling of such LLs (i.e., integer filling of the Landau
sublevel), the major cause for the complete spin polarization
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in the ground state is the Coulomb interaction, which is larger
than the Zeeman energy and prefers a totally asymmetric
orbital part of the many-particle wave function, so that the
electrons are separated as far as possible, and the spinor part is
totally symmetric. The Zeeman coupling at a smaller energy
scale then conspires with the Coulomb energy and orients the
polarized spins along the applied magnetic field. In this way,
the electrons in a single LL form a quantum Hall ferromagnet
(QHFM).

In graphene monolayer, the internal degrees of freedom of
the Landau levels are doubled by the valley degeneracy, which
is described by a pseudospin analogous to the electron spin.
The Coulomb interaction has approximate SU(4) symmetry
[28], which is broken by spin/pseudospin anisotropic interac-
tions at smaller energy scale.

At quarter filling, i.e., when one of the four spin-valley
sublevels is completely filled (ν = −1 for electron filling)
or completely empty (ν = 1 for hole filling), the ground
state |F 〉 for the electron system is the SU(4) quantum Hall
ferromagnetic state [35,36]

|F 〉 =
∏
X

(f1C
†
X↑K + f2C

†
X↓K + f3C

†
X↑K ′ + f4C

†
X↓K ′ )|0〉

(1)

where C
†
Xσξ creates an electron in the N = 0 LL with spin σ

(= ↑,↓) and pseudospin ξ (= K,K ′). The quantum number X

is the Landau orbit, which characterizes the LL degeneracy.
It is related to the underlying translation invariance—while
this invariance is, strictly speaking, broken by the position-
dependent vector potential, the physical magnetic field is
constant in the entire plane. The kinetic energy of an electron
in this field does therefore not depend on the center of its
quantized cyclotron motion. The Landau orbit X is precisely
the quantum number associated with the position of this center.
In the case of one electron per Landau orbit, which we consider
here, the coefficients f1,f2,f3,f4 ∈ C satisfy

∑4
i=1 |fi |2 = 1.

To model electron states with spatially homogeneous spin-
pseudospin magnetization at a length scale larger than lB ,
we assume that fi do not carry Landau orbit index X.
Since |F 〉 and eiθ |F 〉 (θ is a real constant) correspond to
the same quantum state, the coefficients in Eq. (1) can be
uniquely represented by a CP3 spinor F = (f1,f2,f3,f4)T ,
which is normalized F †F = 1 and is equivalent to eiθF (See
Appendix C). The meaning of the four components in the CP3

spinor is inherited from |F 〉.
In this section, based on a general proposal of valley

pseudospin anisotropy, we discuss different types of QHFM
ground states at quarter filling (ν = −1 for electron filling and
ν = 1 for hole filling) of the fourfold degenerate N = 0 LL
in graphene monolayer. We propose the anisotropic energy
in Sec. II A, and then discuss the parametrization of the CP3

spinor in Sec. II B. The four types of QHFM ground state are
discussed in Sec. II C. We schematically visualize the QHFM
states on the honeycomb lattice of graphene in Sec. II D.

A. Anisotropic energy

The electrons are restricted to the N = 0 LL in our problem
and hence the kinetic energy is quenched and set to a constant.

The electron density operator is projected to the N = 0 LL and
denoted as ρ(r). Due to the SU(4) symmetry of the interaction
Hamiltonian [28]

HC = 1

2

∫
d2r

∫
d2r ′ρ(r)V (r − r ′)ρ(r ′), (2)

the Coulomb energy EC[F ] = 〈F |HC|F 〉 does not depend on
the QHFM state |F 〉. The SU(4) symmetry is explicitly broken
by the spin-pseudospin anisotropies [37]

HA =
∫

d2r

2πl2
B

{
−U⊥

(
P 2

x + P 2
y

)

−UzP
2
z − U0|S|2 − 1

2
�ZSz

}
(3)

where Si and Pi are spin and pseudospin density operators
multiplied by the normalization 2πl2

B. The first terms reflect
a pseudospin anisotropy that can be generated, e.g., by
short-range interactions of Hubbard type [38] (U0 and Uz)
or an out-of-plane [39] (also contributing to Uz) and in-plane
Kekulé-type [37] lattice deformation due to electron-phonon
couplings. The coefficients U0,U⊥,Uz,�Z have the dimension
of energy, and U0, U⊥, Uz are proportional to the perpendicular
component B⊥ of the applied magnetic field, whereas �Z is
proportional to the total applied magnetic field BT, which
we choose to be oriented opposite to the z direction. Their
numerical values are estimated as 1.0[K] × B⊥[T], 2.0[K] ×
B⊥[T], 0.5[K] × B⊥[T], and 1.3[K] × BT[T ], respectively, in
Ref. [37]. HA explicitly breaks the SU(4) symmetry down
to U(1)S × U(1)P × U(1)E × Z2. While the U(1)S and the
U(1)P symmetries reflect rotations around the z-quantization
axes of the spin and pseudospin, respectively, Z2 indicates
that the two orientations z and −z of the pseudospin are
equivalent. They are not equivalent in the spin channel due to
the Zeeman coupling. The U(1)E symmetry is more subtle and
related to spin-pseudospin entanglement [40], as we discuss in
more detail below. The symmetry-breaking Hamiltonian HA

at ν = −1 may have various forms. For instance, different
Hamiltonians are investigated in Refs. [38,41], but neither
of them provide the energy functional for the anisotropic
interaction as in Ref. [42] for ν = 0. For the purpose of
the present paper, we propose the most intuitive form of
anisotropic interaction in the following discussion without
giving complete derivations.

The system energy is determined by minimization of
the anisotropic energy EA[F ] = 〈F |HA|F 〉 [43], which we
propose to be the following form:

EA[F ] = A0
�Z

2

{
u⊥

(
M2

Px + M2
Py

) + uzM
2
Pz − MSz

}
, (4)

where A0 is proportional to the total area divided by 2πl2
B

so that EA[F ] is an extensive quantity. The Zeeman energy
�Z � 0 and the dimensionless parameters u⊥, uz characterize
the pseudospin anisotropy. In the present paper, u⊥ and uz

are treated as control parameters that generate the different
phases even if they may be more difficult to vary in a typical
situation. Their numerical values could be estimated from
U0, U⊥, Uz in HA. A crude estimation gives u⊥ ∼ −4.6 and
uz ∼ −2.3.
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In Eq. (4) we denote the spin and pseudospin magnetiza-
tions as

MS = F †(1 ⊗ σ )F (5)

and

MP = F †(σ ⊗ 1)F, (6)

respectively. They can be expanded explicitly in the compo-
nents of the CP3 spinor F . For instance, the z component of
the spin magnetization is

MSz = F †(1 ⊗ σz)F = |fK↑|2 − |fK↓|2
+|fK ′↑|2 − |fK ′↓|2, (7)

and the z component of the pseudospin magnetization is

MPz = F †(σz ⊗ 1)F = |fK↑|2 + |fK↓|2
−|fK ′↑|2 − |fK ′↓|2, (8)

where we use the labels K↑, K↓, K ′↑, and K ′↓ for the
index 1,2,3,4 of the components of F to emphasize their
meaning.

B. Parametrization of the CP3 spinor

It is essential for later discussions to use the Schmidt
decomposition to parametrize a general CP3 spinor Y with
six real parameters, namely, θS,θP,α ∈ [0,π ] and φS,φP,β ∈
[0,2π ) [40]:

Y = cos
α

2
ψP ⊗ ψS + eiβ sin

α

2
χP ⊗ χS, (9)

ψ J =
(

cos
θJ

2
, sin

θJ

2
eiφJ

)T

, (10)

χ J =
(

− sin
θJ

2
e−iφJ , cos

θJ

2

)T

, (11)

where (mJ · σ )ψ J = +ψ J and (mJ · σ )χ J = −χ J, σ =
(σ1,σ2,σ3) are the Pauli matrices, and mJ = (sin θJ cos φJ,

sin θJ sin φJ, cos θJ) is the unit vector for the direction of
magnetization. The subscript J = S (P) stands for spin (pseu-
dospin). The Pauli matrices for spin and pseudospin are
designed as 1 ⊗ σ and σ ⊗ 1, respectively, in agreement
with the earlier convention for the CP3 spinor F . In the
present section, where we discuss QHFM states, the real
parameters θS,φSθP,φP,α, and β are constant in space, i.e.,
independent of the Landau orbit X, while we consider an
explicit position dependence in the following section on
skyrmions. To simplify notations, we therefore neglect here to
write explicitly the argument (r) in the spinors and parameters.
Under the parametrization Eq. (9), the spin and the pseudospin
magnetizations for the CP3 spinor Y are

MS = Y †(1 ⊗ σ )Y = mS cos α (12)

and

MP = Y †(σ ⊗ 1)Y = mP cos α, (13)

respectively. The meaning of θS,φS and θP,φP in the
parametrization Eq. (9) is evident from the above equations—
they are the polar and azimuthal angle of the spin and
pseudospin magnetizations.

As we discuss in detail later, the parameter α enriches the
types of FM ground state of the system. It can be understood
in terms of “entanglement” [40]. It is possible to rewrite the
state Y into a direct product of spinors for electron spin and
and valley pseudospin only when α = 0 or π . In this case
the spin and pseudospin are unentangled. Otherwise, Y is a
superposition of two “product states” carrying opposite spin
and pseudospin. Consequently, as indicated in Eqs. (12) and
(13), the spin and pseudospin magnetizations have magnitudes
smaller than 1. Remarkably, these magnitudes are equal to
cos α, because in a CP3 spinor the spin and pseudospin are
on equal footing, analogous to the two entangled 1/2 spins
in the Bell state [44]. Since we have specified the forms
of ψS/P and χS/P in Eqs. (10) and (11), the coefficients in
Eq. (9) are complex numbers in general and the parameter
β is just the relative phase of these complex coefficients.
Throughout this paper, we use the term “entanglement” as
a synonym of the magnitude of the spin or pseudospin
magnetizations: “maximal entanglement” means α = π/2;
“unentangled” refers to α = 0 or π .

C. Four types of QHFM ground states

Applying the parametrization in Eq. (9) to the CP3 spinor
Y = F representing the ferromagnetic state (1), we minimize
EA[F ] with respect to the six parameters of F and obtain
four types of QHFM ground states, which are displayed in
Fig. 1 and Table I. Due to the Zeeman coupling, a CP3

spinor F with polarized spin along the z axis is always
energetically favorable, independent of the pseudospin and
entanglement. It follows that the optimal value is θS = 0 in all
regions throughout the u⊥-uz plane, if we assume α ∈ [0,π/2].
Moreover, when u⊥ > uz (region 1, 3), it is energetically
favorable to orient the pseudospin along the z (or −z) axis
and one thus obtains an easy-axis FM state with optimal

FIG. 1. Four types of QHFM ground states on the u⊥-uz plane.
They are listed in Table I. The red dot indicates possible values of u⊥
and uz which are estimated in Sec. II A.
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TABLE I. Four types of QHFM ground states correspond to four distinct regions on the u⊥-uz plane in Fig. 1.

QHFM type Region CP3 spinor F

Unentangled easy-axis pseudospin FM (1) u⊥ > uz, uz � 1
2 F = (1,0,0,0)T or (0,0,1,0)T

Unentangled easy-plane pseudospin FM (2) u⊥ < uz, u⊥ � 1
2 F = 1√

2
(1,0,eiφP ,0)T with arbitrary φP

Entangled FM with preferential (3) u⊥ > uz > 1
2 F = (cos α

2 ,0,0,eiβ sin α

2 )T or (0,eiβ sin α

2 , cos α

2 ,0)T ,

easy-axis pseudospin α = sec−1(2uz)

Entangled FM with preferential (4) uz > u⊥ > 1
2 F = 1√

2
(cos α

2 , − ei(β−φP) sin α

2 ,eiφP cos α

2 ,eiβ sin α

2 )T

easy-plane pseudospin with α = sec−1(2u⊥) and arbitrary φP, β

value θP = 0 or π . In contrast, when u⊥ < uz (region 2, 4), a
pseudospin magnetization in the xy plane is favored, and one
obtains an easy-plane FM state with optimal value θP = π/2
and arbitrary optimal value for φP. On the line u⊥ = uz, the
SU(2) symmetry of pseudospin is restored and the optimal
values for θP and φP are arbitrary.

Entanglement enriches the types of FM states because
tuning the parameter α allows the magnitudes of spin and
pseudospin magnetization to decrease and thus to lower the
anisotropic energy EA. When min(u⊥,uz) � 0, the optimal
value of α is always zero. This is easily understood: since
at least one of the parameters u⊥ or uz is negative, EA is
minimized when the spin and pseudospin magnetizations are
maximal, i.e., when |MS| = |MP| = 1. For 0 � min(u⊥,uz) �
1/2, the Zeeman energy is crucial for the presence of
unentangled FM states, which are of the same type as in
the previous case. Were there no term proportional to MSz

in the expression of EA, all the other terms related to
pseudospin would be non-negative, and the minimization
would result in a spinor with |MP| = 0 (maximal entanglement
or α = π/2) for all possible (u⊥,uz) in the 1 quadrant. The
term proportional to MSz prefers larger magnitudes of MS

along the applied magnetic field. Since |MS| = |MP| always
holds, there is a competition between the tendency towards
small magnitude of pseudospin magnetization due to the
pseudospin contribution to EA, and the tendency towards
large magnitude of the spin magnetization due to the spin
contribution. Here in the case of 0 � min(u⊥,uz) � 1/2, spin
contributes more, so that a maximal value of |MSz| is favored,
very much as for negative values of u⊥ and uz, and spin and
pseudospin remain unentangled. The above-mentioned energy
competition yields different results when 1

2 < min(u⊥,uz). In
this case the pseudospin contribution to EA is positive, which
can be lowered not only by proper choice of the direction
(θP,φP) of pseudospin magnetization but also by shrinking the
magnitude |MP| of pseudospin magnetization. Although the
latter yields a less negative value of the spin contribution to
EA due to the identity |MS| = |MP|, the reduction of energy
contribution from pseudospin overcomes the increase of the
contribution from spin, so that the overall minimum of EA is
reached when

|MS| = |MP| = cos α = 1

2 min(u⊥,uz)
. (14)

D. Visualization of QHFM states

As a consequence of the identity between valley pseudospin
and sublattice index in N = 0, the different QHFM states bear
a clear fingerprint in the spin-polarized electronic occupation
of the two graphene sublattices. The four types of QHFM
ground states are visualized in Figs. 2–5. The upper parts
(panels a, b, and c) in each figure are the Bloch sphere
representations for the CP3 spinor F of the QHFM ground
state. In particular, panel (a) shows the spin magnetization
MS = F †(1 ⊗ σ )F [Eq. (12)] of the CP3 spinor F in the
spin Bloch sphere. For the CP3 spinor F corresponding to
the unentangled QHFM states, with an easy-plane (Fig. 3)
and an easy-axis magnetization (Fig. 2), MS is a unit vector
and its arrowhead is located on the spin Bloch sphere.
In contrast, for the CP3 spinor F corresponding to the
entangled QHFM states, again with an easy-plane (Fig. 5)
and an easy-axis magnetization (Fig. 4), the vector MS has a
magnitude | cos α| smaller than 1, and explores the interior
of the spin Bloch sphere. The appearance of the pseudospin
magnetization MP = F †(σ ⊗ 1)F in the pseudospin Bloch
sphere in panel (b) can be understood similarly. In the case of
an easy-axis pseudospin ferromagnetic state that corresponds

FIG. 2. Visualization of an unentangled easy-axis QH ferromag-
netic state on the spin (a), pseudospin (b), and entanglement (c)
Bloch spheres, as well as the lattice-scale profiles of the electron
density ρTotal(r) (d) and the z component of spin magnetization
MSz(r) (e).
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FIG. 3. Visualization of an unentangled easy-plane QHFM state
in the same ways as Fig. 2.

to the electronic occupation of a single sublattice, the arrow
points along the z axis, while a balanced occupation of both
sublattices goes along with pseudospin magnetization pointing
to the equator of the Bloch sphere. Again, in the presence
of spin-pseudospin entanglement, the arrow starts to exploit
the inside of the sphere. Panel (c) shows the entanglement
vector

mE(α,β) = (sin α cos β, sin α sin β, cos α) (15)

for a CP3 spinor F of the QHFM state, where α and β

are obtained by the parametrization of F with Eq. (9). The
bounding sphere of the entanglement vector is called the
entanglement Bloch sphere by analogy. For the CP3 spinor
F corresponding to the unentangled QHFM states, both with
easy-plane (Fig. 3) and easy-axis magnetization (Fig. 2),
the entanglement vector mE points to the north pole of the

FIG. 4. Visualization of an entangled easy-axis QHFM state in
the same ways as Fig. 2.

FIG. 5. Visualization of an entangled easy-plane QHFM state in
the same ways as Fig. 2.

entanglement Bloch sphere. Meanwhile, for the CP3 spinor F

corresponding to the entangled QHFM states (Figs. 5 and 4),
the direction of mE varies according to Eq. (15).

The Bloch sphere representation of the CP3 spinor is helpful
in the later discussions about the CP3 field. For a CP3 field
Z(r), the collection of the end points for each of the three
vectors MS(r), MP(r), and mE(r) at different r on the xy

plane forms a closed surface in/on the corresponding Bloch
sphere. In Sec. IV we will visualize the skyrmions as a special
configuration of the CP3 field on the Bloch spheres by these
closed surfaces. Notice that the Bloch sphere representation,
which we have introduced above, is not unique also due to
redundancies in the spinor representation. However, it is a
natural one in that it keeps track as much as possible of the
spin and pseudospin magnetizations, which are experimentally
accessible quantities.

In addition to the Bloch sphere representations, we also
show the lattice-resolved profiles of the total electron density in
the N = 0 LL ρTotal and the z component of spin magnetization
MSz in the lower parts [panels (d) and (e)] of Figs. 2–5. We
take advantage of the fact that in the N = 0 LL in graphene
monolayer the valley degree of freedom coincides with the sub-
lattice degrees of freedom, i.e., in the N = 0 LL, the eigenstate
for electrons at the K(K’) valley occupies only the A(B)
sublattice. Thus for a concrete CP3 spinor F , the total electron
density and the z component of the spin magnetization at
sublattice λ = A,B can be computed as

ρTotal(λ) = ρ↑(λ) + ρ↓(λ), (16)

MSz(λ) = ρ↑(λ) − ρ↓(λ) (17)

where

ρ↑(λ = A) = f ∗
1 f1, ρ↓(λ = A) = f ∗

2 f2, (18)

ρ↑(λ = B) = f ∗
3 f3, ρ↓(λ = B) = f ∗

4 f4. (19)

The electron density profiles at lattice scale are rendered
by convolution of the CP3 field with a form factor, which
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is a superposition of Gaussian functions peaked at different
lattice sites. A detailed description of the rendering method is
provided in Appendix A.

The unentangled QHFM states are visualized in panels
(d) and (e) of Figs. 2 and 3 for unentangled easy-axis and
easy-plane pseudospin magnetizations, respectively. In these
two cases, the profiles of ρTotal and MSz are identical, i.e.,
ρ↓(A) = ρ↓(B) = 0 and ρTotal(λ) = MSz(λ) = ρ↑(λ), because
the completely polarized spin can be factored out from the
CP3 spinor F . Since the pseudospin magnetization MP points
along the z axis of the pseudospin space, the electrons occupy
only one of the A/B sublattices in the ρTotal profile for an
unentangled easy-axis QHFM state [Fig. 2(d)]. Meanwhile, in
the ρTotal profile for an unentangled easy-plane QHFM state
[Fig. 3(d)], both sublattices are equally occupied.

The entangled QHFM states are visualized in panel (d)
and (e) of Figs. 4 and 5 for an easy-axis and an easy-
plane pseudospin magnetization, respectively. In these two
cases, the profiles of ρTotal and MSz are different in gen-
eral. For instance, in Fig. 4(d) for the entangled easy-axis
QHFM state, one can see the unequal sublattice occupa-
tions. Indeed, we have ρTotal(A) = cos2(α/2) and ρTotal(B) =
sin2(α/2), as one obtains directly from the spinor F =
(cos α/2,0,0, exp(iβ) sin α/2)T in Table I. Such sublattice
occupation pattern also appears for a CP3 spinor F with some
pseudospin magnetization of θP ∈ (0,π/2). To distinguish
them, we notice that for the entangled easy-axis QHFM state
the spin magnetizations on two sublattices have opposite
directions and different magnitudes, which resembles an
antiferrimagnetic pattern and is shown in Fig. 4(e). The pattern
would be fully antiferromagnetic in the absence of the Zeeman
coupling, but due to the latter there remains a nonzero spin
polarization, from which we have the term “antiferrimagnet”—
it is similar to the canted antiferromagnetic states discussed
in the framework of QHFM states at ν = 0 [42]. This is
due to the superposition of two basis states ψP ⊗ ψS and
χP ⊗ χS with opposite spin and pseudospin in Eq. (9) at
generic values of α. Such antiferrimagnetic patterns appear
also in entanglement CP3 skyrmions as discussed in Sec. IV C.
The ρTotal and MSz profiles are also different in the case of
the entangled easy-plane QHFM [Figs. 5(d) and 5(e)]. The
ρTotal profile has the same appearance as the unentangled
easy-plane QHFM—both sublattices are equally occupied.
However, the MSz profile shows the equal but diminished
magnitudes at the two sublattices. As we have discussed
earlier, the spin magnetization diminishes its magnitude in
order to lower the pseudospin contribution of the anisotropic
energy and thus achieve an overall minimization of both
parts so that we no longer have ρTotal = MSz as in the
unentangled case.

The above discussions show that the four types of QHFM
ground states are clearly distinguished by the lattice profiles
of ρTotal and MSz. Besides, the profiles have common features
among the four types of QHFM ground states. First, due to the
normalization of the CP3 spinor F , in the the ρTotal profile of F

the relation ρTotal(A) + ρTotal(B) = 1 always holds. Second, in
the MSz profile of F representing an unentangled CP3 spinor,
the signs of MSz(A) and MSz(B) are always the same. However,
the reverse is not true (for instance, consider the MSz profile
for the entangled easy-plane QHFM in Fig. 5).

The ρTotal and MSz profiles of the QHFM states are helpful
also in the following discussion of the various CP3 skyrmions
represented by the position-dependent field Z(r). Since these
fields vary slowly on the lattice scale, the lattice-resolved
profiles of ρTotal and MSz are recovered in the vicinity of a
point r = r0 in the xy plane, i.e., the state represented by Z(r)
is locally ferromagnetic. In Sec. IV we will examine the local
structures of the ρTotal and MSz profiles for a CP3 field Z(r) for
skyrmions.

III. CP3 SKYRMION OF CHARGE Q = 1

In this section we study the smoothly varying CP3 field
Z(r), which describes a skyrmion, i.e., a “locally ferromag-
netic” charge-carrying spin-pseudospin texture [4,5,35,45–
49]. Because the second homotopy group of CP3 is π2(CP3) =
Z (see Appendix B), these textures are described by an
integer topological charge. For the field Z(r), we use the
same parametrization as for the QHFM states in Eq. (9), but
now in terms of position-dependent angles θS,φS,θP,φP,α, and
β. Again, we omit the position dependence in the symbols
to simplify the notations. The energy functional for the CP3

field proposed in Refs. [47,49] contains the nonlinear sigma
model energy, which supports the skyrmionic configurations
of Z(r), and the Coulomb energy of topological charge
density, which tends to enlarge the skyrmion. The Coulomb
energy is counterbalanced by the anisotropic energy, which
is locally identical to the anisotropic energy proposed in
Sec. II A.

It is necessary to clarify the relation between Z(r) and the
coefficients in Eq. (1)—fX1,fX2,fX3,fX4—that may depend
on the Landau orbit X. Both of them describe the ordering
in the SU(4) QH ferromagnet. However, there is no simple
replacement rule such as

∑
X → ∫

d2r to relate them. Their
relation has been demonstrated in Refs. [5,45,46] in the context
of a spin skyrmion. The label X for Landau orbit may also
be understood as the center of the coherent state [50]. The
spatial coordinate r of the CP3 field Z(r) would be the
“continuous limit” of the collective coordinate of the coherent
states centered at different position X. In the viewpoint
of effective field theory, Z(r) is naturally the description
of the low-energy degrees of freedom, i.e., the spin-valley
waves.

The energy functional for Z(r) is presented in Sec. III A.
With the help of the skyrmion ansatz discussed in Secs. III B
and III C, we minimize the energy of a skyrmion and present
the result in Sec. III D.

A. Energy functional

The CP3 field Z(r) describes the skyrmions in the N = 0
LL of graphene [5,35,47]. The wave-function ansatz |ψ[Z(r)]〉
is constructed following Ref. [47]. Then the static energy
functional

E[Z] = 〈ψ[Z]|HC + HA|ψ[Z]〉

is the average of the wave-function ansatz on the Hamiltonian
of the system.
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The gradient expansion of E[Z] to leading order yields an
expression in the form of the nonlinear sigma model [5,47]

ENLSM[Z] = 2ρs

∫
d2rDZ†(r) · DZ(r), (20)

where we defined the covariant derivative DZ = ∇Z(r) −
[Z†(r)∇Z(r)]Z(r). The spin stiffness ρs = e2/16

√
2πεlB

measures the coupling strength of the neighboring local
magnetic moments, and it is consistent with the single-mode
approximation analysis of spin waves at small wave vectors
[35].

The next order in the gradient expansion of E[Z] is the
interaction energy of a topological charge density [5,47]

EC[Z] = 1

2

∫
d2r

∫
d2r ′ρtopo(r)V (r − r′)ρtopo(r′), (21)

where the Coulomb potential is V (r) = e2/4πεr , and the
topological charge density ρtopo is defined as

ρtopo(r) = 1

2πi
[DZ(r)† × DZ(r)]z. (22)

The quantity ρtopo is essential for the understanding of
quantum Hall skyrmions. On the one hand, the configuration
space for the finite energy CP3 fields Z(r) is a disjoint union
of topological sectors CQ labeled by the topological charge
Q = ∫

d2rρtopo(r) (see Appendix C). On the other hand, the
topological charge density ρtopo is equal to the excess electron
density δρel at integer filling of the Landau sublevels [4,5,47].
The spin-pseudospin texture state is charged, and EC can be
understood as its Coulomb energy.

In contrast to the gradient expansion terms ENLSM and EC,
which are invariant under a global SU(4) transformation of the
CP3 field Z, the anisotropic energy EA[Z] does not contain any
gradients of Z(r) and prefers particular directions of the spin
and pseudospin magnetizations. We assume that the system is
locally ferromagnetic at large length scale � = ‖∇Z‖−1 � lB,
and use the same form for the anisotropic energy of smooth
fields Z(r) as for the homogeneous FM states in Eq. (4):

EA[Z] = �Z

2

∫
d2r

2πl2
B

{
u⊥

(
M2

Px + M2
Py

) + uzM
2
Pz − MSz

}
.

(23)

Here, the spin and pseudospin magnetizations are now vector
fields obtained from the CP3 field Z(r):

MS(r) = Z†(r)(1 ⊗ σ )Z(r), (24)

MP(r) = Z†(r)(σ ⊗ 1)Z(r). (25)

In this paper, we use the magnetic length lB as the unit of
length and e2/4πεlB as the unit of energy. For graphene on
a hexagonal boron-nitride substrate, we have ε = ε0εr with
εr = 5.5 [28]. After rescaling of length and energy in the
above units, respectively, we have ρs = √

π/32 in Eq. (20),
V (r) = 1/r in Eq. (21), and Eq. (23) becomes δZ

∫
d2r(...)

with

δZ � 1

2π

(
e2

4πεlB

)−1
�Z

2

= 9.1 × 10−4BT[T]/
√

B⊥[T]

= 9.1 × 10−4
√

B⊥[T]/ cos ϕ, (26)

where B⊥ = BT cos ϕ is the perpendicular component of the
total magnetic field BT when the sample is tilted away from
an upright position by angle ϕ. The above numerical value
indicates that the anisotropic energy 〈HA〉 is much smaller
than the Coulomb interaction energy 〈HC〉 under strong
magnetic field. The relative energy scales of ENLSM and EC

are characterized by the order of gradient expansion, i.e.,
ENLSM ∝ (lB/�)2 and EC ∝ (lB/�)4 where � = ‖∇Z‖−1 �
lB characterizes the length scale of the spatial variation of the
field Z. Therefore we first discuss the minimization of the
largest part ENLSM[Z].

B. Skyrmion ansatz

The CP3 nonlinear sigma model is briefly reviewed in
Appendix C. As mentioned there, each field configuration Z(r)
is associated with a unique topological index Q and falls into
the corresponding topological sector CQ. Two configurations
from different topological sectors cannot be connected by
continuous deformation. Therefore, in search of the minimal
field configuration of E[Z], the variational analysis is per-
formed only within each topological sector. We are particularly
interested in the configuration Zsk(r) ∈ C1 which minimizes
ENLSM[Z] to the value 4πρS in the topological sector C1.
The (scale-invariant) CP3 skyrmion of charge Q = 1 is a
holomorphic polynomial of degree 1 (see Appendix D):

Zsk(x,y) = N (r)−1[(x + iy)F − λ0C], (27)

with r = |r|. Here, F is a CP3 spinor and C ∈ C4 is a
normalized C4 vector, and one has

F †C = 0. (28)

The parameter λ0 is chosen to be real because a phase factor
could be combined with C. The normalization factor is denoted
as N =

√
x2 + y2 + λ2

0. In the rest of this paper, the term CP3

skyrmion always refers to the case of a CP3 skyrmion carrying
topological charge Q = 1. By making such an ansatz, we
reduce the functional minimization to a minimization problem
of several real parameters.

We make several technical comments on the above field
configuration in order to display how we determine the
parameters for a skyrmion from energy minimization.

(i) Zsk is an interpolation between F and C along the
radius r . Far from the center of a CP3 skyrmion, i.e., r =√

x2 + y2 � λ0, Zsk approaches eiarg(x+iy)F ∼ F , which is
the ground state of the host QHFM. F may thus be viewed
as the FM background spinor. The phase factor eiarg(x+iy) of
Zsk at large radius has negligible contribution to the NLSM
energy density DZ

†
sk(r) · DZsk(r). In this sense, a skyrmion

described by Zsk can be viewed as a localized texture, which
is embedded into the ferromagnetic background.

(ii) The center spinor

C = −Zsk(r = 0) (29)

is parametrized with respect to the same basis as in the
parametrization of F . The orthogonality condition Eq. (28)
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sets the center of the skyrmion at the origin of the xy plane.
To see this, let

C ′ = C + aF√
1 + |a|2

be a generic normalized C4 vector with the normalized C4

vector C satisfying Eq. (28) and a ∈ C. Replacing C in the
ansatz Eq. (27) by C ′ we find

Z′
sk(x,y) = N ′(x,y)−1[(x + iy)F − λ0C

′]

= N ′(x,y)−1[(x + iy − λ′
0a)F − λ′

0C], (30)

where λ′
0 = λ0/

√
1 + |a|2. Such ansatz describes a CP3

skyrmion centered at λ′
0a. Setting a = 0 one restores the

orthogonality condition Eq. (28) and fixes the skyrmion center
to the origin of the xy plane. In our variational approach,
Eq. (28) is a constraint reducing the set of free parameters,
with respect to which we minimize the skyrmion energy. We
may thus write

C = cos θC

[
−e−iβ sin

α

2
ψP ⊗ ψS + cos

α

2
χP ⊗ χS

]

+ sin θC[eiϕA cos φCψP ⊗ χS + eiϕB sin φCχP ⊗ ψS].

(31)

The entanglement parameters α and β are inherited from F ,
but C contains four more parameters φC , θC , ϕA, and ϕB in
addition to the six fixed angles in F . The center spinor C

and FM background spinor F determine the various types of
skyrmions, which are discussed in Sec. IV.

(iii) The scaling invariance ENLSM[Z] = ENLSM[Z(αr)]
is manifest for Zsk, since we have ENLSM[Zsk] = 4πρS

independent of λ0, and Zsk(r) with parameter λ0 is equivalent
to Zsk(γ r) with parameter γ λ0. To emphasize such property,
we call Zsk the scale-invariant skyrmion.

(iv) The parameter λ0 is the width of the bell-shaped
topological charge density

ρtopo(r) = λ2
0

π
(
r2 + λ2

0

)2 (32)

for a skyrmion Zsk and can be viewed as the size of the
skyrmion. Notice that the length unit is lB , and λ0, x, y,
and r are dimensionless. Here we perform another rescaling
r → λ0r to extract the λ0 dependence in the three components
of E[Zsk]:

E′[Zsk] = ENLSM[Z̃sk] + 1

λ0
EC[Z̃sk] + λ2

0E
′
A[Z̃sk] (33)

where Z̃sk := Zsk|λ0=1, and the prime on E and EA will be
discussed in the next paragraph. The CP3 skyrmion is stabilized
by the competition between the second and the third terms in
the above equation.

The skyrmion ansatz Eq. (27) cannot be used directly
for energy minimization. Prior to each minimization for a
given set of parameters δZ, u⊥, and uz, the corresponding
FM background spinor F is obtained by minimizing solely
the anisotropic energy EA[F ], which is then subtracted from
the energy of the system. This is because the skyrmions are
embedded into the ferromagnetic background, and a large

portion of the xy plane far from the skyrmion center is still in
the QHFM ground state in the presence of a single skyrmion.
In fact, we are minimizing the excess energy

E′[Zsk] = E[Zsk] − EA[F ] (34)

of a skyrmion state in the vicinity of quarter filling of the
N = 0 LL, with respect to the corresponding QHFM ground
state in which the skyrmion is embedded. The terms E′[Zsk]
and E′

A[Z̃sk] in Eq. (33) are shorthand notations for the excess
energy E[Zsk] − EA[F ] and EA[Z̃sk] − EA[F ], respectively.
Such energy difference is bounded from below because a
scale-invariant skyrmion of topological charge Q = 1 comes
along with a minimal energy cost of 4πρs , and it is increased
by the amount of E[Zsk] − EA[F ] − 4πρs in the presence of
the Coulomb interaction energy EC and anisotropic energy
EA. Minimization of the energy difference results in stable
skyrmions.

C. Radial deformation

Before presenting our results of the aforementioned energy
minimization, we discuss here a subtle issue concerning a
necessary deformation of the scale-invariant skyrmion Zsk

in Eq. (27). In practice, it has a logarithmically divergent
anisotropic energy E′

A[Zsk] = EA[Zsk] − EA[F ] with respect
to the FM background. However, a skyrmion is expected
to have finite energy because the texture is localized and
nonsingular. The apparent contradiction is solved by allowing
the skyrmion ansatz to slightly deviate from the scale-invariant
skyrmion Zsk, since it is the optimal configuration only for the
NLSM part ENLSM of the energy of the skyrmion. The radial
deformation is achieved by replacing the size parameter λ0

in the scale-invariant skyrmion in Eq. (27) by the following
r-dependent function λ(r) to “shrink” the skyrmion,

λ(r) = λ0 exp

(
− r2

κλ2
0

)
, (35)

so that the divergence in EA is controlled by the parameter κ

(see Appendix E). This leads to the radially deformed skyrmion
ansatz

Žsk(x,y) = N (r)−1[(x + iy)F − λ(r)C], (36)

which is obtained by replacing λ0 by λ(r) in Eq. (27). We use
the factor 1/λ2

0 to make it convenient to extract λ0 from the
expression of EC[Žsk] and EA[Žsk] by a redefinition r/λ0 → r,
which is in the same spirit of Eq. (33). Notice that we still use
lB as the length unit during the whole discussion, and λ0 and
r are dimensionless.

At λ0 = 1 and κ → ∞, ENSLM[Žsk] and EC[Žsk] de-
crease monotonically to the value (4π

√
π/32)(e2/4πεlB)

and (3π2/64)(e2/4πεlB), respectively, which are consistent
with the corresponding energy values for the scale-invariant
skyrmion. Meanwhile, the anisotropic energy has a linear
dependence on log κ . At λ0 = 1 and finite κ , the price to pay for
the control of divergence in the anisotropic energy is a slight
increase in the NLSM energy and the interaction energy from
the κ → ∞ limit. More details can be found in Appendix E.

The radial deformation makes the components of the
CP3 field deviate from holomorphic functions of z = x + iy.
Notice that this deviation from holomorphic functions is not in
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contradiction with the lowest-LL condition, which requires the
electronic wave functions to be analytic. Indeed, the CP3 field
Žsk(r) is an envelope function over these LL wave functions
φm(z) and does not need itself to be analytic. The holomorphic
solution from minimization of ENLSM[Z] in Eq. (20) or
Eq. (C3) and the holomorphic Landau wave function φm(z)
have different origins.

We are now armed to minimize the skyrmion energy
E[Žsk] − EA[F ] for a given set of parameters u⊥, uz, and
δZ, using the radially deformed ansatz Žsk in Eq. (36) for
the CP3 skyrmion, which contains the size parameter λ0, the
deformation parameter κ , and φC , θC , ϕA, and ϕB in the center
spinor C. The FM background spinor F is determined by
minimization of EA[F ].

D. Minimization results

We set δZ = 0.0063 (which corresponds to rather high but
experimentally achievable value B ∼ 50 T for the magnetic
field) and minimize the system energy in the presence of one
skyrmion at various combinations of u⊥ and uz in the interval
[−5,5].

Our result is presented in Fig. 6 with the help of the
skyrmion-type indicator

X = MP(0) · MP(∞)

|MP(0)||MP(∞)| − MS(0) · MS(∞)

|MS(0)||MS(∞)| , (37)

which is a useful quantity to characterize the relative orien-
tations of spin and pseudospin magnetization at the skyrmion
center

MS(r = 0) = C†σ0 ⊗ σC, (38)

MP(r = 0) = C†σ ⊗ σ0C (39)

with respect to the FM background far from the center:

MS(r → ∞) = F †σ0 ⊗ σF, (40)

MP(r → ∞) = F †σ ⊗ σ0F. (41)

By checking the explicit expressions of MS,T (0) and MS,T (∞)
for a skyrmion state Zsk, one finds that X takes three values
−2,0, + 2. In the skyrmion-type diagram Fig. 6, they are
colored in blue, yellow, and red, respectively. For the spin
skyrmion and pseudospin skyrmion, we have X = 2 and
−2, respectively, because the pseudospin magnetization in a
pseudospin skyrmion has opposite directions at the skyrmion
center and infinity, whereas for a spin skyrmion the spin
magnetization has opposite direction. The case X = 0 means
both spin and pseudospin magnetization reverse the direction
and it corresponds to an entanglement skyrmion. Moreover,
with the help of the the (u⊥,uz) dependence of the optimal
value of φC , we have identified a fourth type of CP3 skyrmions,
namely, the deflated pseudospin skyrmion. In Table II, we
list the skyrmion types and corresponding optimal values of
relevant parameters.

Since a skyrmion is a localized texture state and it is
smoothly connected to the ferromagnetic background, in
Fig. (6) we highlight the borders of the four types of
background FM states studied in Sec. II C, in order to stress the

FIG. 6. The color plot for the skyrmion-type indicator X , which
by design has three possible values −2,0,2, marked by blue, yellow,
and red, respectively. Black lines highlight the boundaries of four
regions for the four types of FM background of a skyrmion. Three
cuts, as well as 13 representative points on these lines, are selected
for detailed discussion. The equations of the green lines are (A)
u⊥ + uz = −3.5, u⊥ ∈ [−3, − 0.5]; (B) u⊥ = 2.5, uz ∈ [−1,1.5];
(C) uz = 3, u⊥ ∈ [−1,4]. The (u⊥,uz) coordinates of the 13 points
are on line (A) (−2.7, − 0.8), (−2, − 1.5), (−1.5, − 2), (−1, − 2.5)
labeled by 1, 2, 3, 4; on line (B) (2.5, − 0.5), (2.5,0.3), (2.5,1), labeled
by 5, 6, 7; on line (C) (−1,3), (0.3,3), (1,3), (2,3), (3.05,3), (3.5,3),
labeled by numbers 8–13. The minimization is done at δZ = 0.0063
for each (u⊥,uz) point. The red dot indicates possible values of u⊥
and uz which are estimated in Sec. II A.

fact that there are different types of CP3 skyrmions embedded
into the same ferromagnetic background. Guided by this
observation, we have selected three lines (labeled A, B, and
C, colored in green) and 13 representative points (labeled by
number 1 to 13, colored in black) for a more detailed analysis.
In the following sections, the qualitative and quantitative

TABLE II. Summary of various types of optimal CP3 skyrmions.
From the parametrization of the center spinor C in Eq. (31), we
notice that when θC = 0 or π (the case for X = 0) the value of φC is
irrelevant.

Color Blue Yellow Red

X −2 0 +2
θC

π

2 0 π

2
φC

π

2 0 0
(0, π

2 ) (irrelevant)
Skyrmion Pseudospin or deflated Entanglement SK Spin SK

(SK) types pseudospin SK
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features of the different skyrmion types are investigated in
more detail.

IV. FOUR TYPES OF CP3 SKYRMIONS

In this section, we present a detailed discussion of the four
types of CP3 skyrmions which we obtain and summarize in
Table II. We choose the 13 representative points among the
minimization results presented in Fig. 6. For each skyrmion
type, we visualize the minimization result at selected points on
the three Bloch spheres which are introduced in Sec. II D for
the discussion of the FM states. The methodology is described
in more detail in Appendix F. We also display the profiles of
the electron density ρTotal(r) and the z component of the spin
magnetization MSz(r) on the honeycomb lattice associated
with the different skyrmion types in the same manner as
for the QHFM states (technical details of the lattice-scale
representation can be found in Appendix A).

The aim of visualization is twofold—on the one hand,
the visualization of skyrmions on Bloch spheres makes it
transparent that a skyrmion is a wrapping of the Bloch sphere;
on the other hand, the lattice-scale profiles provide hints for
direct imaging via spin-resolved STM/STS experiments. In
particular for the N = 0 LL, the sublattice degrees of freedom
coincide with the valley degrees of freedom. The lattice-
resolved visualizations of CP3 skyrmions allow us to display
the profile of electron spin and valley pseudospin altogether,
thus better revealing the hidden degrees of freedom—the en-
tanglement between spin and pseudospin—in CP3 skyrmions.

Notice that for mere illustration purposes we have chosen
a rather large magnetic field of B ∼ 1000 T to visualize the
lattice-scale profiles. While these fields are not achieved in a
typical experimental situation, more realistic fields would yield
skyrmion sizes on the order of some hundred lattice spacings
and the profiles presented in Figs. 7–16 simply need to be
upscaled. A more quantitative analysis on CP3 skyrmions is
given in Sec. V.

In Secs. IV A and IV B, we discuss the CP3 spin skyrmion
and the CP3 pseudospin skyrmion. For these types, the CP3

field Žsk(x,y) factorizes into a direct product of two CP1

spinors for spin and pseudospin throughout the entire xy

plane. We call them factorizable CP3 skyrmions. In Sec. IV C,
we discuss the CP3 entanglement skyrmion with the help of
the Schmidt decomposition Eq. (9) of the CP3 spinors. For this
type of skyrmion, our parametrization Eq. (9) provides a one-
to-one mapping between the xy plane and the “entanglement
Bloch sphere” for the angles α and β, precisely in the same
manner as the spin magnetization of a CP3 spin skyrmion, and
the pseudospin magnetization of a CP3 pseudospin skyrmion.
Finally in Sec. IV D, we discuss a more subtle type of
skyrmion. Although the skyrmion-type indicator X does not
help one to distinguish this type from the (factorizable) CP3

pseudospin skyrmion, the visualizations on the Bloch spheres
and on the lattice indicate a certain degree of entanglement.
According to the appearance on the Bloch spheres, we call
this type the deflated CP3 pseudospin skyrmion.

FIG. 7. Visualization of the CP3 spin skyrmion in the unentangled
easy-axis FM background corresponding to the optimal configura-
tions at point 4 in the skyrmion-type diagram Fig. 6. Panels (a),
(b), and (c) show the texture visualized on the spin, pseudospin,
and entanglement Bloch spheres, respectively. Red arrows indicate
the polarizations for r → ∞, while the black arrows indicate the
polarizations at the center of the texture. (d) and (e) show the
lattice-resolved profiles of the electron density ρTotal(r) and the z

component of spin magnetization MSz(r). The center of the texture
is always chosen to be at the center of the figure. Here and in the
following figures, we have chosen a field B ∼ 1000T simply to
illustrate the profiles. For more realistic B fields, the patterns need to
be upscaled.

A. Spin skyrmion

The spin skyrmion is probably the most studied texture state
in the literature [51]. Our energy minimization shows that the
CP3 skyrmion appears as a spin skyrmion when the parameters
(u⊥,uz) fall in the red region of Fig. 6. In this case, we have
α = 0 throughout the xy plane, so that the CP3 field factorizes
into a direct product of spin and pseudospin:

Zspin(x,y) = N (r)−1ψP ⊗ [(x + iy)ψS − λ(r)χS]. (42)

The constant CP1 spinor ψP is defined in Eq. (10). It is
determined by the pseudospin ferromagnetic background in
which the skyrmion is embedded and that is not affected by
the formation of the spin texture. Therefore the coordinate
dependence of the spin skyrmion lies entirely in the spin part,
where we have ψS = (1,0)T and χS = (0,1)T . Regardless of
the radial deformation, the spin part of a spin skyrmion is
identical to an O(3) skyrmion written in CP1 spinor form [52].

In Figs. 7(a)–7(c) and 8(a)–8(c) we visualize the CP3

spin skyrmions on the spin, pseudospin, and entanglement
Bloch spheres. In order to obtain this representation, we
first compactify the xy plane to the Riemann sphere by
adding the infinity point (see Appendix F), and then use
a “Gauss map” to map the Riemann sphere on the Bloch
sphere. Consider the spin magnetization vector field MS(r)
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FIG. 8. Visualization of the CP3 spin skyrmion embedded in
an unentangled easy-plane FM background (point 1 in Fig. 6).
Conventions are the same as in Fig. 7.

for example. At a specific point r0 in the xy plane, the spin
magnetization for a CP3 field Z(r0) corresponds to a point
on the spin Bloch sphere specified by MS(r0). Collecting all
such points with coordinate r0 throughout the compactified
xy plane (the Riemann sphere), we obtain a surface on the
spin Bloch sphere. Such surface is continuous because a
CP3 skyrmion can be viewed as an interpolation between
its center spinor C and its FM background spinor F . It is
also closed because the boundary conditions for a CP3 field
Z(r) require that all Z(r0) are equivalent when |r0| → ∞
and thus give the same spin magnetization vector MS(∞). In
this sense, the spin magnetization vector field MS(r), as well
as the pseudospin magnetization vector field MP(r) and the
entanglement vector field mE(r) by analogy, can be understood
as mappings from the Riemann sphere to the corresponding
Bloch spheres. The surface on the pseudospin Bloch sphere
can be obtained similarly by collecting the end points of the
pseudospin magnetization vector field MP(r0) for all r0 in
the compactified xy plane. To keep track of the continuous
change of spin magnetization on the surface of the spin Bloch
sphere, we draw the image of longitudinal and latitudinal lines
of the Riemann sphere on the spin Bloch sphere in green.

In the case of a CP3 spin skyrmion embedded into an
unentangled easy-axis FM background, the spin Bloch sphere
[Fig. 7(a)] is completely covered by the image of the Riemann
sphere, while on the pseudospin Bloch sphere [Fig. 7(b)] the
image is a single point at the north pole, which indicates that
all electrons remain on a single sublattice. In the entanglement
Bloch sphere the image of the Riemann sphere is also a point
and the entanglement vector mE(α,β) is pointing upward to
the north pole, because the factorizable CP3 skyrmion means
α = 0 throughout the xy plane. On the spin Bloch spheres one
also notices the opposite direction of the spin magnetization at

the skyrmion center (black arrow pointing towards the south
pole) and infinity (red arrow pointing towards the north pole).

The Bloch sphere representation of the CP3 spin skyrmion
embedded into an unentangled easy-plane FM background
[Figs. 8(a)–8(c)] is essentially the same as that of the
previous case, apart from the in-plane direction of pseudospin
magnetization in Fig. 8(b).

In addition to the visualization of the CP3 spin skyrmions
on Bloch spheres, we display the profiles of electron density
ρTotal(r) and the z component of spin magnetization MSz(r)
in lattice resolution. Recall that in the lattice-resolved profiles
of ρTotal(r) and MSz(r) for the QH ferromagnetic ground state
discussed in Sec. II D, the sublattice occupation is used to
indicate the z component of pseudospin magnetization MPz in
the N = 0 LL. In the case of a CP3 spin skyrmion, due to the
same reason, MPz(r) can be visualized by the pattern of the
sublattice occupation. Because the pseudospin magnetization
is uniform in a CP3 spin skyrmion, the pattern of sublattice
occupation should be uniform. Figures 7(d) and 8(d) show that
there are indeed no textures in the electron density profiles, i.e.,
the sublattice occupation pattern is constant throughout the xy

plane. In particular, in a CP3 spin skyrmion with unentangled
easy-axis FM background, the sublattice A is fully filled and
sublattice B is empty—we have ρTotal(B) = ρ↑(B) + ρ↓(B) =
0 and ρTotal(A) = ρ↑(A) + ρ↓(A) = 1 everywhere. In contrast
to this, a spin skyrmion in an unentangled easy-plane FM
background has equal occupation of the two sublattices—
we have ρTotal(B) = ρ↑(B) + ρ↓(B) = 1/2 and ρTotal(A) =
ρ↑(A) + ρ↓(A) = 1/2 everywhere.

As expected, the spin texture of a CP3 spin skyrmion
becomes apparent in the lattice-scale profiles of the spin
magnetization MSz(r) in Figs. 7(e) and 8(e).

B. Pseudospin skyrmion

Interchanging the role of spin and pseudospin in the CP3

spin skyrmion, we obtain the CP3 pseudospin skyrmion:

Zpspin(x,y) = N (r)−1[(x + iy)ψP − λ(r)χP] ⊗ ψS, (43)

where the CP1 spinor bases ψP and χP for pseudospin are
defined in Eqs. (10) and (11). Dual to the case of the spin
skyrmion, the CP3 pseudospin skyrmion is factorized into two
parts: a constant CP1 spinor ψS = (1,0)T for spin throughout
the xy plane, tensor product to a CP1 pseudospin skyrmion
embedded in an unentangled easy-axis FM background, or a
CP1 pseudospin bimeron embedded in an unentangled easy-
plane FM background.

We visualize the CP3 pseudospin skyrmion on the spin,
pseudospin, and entanglement Bloch spheres in Figs. 9(a)–
9(c) and 10(a)–10(c) in the same manner as for CP3 spin
skyrmions. In contrast to the spin skyrmions discussed in the
previous section, we have constant spin magnetization for a
CP3 pseudospin skyrmion, and it appears as a point at the
north pole on the spin Bloch sphere [Figs. 9(a) and 10(a)].
The pseudospin texture appears as the image of the Riemann
sphere (i.e., the compactified xy plane), which completely
covers the pseudospin Bloch sphere [Figs. 9(b) and 10(b)]. For
the CP3 pseudospin skyrmion in an unentangled easy-axis FM
background (Fig. 9), the pseudospin magnetization of the FM
background spinor F and the center spinor C point to the south
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FIG. 9. Visualization of the CP3 pseudospin skyrmion embedded
in an unentangled easy-axis FM background (point 3 in Fig. 6).
Conventions are the same as in Fig. 7.

and north pole, respectively, in the pseudospin Bloch sphere,
while for the CP3 pseudospin skyrmion in an unentangled
easy-plane FM background (Fig. 10) the two magnetizations
of opposite directions lie in the equatorial plane. In the same
manner as for the CP3 spin skyrmion, the CP3 pseudospin
skyrmion is factorizable (because α = 0) and the image of the
Riemann sphere in the entanglement Bloch sphere is simply a
point at the north pole [Figs. 9(c) and 10(c)].

For the CP3 pseudospin skyrmion, the lattice-scale profile
of ρTotal(r) is identical to that of MSz(r), because the spin
magnetization is constant over the xy plane and it is fully
polarized along the z axis, i.e., we have ρ↓(A) = ρ↓(B) =
0 and ρTotal(A/B) = ρ↑(A/B) = MSz(A/B). Since in the
N = 0 LL of graphene a pseudospin MPz = +1(−1) means
full occupation of the A(B) sublattice, we can read off
the z component of the pseudospin magnetization from the
sublattice occupation pattern. In particular, for the CP3 pseu-
dospin skyrmion in an unentangled easy-axis FM background
[visualized in Figs. 9(d) and 9(e)], the occupation pattern
transforms continuously along the radius from full occupation
of the B sublattice at the skyrmion center to full occupation of
the A sublattice in the FM background. In between, we have
some region where ρTotal(A) and ρTotal(B) are approximately
1/2, and the pseudospin magnetization appears to be in plane.

In Figs. 10(d) and 10(e) for the CP3 pseudospin skyrmion
in an unentangled easy-plane FM background, we encounter
a double-core structure, which is also called a bimeron in the
literature [53]. Strictly speaking, a bimeron is a pseudospin
skyrmion in an easy-plane FM background if the distance
between the two cores is locked to the size of the texture in
such a manner as to obtain the most homogeneous topological
charge distribution. Indeed, one notices from our skyrmion
ansatz (27) that there is only one (eventually deformed) length
scale λ0, while in a bimeron the core size can in principle

FIG. 10. Visualization of the CP3 pseudospin skyrmion embed-
ded in an unentangled easy-plane FM background (point 2 in Fig. 6).
Conventions are the same as in Fig. 7.

be chosen different from the core separation. However, this
decoupling of the length scales yields an increase of the
leading energy ENLSM. One may speculate that this increase
in energy can be compensated in a disorder potential that
breaks translation symmetry, but this issue is beyond the
scope of the present paper, and we thus only consider
states of the form of Eq. (27) here. Since the pseudospin
magnetization of a CP3 pseudospin skyrmion explores all
spherical directions, the pseudospin magnetizations in the left
and right “cores” are actually pointing in the direction close
to the south and north poles of the pseudospin Bloch sphere.
The opposite directions of the pseudospin magnetization in
the two cores manifest themselves as full occupation of
the A/B sublattice. Notice that the direction of an in-plane
polarized pseudospin magnetization cannot be observed from
the sublattice occupation pattern, and one therefore has access
only to MPz in lattice-resolved spectroscopy.

C. Entanglement skyrmion

When (uz,u⊥) lies in the yellow region in the skyrmion-
type diagram, the optimal value of the parameter θC of the
center spinor C is zero, and the center spinor C [Eq. (31)] is
simplified:

C = −e−iβ sin
α

2
ψP ⊗ ψS + cos

α

2
χP ⊗ χS. (44)

Meanwhile the FM background spinor F is parametrized as

F = cos
α

2
ψP ⊗ ψS + eiβ sin

α

2
χP ⊗ χS. (45)

Recall that the parameters α and β in both F and C are
determined by the FM background spinor F . Therefore the
CP3 skyrmion Zent = N−1{(x + iy)F − λC} can be written
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FIG. 11. Visualization of the CP3 entanglement skyrmion embed-
ded in an unentangled easy-axis FM background (point 6 in Fig. 6).
Conventions are the same as in Fig. 7.

as

Zent = N−1

{
(x + iy)

(
cos α

2

eiβ sin α
2

)
− λ

(−e−iβ sin α
2

cos α
2

)}

(46)

with respect to the fixed basis (ψP ⊗ ψS,χP ⊗ χS), which
is determined from the FM background CP3 spinor F and
independent of the x,y coordinates. The above form of
Zent resembles an O(3) skyrmion written in CP1 form: the
entanglement vector for Zent defined in Eq. (15),

mE(α,β) = (sin α cos β, sin α sin β, cos α),

is the “magnetization”, which explores all directions of the
entanglement Bloch sphere, as shown in Figs. 11(c), 12(c),
13(c), and 14(c). Thus we call this type a CP3 entanglement
skyrmion.

The visualizations of this type of skyrmion in three
Bloch spheres are special. While the spin and pseudospin
polarizations continue to be aligned in the same directions
in the spin and pseudospin Bloch spheres, respectively, the
images of the Riemann sphere shrink to a line (instead of
points in previous cases) and explore the interior of the two
Bloch spheres [see panels (a) and (b) in Figs. 11–14.] This is a
consequence of the varying entanglement in the CP3 spinor. To
understand this in more detail, let us first recall that the image
of the Riemann sphere is the collection of the arrowheads of the
vectors representing the spin and pseudospin magnetization.
For the CP3 entanglement skyrmion, when the parameter α

explores all the possible values in (0,π ), the magnitude of the
spin and pseudospin magnetizations will be less than 1 and
eventually vanish at α(r0) = π/2 for some r0. Furthermore,
it can be verified explicitly that the x and y components of
the spin magnetization of Zent(r) are zero throughout the xy

plane. Therefore the spin magnetization vector is confined to

FIG. 12. Visualization of the CP3 entanglement skyrmion embed-
ded in an unentangled easy-plane FM background (point 9 in Fig. 6).
Conventions are the same as in Fig. 7.

the z axis inside the spin Bloch sphere, and the image of
the Riemann sphere shrinks to the diameter along the z axis
for all the four cases. To explain the similar behavior of the
pseudospin magnetization, we write down the expression of
the pseudospin magnetization for Zent(r):

MP(r) = Z
†
ent(r)(σ ⊗ 1)Zent(r)

= N−2{|U |2ψ†
PσψP + |V |2χ †

PσχP}
= N−2(|U |2 − |V |2)mP (47)

where

U = (x + iy) cos
α

2
+ λe−iβ sin

α

2
,

V = (x + iy)eiβ sin
α

2
− λ cos

α

2

are the first and second components of Zent in Eq. (46), and
mP = ψP†σψP = −χP†σχP is the unit vector of pseudospin
magnetization. The above equations reveal that the pseudospin
magnetization for a CP3 entanglement skyrmion always lies in
the constant direction mP of the pseudospin magnetization de-
termined by the FM background, but with varying magnitude.
That is to say, inside the pseudospin Bloch sphere, the shape of
the Riemann sphere image collapses to a diameter line in the
direction mP. One notices that the orientation of the spin and
pseudospin magnetization is changed when the entanglement
vector crosses the equatorial plane of the entanglement Bloch
sphere (α = π/2).

A CP3 entanglement skyrmion can be embedded into all
four types of FM background, as revealed by the skyrmion-
type diagram Fig. 6. We use the oppositely directed pair of
entanglement vectors of the background spinor F (colored in
blue) and the center spinor C (colored in red) to distinguish
the four examples of the CP3 entanglement skyrmion Zent.
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FIG. 13. Visualization of the CP3 entanglement skyrmion embed-
ded in an entangled easy-axis FM background (point 13 in Fig. 6).
Conventions are the same as in Fig. 7.

For Zent embedded in the unentangled easy-axis and easy-
plane FM backgrounds, (Figs. 11 and 12), respectively, the
entanglement vector for the FM background spinor F always
points to the north pole [Figs. 11(c) and 12(c)] because the
FM spinor F is factorizable and thus α = 0 at r → ∞. For
Zent embedded in the entangled easy-axis and easy-plane
FM backgrounds with generic values of α, the entanglement
vector for F is tilted away from z axis [Figs. 13(c) and
14(c)], and hence the entire image of the Riemann sphere
on the entanglement Bloch sphere is tilted. Such picture of
tilting helps us to understand the relation between the CP3

entanglement skyrmion embedded in the unentangled and
entangled FM backgrounds.

Figure 11 shows the case for a CP3 entanglement skyrmion
embedded in an unentangled easy-axis FM background. In this
case, the ρTotal(r) profile is similar to that for the CP3 pseu-
dospin skyrmion visualized in Fig. 9, but the MSz(r) profile is
different. Both the center spinor C ∼ Zent(0) = χP ⊗ χS and
the FM background spinor F ∼ Zent(∞) = ψP ⊗ ψS have no
entanglement, implying that the A sublattice is occupied at the
skyrmion center, whereas the B sublattice is occupied in the
region far from the core, with the sublattice spin magnetization
pointing into opposite directions. At a point 0 < |r0| < ∞, the
lattice-scale profile is an interpolation between zero and ∞ and
has “antiferrimagnetic” appearance, which has been discussed
in Sec. II D in the framework of FM with entanglement. Here,
the CP3 spinor Zent(r0) appears on the lattice as simultaneous
occupation of both sublattices with different amplitudes in
general, with the sublattice spin magnetization pointing along
the z axis with opposite directions.

Figure 12 shows the case for the CP3 entanglement
skyrmion embedded in an unentangled easy-plane FM back-
ground. Most significantly, the uniform ρTotal(r) profile
Fig. 12(d) shows that the A and B sublattices are equally

FIG. 14. Visualization of the CP3 entanglement skyrmion embed-
ded in an entangled easy-plane FM background (point 10 in Fig. 6).
Conventions are the same as in Fig. 7.

occupied. This can be understood from the observation that the
diameter line in the pseudospin Bloch sphere Fig. 12(b) lies
in the equatorial plane, so the z component of the pseudospin
magnetization vanishes everywhere throughout the xy plane.
This is also true for the CP3 spin skyrmion embedded in the
unentangled easy-plane FM background (Fig. 8), as well as
for the CP3 entanglement skyrmion embedded in the entangled
easy-plane FM background (Fig. 14). The MSz(r) profile shows
that the spin magnetization is opposite at the center and in
regions far from the center. We notice that, only by the lattice-
scale profiles, one cannot distinguish the CP3 entanglement
skyrmion shown in Fig. 12, from a CP3 spin skyrmion shown
in Fig. 8. Both of them are embedded in the same unentangled
easy-plane FM background. In order to distinguish them, one
can in principle use the lattice-scale profiles of the x and y

components of spin magnetization MSx(r) and MSy(r), since
these profiles have different appearances for the two types
of skyrmions. The profiles MSx(r) and MSy(r) vanish for the
CP3 entanglement skyrmion, but for the CP3 spin skyrmion
they reach a maximal value in the region where MSz(r)
vanishes.

For the CP3 entanglement skyrmions embedded in entan-
gled FM backgrounds, Fig. 13 shows the case of an entangled
easy-axis FM background. The double-core texture is present
for both ρTotal(r) and MSz(r) profiles. In the left core, sublattice
A is occupied with the spin magnetization pointing down,
while sublattice B is empty. In the right core, sublattice B
is occupied with the spin magnetization pointing up, while
sublattice A is empty. Recalling the “tilting picture” discussed
earlier in this subsection, the ρTotal(r) and MSz(r) profiles of the
two cores are in fact identical to the center and the background
of a CP3 entanglement skyrmion embedded in the unentangled
easy-axis FM background (Fig. 11). It is precisely the tilting
of the entanglement Bloch sphere that “shifts” the center and
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FIG. 15. Visualization of the deflated CP3 pseudospin skyrmion
with an entangled easy-plane FM background (point 11 in Fig. 6).
Conventions are the same as in Fig. 7.

infinity in the textures of the unentangled easy-axis case to the
left and right cores in the textures of the case here.

Figure 14 shows the CP3 entanglement skyrmions embed-
ded in the entangled easy-plane FM background. The profile of
ρTotal(r) is uniform because MPz = 0 leads to equal sublattice
occupation everywhere in the xy plane. This is similar to the
CP3 spin (Fig. 8) and the CP3 entanglement skyrmion (Fig. 12)
when both are embedded into an unentangled easy-plane FM
background. Meanwhile, in the MSz(r) profile, the left core has
ρ↓(A) = ρ↓(B) = 1/2, whereas the right core has ρ↑(A) =
ρ↑(B) = 1/2. The “tilting” of the entanglement Bloch sphere
relates the textures in these two cores, to the textures at
the center and infinity of the CP3 entanglement skyrmion
embedded in an unentangled easy-plane FM background
(Fig. 12).

In the MSz(r) profile for a CP3 entanglement skyrmion
embedded in an unentangled (Fig. 12) and an entangled
easy-plane FM background (Fig. 14), we observe the white
bands, where the z component of spin magnetization vanishes
at both A and B sublattices. These regions (on the xy plane)
are mapped to the equator of the entanglement Bloch sphere
through the entanglement vector mE(α,β). Since α = π/2 on
the equator, the magnitudes of the spin magnetization MS and
the pseudospin magnetization MP of Zent(r) shrink to zero.

D. Deflated pseudospin skyrmion

When min(u⊥,uz) � 1/2 and (u⊥,uz) fall in the blue region
in the skyrmion-type diagram Fig. 6, the energy minimizing
CP3 skyrmions are of the most intricate type, because the
optimal value of φC lies in (0,π/2), and the interpolation
between the center spinor C and the FM background spinor F

involves all four basis spinors ψP ⊗ ψS, ψP ⊗ χS, χP ⊗ ψS,
and χP ⊗ χS introduced in the parametrization of F . The

FIG. 16. Visualization of the deflated CP3 pseudospin skyrmion
with an entangled easy-axis FM background (point 12 in Fig. 6).
Conventions are the same as in Fig. 7.

situation for the aforementioned three types, in contrast, is
simpler, where only two basis spinors are involved in the
interpolation: in the case of the CP3 spin skyrmion they are
ψP ⊗ ψS and ψP ⊗ χS; for the CP3 pseudospin skyrmion
ψP ⊗ ψS and χP ⊗ ψS; for the CP3 entanglement skyrmion
ψP ⊗ ψS and χP ⊗ χS. The explicit form of this type of
CP3 skyrmion Zdefl = N−1{(x + iy)F − λC} is a lengthy
expression that is not useful for further insight into this case
and hence will not be displayed.

For this type of skyrmion, the images of the Riemann sphere
span parts in all three Bloch spheres. They are displayed
in Figs. 15(a)–15(c) and 16(a)–16(c). Similar to the case of
the CP3 entanglement skyrmion, the spin and pseudospin
magnetizations explore the inside of the Bloch spheres, causing
the image of the Riemann sphere to “deflate”. We therefore call
this type of skyrmion the deflated CP3 pseudospin skyrmion. It
is crucial to observe that the image of the Riemann sphere in the
spin Bloch sphere never encloses the origin point, while in the
pseudospin Bloch sphere the image always does. Hence this
type of skyrmion is indeed a CP3 pseudospin skyrmion. For
the image of the Riemann sphere in the entanglement Bloch
sphere, besides its incomplete covering, one also observes
that it visits the north pole twice, indicating the existence
of two points r1 and r2 on the xy plane, at which the CP3

spinors Zdefl(r1) and Zdefl(r2) are unentangled. These two
points are reflected in the spin/pseudospin Bloch spheres,
where the surface of the Riemann sphere image touches the
surface of the Bloch sphere precisely twice, meaning that the
magnitude of both the spin and the pseudospin magnetization
cos α reaches unity twice. The visualization here also agrees
with the prediction in Ref. [40].

We comment on the evidence of entanglement in a CP3 field
Z(r). Although by examining the local patterns of the ρTotal(r)
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and MSz(r) profiles around a generic point r0 in the xy plane
it is not possible to tell whether a CP3 field Z(r0) carries
entanglement, it is possible to do so by examine those profiles
at large scale over the entire texture. As we have discussed in
detail, the factorizable skyrmions do not carry entanglement at
any point in the texture, and the evidence is clear in the ρTotal(r)
and MSz(r) profiles—for a CP3 spin skyrmion, the pattern
of sublattice occupation is uniform over the ρTotal(r) profile
because of the constant pseudospin component, whereas for
a CP3 pseudospin skyrmion the two profiles are identical be-
cause of the constant spin component with polarization along
the z direction in the space of spin magnetization. In contrast to
the factorizable skyrmions, the entanglement skyrmions (CP3

entanglement skyrmions, deflated CP3 pseudospin skyrmions)
embedded in the easy-axis pseudospin FM background usually
have an “antiferrimagnetic” pattern in the MSz(r) profile, i.e.,
the spin magnetizations on two sublattices point in opposite
directions. The CP3 entanglement skyrmion and the CP3

spin skyrmion which are embedded in the same easy-plane
pseudospin FM background cannot be distinguished by their
ρTotal(r) and MSz(r) profiles. But we can still make a difference
by comparing their MSx(r) profiles.

V. SIZE AND ENERGY OF THE CP3 SKYRMION

In the previous section, we concentrated on a classification
of the different skyrmion types one encounters in graphene
QHFM in the N = 0 LL. The present section is devoted
to a more quantitative analysis of the skyrmions’ size and
energy, namely, in the vicinity of phase transitions between
the different FM background states.

A. Size

The size of a CP3 skyrmion is characterized by the optimal
value of the λ0 parameter in the skyrmion ansatz. As discussed
in Sec. III B, it is determined by the competition between the
Coulomb energy EC and the excess anisotropic energy E′

A. To
be more precise, according to Eq. (33) the optimal value of
the λ0 parameter in the skyrmion ansatz is obtained by solving
∂Esk(λ0)/∂λ0 = 0, which gives

λ0 =
(

EC[Z̃sk]

2E′
A[Z̃sk]

) 1
3

, (48)

where Z̃sk is the CP3 field for an optimal skyrmion, but λ0

has been set to 1. It has the same meaning as in Eq. (33) in
Sec. III C.

We define the skyrmion size R (in units of lB) by averaging
r over the topological charge density ρtopo(r)

R =
∫ ∞

0
rρtopo(r)d2r, (49)

because ρtopo(r) can be viewed as the excess charge density
induced by the texture in a CP3 skyrmion and is thus a good
measure for the spatial extent of the texture. For a radially
deformed skyrmion, we have

R = α(κ)λ0 (50)

FIG. 17. Size of optimal skyrmions at u⊥,uz ∈ [−5,5] and δZ =
0.0063. Black dashed lines highlight the boundaries of four regions
for the four types of FM background of a skyrmion.

with an r-dependent size parameter λ(r) = λ0 exp (−r2/κλ2
0)

and topological charge density

ρtopo(r) = λ2(r)

π [r2 + λ2(r)]2

(
1 + 2r2

κλ2
0

)
. (51)

The coefficient α(κ) is a monotonically increasing function of
the radial deformation parameter κ . Its actual form depends
on the radial deformation and is not related to the energy
minimization. In the scale-invariant limit κ → ∞ we have
α(κ) → π/2. Away from this limit, α(κ) does not change
much: for instance α(10) ∼ 1.0.

Figure 17 displays the size R of optimal skyrmions obtained
in Sec. III D (u⊥,uz ∈ [−5,5], δZ = 0.0063). One notices
generally an increase in the skyrmion size for (u⊥,uz) close
to a transition between different ferromagnetic backgrounds.
These transitions are indicated by dotted black lines in Fig. 17.
In order to investigate in more detail the increase in skyrmion
size, we plot, in Fig. 18, the skyrmion size R as a function
of uz − uz0 along line A and line B. Here, uz0 denotes the
value at the border between two regions of different FM
background, which is uz = u⊥ = −1.75 for line A separating
the unentangled easy-axis from the unentangled easy-plane
FM and uz = 1/2 for line B separating the unentangled from
the entangled easy-axis FM.

One sees in Fig. 18 that along line A the skyrmion size
diverges (red curves) when approaching the transition at uz =
u⊥. This is expected because, at the transition, the pseudospin
texture costs the same amount of anisotropic energy as the state
with uniform pseudospin magnetization, giving a vanishing
excess anisotropic energy E′[Žsk] = E[Žsk] − EA[F ] and
thus a divergent λ0. Physically this means that the pseudospin
SU(2) symmetry is restored when u⊥ = uz, and the Coulomb
energy of the skyrmion tends to inflate the skyrmion to
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FIG. 18. Skyrmion size (in units of magnetic length lB ) as a
function of uz, along the lines A and B in Fig. 17.

infinite size. In the vicinity of the point u⊥ = uz = −1.75,
E′[Žsk] is proportional to |u⊥ − uz|. Consequently, E′[Žsk] ∝
|uz − uz0| with uz0 = −1.75, then from Eq. (48) we know
λ0 ∝ |uz − uz0|−1/3. Therefore along line A, the skyrmion
size R scales as R ∝ |uz − uz0|−1/3. The exponent −0.32 is
extracted from the red lines of the log-log plot in the inset of
Fig. 18, in agreement with the above scaling argument. The
divergence of the skyrmion size at the line uz = u⊥ reflects the
underlying transition between an easy-axis and an easy-plane
pseudospin FM background, as long as both are unentangled.

The blue curves in Fig. 18 show the evolution of the
skyrmion size along line B cutting the border uz = 1/2, where
one also notices an enhanced albeit nondivergent size. In
contrast to the transition at uz = u⊥, there is no symmetry
restoration that would lead to a divergent skyrmion size, i.e.,
the anisotropy energy associated with the pseudospin remains
finite here. This yields a “truncated power law”,

λ ∼ (|uz − 1/2| + C)γ , (52)

that is now cut off by a nonzero constant C. As one may expect
from our simplified scaling analysis, the exponent γ is again
close to −1/3. Even if there is no fully developed divergence
in the skyrmion size, its increase unveils again a transition
between different underlying FM background states.

The effect of disorder on skyrmions becomes significant
when the length scale of the disorder potential is comparable
to the skyrmion size. In such conditions, the charge-carrying
skyrmion is trapped to the disorder potential that is coupled to
electric charge. Moreover, if there is also pseudospin disorder
in the hosting system, then a CP3 pseudospin skyrmion is
frustrated by the two types of disorders. In the experiments
where one can control the parameters u⊥ and uz, the relation
between the skyrmion size R and the disorder length scale can
be revealed in transport measurements.

B. Energy

As discussed in Secs. III B and III C, all scale-invariant
CP3 skyrmions carrying topological charge Q = 1 have
size-independent energy E

(0)
NLSM = 4πρs , and size-dependent

energy EC + EA. The skyrmion size is determined by the com-

FIG. 19. Energy of optimal skyrmions at u⊥,uz ∈ [−5,5] and
δZ = 0.0063. The dimensionless value (E − 4πρs)/4πρs is plotted in
the figure, with the numerical value of 4πρs = 3.9374 × (e2/4πεlB ).
Black dashed lines highlight the boundaries of four regions for the
four types of FM background of a skyrmion.

petition between the Coulomb energy EC and the anisotropic
energy EA. The radius deformation of the skyrmion is
introduced to make EA finite, at a cost of slight increase of
ENLSM and EC. After minimization of the skyrmion energy
at δZ = 0.0063 and u⊥,uz ∈ [−5,5], we find that the ratio
(E − 4πρs)/4πρs shown in Fig. 19 is between 0.15 and 0.20,
whereas the ratio ENLSM/4πρs is always close to 1. Thus
the Coulomb energy and anisotropic energy have significant
contribution to the total energy of a CP3 skyrmion described
by our model. Despite such contribution, a CP3 skyrmion still
has lower energy compared to the quasiparticle with a single
spin/pseudospin flip on top of the QHFM state at quarter filling
of the N = 0 LL.

Figure 19 shows the value E[Zsk]/4πρs − 1, i.e., the
relative energy difference between the optimal skyrmion Žsk,
at different u⊥ and uz, and the scale-invariant skyrmion,
with energy 4πρs . We observe that the energy of an optimal
skyrmion does not depend on u⊥ and uz except when they are
close to the lines u⊥ = 1/2 or uz = 1/2, as well as close to the
line u⊥ = uz � 1/2. As shown in the skyrmion phase diagram,
Fig. 6, one obtains pseudospin skyrmions in the vicinity of the
latter line. Their energy naturally depends on u⊥ and uz in
contrast to that of spin skyrmions that are encountered away
from this line and that only depend on δZ, which is constant
here. The energy of the spin skyrmions thus remains constant,
as seen in the light orange parts of Fig. 19 that match the (light
red) parts of the skyrmion phase diagram (Fig. 6) where one
obtains pure spin skyrmions.

Together with the plot of skyrmion size in Fig. 17, we
also observed that, for different anisotropy parameter u⊥ and
uz, an optimal skyrmion has a lower optimal energy when its
optimal size is larger. The lowest value of E[Zsk] is 4πρs ,
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which is achieved by the optimal skyrmion Zsk obtained at
uz = u⊥ � 1/2. At this condition, the size of the optimal
skyrmion diverges and its Coulomb energy vanishes, because
the skyrmion energy has a pseudospin SU(2) symmetry.

C. Magnetic-field scaling of skyrmion size and energy

The correlation between skyrmion energy and skyrmion
size still holds when we vary the perpendicular magnetic field
B⊥, which we choose here to be identical to the total magnetic
field, i.e., we discard a tilt of field described in the following
section. This is shown in Fig. 20, where we plot in a log-log
scale the numerically obtained size and energy of four types of
optimal skyrmions under B � 50 T. Different types of optimal
skyrmion have different values of energy and size, but the
shapes of the lines are similar, which comes from the same
scaling relations. Indeed Eq. (48) implies that the skyrmion
size (in units of lB) scales as δ

−1/3
Z , and one obtains from

Eq. (26)

R ∼ B−2/3 (53)

in natural units that are independent of the magnetic field. One
notices that the numerically obtained exponents in Fig. 20(a)
agree to great accuracy (within 2%) with that obtained from
our simple scaling analysis even if the latter does not take into
account the radial deformation in Eq. (35).

Similarly, inserting Eq. (48) into Eq. (33), we obtain the
scaling of the skyrmion energy E − E0

NLSM ∼ δ
1/3
Z or, in

natural B-independent units,

E − E
(0)
NLSM ∼ B2/3, (54)

which again agrees well (within 2%) with the numerically
obtained scaling of the skyrmion energy plotted in Fig. 20(b).

VI. MODIFICATION OF THE ANISOTROPY ENERGY

In the previous sections, we discussed the skyrmion-type
diagram, which provides a global view of the possible types
of skyrmions at quarter filling of the N = 0 LL of graphene
monolayer. In this section we show how this diagram is
changed by modifications of the anisotropic energy.

We discuss three modifications to the anisotropic en-
ergy, each corresponding to one of the three contributions
(namely, the in-plane pseudospin contribution, z-component
pseudospin contribution, and spin contribution). The common
way to modify the anisotropic energy is by sample tilting,
where the sample is tilted from the upright position while
increasing the total magnetic field BT, so that the strength of
the perpendicular component B⊥ is kept to a constant value.
The electron spin is coupled to the total applied magnetic
field, while the pseudospin contribution to the anisotropic
energy is proportional to the component perpendicular to
the sample. Therefore, sample tilting guarantees that the
pseudospin contribution to the anisotropic energy is unaltered,
but the electron-spin contribution is increasing. We further
discuss terms that breaks the U(1) symmetry between the x

and y components of the pseudospin, the contribution of which
to the anisotropic energy is changed accordingly. At last we
discuss the pseudospin analog of the Zeeman coupling, i.e., the
term proportional to

∫
d2rMPz, which describes the sublattice

asymmetry and that could eventually be induced by substrates
that are roughly commensurate with the carbon spacing in
graphene (e.g., boron-nitride substrates).

A. Sample tilting

The effect of sample tilting by an angle ϕ is the rescaling
of the parameters u⊥, uz, and δZ in the anisotropic energy. If
we maintain our definition of the effective parameters u⊥,z in
terms of the perpendicular component B⊥ of the magnetic field,
u⊥,z = U⊥,z/gμBB⊥, and use the Zeeman coupling, sensitive
to the total magnetic field BT, as the overall energy scale, one
obtains from Eq. (23)

EA[Z] = �Z(BT)

2

∫
d2r

2πl2
B

× {
u⊥ cos ϕ

(
M2

Px + M2
Py

) + uz cos ϕM2
Pz − MSz

}
,

(55)

where ϕ is the tilting angle from an upright direction, B⊥ =
BT cos ϕ, and MP and MS are computed by Eqs. (25) and
(24), respectively. Such a constant B⊥ guarantees a constant
length scale lB and a constant energy scale e2/4πεlB . After
the rescaling of length and energy to unit lB and e2/4πεlB ,
�Z(BT) is replaced by δZ0/ cos ϕ, where δZ0 is computed by
Eq. (26) with B⊥ = BT, i.e., in the absence of sample tilting.
At this stage, we see that the sample tilting by an angle ϕ

changes the anisotropic energy as if we simply replace δZ0,u⊥,
and uz in the model without tilting by δZ0/ cos ϕ,u⊥ cos ϕ, and
uz cos ϕ.

To illustrate the effect of the tilt, we have plotted the
evolution of the phase diagram in Fig. 21 for a value of
ϕ = 30◦, as well as that for the skyrmion energy and size
along line A in the insets. One first notices that the tilt shifts
the borders between the unentangled and entangled types of
optimal FM states Z(r) = F . Generally the unentangled states
are slightly favored. This can easily be understood as the
consequence of the relative increase of the Zeeman energy
with respect to the pseudospin-symmetry-breaking terms—the
Zeeman coupling favors indeed a full spin polarization and
thus a maximal value of cos α, which precisely means that the
unentangled FM states are favored.

Furthermore, the borders (red lines in Fig. 21 for ϕ =
30◦ as compared to black lines for ϕ = 0) between the
pseudospin skyrmions in the vicinity of uz = u⊥ � 1/2 are
shifted. Indeed, the pseudospin skyrmions are favored over
a larger range as one may expect from the relative increase
of the Zeeman energy that renders larger the energy cost to
create a spin skyrmion. This is clearly seen in the inset of
Fig. 21—while the energy of the pseudospin skyrmion, in the
tilt-independent units of e2/4πεlB , remains the same as for
ϕ = 0, the u⊥,z-independent energy of the spin skyrmion is
increased and its size reduced such that the region of stable
pseudospin skyrmions is increased.

Notice finally that the scaling relations (53) and (54) are
also affected by the sample tilting. The scaling of the size
of pseudospin skyrmions still obeys the B

−2/3
⊥ law because

the pseudospin anisotropy depends only on B⊥. We can also
express such scaling in the total magnetic field and the tilting

245428-19



YUNLONG LIAN AND MARK O. GOERBIG PHYSICAL REVIEW B 95, 245428 (2017)

FIG. 20. Size (left figure) and energy (right figure) of optimal skyrmions at δZ ∈ [0.00063,0.0064]. Green, red, blue, and black lines
represent skyrmions at point 11, point 1, point 9, and point 2 in the skyrmion-type diagram Fig. 6, respectively.

angle, namely,

Rp ∼ B
−2/3
T (cos ϕ)−2/3. (56)

By contrast, the spin skyrmion follows the scaling relation

Rs ∼ B
−2/3
⊥ (cos ϕ)1/3 = B

−2/3
T (cos ϕ)−1/3. (57)

The exponents on cos ϕ and the magnetic field B⊥ or BT

are different because the Coulomb energy EC depends on
l−1
B ∼ B

−1/2
⊥ while the Zeeman coupling depends on BT =

B⊥/ cos ϕ. If one performs the sample tilting at constant total
magnetic field BT, spin and pseudospin skyrmions would show
a different scaling with respect to the tilt angle.

FIG. 21. Change of the skyrmion-type diagram for sample tilting
by angle ϕ = π/6. Shifted borders are marked by blue dashed lines
for different types of FM backgrounds, and red for different types
of skyrmions, in contrast to the gray and black lines which mark
the borders in Fig. 6 with δu⊥ = δuz = ϕ = 0. The insets show the
evolution of the skyrmion energy (still in units of e2/4πεlB ) and size
across line A.

B. Anisotropy of the substrate

Our model for the anisotropic energy EA in Eq. (23) [also
Eq. (55)] has a U(1) symmetry for the x and y component of the
pseudospin. Formally, this symmetry can be broken with the
help of the parameter δu⊥, which yields the modified energy

EA[Z] = �Z(BT)

2

∫
d2r

2πl2
B

{
(u⊥ + δu⊥) cos ϕM2

Px

+(u⊥ − δu⊥) cos ϕM2
Py + uz cos ϕM2

Pz − MSz
}
,

(58)

where we have also considered sample tilting. It is tempting
to attribute this symmetry breaking to an xy anisotropy in the
graphene sheet, e.g., when one applies uniaxial strain to it that
breaks the 120◦ rotation symmetry of the lattice. However,
more microscopic calculations beyond the scope of our paper
would be required to corroborate this picture.

The main effect of this symmetry breaking is to favor,
in the case of an easy-plane pseudospin FM, an orientation
of the pseudospin magnetization along the x axis (φP = 0)
for δu < 0 or along the y axis (φP = π/2) when δu > 0,
while no particular direction is favored in the isotropic case
(δu = 0). The relevant energy scale for the in-plane anisotropy
is therefore reduced, and we can use the above model Eq. (55)
also to treat the present case if one replaces the model
parameters (u⊥,uz) by (u⊥ − |δu⊥|,uz).

The evolution of the phase diagram is shown in Fig. 22
for a value δu⊥ = −0.1. One first notices that the transition
line towards the easy-plane FM states is modified, whereas
the easy-axis FM states are naturally not affected in energy
by the change in u⊥. Indeed, the transition line between the
unentangled easy-plane and the easy-axis FM states is shifted
downwards—the transition occurs at uz = u⊥ + δu⊥ instead
of uz = u⊥ as in the isotropic case. Furthermore, the Zeeman
energy is again effectively increased with respect to the easy-
plane FM energy scale (for positive values of u⊥) such that the
unentangled easy-plane FM states are stabilized, from which
occurs the right shift of the transition between the unentangled
and entangled easy-plane FM states in Fig. 22.

Similarly one may understand the borders of the regions
for the different skyrmion types. While the transition between
the spin and the pseudospin skyrmion is unaffected in the
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FIG. 22. Change of the skyrmion-type diagram for δu⊥ = −0.1.
The color code is the same as in Fig. 21, in the absence of tilt (ϕ = 0).

case of an easy-axis FM background characterized by the
unaltered energy scale uz, that between the spin and pseu-
dospin skyrmions in an easy-plane FM background is shifted
downwards (red line in Fig. 22). This can be understood from
the evolution of the skyrmion size shown in the lower inset (cut
along line A). When approaching the transition between the
two different underlying FM states from the right-hand side,
by lowering the value of u⊥, the skyrmion size follows first
the same evolution as in the isotropic case until the maximum
is reached at the value of the underlying transition. Notice,
however, that due to the in-plane anisotropy the pseudospin
SU(2) symmetry is no longer restored so that the skyrmion
size does not diverge. Left to the transition, the skyrmion size
is therefore generically smaller than in the isotropic case, and
the skyrmion energy is higher (see upper inset of Fig. 22). The
energy of the spin skyrmion is therefore reached at smaller
values of |u⊥| such that the region where one encounters
pseudospin skyrmions becomes smaller. Furthermore, the
transition between the region where one finds entanglement
skyrmions and that of deflated pseudospin skyrmions in the
region uz > u⊥ is strongly affected by the in-plane anisotropy.
This can be attributed to the very small energy difference and
thus delicate competition between entanglement and deflated
pseudospin skyrmions that are also characterized by a certain
degree of entanglement, as discussed in Sec. IV D.

C. Pseudospin analog of Zeeman coupling

The anisotropic energy Eq. (23) can also be modified by
adding the term �P

∫
d2rMPz, which is a pseudospin analog of

the Zeeman coupling and describes the sublattice asymmetry.
Omitting the δu⊥ term discussed in the previous section but
including the sample tilting, we have

EA[Z] = �Z(BT)

2

∫
d2r

2πl2
B

{
u⊥ cos ϕ

(
M2

Px + M2
Py

)

FIG. 23. Change of the skyrmion-type diagram for δuz = −0.3.
The color code is the same as in Fig. 21, in the absence of tilt (ϕ = 0).

+uz cos ϕM2
Pz + δuz cos ϕMPz − MSz

}
, (59)

where δuz = �P cos ϕ/[�Z(BT)/2] is the relative energy scale
of the pseudospin analog of the Zeeman coupling. The original
Z2 symmetry (equivalence of a pseudospin orientation along
the z or −z axis) is now broken, and pseudospin orientation
along z is favored for δuz < 0 and along −z for δuz > 0.

The δuz term modifies the optimal FM states Z(r) = F for
the anisotropic energy in a complementary manner as δu⊥—
instead of the easy-plane FM states, the easy-axis FM states
are affected by this type of anisotropy. This can indeed be
seen in the phase diagram shown in Fig. 23 for δuz = −0.3.
First, it shifts the border between the regions for unentangled
easy-axis FM and for unentangled easy-plane FM, as well
as the border between the regions for unentangled easy-axis
FM and entangled easy-axis FM. Both are shifted upwards by
2δuz cos ϕ. Second, the slope of the border between the regions
for entangled easy-axis FM and for entangled easy-plane FM is
increased from 1 to 1 + |δuz| cos ϕ. Moreover, at the upper-left
side of the sloped borders separating the easy-axis FM and
easy-plane FM regions, the (u⊥,uz) point close to the border
corresponds to FM spinor F with optimal value of θP less
than π/2. As (u⊥,uz) moves away from these borders (to the
upper-left side), θP approaches to π/2. These modifications
can be understood by rewriting EA[Z] as

EA[Z]

= �Z(BT)

2

∫
d2r

2πl2
B

×
{
u⊥ cos ϕ

(
M2

Px + M2
Py

)
+

(
uz + δuz

2

)
cos ϕM2

Pz

−δuz

2
cos ϕ(MPz − 1)2 − MSz + δuz

2
cos ϕ

}
. (60)
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The analysis is similar to those for the the δu⊥ term for the
substrate anisotropy in the previous subsection. The upward
shift of the transition between the easy-axis and easy-plane FM
states is a consequence of the lowered energy of the former
(for uz < 0) that favors easy-axis states. Similarly to the easy-
plane anisotropy discussed above, there is no restoration of the
SU(2) pseudospin symmetry at the transition line u⊥ = uz +
δuz/2 because of the remaining term δuz cos ϕ(MPz − 1)2/2
in Eq. (60). As a consequence, the skyrmion size does not
diverge at this value and its energy does not reach the minimal
(scale-invariant) value 4πρs (see insets of Fig. 23).

VII. SUMMARY AND DISCUSSIONS

In conclusion, our analysis of the quarter-filled N = 0 LL of
graphene shows that the anisotropic terms in the energy func-
tional, which break the spin and valley pseudospin symmetry
of the leading Coulomb energy, lead to four types of ferro-
magnetic ground state and various types of CP3 skyrmions.
A skyrmion is embedded in the ferromagnetic background
F , and the center spinor C gives rise to different types of
skyrmions because the orthogonality condition between the
spinors, F †C = 0, does not entirely fix the skyrmion type.
The favored skyrmion type is then obtained by a minimization
of the anisotropic energy terms. When the electron spin and
pseudospin contribution to the anisotropic energy varies, a
spin skyrmion can change to a pseudospin skyrmion while
the ferromagnetic background remains unaltered. This is
strikingly different from the twofold degenerate LL split by
electron spin, where a skyrmion simply disappears when the
magnetic field, and hence the Zeeman coupling, increases to
a critical value. A large spin skyrmion requires weak Zeeman
coupling and hence a weak applied magnetic field. However, in
our four-component system where CP3 skyrmions are formed,
one can tune the model parameters u⊥,uz to approximately
restore the SU(2) symmetry of the valley pseudospin, so as to
have a large pseudospin skyrmion, even when the anisotropic
energy for both spin and valley pseudospin is high. By analogy,
the skyrmion also appears in graphene monolayer at ν = 0
when the valley pseudospin SU(2) symmetry or the SO(5)
symmetry [54] is approximately restored.

In addition to these skyrmion types, one encounters more
exotic skyrmions that are formed due to spin-pseudospin en-
tanglement. A direct transposition of the concept of a skyrmion
that entirely covers the spin or pseudospin Bloch sphere
yields the entanglement skyrmion, which covers the third
entanglement Bloch sphere. This Bloch sphere is required,
at ν = ±1, to fully characterize the skyrmion and FM states,
i.e., to account for two different angles α and β that naturally
arise in our CP3 description of SU(4) states. In the case
of easy-axis FM states, entanglement manifests itself, rather
counterintuitively, in the form of locally antiferromagnetic
or antiferrimagnetic patterns. Moreover, we have identified
another type of skyrmion, a deflated pseudospin skyrmion with
partial entanglement. While all directions in the pseudospin
Bloch sphere are explored within this skyrmion type, similarly
to an unentangled pseudospin skyrmion, the magnitude of
the pseudospin magnetization is reduced in most places. This
provides the deflated image of the representation on the Bloch
sphere, accompanied by an exploration of parts of the spin

Bloch sphere. In lattice-resolved images, deflated pseudospin
skyrmions are manifest by a lower spin-pseudospin contrast
and by local deviations of the spin magnetization from the z

axis.
The lattice-resolved images we obtain in our paper can

in principle be used as a guide in a possible experimental
identification of the various skyrmions in graphene, e.g., in
spin-resolved STM/STS measurements. While the varying
spin magnetization can be probed by a combination of
magnetic tips, not only in the z direction but also in the x and y

directions, the z component of the pseudospin magnetization
can directly be read off from the relative electronic occupation
of the different sublattices in graphene. In contrast to the spin
magnetization, the x and y components of the pseudospin
magnetization are unfortunately not accessible in this type of
experiments that do not provide insight into the combination
φP − β of the parameters in our parametrization of CP3 fields.

Our analysis also shows that the model parameters u⊥ and
uz that correspond to large optimal CP3 skyrmions reside
in the vicinity of the borders between two different types
of ferromagnetic backgrounds. Indeed, the transitions are
characterized by either (i) a partial symmetry restoration,
e.g., of the SU(2) pseudospin symmetry at uz = u⊥ � 1/2,
or (ii) a tendency of such a symmetry restoration, e.g., at
uz = 1/2 for u⊥ > 1/2 or u⊥ = 1/2 for uz � 1/2, between
unentangled and entangled FM backgrounds. In general, the
energy to create a skyrmion is reduced due to a reduction of
the anisotropy energy. In the case (i), the partial symmetry
restoration yields a divergent skyrmion size described by
a power law λ ∼ |uz − u⊥|γ , with a critical exponent γ

close to −1/3, as expected from simple scaling arguments.
At the same time, the skyrmion size—in B-independent
units—scales in the vicinity of the transition as R ∼ B−2/3

with the B field and its energy as E − E
(0)
NLSM ∼ B2/3 when

compared to the energy E
(0)
NLSM = 4πρs of the nonlinear sigma

model. Right at the transition, the skyrmion energy retrieves
its scale-invariant value E

(0)
NLSM = 4πρs. If there is only a

tendency towards symmetry restoration [case (ii)], either
in the above-mentioned transition between unentangled and
entangled FM backgrounds or in the presence of an anisotropy
in the substrate that couples to the pseudospin, the divergence
in the skyrmion size is truncated and follows approximately the
law λ ∼ (|u − uc| + C)γ , where C is some positive constant
and u is a generic coupling constant with critical value uc.
Again we find that the exponent γ is close to −1/3.

Several terms are not included in our model. The SU(4)
invariance of the nonlinear sigma model energy ENLSM[Z] can
be broken by a term of the form [5,54] 2ρ ′

s

∫
d2rTr[�DZ(r) ·

DZ†(r)], where � is a superposition of the tensor product of
Pauli matrices, and the coefficient 2ρ ′

s is of the same order
as the input parameters u⊥ and uz for the anisotropic energy
in our model. At the fourth order of the gradient expansion,
which may be relevant for small skyrmion sizes, we may have
[46] −(3ρs/8)

∫
d2r[�2(Z†σZ)]2, where � = ∂2

x + ∂2
y is the

Laplacian. The minus sign of such a term is on the same order
as the Coulomb energy EC[Z] in the gradient expansion, and
it implies that our model has overestimated [34] the energy of
a skyrmion, or equivalently underestimated the skyrmion size.
Generally speaking, the nonlinear sigma model of skyrmions
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does not account for the reduction of magnetization in the core
of the texture caused by quantum fluctuations [4,34].
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APPENDIX A: VISUALIZATION OF A CP3 SKYRMION ON
A HONEYCOMB LATTICE

In Sec. IV we represent the CP3 textures Zskyr(r) in
lattice-scale profiles of the electron density ρTotal(r) and the
z component of the spin magnetization MSz(r) for the CP3

field Zskyr(r). These profiles are computed with the help of
Eqs. (24) and (25), where the components of the CP3 field are
convoluted with a form factor

fλ(r) =
∑

rλ
j

g(r − rλ
j ) (A1)

that mimics the amplitude square of the atomic wave function.
Here, rλ

j is the position on the sublattice λ in the j th unit
cell. For illustration purposes, we have chosen a Gaussian
profile for g(r) that is normalized as g(r = 0) = 1. Moreover,
if we neglect the overlap between the atomic wave functions
centered around different lattice sites in the function g(r − rλ

j ),
the expressions for ρTotal(r) and MSz(r) simply read

ρTotal(r) = ∑
rλ
j
ρTotal(rλ

j )g(r − rλ
j ), (A2)

MSz(r) = ∑
rλ
j
MSz(rλ

j )g(r − rλ
j ). (A3)

The electronic occupation of the sublattices A and B in the j th
unit cell is given by ρTotal(r

A,B
j ), while the z component of the

spin magnetization is Sz(rA,B
j ), with

ρTotal
(
rA,B
j

) = Z†(rA,B
j

)[σz ± 1

2
⊗ 1

]
Z

(
rA,B
j

)
, (A4)

Sz
(
rA,B
j

) = Z†(rA,B
j

)[σz ± 1

2
⊗ σz

]
Z

(
rA,B
j

)
. (A5)

In the above expression, the plus sign in the projector is chosen
for a site on the A sublattice and the minus sign is chosen for
a site on the B sublattice.

APPENDIX B: SECOND HOMOTOPY GROUP FOR CP3

The second homotopy group [55] π2(M) of a topological
manifold M is defined as the equivalence class of the
continuous mapping f : S2 → M, where two mappings f0

and f1 being equivalent means that there exists a continuous
mapping F : [0,1] × S2 → M such that F (0,·) = f0(·) and
F (1,·) = f1(·). The multiplication in the group is the homo-
topic composition of the continuous mappings.

The second homotopy group π2(S2) = Z of the 2-sphere
S2 can be understood as wrapping a 2-sphere on another 2-
sphere. The winding number (Brouwer degree) of the mapping

f : S2 → S2 classifies all possible ways of the “wrapping”.
Since CP1 ∼= S2, we have π2(CP1) = Z. This can also be
computed [55,56] by the following relations between a simply
connected Lie group G, one of its subgroups H, and the coset
space G/H:

π2(G/H) = π1(H), (B1)

where π1(M) is the fundamental group of a manifold defined
by replacing S2 in the definition of π2(M) by S1. The manifold
CP1 is isomorphic to SU(2)/U(1), therefore

π2(CP1) = π2[SU(2)/U(1)] = π1[U(1)], (B2)

where the last equation π1[U(1)] = Z follows from the
classification of mappings from a closed path to another closed
path. The manifold CP3 is isomorphic to

U(4)/[U(3) × U(1)] ∼= SU(4)/[SU(3) × U(1)], (B3)

therefore

π2(CP3) = π2{SU(4)/[SU(3) × U(1)]} = π1[SU(3) × U(1)].

Using the fact that the homotopy group for the product
manifold factorizes, i.e.,

πk(G × H) = πk(G) × πk(H), (B4)

and the fact that any simple Lie group G has π1(G) = 0, we
obtain

π2(CP3) = π1[SU(3)] × π1[U(1)] = Z. (B5)

This result can be generalized [18] to compute π2(CPN−1) for
integer N > 1, because

π2(CPN−1) = π2{SU(N )/[SU(N − 1) × U(1)]}
= π1[SU(N − 1) × U(1)]

= π1[SU(N − 1)] × π1[U(1)]

= Z. (B6)

This argument shows that any N -component QH system
or, more generally, any N -component ferromagnet in two
spatial dimensions with one filled component can principally
host topological textures in the form of skyrmions that are
characterized by an integer topological charge Q ∈ Z. The
specificity of the quantum Hall ferromagnet is that this
topological charge is directly related to an electric charge.

APPENDIX C: CP3 FIELD AND NONLINEAR
SIGMA MODEL

The CP3 space is a collection of normalized, four-
component complex vectors Z = (z1,z2,z3,z4)T . In addition,
two vectors Z and eiϕZ are equivalent for arbitrary ϕ ∈ R,
in the sense that they correspond to the same matrix Q =
2ZZ† − 1, which plays the role of order parameter in the
theory of QHFM in Ref. [35]. To be more precise, Z should
be understood as a representative of the equivalent class
[Z] ∈ V/ ∼, where V denotes the set of normalizedC4 vectors
and ∼ denotes the equivalence relation W ∼ eiϕW for W ∈ V

and ϕ ∈ R. In this paper, we call the normalized C4 vector Z

a “CP3 spinor” if it represents an element in the CP3 space.
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The name “spinor” here is inherited from the physics literature
without mathematical rigour.

The CP3 space can also be understood as a coset space [see
Eq. (B3) in Appendix B]

CP3 ∼= U(4)/[U(3) × U(1)] ∼= SU(4)/[SU(3) × U(1)], (C1)

which means that the integer filling of one of the four Landau
sublevels is distinguished by removing the U(3) [or SU(3)]
rotations among three empty sublevels from the entire rotation
group U(4) [or SU(4)] among all four sublevels, followed by
a removal of a global phase factor U(1).

The parametrization of a CP3 spinor is discussed in
Sec. II C. There we construct the CP3 spinor from six angles
θS, φS, θP, φP, α, and β, and visualized them via a triplet of
Bloch spheres. The inverse problem—to obtain the six angles
parametrizing a given CP3 spinor up to an overall phase factor
eiφ—is equally important for the complete understanding of
the parametrization Eq. (9). Given a CP3 spinor Y , we have
access to the parameter α by computing the magnitude of spin
and pseudospin magnetization via Eqs. (5) and (6). There are
two possible values: α = cos−1 |MS/P| and π − cos−1 |MS/P|.
They correspond to the same CP3 spinor because of the
following equivalence between two CP3 spinors parametrized
in Eq. (9):

ei(φS+φP−β)Y (θS,φS,θP,φP,α,β)

= Y (π − θS,π + φS,π − θP,π + φP,π − α,β ′),

β ′ = −β + 2φS + 2φP. (C2)

The effect of changing α into π − α while keeping the same
CP3 spinor is to reverse the direction of the spin and pseudospin
magnetization. It reveals the fact that our parametrization
is redundant for π/2 � α � π . In the discussion of QHFM
states, we can always restrict α in the range [0,π/2]. Under
this restriction, we have cos α � 0 and sin α � 0, in agreement
with the Schmidt decomposition theorem, which claims that
we have non-negative real numbers as the coefficients in
front of the direct-product-state basis obtained from the
decomposition. Notice, however, that this restriction is not the
unique choice to avoid redundancies in the parametrization.
Instead one can also choose the restriction θS or θP in [0,π/2],
such that α and β span the full Bloch sphere, as in the
discussion of entanglement skyrmions in Sec. IV C.

The CP3 nonlinear sigma model has the following form of
energy:

E[Z] =
∫

d2rDZ†(r) · DZ(r), (C3)

where we defined DZ = ∇Z(r) − [Z†(r)∇Z(r)]Z(r). The
finite-energy configuration of Z(r) satisfies the boundary
condition at spatial infinity:

lim
|r|→∞

Z(r) = eig(ϕ)Z∞, (C4)

where g(ϕ) is a function of the polar angle ϕ of the
coordinate plane, and Z∞ is a constant CP3 spinor. Under such
boundary condition, the base manifold of field Z(r) can be
extended to the Riemann sphere S2 = R2 ∪ {∞} via Riemann
stereographic projection [55], and the value of the CP3 spinor
field at spatial infinity is Z(∞) = Z0. After the extension, each

field Z(r) can be considered as a mapping S2 → CP3 and can
be classified by the degree of mapping

Q[Z] =
∫ (

− i

2π

)
[DZ(r)† × DZ(r)]zd

2r

=
∫

ρtopo(r)d2r (C5)

because the second homotopy group π2(CP3) = Z of the
CP3 space [as target space of field Z(r)] is nontrivial. Q
is called topological charge in the physics literature, and
correspondingly ρtopo(r) is called topological charge density.
It is impossible to continuously deform a field Za(r) into
another configuration Zb(r) of different topological charge
Q[Zb] �= Q[Za]. Therefore, our variational analysis on E[Z]
[Eq. (C3)] is limited within a subspace of field configurations:

CM = {Z(r) ∈ CP3 field |Q[Z] = M ∈ Z}.

APPENDIX D: ENERGY-MINIMIZING SOLUTIONS
IN EACH TOPOLOGICAL SECTOR

The minimal-energy configuration Z[Q](r) for E[Z] in
each CQ serves as the starting point of our analysis of CP3

skyrmions. We observe an inequality∫
δij (DiZ ± iεikDkZ)†(DjZ ± iεjlDlZ)

= 2E[Z] ± 4πQ[Z] � 0 (D1)

or, equivalently,

E[Z] � 2π |Q[Z]|. (D2)

This means that for each CQ the lower bound of E[Z ∈ CQ] is
2π |Q[Z]|. Comparing Eqs. (C3) and (20) to restore the units of
energy, we find that the right-hand side in the above inequality
gives 4πρs as the lower bound of ENLSM for charge |Q| =
1 skyrmions. Moreover, the minimal-energy configuration
which saturates the inequality is the solution of the following
first-order partial differential equations, which are called the
Bogomol’nyi-Prasad-Sommerfield (BPS) equations:

DiZ + iεikDkZ = 0 for Q[Z] < 0, (D3)

DiZ − iεikDkZ = 0 for Q[Z] > 0. (D4)

Inserting Z = W/
√

W †W with the un-normalized complex
vector W ∈ C4 and using the complex coordinate z = x + iy,
the above equations are rewritten as

∂W = 0 for Q < 0, (D5)

∂̄W = 0 for Q > 0 (D6)

where ∂ = (∂x − i∂y)/2 and ∂̄ = (∂x + i∂y)/2.
The topological charge Q can also be expressed in W with

the help of Stoke’s theorem:

Q = 1

2πi

∮
C

W †∇W

W †W
· d l, (D7)

where the contour C = ∂D encloses a simply connected region
D, and D maximally covers the punctured complex plane
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where W and ∇W are well defined. The generic solution
of BPS equation Eq. (D4) for Q > 0 (Q < 0) is a four-
component vector field (w1(z),w2(z),w3(z),w4(z)), in which
the components wi(z) are meromorphic (antimeromorphic)
functions.

In the main text we are interested in the solution of the BPS
equation with topological charge Q = 1. The generic form is

W[Q=1](z) = [f1z − c1,f2z − c2,f3z − c3,f4z − c4]. (D8)

However, to demonstrate the use of the above formula in
Eq. (D7), let us compute Q for the following complex vector
field:

W (z) =
[

1,
z − a1

z − b1
,z − a2,z − a3

]
, (D9)

where the topological charge cannot be simply read off. The
contour C consists of three parts—an anticlockwise circle C1 =
{z : |z| = R → ∞}, a clockwise circle C2 = {z : |z − b1| =
R → 0}, and a pair of straight lines l1,l2 of opposite directions
connecting the two circles. We have

Q = 1

2πi

[∮
C1

+
∮
C2

+
(∮

l1

+
∮

l2

)]
W †∇W

W †W
· d l

= 1

2πi

[(
0 + 0 + 2πi

2
+ 2πi

2

)

−(0 − 2πi + 0 + 0) + (0)

]

= 2,

where each term in the round bracket corresponds to the
contribution from the components of W (z) in Eq. (D9)
accordingly. It is easy to verify the above result for the
topological charge of W (z) in Eq. (D9) by direct computation
with Eq. (22) in the main text.

APPENDIX E: κ DEPENDENCE OF ENERGY FOR
DEFORMED SKYRMIONS

In Sec. III C we discussed the radial deformed skyrmion
Žsk. It has the form

Žsk = W̌[1]/

√
W̌

†
[1]W̌[1]

with W̌[1](x,y) = (x + iy)F − λ(r)C and λ(r) =
λ0 exp(−r2/κλ2

0). In the limit κ → +∞, the three components
of the energy E[Žsk] have the following behavior:

ENSLM[Žsk] → 4π

√
π

32

e2

4πεlB
, (E1)

EC[Žsk] → 3π

64

e2

4πεlB

(
λ0

lB

)−1

, (E2)

EA[Žsk] ∼ (A0 + A1|�Z| log κ)

(
λ0

lB

)−2

. (E3)

As a function of κ , ENSLM and EC decrease monotonically.
Meanwhile, EA is a monotonic increase function of κ .
Figure 24 displays their κ dependence. Based on this analysis,
the radial-deformation ansatz Žsk gives a finite anisotropic
energy EA and a lowered total energy.

FIG. 24. κ dependence of the NLSM energy ENLSM (red line),
the Coulomb interaction energy EC (blue line), and the anisotropic
energy EA (green lines).

APPENDIX F: VISUALIZATION OF A CP3 SKYRMION
ON BLOCH SPHERES

The CP1 skyrmion [or O(3) skyrmion] can be visualized
by the image of the Riemann sphere on the Bloch sphere. The
Riemann sphere is obtained by the stereographic projection
between the Cartesian coordinates (X,Y ) on the plane and the
Cartesian coordinates (x,y,z) on the Riemann sphere:

(X,Y ) =
(

x

1 − z
,

y

1 − z

)
, (F1)

(x,y,z) = (2X,2Y, − 1 + X2 + Y 2)

1 + X2 + Y 2
. (F2)

This is illustrated in Fig. 25. The “hedgehog” skyrmion is in
fact an identity mapping from the Riemann sphere to the Bloch
sphere.

As discussed in Sec. II C and Appendix C, a CP3 spinor
can be parametrized by six angles θS, φS, θP, φP, α, and β, and
therefore can be visualized by three Bloch spheres, namely, the
spin Bloch sphere (for θS and φS), the pseudospin Bloch sphere
(for θP and φP), and the entanglement Bloch sphere (encodes
α and β). Hence a CP3 skyrmion can be visualized by plotting
the image of the Riemann sphere on the three Bloch spheres
via the parametrization of the CP3 spinor.

FIG. 25. The Riemann sphere and the stereographic projection.
Lines on the xy plane (where the CP3 skyrmions live) are colored in
gray and lines on the Riemann sphere are colored in red.
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In practice, we draw the spin magnetization and pseudospin
magnetization

MS(r) = Z†(r)(1 ⊗ σ )Z(r),

MP(r) = Z†(r)(σ ⊗ 1)Z(r)

at points specified by longitudinal and latitudinal lines on the
Riemann sphere. These lines correspond to rays of constant

angle θ and circles of constant radius r circles on the xy plane
where the skyrmion lives. In general, at a given point r0 on
the xy plane, MS(r0) and MP(r0) may have a magnitude less
than 1, because α(r0) can be different from zero or π . As
a consequence of the visualization, the spin and pseudospin
magnetization lay inside the corresponding Bloch spheres.
This is the case for the CP3 entanglement skyrmion and the
deflated CP3 pseudospin skyrmion.
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