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Propagating edge states in strained honeycomb lattices
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We investigate the helically propagating edge states associated with pseudo-Landau levels in strained
honeycomb lattices. We exploit chiral symmetry to derive a general criterion for the existence of these propagating
edge states in the presence of only nearest-neighbor hoppings and we verify our criterion using numerical
simulations of both uniaxially and trigonally strained honeycomb lattices. We show that the propagation of the
helical edge state can be controlled by engineering the shape of the edges. Sensitivity to chiral-symmetry-breaking
next-nearest-neighbor hoppings is assessed. Our result opens up an avenue toward the precise control of edge

modes through manipulation of the edge shape.
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I. INTRODUCTION

The existence of unidirectionally propagating edge states
is one of the most important features of two-dimensional
systems in the presence of a magnetic field [1,2]. In particular,
such chiral edge states are responsible for the quantized
conductance in the quantum Hall effect, and their existence is
guaranteed by a topological property of the bulk system, which
does not depend on the specific type of edge termination.

In honeycomb lattices, such as graphene, a strong artificial
pseudomagnetic field can be implemented through strain
engineering [3-9], and associated relativistic pseudo-Landau
levels have been experimentally observed in the density of
states [10]. It is, prima facie, natural to expect propagating
edge states also in the presence of such a pseudomagnetic
field. However, an important difference between the real
magnetic field and the pseudomagnetic field induced by strain
is that, since strain does not break time-reversal symmetry,
the pseudomagnetic field has opposite signs in the two Dirac
valleys. Consequently, unlike for a real magnetic field, chiral
edge states cannot exist in the presence of a pseudomagnetic
field only. Instead, helical edge states can exist where states
from different valleys experience opposite magnetic fields
and propagate in opposite directions. It has been noted by
several authors that such helical edge states do not always exist
[11-15] depending on the edge shape and the type of strain.
However, a general condition specifying when propagating
edge states exist is still lacking.

In this paper we show that the existence of the helical edge
states in strained honeycomb lattices strongly depends on the
type of edge termination as well as on the type of strain.
We also compare the strained system with a pristine lattice
in the presence of a real magnetic field. We give a general
criterion that explains the termination dependence and the
strain dependence of the propagating edge states. The criterion
is obtained for a strained honeycomb lattice in the presence of
only nearest-neighbor hoppings, and it is based on the chiral
symmetry of the tight-binding Hamiltonian, as well as on the
particular form of Landau levels. Introducing next-nearest-
neighbor hoppings, which break the chiral symmetry, limits
the validity of our criterion and introduces new features.

In the presence of nearest-neighbor hoppings only, the
criterion is confirmed through numerical simulations of both
uniaxial and trigonal strain. Our finding suggests a powerful
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and simple avenue to build valley filters and control currents
in solid-state graphene using strain and the engineering of
the edge termination. This approach can also be implemented
in artificial graphene for various platforms, such as photonic,
optomechanical, or phononic systems [14,16-20].

The paper is organized as follows. In Sec. II we introduce
the system and review the main properties of the pseudo-
Landau levels in strained honeycomb lattices. In Sec. III we
present our criterion for the existence of propagating edge
states of the Oth pseudo-Landau level. In Sec. IV we apply
our criterion to two cases of uniaxial strain. In Sec. IV A we
consider uniaxial strain along the x direction to study the
energy dispersion for the zigzag and bearded terminations. In
Sec. IV B a uniaxial strain along the y direction is considered
to study the armchair termination. In Sec. V we show that our
criterion can also be applied to the case of a real magnetic field.
The steady state of artificial graphene under a coherent driving
is studied in Sec. VI for both the uniaxial and the trigonal
strains. We also show that, by a controlled edge engineering,
the propagating edge states can be valley filtered. In Sec. VII
we discuss the effect of a next-nearest-neighbor hopping on
the propagating edge states. Finally, we conclude in Sec. VIII.

II. THE MODEL

We start by reviewing the main properties of relativistic
pseudo-Landau levels stemming from strain in a honeycomb
lattice. The tight-binding Hamiltonian of a strained honey-
comb lattice with only nearest-neighbor hopping takes, in real
space, the following form:

H=-> (t,(r)&ij/Br +Hc), (1

r,j

where 4, and b, are annihilation operators of a particle at posi-
tionr = (x,y)in A and B sublattices, respectively. The vectors
R;, with j = 1,2,3 connect nearest-neighbor sites, as shown
in Fig. 1, and ¢; is the nearest-neighbor hopping along R;.
In particular, we have R, = (a,0), Ry = (—a/2, — /3a/2),
and R; = (—a/2,\/§a/2), where a is the lattice spacing. For
almost all the paper, we will use the form in (1) which contains
only nearest-neighbor hoppings. This restriction allows us to
exploit chiral symmetry to provide a simple criterion for the
existence of propagating edge states. In Sec. VII we will relax
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FIG. 1. A honeycomb lattice. The different sites A and B,
which form two different sublattices, are colored in blue and red,
respectively. The vectors R; connect nearest-neighbor sites. In the
main text, we always refer to this orientation of the lattice. On the left
edge, we show the bearded termination, while on the right edge, we
show the zigzag termination. The bottom and top edges have armchair
terminations. This ribbon has N, = 7 unit cells counted along the
armchair direction (although the last unit cell is not complete, as
it is missing a B site), and N, =5 unit cells counted along the
zigzag/bearded direction.

this constraint and add also next-nearest-neighbor hoppings,
showing that the qualitative features of our predictions are still
valid.

The first Brillouin zone of the unstrained honeycomb lattice
can be taken in the form of a hexagon, where the Dirac points
K and K’ are located at its corners. Around such Dirac points,
when t) 3 = ¢, the system has a linear energy dispersion,
whose slope defines the Dirac velocity vp = 3at/(2/). In our
model, the strain is implemented as a spatial dependence of the
hopping parameters ¢; and our results are independent of the
actual deformation of the underlying honeycomb lattice one
needs to realize the spatial variation of hopping in a specific
physical system. A relation between the intersite length and the
hopping amplitude, in fact, depends on the particular system
such as solid-state graphene, microwave cavity arrays, or
exciton-polariton micropillars. Equation (1) allows for a clear
description of the strain effects from a theoretical tight-binding
perspective.

The effect of a spatially homogeneous strain can be
described in momentum space around these Dirac points K
and K’ as a synthetic vector potential A for the low energy
modes [4-6]:

V3E

vxDeAx = T(l‘z —13), v{)eAy = %(21‘1 —th —13), (2)
where & = %1 is the valley index which distinguishes between
K and K’, and the Dirac velocity is, in general, no longer
isotropic v}, # v}, # vp [9,21]. From Eq. (2) we see that
a nonuniform strain with position-dependent hoppings #;(r)
induces a nonzero synthetic pseudomagnetic field B = V x
A. Since the vector potential in Eq. (2) is opposite for the two
valleys K and K’, also the pseudomagnetic field has opposite
signs in the two valleys. We now review the properties of
pseudo-Landau levels for three different choices of the strain,
highlighting the key features which will be important when
presenting the criterion for the existence of propagating edge
states.
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A. Uniaxial strain along x

We first consider the following uniaxial strain along the x
direction:

X - R1
3a?

1(r) = t(l + r), ha(r) =t, 3)
where x = (x,0). The dimensionless parameter 7 controls
the amount of strain. When t is positive (negative), the
strain increases (decreases) linearly towards the right edge.
We choose the strain so that we have #; = ¢ in the middle
of the system, such that on the edges of the system #; > 0
and #; < 2t. The x-dependent form of the strain in Eq. (3) is
convenient for studying the zigzag and bearded edges for the
system oriented as in Fig. 1, since the system is translationally
invariant along the y direction under periodic boundary
conditions along y, and so the quasimomentum k, is a good
quantum number. The uniaxial strain considered in Eq. (3) is
straightforwardly implementable in artificial graphene while
is difficult to realize in solid-state graphene by applying
mechanical forces to the sample.

‘We shall now concentrate on the case of positive T, namely
where the hopping along the x direction is minimal at the
left edge. The artificial pseudomagnetic vector potential is
eA = £21it/(9a*)(0,x), which is the Landau gauge with the
vector potential oriented along y. The artificial magnetic field
iseB = £25it/(9a®), where the corresponding magnetic length
islp = 4/li/|eB|. Relativistic pseudo-Landau levels form near
Dirac points in momentum space and their energy levels at
the Dirac points are given by E,, = sgn(n)t/t|n|, where n €
Z. For a given value of the “guiding center” xy = —§& llzgky,
the wave function of nth pseudo-Landau level in the A-B
sublattice basis is given, for n # 0, by

) _ax)? Hln\fl (X;XO)
1/fn(x,Y) = elk"ye‘ g i—x ’ (4)
(sgn(n)Hml( )

and where, for any m > 0, H,(x) is a Hermite polynomial of
degree m. For the Oth pseudo-Landau level, the wave function
is a Gaussian completely localized on the B sublattice [6].
Each level is almost degenerate, since wave functions localized
around different x-coordinates x, share the same energy up to
a shift due to the position dependence of the Dirac velocity
[9,21].

As we shall see better in Sec. III, depending on the details
of the termination, when the guiding center x hits the physical
edge of the system, the energy of the pseudo-Landau level can
shift significantly from around its bulk value and the states are
localized at the edge. Since the energy dispersion acquires a
nonzero slope as a function of k,, which is opposite around the
two valleys, these states are helically propagating edge states.

Ip

B. Uniaxial strain along y

We now consider the following uniaxial strain along the y
direction:

‘R
nm =1 nam=t(1+22237) (5
3a?

where y = (0,y). This y-dependent form of the strain is
convenient in studying the armchair edge in Fig. 1, since
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the system is translationally invariant along the x direction
when periodic boundary conditions are applied along x,
and so the quasimomentum k, is a good quantum number.
The strain in Eq. (5) creates an artificial pseudomagnetic
vector potential oriented along x in the Landau gauge:
eA = £25it/(3a*)(—y,0). The artificial pseudomagnetic field
is eB = £2/it/(3a?), which corresponds to pseudo-Landau
levels at energies E, = sgn(n)t/37|n|, where n € Z. For a
given value of the guiding center yo = —El%kx, the wave
function of nth pseudo-Landau level is given, when n # 0, by

Doy = gt Hm1 (%) ©)
- Sgn(”l)H|n|(~"—yo) .

llf

For the Oth pseudo-Landau level, the wave function is again
a Gaussian completely localized on the B sublattice. As we
will see in Sec. 111, this localization on one sublattice plays an
important role in determining when propagating edge states
may exist.

C. Trigonal strain

We now consider the case of trigonal strain:

| r-R j
tj(r) = t< + 322 ‘L’), @)
for j = 1,2, and 3. This type of strain can be applied to
solid-state graphene by engineering the distribution of the
forces applied to the perimeter of the graphene flake [7].
The trigonal strain has been widely used in experiments on
solid-state graphene and in various types of artificial graphene,
such as photonic graphene [20,22].

The trigonal strain implements the artificial pseudomag-
netic vector potential e A = £ht/(3a*)(—y,x) in the sym-
metric gauge and the artificial pseudomagnetic field e3 =
£2it/(3a®). While analytical expressions for Landau levels
in the symmetric gauge are available, for the following we
will only need that the Oth pseudo-Landau level wave function
is again localized only on B sublattice for a positive 7 > 0 for
both valleys. Since the system is not translationally invariant in
any direction, periodic boundary conditions cannot be applied
for studying the energy dispersion in momentum space, and
we discuss only the numerical results later in Sec. VI.

III. CRITERION FOR THE EXISTENCE OF
PROPAGATING EDGE STATES

We now give an intuitive physical criterion for the existence
of propagating edge states for strained honeycomb lattices. The
criterion is based on the chiral symmetry of the tight-binding
Hamiltonian, on the structure of the relativistic Landau level
wave function, and on the existence of nonpropagating zero-
energy edge states in the absence of a space-dependent strain.

The Hamiltonian in Eq. (1) has a chiral symmetry;
that is, under the transformation a, — a, and b, — —b,,
we have ‘H — —H. By applying this transformation to an
eigenstate with energy E # 0, we obtain a different orthogonal
eigenstate with energy — E where the sign of the wave function
on the B sublattice is flipped. As an important consequence,
if an eigenstate is localized only on one sublattice then, by the
chiral symmetry, its energy must be zero.
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We now apply this argument to the Landau levels when
a guiding center is close to the edge of the system. We first
consider the case of a level with n # 0, for which the Landau
level wave function lives on both A and B sublattices. When
the guiding center of the wave function is far from the edge
of the system, the energy of the state is given by the (almost)
degenerate Landau level energy, as one can see for example in
Fig. 3. However, when the guiding center is close to the edge,
the energy of the states lifts significantly from the degenerate
value, and the states have a large nonzero group velocity along
the edge direction. These edge states are helically propagating
and always exist at both ends of the ribbon for Landau levels
with n # 0.

The situation is drastically different for the pseudo-Landau
level with n =0, where we need to consider the specific
form of the Oth pseudo-Landau level wave function, which
is nonzero only on the B sublattice for positive 7 > 0 for
both valleys. Even when the guiding center is close to the
edge, the energy of the n = 0 pseudo-Landau level remains
zero due to the chiral symmetry, as long as the wave function
is always localized on B sublattice. This state can never
propagate because it has a zero group velocity. In order to
have a propagating edge state, the Oth pseudo-Landau level
wave function localized on the B sublattice needs to mix with
zero-energy edge states which have a nonzero amplitude on
the other A sublattice [23].

We can understand when these zero-energy edge states can
exist in a nonuniformly strained system from a local picture.
In this local picture, we assume that the hoppings of the whole
system have constant values that are determined by their values
at the edge. In the uniform case # 53 = ¢, the honeycomb
lattice has zero-energy edge states localized on one sublattice
for the zigzag and the bearded termination, but not for the
armchair termination. The existence of these nonpropagating
edge states can be related to a topological quantity called the
winding number [16,24]. In the case of a uniform strain, when
the hoppings are different ¢, » 3 # ¢ but constant in space, all
three types of edges have these zero-energy states, as long as
the gap-opening Lifshitz transition is not reached [16,25]. In
Figs. 2(a)-2(d) we show the energy dispersion of a uniformly
strained ribbon for #; # ¢ and #, 3 = ¢, for bearded and zigzag
terminations with periodic boundary conditions along y.
Figure 2(e) shows the energy dispersion of a uniformly strained
ribbon for £, 3 # t and ¢; = ¢, for the armchair termination with
periodic boundary conditions along x. In all cases, we see that
nonpropagating edge states exist at £/t = 0, but are restricted
to a limited window of k, .

As discussed before, due to the chiral symmetry, only the
zero-energy edge states that are localized on A sublattice in a
local picture can mix with the Oth pseudo-Landau level (that for
T > 0 is on the B sublattice) and disperse. Due to momentum
conservation, this mechanism can happen only between modes
at the same k, , along the edge direction. These zero-energy
edge states are localized on the A sublattice for the bearded
termination at the left edge and for the zigzag termination at the
right edge. Vice versa, a zigzag termination at the left edge and
abearded termination at the right edge would have zero-energy
edge states localized on the B sublattice. Therefore, the prop-
agating edge states of the Oth pseudo-Landau level appear on
the bearded edge on the left and on the zigzag edge on the right.
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FIG. 2. Energy dispersion of a uniformly strained ribbon, i.e.,
when hoppings are spatially constant but not equal. Dirac cones are
shifted in momentum space because of the synthetic pseudomagnetic
vector potential, and these Dirac cones are connected by flat lines
corresponding to the nonpropagating edge states. (a)—(d) Different
configurations with #; # ¢ and #, 3 =t and periodic boundary con-
ditions along y. Specifically, (a) is for bearded terminations on both
ends and #; < t, (b) is for bearded terminations on both ends and
t; > t, (c) is for zigzag terminations on both ends and #; < ¢, and
(d) is for zigzag terminations on both ends and #; > t. (¢) Armchair
terminations and #, < f; =t < t3 with periodic boundary conditions
along x. The vertical dashed lines indicate the position of the Dirac
points K and K’ of the pristine lattice. In all cases, the nonpropagating
edge states are doubly degenerate and live on both open edges.

A similar argument can be applied also to the armchair
termination. In fact, the armchair edge possesses zero-energy
edge states when #, # 3, as visible in Fig. 2(e). In particular,
when #, < t3 the edge state is localized on the A sublattice
on the bottom edge and on the B sublattice at the top edge.
Vice versa, when t, > t3 the edge state is localized on the
B sublattice on the bottom edge and on the A sublattice at
the top edge [16]. Within the local picture, for the particular
nonuniform strain given in Eq. (5) where the hoppings are
equal in the center of the ribbon, we have that 7, < t3 at the
bottom and #, > t3 at the top, such that the zero-energy edge
state is localized on the A sublattice at both edges and it can
mix with the n = 0 pseudo-Landau level wave function and
give rise to a propagating edge state.

For the sake of completeness, we now consider the case of
a negative T < 0. In this case, the role of A and B sublattices
in Egs. (4) and (6) is flipped, and the Oth pseudo-Landau
level wave function is nonzero only on the A sublattice.
The propagating edge states exist when the pseudo-Landau
level wave functions mix with states which have a nonzero
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amplitude on the B sublattice. This happens on the vertical
edges that terminate with a B site, that are the zigzag on
the left part and the bearded on the right part, and on both
horizontal armchair edges for the strain in Eq. (5), with ¢ < 0.

Itis worth noticing that the uniaxial strain in Egs. (3) and (5)
corresponds to a pseudomagnetic vector potential expressed in
two different gauges, hence the existence of propagating edge
states is gauge dependent, as well as termination dependent.

As a key remark, we recall that, in the presence of a real
magnetic field, the Oth Landau level wave functions around
different valleys are localized on different sublattices. A very
important consequence of this is that the Oth Landau level wave
functions from different Dirac points can always give rise to
propagating edge states, regardless of the shape of the edge or
the underlying existence of zero-energy modes. More details
on the case of a honeycomb lattice in the presence of a real
magnetic field are given in Sec. V.

We now summarize our criterion. A particular termination
can host a propagating edge state associated with the Oth
Landau level if, in the previously defined local picture, there
is a zero-energy edge state localized on a different sublattice
than the Oth Landau level wave function.

IV. PROPAGATING EDGE STATES OF A UNIAXIALLY
STRAINED SYSTEM

We now numerically validate our criterion by calculating
the energy dispersion of a uniaxially strained system with a
ribbon geometry and periodic boundary conditions along one
direction.

A. Uniaxial strain along x

We first consider a ribbon with the uniaxial strain along x
given in Eq. (3). The ribbon is oriented as in Fig. 1, with N,
unit cells along the armchair direction and periodic boundary
conditions along the y direction. The ribbon can be terminated
on the left and right edges with either a bearded or a zigzag
type of edge. Since the strain in Eq. (3) breaks translational
invariance only along the x direction, we can diagonalize the
tight-binding Hamiltonian in the quasimomentum space k,, and
obtain the energy dispersion.

InFig. 3 we show the low-energy dispersion of a ribbon with
N, =99 and v = 0.015 for various edge terminations on the
left and right edges. Figure 3(a) is for bearded terminations
on both ends, Fig. 3(b) is for a bearded termination on the
left and a zigzag termination on the right, Fig. 3(c) is for
zigzag terminations on both ends, and Fig. 3(d) is for a zigzag
termination on the left and a bearded termination on the right.
For each state associated with the energy dispersion in Fig. 3,
we have calculated the mean position of the corresponding
spatial wave function. This mean position is reported as a
color scale in the energy dispersion. States that are localized
on the left (right) edge are colored in cyan (magenta), while
bulk states are represented with darker colors.

In all panels we see the appearance of quantized relativistic
pseudo-Landau levels in the vicinity of the two K and K’
points, located at kya = 27r/(3+/3) and kya = —27/(3+/3),
respectively. The level energies follow a square-root law and
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FIG. 3. Energy dispersion for a uniaxially strained ribbon along
x, oriented as in Fig. 1, with N, = 99 along the armchair direction
and periodic boundary conditions along y, for different terminations.
The strain strength is T = 0.015, corresponding for parameters
of solid-state graphene, to a pseudomagnetic field of B =30 T.
(a) Bearded terminations on both ends, (b) bearded termination on
the left and a zigzag termination on the right, (c) zigzag terminations
on both ends, and (d) a zigzag termination on the left and a bearded
termination on the right. Each state is colored according to the mean
(x) position of its spatial wave function, where cyan stands for states
localized on the left edge, magenta stands for states localized on the
right edge, and black is for bulk states. The spatial wave function of
the states associated with the cyan, magenta, violet, and black dots
are plotted in Fig. 4. Labels L and R indicate whether the eigenstate
is localized on the left or on the right edge. The label E indicates the
nonpropagating edge state, while the label LLO is used to indicate an
example of a n = 0 Landau level state.

their tilting is due to the slight spatial nonuniformity of the
Dirac velocity [21].

Near the Dirac points, states with different &, correspond
to pseudo-Landau level wave functions with different guiding
centers xo. When the guiding center reaches the physical edge
of the system there is a sudden increase in the energy dispersion
of the n # 0 pseudo-Landau levels, as we discussed earlier.
These states are localized at the edge and have a nonzero group
velocity along the y direction. We indeed see, from Fig. 3,
that for the higher pseudo-Landau levels (|n| > 0) each valley
has propagating edge states with both positive and negative
velocities. This is in agreement with our criterion since these
higher pseudo-Landau levels have a nonzero component on
both sublattices. The four panels differ in the behavior of
the edge states of the Oth pseudo-Landau level, which can be
understood fully through our criterion, as explained in Sec. II1.
For sake of simplicity, we focus only on the propagating edge
states with positive energies, as the ones with negative energies
can be obtained, due to the chiral symmetry, by flipping the
sign of the B-sublattice component of the wave function.

In Figs. 3(a) and 3(c) we see that each valley has only one
propagating edge state, while in Fig. 3(b) the two valleys have
both a pair of propagating edge states. The states are labeled in
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FIG. 4. Modulus of the numerical eigenfunctions for parameters
in Fig. 3. L corresponds to the cyan dots in Fig. 3, R corresponds to the
magenta dots in Fig. 3. LLO corresponds to the black dot in Fig. 3(a),
where we see the wave function of the pseudo-Landau level with
n = 0 together with the nonpropagating edge state of the bearded
left end. E corresponds to the violet dot in Fig. 3(a), showing the
superposition of the doubly degenerate nonpropagating edge states.

Fig. 3 with L or R and colored in cyan or magenta according
to their spatial wave function being localized at the left or at
the right edge, as we see in Fig. 4. We also notice from Fig. 3
that the group velocity of the lowest propagating edge states
for the two K and K’ valleys is opposite, therefore these states
are helically propagating. Finally, in Fig. 3(d) we show the
situation in which there are no propagating edge states of the
n = 0 pseudo-Landau level.

In Fig. 4 we show the spatial structure of the wave function
corresponding to the propagating edge states identified by
the dots in Fig. 3. The contribution to the wave function
from the two sublattices A and B has been separated and
plotted in, respectively, blue and red. Figure 4(L) represents
the wave function of the states identified with the cyan dots
and labeled with L in Fig. 3, while Fig. 4(R) represents the
wave function of the states identified with the magenta dots
and labeled with R in Fig. 3. Figure 4(LLO0) shows the wave
function of a superposition of the doubly degenerate states
highlighted by the black dot in Fig. 3(a). Such states are a
pseudo-Landau level with n = 0 with a guiding center in the
middle of the system and the nonpropagating edge state of the
left (bearded) end. Figure 4(E) corresponds to the violet dot
in Fig. 3(a), and shows the wave function of a superposition
of the doubly degenerate nonpropagating edge states on each
bearded edge. We notice that these nonpropagating edge states
are localized on a much shorter distance than the propagating
states of Figs. 4(L) and 4(R). In fact, the propagating edge
states are mixed with the pseudo-Landau levels, which are
localized on a longer length-scale set by the magnetic length.

All these results are in perfect agreement with our criterion
for the existence of the propagating edge states of the Oth
pseudo-Landau level discussed in Sec. III.
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FIG. 5. Energy dispersion and modulus of the numerical wave
functions for a uniaxially strained ribbon along y with periodic
boundary conditions along x. The strain strength is 7 = 0.02,
corresponding to a pseudomagnetic field of B = 120 T, for parameters
of solid-state graphene. In (a) N, = 99 along the vertical direction
and 1,3 =t is in the center of the ribbon, thus both the top and the
bottom armchair edge can sustain propagating edge states. In (b)
N, =49 along the vertical direction and the hoppings are equal at
the bottom edge, where no propagating edge state is supported. Each
state is colored according to the mean (y) position of its spatial wave
function, where cyan stands for states localized on the bottom edge,
magenta stands for states localized on the top edge, and black is for
bulk states. The spatial wave function of the states associated with the
cyan and magenta dots are plotted in (B) and (T), corresponding to the
eigenstate localized on the bottom or on the top edge, for parameters
in (a).

B. Uniaxial strain along y

We now consider a ribbon with the uniaxial strain along y
given in Eq. (5). The ribbon is still oriented as in Fig. 1, but
now has N, unit cells along the vertical direction and periodic
boundary conditions along the x direction. We diagonalize the
tight-binding Hamiltonian in the quasimomentum space k, and
obtain the energy dispersion.

In Fig. 5 we show the low-energy dispersion of a ribbon
with T = 0.02. Figure 5(a) is obtained for a ribbon of N, = 99
unit cells along the vertical direction where the hoppings are
equal at the center of the ribbon. In this case, as we have
discussed in the previous section, both the top and the bottom
armchair edge can sustain propagating edge states. The energy
dispersion shows the quantized pseudo-Landau levels around
the two Dirac points, both located at k,a = 0, with a pair of
propagating edge states localized at the top and bottom edges,
as indicated with, respectively, the T and B label [26]. As
done in Fig. 3, we have calculated the mean (y) position
of the spatial wave function, which is reported as a color
scale in the energy dispersion. States that are localized on
the top (bottom) edge are colored in magenta (cyan), while
bulk states are represented with darker colors. The eigenstates
corresponding to the states indicated with the magenta and
cyan dots are shown in Figs. 5(T) and 5(B), respectively.
Figure 5(b) shows the energy dispersion of aribbon of N, = 49
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unit cells along the vertical direction where the hoppings are
equal at the bottom end of the ribbon. This configuration
has been previously discussed in [15] and propagating edge
states were found only at the top edge. A similar configuration
was also discussed in [13], where a semi-infinite system was
considered instead of a finite system, showing that propagating
edge states cannot exist on the bottom edge. This result for the
armchair edge is well explained by our criterion. In this case,
the bottom armchair edge does not have a zero-energy edge
state in the local picture. At the top end, instead, the strain
is such that in the local picture, the zero-energy edge state is
present. These predictions are confirmed in Fig. 5(b) where
we see a propagating state in the dispersion localized only at
the top edge.

V. PROPAGATING EDGE STATES OF A SYSTEM IN THE
PRESENCE OF A REAL MAGNETIC FIELD

We now present the case of a honeycomb lattice in the
presence of a real magnetic field, and clarify the differences
with the case of a strained system. In particular, we show that
our criterion for the existence of the propagating edge states
can also be applied to the case of the chiral edge states of a
system in the presence of a real magnetic field.

The effect of a real magnetic field B, can be expressed,
within a Landau gauge with the vector potential oriented
along y, as a complex hopping in the chirally symmetric
tight-binding Hamiltonian:

H= = 3 1(a] g e+l bre 7o

r
+a]_g bee™™R L He), (8)

where the magnetic flux per plaquette is e3,S/h = 2w ¢, and
S =34/3a?/2 is the area of the hexagonal plaquette. It is
straightforward to diagonalize the Hamiltonian in Eq. (8) by
applying periodic boundary conditions along y to obtain the
Landau levels and the resulting wave functions that depend
on the valley index & [6]. A very important consequence of
such valley index dependence is that the Oth Landau level
wave functions from different valleys are localized on different
sublattices. For a positive magnetic field, the Oth Landau level
wave function of the K(K’) valley is localized on the B(A)
sublattice. The Oth Landau level wave functions can therefore
always give rise to propagating edge states, regardless of the
type of site on the edge. Moreover, these edge states are chirally
propagating, because the real magnetic field breaks the time-
reversal symmetry.

Our criterion developed in Sec. III can also be applied to
the case of the magnetic field to predict which valley hosts
the propagating edge states. In Fig. 6 we show the energy
dispersion calculated for a ribbon of N, = 99 unit cells along
the armchair direction and periodic boundary conditions along
the y direction, with a flux per plaquette 2w¢ = 0.0087.
Figures 6(a)-6(d) are, respectively, for bearded terminations
on both ends; a bearded termination on the left and a zigzag
termination on the right; zigzag terminations on both ends; and
a zigzag termination on the left and a bearded termination on
the right. As previously done in Figs. 35, each state is colored
according to the mean (x) position of its spatial wave function,
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FIG. 6. Energy dispersion in the presence of a real magnetic field
for a ribbon of N, = 99 along the armchair direction and periodic
boundary conditions along y, with different terminations on the
left and right edges. The magnetic flux per plaquette has strength
2w ¢ = 0.0087. The intensity of the associated real magnetic field
B, =30 T for parameters of solid-state graphene, is the same as the
pseudomagnetic field generated by the strain in Fig. 3. (a) Bearded
terminations on both ends, (b) a bearded termination on the left and a
zigzag termination on the right, (c) zigzag terminations on both ends,
and (d) a zigzag termination on the left and a bearded termination on
the right. The states are colored according to the mean position of
their wave function.

as indicated by the color bar. We notice that, differently from
the case of a strained system, the quantized relativistic Landau
levels are exactly flat, and in the first gap there are chirally
propagating edge states associated with the Oth Landau level,
existing on both the left and right ends. In particular, we see
that in Fig. 6(a) for the bearded-bearded case, the propagating
edge state is left localized on the A sublattice with a positive
group velocity in the K valley, and right localized on the B
sublattice with a negative group velocity in the K’ valley. In
Fig. 6(b) the lattice always terminates with an A site, as it has
bearded edge on the left and zigzag edge on the right ends.
According to our criterion, the Oth Landau level wave function
localized on the B sublattice is the only one that can give rise
to a propagating edge state, hence such state is present only
for the K valley and not for the K’ valley. Similar arguments
apply to Figs. 6(c) and 6(d), clearly demonstrating the validity
of our criterion also in the case of a honeycomb lattice in the
presence of a real magnetic field.

We now discuss the chirally propagating edge states of the
armchair edge. The tight-binding Hamiltonian within a Landau
gauge with the vector potential oriented along x is

H=- Z ,(&ngre—ﬂnw + &LRzBr + &Lmér +He).

€))

The energy dispersion in Fig. 7 is obtained by diagonalizing the
Hamiltonian in Eq. (9) for aribbon of Ny, = 99 unit cells along
the vertical direction and periodic boundary conditions along
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FIG. 7. Energy dispersion in the presence of a real magnetic
field for a ribbon of N, =99 along the vertical direction and
periodic boundary conditions along the x direction. The strength of
the magnetic flux per plaquette is 2w¢ = 0.0346. The intensity
of the associated real magnetic field B, = 120 T for parameters
of solid-state graphene, is the same as the pseudomagnetic field
generated by the strain in Fig. 5. The states are colored according
to the mean position of their wave function.

x, where the magnetic flux per plaquette is 2w ¢ = 0.0346.
In this case, the Landau levels located at k,a = 0 are doubly
degenerate because they belong to both K and K’ valleys.
Therefore, the B-localized Oth Landau level of the K valley
can always mix with the A-localized Oth Landau level of the
K’ valley and form a propagating edge state.

We can conclude that, in the presence of a real magnetic
field, all terminations can host chirally propagating edge states
of the Oth Landau level. On the contrary, for a pseudomagnetic
field stemming from strain, the helically propagating edge
states of the Oth Landau level depends on the type of
termination and the type of strain.

VI. PROPAGATING EDGE STATES FROM THE STEADY
STATE OF A COHERENTLY
DRIVEN-DISSIPATIVE SYSTEM

We now demonstrate how our findings can be observed in a
driven-dissipative strained system, such as artificial photonic
graphene made, for example, of coupled cavity arrays [17]
or microwave resonators [16,18,19]. As discussed in [16,21],
general spectroscopic techniques can be used to extract the
main properties of the pseudo-Landau levels, such as their
wave function. We now apply these techniques to probe the
edge physics and to verify our general criterion.

We consider a finite lattice, with Ny and N, unit cells along
the horizontal and vertical directions. The system is coherently
driven by a monochromatic field at frequency wy, while the
dissipation is assumed to be uniform for all lattice sites and to
have a rate of y. Due to continuous pump and loss, the fields
in the lattice sites A and B reach a steady state, described as
Anm(T) = Apme T and by (T) = byme T at time T. The
steady-state amplitudes a,,, and b, are obtained by solving a
system of linear Heisenberg equations [27]:

[A(wo +iy)I — HIW = f,

where W is the vector with all the amplitudes a,,, and b,
for all sites, H is the real space tight-binding Hamiltonian
matrix associated with Eq. (1), I is the identity matrix, and
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FIG. 8. (a)-(c) Spatial amplitudes in the steady state showing
the propagation of the edge state in the uniaxially strained system
of N, =49 and N, = 199 unit cells in the horizontal and vertical
direction, respectively. Parameters are 7 = 0.02, hy/t = 0.0025,
hawo/t = (Ey=o + E,=1)/2t = 0.0707. The pumped site is indicated
by the arrow. In (a), the left edge is bearded, and so supports a Oth
Landau level propagating edge states. In (b), the left edge is changed
to zigzag, and the propagation of the edge state is clearly suppressed.
In (c), the left bearded edge has six defect sites around y = 0, and
the propagation of the edge state is strongly suppressed.

f is a vector describing the amplitude of the pump on each
site. In the following, we assume that only one site is pumped,
therefore both valleys K and K’ are simultaneously excited.

A. Uniaxial strain along x

In Figs. 8(a)-8(c) we show the steady-state amplitudes
for a system with bearded and zigzag edges at the left end,
under the uniaxial strain along x in Eq. (3). The pumped site,
indicated by the arrow, is on the A sublattice at the bottom
left corner of the system and the pumping frequency is in
between the lowest n = 0 and the first n = 1 pseudo-Landau
level. We assume a positive strain, such that only the left edge
supports the propagating edge state of the Oth pseudo-Landau
level for the bearded termination, as previously shown in the
energy dispersion of Fig. 3(a) and now clearly visible from
the steady state shown in Fig. 8(a). When the left termination
is changed to zigzag in Fig. 8(b), the propagating edge state
is suppressed on the left edge, as we have seen in the energy
dispersion of Fig. 3(c). In Fig. 8(c) we have removed six sites
of type A at y =0, and we see that the propagation of the
edge state is strongly suppressed. When hitting the defect, the
edge state scatter to the other valley and propagate backwards;
no propagation into the bulk is observed. Figure 8(a) also
shows that the edge states propagate until it is reflected at the
corners of the system by the top and bottom armchair edges,
which, for this particular type of strain, do not have (within a
local picture) any zero-energy edge states to mix with the Oth
pseudo-Landau level.

B. Uniaxial strain along y

In Figs. 9(a) and 9(b) we show the steady-state amplitudes
for a system with the uniaxial strain along y given in
Eq. (5). The pumped site, indicated by the arrow, is on the
A sublattice at the bottom left corner of the system and the
pumping frequency is in between the lowest n = 0 and the first
n = 1 pseudo-Landau level. In Fig. 9(a) the strain strength is
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FIG. 9. (a) and (b) Spatial amplitudes in the steady state showing
the propagation of the edge state in the armchair-strained system.
The maximum numbers of unit cells along the horizontal and vertical
directions are Ny =79 and N, = 99. The pumped site is indicated
by the arrow. In (a), all edges support helically propagating edge
states. Parameters are v = 0.02, iy /t = 0.0025, hawy/t = (E,—0 +
E,_1)/4t = 0.1225. In (b) the strain is such that the propagation of the
edge state is forbidden on the bottom edge. Parameters are T = 0.01,
hy/t =0.0025, iwy/t = (Ey=0 + E,=1)/4t = 0.0866.

T =0.02and , = 13 =t for y = 0, and the vertical edges are
both terminating with A sites. As correctly predicted by our
criterion and shown in the energy dispersion of Fig. 5, we see
that all edges, and in particular both the top and the bottom
armchair edges, sustain propagating edge states.

In Fig. 9(b) the strain starts from the bottom end of the
ribbon,ast, =13 =tfory = —Ly,and r = 0.01. In this case,
as we have shown in Fig. 5(b), the bottom armchair edge
does not have a zero-energy edge state in the local picture,
therefore our criterion predicts that the propagating edge states
are not supported on the bottom end, which is confirmed by
the steady-state calculation.

In Fig. 9 we notice a fringe pattern, which is due to the
interference between counterpropagating edge states of the
two K and K’ valleys, and are enhanced by the reflection
of the states at each corner. We also notice that the corners
connecting the armchair with the zigzag edge are avoided. We
believe this is due to a subtle interplay between the zigzag
edge state and the armchair edge state.

C. Trigonal strain

We now numerically demonstrate that our criterion for the
existence of propagating edge states still applies in the case of
trigonal strain. As mentioned earlier, for the trigonal strain the
Oth pseudo-Landau level wave function is again localized only
on B (A) sublattice for a positive T > 0 (negative T < 0) for
both valleys. Our criterion predicts that the Oth pseudo-Landau
level possesses helical edge states when there are zero-energy
edge states on the A (B) sublattice within the local picture.

In Figs. 10(a) and 10(b) we show the steady-state am-
plitudes for a trigonally strained system with v = —0.02,
terminated with bearded or zigzag edges, respectively, on the
ends labeled by B or Z. The pumped site is located on a B
site close to the bottom corner, as indicated by the arrow. The
pumping frequency is in the first gap at hwy/t = (E,— +
E,_1)/4t = 0.061, and the loss rate is small enough such that
the particles can travel around the whole system. In Fig. 10(a)
the system is shaped such that all the edges are terminating
on a B sublattice, either with zigzag or bearded edges. In
agreement with our criterion, we see that a pair of edge states
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FIG. 10. (a)and (b) Spatial amplitudes in the steady state showing
the propagation of the edge state in the trigonally strained hexagonally
shaped system. Edges are labeled by Z and B to indicate if they
are, respectively, zigzag or bearded terminations. The maximum
numbers of unit cells along the horizontal and vertical directions are
N, =99 and N, = 199, respectively. The pumped site is indicated
by the arrow. In (a), all edges support helically propagating edge
states. In (b), the bottom right edge is changed from a zigzag to
bearded, and the propagation of the edge state is clearly blocked
on that edge. Parameters are t = —0.02, /iy /¢t = 0.0025, hwy/t =
(E =0+ E,—1)/4t = 0.061. (c) and (d) The Fourier transform of
(a) and (b), respectively. We see that all valleys are excited in
(c) that corresponds to the case of both helical edge states going
around the system in (a). In (d) one valley is predominantly excited,
corresponding to the case of mostly the clockwise edge state in (b).

helically propagate around the entire system in both directions.
On the contrary, in Fig. 10(b) the bottom right edge terminates
on the A sublattice and we see that propagation along that
edge is forbidden, and so only the edge state propagating
along the bottom left edge is excited. Each valley K or K’
is associated with the direction of propagation of the helical
edge states being clockwise or counterclockwise, respectively.
We plot the spatial Fourier transform of the steady-state
amplitudes of Figs. 10(a) and 10(b) in Figs. 10(c) and 10(d) and
show that unidirectional propagation is associated with valley
filtering. In Fig. 10(a), where the edge states are propagating
in both directions starting from the pumped site, we see in
the corresponding Fourier transform in Fig. 10(c) that regions
around both K and K’ points in the Brillouin zone are excited.
InFig. 10(b), the edge state mainly propagates in the clockwise
direction and the Fourier transform in Fig. 10(d) shows that the
K’ points have been filtered out. The residual excitation that
is present around the K’ points is due to the reflection at the
corner with the edge that does not support the propagating edge
state. This is the same reflection process mentioned previously
for the uniaxial strain.

Finally, in Fig. 11, we show a hexagonally shaped system
terminated with armchair edges, which are all able to support
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FIG. 11. Spatial amplitudes in the steady state showing the
propagation of the edge state in the trigonally strained hexagonally
shaped system. All edges are armchair. The maximum numbers of
unit cells along the horizontal and vertical directions are N, = 79
and N, = 99, respectively. The pumped site is indicated by the arrow.
Parameters are the same as in Fig. 10.

the propagating edge states. This is because, according to our
criterion, the strain is such that, in the local picture, all edges
support zero-energy edge states on the B sublattice and hence
can mix with the Oth pseudo-Landau level, which is localized
on the A sublattice. The pumped site, indicated by the arrow, is
a site of type A, and the parameters are the same as in Fig. 10.
As expected, we see that the edge states propagate around the
entire system.

VII. PROPAGATING EDGE STATES WITH
NEXT-NEAREST-NEIGHBOR HOPPINGS

In this final section, it is worth assessing the effect of next-
nearest-neighbor (NNN) hoppings. As these terms break chiral
symmetry, which is at the heart of our argument, our criterion
is not valid any more, and so new features are expected to
arise.

‘We define the vectors that connect NNN sitesas D; = R; —
Rz, D2 = R2 — R], and D3 = R3 — Rl. The tight—binding
Hamiltonian with NNN hoppings is

H= = [jmal g be+1jmal_y ar

rj

+1j(0)b]_y br + Hee.]. (10)

To a first approximation, we consider the NNN hopping to
be constant over the lattice t} (r) — ¢'. This approximation is
sufficient when the strain and the bare NNN hopping are both
small. For a more refined study, one could instead assume that
the NNN hoppings have the same spatial dependence as the
strained nearest-neighbor hoppings, as done in [21] for the
uniaxial strain along x, which however does not qualitatively
change the main features of the results.

A. Energy dispersions

We repeat the numerical calculation of Sec. IV, including
a NNN hopping strength of # = 0.1¢. This value is consistent
with estimates for NNN hopping in solid-state graphene [5]
and in artificial graphene [17,18]. In this way, we obtain the
low-energy dispersion presented in Fig. 12 for various edge
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FIG. 12. (a) Energy dispersion for a unstrained system 7 = 0,
with N, =99 along the vertical direction and ¢' = 0.17, with a
bearded termination on the left and a zigzag termination on the right.
(b) Energy dispersion for a uniaxially strained ribbon along y with
periodic boundary conditions along x and armchair terminations at the
top and bottom, with a next-nearest-neighbor hopping strength of t' =
0.1¢. The strain strength is T = 0.02, with N, = 99 along the vertical
direction and #, 3 = ¢ is in the center of the ribbon. (c)—(f) Energy
dispersions for a uniaxially strained ribbon along x, with N, = 99
along the armchair direction and periodic boundary conditions along
y, for different terminations with a constant next-nearest-neighbor
hopping strength of ' = 0.1¢, and a strain strength of 7 = 0.015.
(c) Bearded terminations on both ends, (d) is for a bearded termination
on the left and a zigzag termination on the right, (e) is for zigzag
terminations on both ends, and (f) is for a zigzag termination on the
left and a bearded termination on the right. In (b)—(f), the states are
colored according to the mean position of their wave function, as
indicated by the color bar.

terminations and with the two types of uniaxial strain (along
x and along y).

In Fig. 12(a) we show the energy dispersion for a unstrained
system 7 = 0 with periodic boundary conditions along y and
t' = 0.1t, with a bearded termination on the left and a zigzag
termination on the right. Because of the breaking of the chiral
symmetry due to the NNN hoppings, the edge states are no
longer pinned at zero energy as in Fig. 3, but they are now
dispersive.

In Figs. 12(b)-12(f) we show the energy dispersion for
the two different uniaxial strains in the presence of a NNN
hopping of strength ¢ = 0.1¢. In all panels, we identify the
Landau levels appearing in the vicinity of the K and K’ points.
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Figure 12(b) is the energy dispersion of a ribbon with uniaxial
strain along y and nonzero NNN hoppings, corresponding to
the NNN generalization of the spectra in Fig. 5(a). In this
case we see that the energy dispersion is almost unaffected
by the NNN hoppings, apart from the opening of a gap that
removes the degeneracy between the n = 0 Landau levels
and the nonpropagating edge states of the strained armchair
termination. Also the localization of the wave function, which

FIG. 13. (a)—(d) Spatial amplitudes in the steady-state showing
the propagation of the edge state in the uniaxially strained system
of N, =49 and N, = 199 unit cells in the horizontal and vertical
direction, respectively. Parameters are ' = 0.1¢, T = 0.02, hiy/t =
0.0025. (a) and (b) A pump frequency in the lower LLO gap
hwy/t = —(E,—0 + E,—1)/2t = —0.36, while (c¢) and (d) are for
pump frequency in the upper LLO gap fiwy/t = (E,—0 + E,=1)/2t =
—0.24. The pumped site is indicated by the arrow. In (a), the left edge
is bearded, and so supports a Oth Landau level propagating edge state.
In (b), the left edge is changed to zigzag, and the propagation of the
edge state is clearly suppressed. (c) and (d) The same configuration
as in (a) and (b), respectively. We see the mixing of the propagating
edge state associated with pseudo-Landau levels with previously
nonpropagating edge states, which are localized on a shorter length.
In particular, now we see that the zigzag termination in the upper LLO
gap has an edge state that propagates along the edge.
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is indicated by the color bar, is unaffected by the NNN
hoppings.

In Figs. 12(c)-12(f) we show the energy dispersions of
a ribbon with uniaxial strain along x and nonzero NNN
hoppings, corresponding to the NNN generalization of the
spectra in Figs. 3(a)-3(d). As already noted in [21], Landau
levels in Figs. 12(c)-12(f) are more tilted than the ones in
Fig. 3 without NNN hoppings.

The mean localization of the wave function in each level,
which is shown by the color scale, is similar to the one shown
in Figs. 3(a)-3(d) for ¢’ = 0. We still see that the presence of
propagating edge states of the n = 0 Landau level still depends
on the type of terminations of the ribbon. This is particularly
clear for the energies between the lower bands and the shifted
energy of the Dirac point —3¢" (lower LLO gap). As compared
to the edge states that become propagating as a consequence
of the NNN hoppings and shown in Fig. 12(a), some of the
propagating edge states associated with » = 0 Landau level
may have a steeper dispersion.

B. Steady state of the coherently driven system

We now repeat the calculations done in Sec. VI for the
uniaxial strain along x to show how the results for a coherently
driven system are affected by the NNN hoppings. In Fig. 13 we
present the steady-state amplitude for the same configuration
as in Fig. 8, including a NNN hopping strength of " = 0.1r¢.
The energy dispersion of these configurations is shown in
Figs. 12(c) and 12(e).

The driving frequency is between the lower bands and the
shifted energy of the Dirac point —3¢" (lower LLO gap) for
Figs. 13(a) and 13(b), while it is between the upper bands and
the shifted energy of the Dirac point —3¢" (upper LLO gap) for
Figs. 13(c) and 13(d). While for # = 0 the system is symmetric
with respect to the energy of the n = 0 Landau level, here we
see that the pattern of the steady-state amplitudes depends
on the chosen gap. Figure 13(a) shows the propagating edge
state supported by the bearded edge, while Fig. 13(b) shows
the absence of a propagating edge state. For this specific pump
frequency, the results are then very similar to the ones obtained
in the absence of NNN hoppings and shown in Figs. 8(a)
and 8(b).

When pumping in in the lower LLO gap, instead, we see
in Fig. 13(c) that the propagating edge state supported by the
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bearded edge is much more localized than the one shown in
Fig. 13(a). This is because the pump excites also the previously
nonpropagating edge state localized on the left edge. The
same argument is valid in Fig. 13(d), where now we see a
propagating edge state where before it was nonpropagating as
in Fig. 8(b). The lower group velocity is reflected in the edge
state having a shorter propagation distance than in Figs. 8(a)
and 8(c).

VIII. CONCLUSIONS

To conclude, we have given a general criterion for the
existence of helically propagating edge states associated with
pseudo-Landau levels in strained honeycomb lattices with
only nearest-neighbor hoppings. Our criterion is based on
the chiral symmetry of the tight-binding Hamiltonian and on
the fact that the wave function of the Oth Landau level is
localized only on one sublattice. The criterion can be applied
to any type of edges and to various strains, showing that the
existence of propagating edge states in strained honeycomb
lattices is termination dependent as well as strain dependent.
We have numerically verified our criterion by calculating the
energy dispersion of uniaxially strained systems. We have also
shown, with a view to artificial graphene, how the helically
propagating edge states appear in the steady state of a driven-
dissipative system for uniaxial as well as trigonal strains, for
all the three types of edges. We have seen that, by suitably
engineering the edges, the system can act as a valley filter
for honeycomb lattices. Finally, we have commented on the
effects of NNN hoppings, which break the chiral symmetry,
such that our criterion only holds approximately.
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