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Excitonic giant-dipole potentials in cuprous oxide
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In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric
and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within
our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed
excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary
gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle
interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for
the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers
and depths up to 380 μeV, leading to possible permanent excitonic electric dipole moments of around 3 × 106 D.
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I. INTRODUCTION

Wannier excitons are of great physical interest as they are
the quanta of the fundamental optical excitation in semicon-
ductors [1,2]. Excitons consist of a negatively charged electron
in the conduction band and a positively charged hole in the
valence band. As the interaction between the two species can
be modeled as a screened Coulomb interaction, excitons are
often considered to be a solid-state quasiparticle analog to the
hydrogen atom [3–5]. In particular, excitons in cuprous oxide
(Cu2O) have attracted quite some attention in recent years
due to an outstanding experiment, in which the hydrogenlike
absorption spectrum of these quasiparticles could be observed
up to principal quantum numbers n = 25 [6].

However, the hydrogenlike model of excitons is generally
too simple to describe the spectra adequately. It has been
shown that this model is incapable of describing the correct
level splitting due to fine and hyperfine splitting observed
experimentally [7]. For this reason, the simple hydrogenic
theory has been expanded taking into account the complex
valence band structure and the cubic symmetry Oh of Cu2O in
a quantitative theoretical framework [8–13].

The addition of external electric and magnetic fields
reduces the symmetry of the system, therefore leading to level
structures possessing numerous complex splitting of excitonic
absorption lines [14]. The analysis of excitonic absorption
spectra in both electric- and magnetic-field strengths has
been a long-standing subject from the theoretical as well
as experimental point of view [15–18]. Due to specific
material parameters, excitonic properties such as Bohr radius
and electric- and magnetic-field strength units provide the
possibility to access exotic regimes more easily compared to
standard atomic systems. For instance, recent high-resolution
spectroscopy and intensive theoretical calculations of excitons
in Cu2O have provided a fundamental understanding of
complex excitonic absorption spectra in external magnetic
fields for applied field strengths of up to 7 T and excitonic
states with principal quantum numbers n � 7 [19,20].

In atomic physics, an exotic species of highly excited
Rydberg states in crossed electric and magnetic fields is that
of the so-called giant-dipole atoms. This particular atomic
species has been predicted theoretically [21–26] and explored
experimentally in the early 1990’s [27,28]. When the center-

of-mass and relative motion of the field-dressed species are
treated correctly, the total momentum of the system is not
a conserved quantity and an exact separation of the atomic
degrees of freedom is impossible [23]. The pseudomomentum
is, however, a conserved quantity and for neutral systems
one can carry out a pseudoseparation of the center-of-mass
and relative motion. It has been shown that the effect of the
center-of-mass degrees of freedom on the internal motion is
an effective potential that gives rise to an outer well for certain
values of the pseudomomentum and applied field strengths.

This leads to delocalized states, the so-called giant-dipole
states. In contrast to the usual Rydberg states, giant-dipole
states are of decentered character with an electron-ionic
core separation up to several micrometers, leading to huge
permanent electric dipole moments in the range of hundreds
of thousands of debye. Applications to matter-antimatter
atoms have predicted bound-state lifetimes of many years,
and recent studies have indicated the existence of diatomic
ultra-long-ranged giant-dipole molecules [29].

However, the concept of giant-dipole atoms is not restricted
to real atomic systems as it can, in principle, be applied to
neutral quasiparticle systems such as excitons as well. For
instance, Schmelcher analyzed excitons with nonvanishing
pseudomomentum in an external magnetic field within an
effective hydrogenic model [30]. As the simple hydrogenlike
approach has turned out to be insufficient to describe both
the field-free as well as the field-dressed excitonic species,
it is obvious that a more complex theoretical approach is
required to derive a sufficient description of possible excitonic
giant-dipole states. Therefore, in the present paper we expand
the concept of atomic giant-dipole states to realistic semi-
conductor environments. Starting from the exact field-dressed
Hamiltonian we derive the theoretical foundation of excitons
in crossed fields. We then consider Cu2O and calculate the
specific properties of giant-dipole potentials in this material.

This paper is organized as follows. In Sec. II we present
the Hamiltonian of excitons in crossed electric and magnetic
fields. Performing a gauge-independent pseudoseparation of
the center-of-mass and relative motion we derive an effective
single-particle description of the field-dressed excitonic sys-
tem. As a result we obtain a spatially dependent electron-hole
interaction potential. Furthermore, we show the possibil-
ity of Abelian and non-Abelian gauge field description of
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field-dressed excitonic systems. In Sec. III we derive the
potential energy surfaces of the excitonic giant-dipole sys-
tem for various electric- and magnetic-field strengths and
orientations. We obtain several potential surfaces providing
possible electron-hole separation up to several micrometers.
We show that by varying both the electric- and magnetic-field
strengths one can easily change the topological properties of
the potential surfaces. Finally, we give a short summary and
outlook in Sec. IV.

II. THE EXCITONIC HAMILTONIAN IN EXTERNAL
ELECTRIC AND MAGNETIC FIELDS

The Wannier excitons in Cu2O which are analyzed
throughout this paper are formed by an electron in the
lowest �+

6 conduction band and a positively charged hole
in the uppermost �+

5 valence band. Here, the latter is triply
degenerate. The energy gap between the two bands is given as
Eg = 2.17208 eV [6]. As the �+

6 band is almost parabolic in
the vicinity of the � point, the kinetic energy

He( pe) = p2
e

2me

(1)

of the electron is determined by an isotropic effective mass
me = 0.985m0 which is almost identical to the free-electron
mass m0.

In contrast to the conduction band, the three uppermost
valence bands are deformed due to interband interactions
and nonspherical symmetry properties of the solid. These
properties can be represented by an effective I = 1 quasispin
representation in the hole degrees of freedom [31]. Thus, the
kinetic-energy Hamiltonian Hh( ph) of a hole in the case of
three coupled valence bands is given by a more complex
expression determined by the three Luttinger parameters
γi, i = 1,2,3 [12,32]:

Hh( ph) = p2
h

2m0
(γ1 + 4γ2) − 3γ2

m0

(
p2

h,xI
2
x + c.p.

)

−6γ3

m0
[{px,hpy,h}{IxIy} + c.p.]. (2)

The mapping {a,b} = (ab + ba)/2 is the symmetric product
[12]. This can be used to define the elements of a symmetric
and trace-free Cartesian spin tensor with elements Iij :

Iij = 3{Ii,Ij } − 2δij 1I , i = x,y,z. (3)

The operator 1I denotes the unity operator of the I = 1
pseudospin representation. Including the hole spin Sh with
Sh = 1/2, each of the three �+

5 valence bands becomes doubly
degenerate. However, the quasispin I not only changes the
kinetic-energy term of the hole but also effectively couples
to the total effective hole spin J = I + Sh. Because of the
spin-orbit coupling, the degenerate valence bands split into
one single higher-lying doubly degenerate �+

7 and two doubly
degenerate lower-lying �+

8 valence bands separated by an
amount of � = 133.8 meV (see Fig. 1). Optical transitions
between the conduction band and the two valence bands
provide two distinct optical series, namely, the yellow (J =
1/2) and green series (J = 3/2), respectively (see Fig. 1).

FIG. 1. Schematic band structure in Cu2O. Transitions between
the conduction band (CB) and valence band (VB) lead to two excitonic
series denoted as yellow and green.

Throughout this paper, the ionization threshold of the
yellow series is chosen to be the zero point of the energy
scale.

Furthermore, if not stated otherwise, we use excitonic
Hartree units, i.e., e = h̄ = m0/γ

′
1 = 1/4πε0ε = 1. Here,

ε = 7.5 denotes the static dielectric constant of the bulk
material and γ ′

1 ≡ m0/me + γ1. In this particular unit system,
the energies are measured in units of the excitonic Hartree
energy, Hex = 174 meV, while the distances are measured in
units of the corresponding excitonic Bohr radius, aex = γ ′

1εa0,
where a0 is the atomic Bohr radius. In Table I a detailed list
of the physical quantities considered in the present paper is
presented.

In case an external magnetic field is applied, the canonical
momenta of electron and hole are replaced by their kinetic
momenta pe/h → pe/h ± A(re/h), where A(r) is the vector
potential, and the magnetic field is given by B(r) = ∇ × A(r).
Obviously, the vector potential is not uniquely defined but

TABLE I. Excitonic Hartree energyHex, Bohr radius aex, external
field strengths (Bex,Eex), momentum Kex, and electric dipole moment
dex expressed in commonly used units. In addition, the spin-orbit and
magnetic coupling (�,μB ) are presented as well as the Luttinger
parameters used throughout this paper.

Parameter Symbol Value

Hartree energy Hex 174 meV
(Excitonic) Bohr radius aex 1.1 nm
Magnetic-field strength Bex 542.5 T
Electric-field strength Eex 1.583 MV/cm
Momentum Pex 4.8 × 10−2h̄/a0

Dipole moment dex 52.96 D1

Gap energy Eg 2.17208 eV
Spin-orbit coupling � 133.8 meV
Bohr magneton μB 57.88 μeV/T
Luttinger parameters γ1,γ2,γ3 1.76,0.82,0.54

γ ′
1,κ 2.78, − 0.5
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can be gauged using the gradient of a scalar field 
(r):
A′(r) = A(r) + ∇
(r). For a homogeneous magnetic field,
the vector potential in an arbitrary gauge can be written as
A(r) = Asym(r) + ∇
(r) with Asym(r) = 1

2 B × r denoting
the symmetric gauge. In case that a homogeneous external
electric field is applied as well, the Stark terms ∓E · re/h of
the electron and hole have to be considered in addition. For this
reason, the Hamiltonian of excitons in homogeneous external
electric and magnetic fields is given by1

Hex = 1

2me

[ pe + Asym(re) + ∇e
e]2 − 1

|re − rh|
+Hh[ ph − Asym(rh) − ∇h
h] + E · (re − rh)

+Hso + HB (4)

with me → meγ
′
1/m0, ∇i
i ≡ ∇r i


(r i), and

Hso = 2

3
�̄(1 + I · Sh), (5)

HB = μ̄B

[(
3κ + gs

2

)
I · B − gs Sh · B

]
, (6)

�̄ ≡ �

Hex
, μ̄B ≡ μB

Hex
. (7)

The term Hso denotes the spin-orbit coupling of the hole spin
Sh with I , while HB includes the coupling of the hole spins
to the external magnetic field. As we do not include any kind
of electronic spin-orbit coupling or spin-spin interaction, the
electron spin Se is not considered throughout this paper. The
quantity μ̄B ≈ 0.18/B denotes the (scaled) Bohr magneton
and gs ≈ 2 is the g factor of the hole spin. The value
of the Luttinger parameter κ has been determined recently
to be κ = −0.5 ± 0.1 via high-resolution spectroscopy of
magnetoexcitons in Cu2O [19].

Next, we introduce the center-of-mass vector R and the
relative vector r = re − rh. As it has been discussed in
previous works, the excitonic Hamiltonian Hex possesses a
constant of motion, the so-called pseudomomentum K̂ , which
is given by [33–35]

K̂ = P − 1
2 B × r + ∇R(
h − 
e). (8)

In static magnetic fields, the components of the pseudomomen-
tum commute with the excitonic Hamiltonian (4). In addition,
for neutral systems, the components of K̂ commute with one
another. Therefore, the eigenfunctions of the corresponding
excitonic Schrödinger equation can be chosen as simultaneous
eigenfunctions of the pseudomomentum [24]. As it has been
shown by Dippel et al. [24], in this case the Hamiltonian can be
transformed via a unitary transformation into a single-particle
Hamiltonian

Hex = 1

2me

[
p + Asym(r) + me

M
K + ∇f (r)

]2

− 1

r

+Hh

[
p − Asym(r) − mh

M
K + ∇f (r)

]
+ E · r

+Hso + HB (9)

11 D = 0.393ea0, i.e., 1 D/e = 20.8 pm.

where f (r) is a function of the relative coordinate only the
gradient of which simply reflects the gauge freedom of the
relative motion’s vector potential. The quantity M = me +
mh, mh ≡ m0/γ1 is the total excitonic mass. Furthermore,
the vector K ∈ R3 denotes the vector of eigenvalues of the
pseudomomentum components.

The single-particle Hamiltonian given in Eq. (9) is not
the final expression of the effective Hamiltonian as it still
mixes kinetic and potential terms. In order to decouple the
kinetic- and potential-energy terms, we introduce the kinetic
momentum π with

πi = 1Ipi + 1I ∂if −
∑

k

[(
mh

M
1I δki − �ki

)
Kk

+(1I δki − 2�ki)A
(k)
sym

]
, (10)

where the matrix elements �ij are considered to be spin
matrices and ∂i ≡ (∇)i . For a system of two equally charged
particles we obtain �ij = 1I δkimh/M . Therefore, the K -
dependent term vanishes and we exactly reproduce the result
of Ref. [24]. As the operators Iij form a closed subset with
respect to the symmetric product {a,b}, the matrix elements
�ij can be expanded in the following way [20]:

�jj = C11I + C2

3
Ijj , �jk = C3

3
Ijk, j �= k. (11)

The coefficients Ci ∈ R are functions of the electron mass
me and the Luttinger parameters γi and have been derived
in Ref. [20]. Inserting Eq. (10) into Eq. (9), the excitonic
Hamiltonian Hex takes the form

Hex = π2

2me

+ Hh(π) + V (r) + 2

3
�̄(1 + I · Sh)

+μ̄B

[(
3κ + gs

2

)
I · B − gs Sh · B

]
, (12)

with

V (r) =
(

�1K̃
2 + E · r − 1

r

)
1I − �2

∑
i

K̃2
i Iii

−2

3
�3

∑
ij,j<i

K̃iK̃j Iij , K̃ = K + B × r. (13)

The coefficients �i, i = 1,2,3 are given in the Appendix.
In the final excitonic Hamiltonian, Eq. (12), the only

gauge-dependent terms are the expressions depending on the
kinetic momentum π . Obviously, these terms can be associated
with the kinetic energy of the internal motion. Within this
expression, we define the components of the effective vector
potential Aeff as

A
(i)
eff(r) =

∑
k

(1I δik − 2�ik)A(k)
sym(r) − 1I ∂if. (14)

According to the Berry connection [36,37], this vector poten-
tial is related to an effective magnetic field Beff given by

(
B

(i)
eff

)
nm

= 1

2
εiklF

(kl)
nm ,

F (kl)
nm = ∂k

(
A

(l)
eff

)
nm

− ∂l

(
A

(k)
eff

)
nm

− i
[
A

(k)
eff ,A

(l)
eff

]
nm

. (15)
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As the matrix elements �ij are linear combinations of the
spin matrices Iij , the components A

(i)
eff of the vector potential

do not commute in general. In fact, this property reflects
the non-Abelian character of the effective gauge potential,
Eq. (14). In contrast to the gauge dependent terms of the
kinetic-energy operator, the term V (r), according to Eq. (13),
is gauge independent. Therefore, it represents an effective
single-particle potential for the internal motion.

Note that, so far, we have made no approximation within the
analysis of the field-dressed excitonic species. For this reason,
the excitonic Hamiltonian, Eq. (12), provides the full dynamics
of electrically and magnetically field-dressed excitons.

III. GIANT-DIPOLE POTENTIAL SURFACES

In this section, we analyze the properties of the potential
V (r) of the internal motion in more detail. Due to the spin
I = 1 degree of freedom, the potential can be expressed as a
3 × 3 matrix where the matrix elements are functions of the
external field parameters B and E and the spatial coordinate
r , respectively (see the Appendix). As the potential matrix is
Hermitian, its diagonalization provides three real eigenvalues
εi, i = 1,2,3. Taking the external fields as parameters, the
spatially dependent eigenenergies define potential-energy sur-
faces Vi(r) ≡ εi(r; B,E,K ). Obviously, the potential surfaces
can be obtained analytically for arbitrary field strengths and
configurations. Considering the hole spin Sh in addition, one
observes that the potential V (r) does not couple any hole spin
degrees of freedom, which means the eigenvalues εi are doubly
degenerate.

Throughout this paper, we consider the electric field to be
oriented along the [001] direction. Furthermore, we always
assume the fields to be oriented perpendicular to one another,
i.e., B ⊥ E.

A. Magnetic field in the [100] direction

1. Perturbative analysis

In the case of the magnetic field oriented along the [100]
direction, the expressions for the potential-energy surfaces are
more compact and are given by

V1(r) = (�1 − �2)K̃2 + Ez − 1

r
,

V2,3(r) = (�1 − �2)K̃2 + Ez − 1

r
+ 3

2
�2

(
K̃2

2 + K̃2
3

)

±1

2

√
9�2

2

(
K̃2

2 − K̃2
3

)2 + 4�2
3K̃

2
2 K̃2

3 . (16)

The potential V1(r) can be identified to be the potential term
discussed by Dippel et al. for a system of two charged particles
in crossed electric and magnetic fields [24]. For such a system,
the coefficient �1 − �2 is replaced by 1/2M where M
denotes the total mass of the atomic system. Because

K̃2 = B2(z2 + y2) + 2(K × B)r + K2, (17)

we see that the topology of this particular potential surface
is determined by the diamagneticlike term ∼B2 as well
as the external electric field E and the so-called motional
electric field 2(K × B)(�1 − �2), respectively. In Ref. [24],

it has been shown that the Stark term E · r can be included
into K̃ , which leads to a shift of the pseudomomentum,
K → K − MvD . Here, the additional term includes the drift
velocity vD = E × B/B2 of the charged particles in crossed
fields. For the excitonic system under consideration, such a
replacement is not possible as the electric field only appears
in the diagonal elements of the interaction potential V (r)
whereas the magnetic terms appear in all matrix elements [see
Eq. (13)]. For this reason, we treat the electric field E and the
pseudomomentum K as independent parameters.

First, we set K = 0; in this case the Stark term related to the
external electric field alone compensates the quadratic growth
of the magnetic term for sufficiently small spatial separations
r . For |r| → 0, the Coulomb singularity becomes the dominant
part in the interaction potential. Due to the interplay between
electric and magnetic fields, we expect potential surfaces
which provide outer local minima. From the condition for a
potential minimum ∇Vi(r) = 0 we obtain ymin = xmin = 0 for
all three surfaces. Because V1(z) = V3(z) for y = x = 0, we
are left with two cubic equations for the z coordinate, namely,

2B2

[
�1 + �2

2
(1 ± 3)

]
z3 + Ez2 − 1 = 0. (18)

It turns out that, beyond a specific critical electric-field strength
Ecrit = 3 3

√
B4(�1 − �2)2, the three-dimensional potential sur-

face V1(r) possesses both a minimum z(1)
min and a saddle point

z(1)
s with

z(1)
min = E

6(�1 − �2)B2

[
2 cos

(
θ + 2π

3

)
− 1

]
,

z(1)
s = E

6(�1 − �2)B2

[
2 cos

(
θ + 4π

3

)
− 1

]
(19)

with cos(θ ) = 54(�1 − �2)2B4/E3 − 1 (see Ref. [25]). In
contrast, the potential surface V2(r) only possesses a saddle
point and no local minima.

In Fig. 2(a), we present cuts of the three potential curves
V1(0,0,z) ≡ V1(z) and different electric-field strengths. The
magnetic-field strength is set to B = 1.41 T, which gives a
critical electric-field strength of Ecrit = 196.3 V/cm. Because
of y = 0, we have V1(z) = V3(z). In Fig. 2(a), the blue solid
curve represents the potential for an applied electric-field
strength of E = 5Ecrit. Clearly, V1(z) possesses a pronounced
potential minimum at z(1)

min ≈ −1.05 μm and a lowering of
52.5 meV with respect to the saddle point. In contrast, for
an applied field strength of E = Ecrit (green solid line), the
potential minimum of the curve V1(z) has vanished and only a
plateau at the saddle-point position z(1)

s ≈ 174 nm is present.
Finally, the red solid line represents the situation for even
weaker field strength. In particular, this curve shows V1(z) for
E = Ecrit/10. We clearly see that the plateau has vanished and
the curve is monotonically increasing for z → −∞.

Next we analyze the system for zero electric field (E = 0)
but finite pseudomomentum K = (0,K,0)T . According to
Eq. (17), this situation is analogous to the previous calculations
where we considered a finite Stark term. We obtain a critical
pseudomomentum Kcrit = 3

2
3
√

B/(�1 − �2) for the existence
of a potential minimum. The position of the minimum is easily
obtained by the replacement E/(2(�1 − �2)B2) → K/B in
Eq. (19). In Fig. 2(b), we present cuts for three potential
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FIG. 2. (a) Potential cuts of the potential surface V1(r), y = z = 0
for various electric-field strength E and B = 1.41 T, which gives
Ecrit = 196.3 V/cm. The potential curve for E = 5Ecrit possesses
a minimum around z(1)

min ≈ −1.05 μm and a lowering of around
52.5 meV with respect to the saddle point. For E = Ecrit (green solid
line) a single plateau is present instead of a potential minimum.
In case of E = Ecrit/10 (red solid curve) the plateau has vanished.
(b) Potential curves for E = 0 but finite K . For K = 3Kcrit (blue solid
line) a potential minimum z(1)

min ≈ 0.65 μm is present. With decreasing
K the minimum turns into a plateau (K = Kcrit, green curve) until the
potential curve is monotonically decreasing (K = Kcrit/3, red curve).
For B = 1.41 T one gets Kcrit = 0.03h̄/a0.

surfaces V1(z) and different values for the pseudomomentum
K . The magnetic-field strength is again set to B = 1.41 T,
which gives a critical pseudomomentum of Kcrit = 0.03h̄/a0.
In Fig. 2(b), the blue solid line represents a pseudomomen-
tum of K = 3Kcrit. Obviously, the curve V1(z) possesses
a pronounced potential minimum at zmin ≈ −0.65 μm and
a lowering of 18 meV with respect to the saddle point. In
contrast, for critical pseudomomentum K = Kcrit (green solid
line) the minimum of V1(z) has turned into a plateau at around
z ≈ 180 nm. Finally, the red solid curve represents the situation
for even smaller pseudomomenta, here for K = Kcrit/3. We
clearly see that the plateau has vanished and the curve is
monotonically increasing for z → −∞.

In summary, one observes that both the external field
strengths E and B as well as the pseudomomentum K provide
the possibility to specifically address the topological properties
of the potential surfaces. However, as K is related to an
effective electric field, it is sufficient to vary only the external
fields to obtain a complete understanding of the potential

surfaces. Therefore, we set K = 0 for the rest of this paper
and only address the strengths and orientation of the external
field parameters.

2. Inclusion of spin couplings

Next, we include both the spin-orbit coupling Hso and the
spin-field coupling HB into the external potential term. For
this reason, we define the total giant-dipole potential

Vgd(r) ≡ V (r) + Hso + HB. (20)

We go back to the coupled hole spin J and obtain

Vgd(r) = V (r) + �̄

3

(
J2 − 3

4

)
− μ̄B

2
( J + 3Sh) · B. (21)

If we neglect the term HB , the remaining giant-dipole potential
is a bilinear expression with respect to the Ji,Sh,j angular
momentum components, i.e.,

Vgd(r) =
∑
ij

(
α

(1)
ij JiJj + α

(2)
ij JiSh,j + α

(3)
ij Sh,iSh,j

)
,

α
(k)
ij ∈ R α

(k)
ij = α

(k)
ji , k = 1,2,3. (22)

Obviously, Vgd is time-reversal symmetric. Because J is a half-
integer angular momentum, the remaining potential surfaces
are at least doubly degenerate which is a direct consequence
of the Kramers degeneracy theorem [38]. A simple analysis
shows that the spin-orbit coupling dominates over the spin-
field coupling term HB far below a critical field strength of B ≈
2�/3μB ≈ 1541 T. Including both spin terms in Eq. (21), we
see that the bilinearity of Eq. (22) is broken due to the spin-field
coupling. Therefore, the twofold degeneracy of the potential
curves provided by V (r) is lifted, and we obtain six distinct
potential curves V

(i)
gd (r), i = 1,...,6.

In Fig. 3(a), we show a cut of the potential curves
for y = x = 0 and applied field strengths of B = 1.41 T
and E = 1 kV/cm. At first sight, we can distinguish three
different curves labeled with Roman numbers I, II, and III.
Similar to the previous case of vanishing spin-orbit coupling
all three potential surfaces possess saddle points at around
zs ≈ −30 nm. Additionally, the potentials I and II possess
local minima around zI

min ≈ −1.42 μm and zII
min ≈ −1.59 μm,

respectively.
In contrast, the potential curve III does not possess any local

potential minima. Due to the spin-orbit coupling, the energies
of the saddle points are shifted by an amount of � and the
two minima of the curves I and II are separated by around
100 meV. Although only three curves are visible in Fig. 3(a),
these curves are almost degenerate as the spin-field coupling
HB causes a splitting of the order of μB . In particular, the
surface I splits into the surfaces V

(1)
gd (r) and V

(2)
gd (r), while II

and III split into V
(3,4)

gd and V
(5,6)

gd (r), respectively.
To resolve this issue in more detail, we have zoomed into the

potential curve II which is shown in the inset of Fig. 3(a). Here
we clearly see the two distinct potential curves V

(3)
gd and V

(4)
gd

separated by an energy of around 190 μeV. It turns out that
the splitting induced by HB does not change the topological
properties of neighboring potential surfaces. Thus we can
neglect the spin-field coupling HB for the rest of this paper.
In this case, the potential curves are doubly degenerate and
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FIG. 3. (a) Giant-dipole potential curves for applied field
strengths B = 1.41 T, E = 1 kV/cm plotted along the z axis (y =
x = 0). Due to the small spacing of approximately 190 μeV only
three of six potential curves V

(i)
gd denoted with I, II, and III are visible

(see inset). (b) Potential curves for B = 1.41 T, E = 4 kV/cm (solid
curves). The spacing V

(1)
� is indicated as well as the binding energy

�E1S(y) of the 1S yellow ground-state exciton (�E1S(y) = 150 meV).
In addition, the analytic potential curve V1(z) is shown in comparison
(black dashed curve).

we have V
(1)

gd = V
(2)

gd , V (3)
gd = V

(4)
gd , and V

(5)
gd = V

(6)
gd . Therefore,

we restrict the analysis of the potential curves to V
(1)

gd (r)

and V
(3)

gd (r), respectively. Furthermore, we introduce two

additional quantities, namely, the potential depth V
(i)

d and
the lowering V

(i)
� of the potential minima with respect to the

spin-orbit energy level � defined as

V
(i)

d = lim
x→∞ V

(i)
gd

(
x,0,z(i)

min

) − V
(i)

gd

(
r (i)

min

)
,

V
(i)
� = � − V

(i)
gd

(
r (i)

min

)
, i = 1,3,5. (23)

With increasing field strengths, the potential V (r) domi-
nates the spin-orbit coupling. This is shown in Fig. 3(b) where
we present the potential curves V

(1)
gd and V

(3)
gd together with the

exact potential V1(r) from Eq. (16) for applied field strength
of B = 1.41 T and E = 4 kV/cm. We clearly see that the two
potential curves are still separated by the order of � but V1(r)
is a good approximation for V

(3)
gd (r). In summary, for fixed B

we observe the following general features of the potentials.
(1) The potential surface V

(5)
gd does not possess any potential

minimum but a single saddle point.

(2) The minima positions z(i)
min, i = 1,3 decrease with

increasing E, and the outer wells move away from the
Coulomb singularity along the negative z axis.

(3) The minima of the outer wells decrease with increasing
E but are bounded from above by the spin-orbit coupling �,
i.e., V

(i)
� � 0, i = 1,3,5.

(4) The saddle-point positions z(i)
s , i = 1,3,5 increase with

increasing E, and the saddle-point maximum moves towards
the Coulomb singularity.

Furthermore, we see that within the range of the applied
field strengths we can easily achieve regimes where the
spacing V

(i)
� , i = 1,3 of the potential wells exceeds the binding

energies of the field-dressed excitonic species. In Fig. 3(b), we
indicate this fact by comparing the potential spacing V

(3)
� with

the ground-state binding energy �E1S(y) of the 1S exciton
of the yellow series which is approximately 150 meV. For the
given field strengths in Fig. 3(b), we obtain V

(3)
� ≈ 1 eV, which

is larger than the excitonic binding energies and the spin-orbit
spacing �. As a consequence, the spin-orbit coupling term
Hso can be treated as a perturbation to the potential V (r).
Additionally, for such field strengths the excitonic states,
which are mostly determined by the inner Coulomb potential,
will couple to the giant-dipole continuum. This coupling
possibly leads to a broadening of the excitonic spectral lines.
At this point, we emphasize that for a precise study we
have to compare the potential spacing V

(i)
� with the binding

energies of the field-dressed excitonic species as they have
been analyzed in recent experimental studies [19]. However,
in this particular paper it was shown that for magnetic-field
strengths up to 3 T the energetic shift due to the external
magnetic field is of the order of several hundred μeV compared
to the field-free ground-state energy. These values are far
below the potential splittings observed for the giant-dipole
potential curves.

A more detailed study of the different addressable regimes
is presented in Fig. 4(a). There we show a phaselike diagram
where the spacing V

(3)
� is compared to the binding energy of the

1S yellow exciton for electric- and magnetic-field strengths in
the range between 0 � E � 1 kV/cm and 20 mT � B � 1 T,
respectively. In Fig. 4(a) different colors (blue, yellow, green,
red) illustrate different regimes. For instance, in case of electric
fields below the critical value Ecrit the potential surface V

(3)
gd

does not exhibit any potential well. This regime is indicated
by a dark blue color. For sufficiently strong electric fields
we can distinguish three additional regimes. In the yellow
regime, V

(3)
� is less than the 1S yellow excitonic binding

energy. In this case, bound excitonic states in the outer potential
well are energetically still above the (field-dressed) 1S yellow
excitonic ground state. This situation is changed for increasing
electric-field strength and indicated by the green sector in
the diagram shown in Fig. 4(a). Here, the electric field is so
strong that V

(3)
� is larger than the 1S yellow binding energy.

As we have already mentioned, in this situation we expect
line broadening of excitonic levels due to coupling to the
giant-dipole continuum.

If we further increase the electric-field strength we are able
to reach a regime where the spacing V

(3)
� even exceeds the

band gap of the �8+ valence and �6+ conduction band, i.e.,
V

(3)
� > Eg + � (dark red color). Obviously, this particular
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FIG. 4. (a) Phaselike diagram for potential curve V
(3)

gd with respect
to the 1S yellow excitonic ground state. (b) The minimum position
|z(3)

min| as a function of the external field parameters. Depending on the
applied field strengths we obtain spatial separations in the range of
1–60 μm.

regime has to be taken with caution as the simple description
of the exciton breaks down and more complicated theoretical
approaches describing many-body interactions between the
excitonic constituents and the electrons in the �8+ valence
band are required. In Fig. 4(a), we see that for weak magnetic
fields (B ≈ 50 mT) and comparably low electric fields E ≈
150 V/cm we easily address these extreme excitonic states.
This behavior is reasonable as for low magnetic fields already
minor electric fields can lead to a pronounced field-induced
level shift of the excitonic energy, leading both to a pronounced
Stark shift and to the creation of an outer potential well.
Because �/Eg  1, the minimum positions of these wells
are well approximated by Eq. (19), which directly gives
|z(i)

min| ∼ E/B2. This fact is analyzed in Fig. 4(b) in more
detail. Here we present the absolute value of the outer well
position |z(3)

min| as a function of the applied field strengths B

and E, respectively. We see that, depending on the applied field

FIG. 5. Potential depths V
(3)

d as a function of the applied field
strengths. We obtain depths in the range of 5–380 μeV.

strengths, we obtain electron-hole separations in the range of
1–60 μm.

In Fig. 5 we present the potential depth V
(3)

d for the potential
surface V

(3)
gd as a function of electric- and magnetic-field

strengths, respectively. For the applied field strengths (0.2 �
E � 1 kV/cm, 0.2 � B � 1 T) we obtain potential depths in
the range of 5–380 μeV.

At this point, we indicate that for sufficiently deep potential
wells one can expect excitonic bound states in the outer
wells. To obtain their full spectrum, one has to perform an
exact diagonalization including the nontrivial kinetic-energy
terms discussed in Sec. II. These excitonic species are of
completely different nature as the field-dressed excitons which
are localized in the inner Coulomb-dominated region. As
the excitons in the outer potential well possess a large
spatial electron-hole separation, their electric dipole moment
is expected to be exceptionally large. In particular, it can
be approximated to be dex = |z(i)

min|, which gives huge dipole
moments in the range of 5 × 105–2.8 × 106 D. Analogous to
the atomic giant-dipole states, we might denote these kind of
exotic excitonic states as giant-dipole excitons.

As it has been shown in previous works the binding energies
of excitons in Cu2O reveal a slight deviation from a pure
Rydberg series [6]. This deviation can be incorporated by
employing the concept of quantum defects such that the
excitonic binding energies are given by εex = −Hex/[2(n −
δ(l)
n )]2, δ(l)

n > 0 [13]. For S excitons of the yellow series
we have δ

(0)
n�10 ≈ 0.5. Therefore, we easily determine the

principal quantum number n for which the binding energy
of the Rydberg exciton is comparable to the potential depth
to be in the range of n = 15 (V (3)

d = 380 μeV) up to
n = 42 (V (3)

d = 50 μeV). At this point, we note that for more
precise results one has to compare the binding energy of the
excitonic giant-dipole ground states localized in the outer
potential well with the binding energies of the field-dressed
states localized in the inner region. However, for such an
analysis further information regarding excitonic Landau levels
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FIG. 6. Two-dimensional potential-energy surfaces V
(1)

gd (y/(η),z), V (3)
gd (y/(η),z) for two distinct magnetic-field configurations (B = 1.41 T,

E = 1 kV/cm). (a,b) V
(1,3)

gd for the magnetic field oriented along the [100] direction. (c,d) V
(1,3)

gd for the magnetic field oriented along the [110]
direction. All plots show potential surfaces perpendicular to the applied magnetic field and x = 0. The global topologies of the potential
surfaces clearly depend on the specific field configuration. In all figures the electric field is oriented along the [001] direction.

is required, which is a topic of ongoing research. Finally, we
evaluate the principal quantum number n which is required
to obtain the same binding energy as the giant-dipole state
for the hydrogenic system as it has been analyzed for the
field strengths applied in Ref. [24]. Most importantly, in the
hydrogen atom the Rydberg constant is given as Ry = 13.6 eV,
which is around 160 times higher than its excitonic counterpart.
In Ref. [24], the giant-dipole binding energy for a hydrogen
atom has been determined to be approximately 274 μeV.
Together with the higher Rydberg energy this leads to principal
quantum numbers of n ≈ 223.

B. Comparison of different magnetic-field configurations

At last, we consider a different field orientation of the
magnetic field. In contrast to the giant-dipole species studied
by Dippel et al. [24], in the present paper the quantization axis
is determined by the symmetry properties of the Cu2O crystal.
For this reason, we expect the giant-dipole potential surfaces
to be explicitly dependent on the applied field orientation.
To study this in more detail, we have fixed the electric-field
configuration to be parallel to the z axis (E||[001]) and
chosen two distinct orientations for the magnetic field, namely,
B||[100] and B||[110].

More precisely, in Figs. 6(a)–6(d) we show two-
dimensional potential surfaces V

(1)
gd (0,y,z) ≡ V

(1)
gd (y,z) and

V
(3)

gd (y,z) for two different field configurations for fixed
magnetic-field strengths B = 1.41 T and E = 1 kV/cm, re-
spectively. Figures 6(a) and 6(b) show the potential surfaces
with the magnetic field oriented along the [100] direction. For
both surfaces we clearly see two distinct potential minima
at z(1)

min ≈ −1.3 μm, y(1)
min = 0 and z(3)

min ≈ −1.31 μm, y(3)
min =

0, respectively. Both potentials monotonically increase for
z → −∞ and |y| → ∞, which simply reflects the properties
of the diamagnetic-field term. For (y,z) → 0 the Coulomb
interaction becomes the dominant part in the electron-hole
interaction potential. For this reason both potential curves
possess a singularity near the origin.

For comparison, in Figs. 6(c) and 6(d) we show the potential
surface V

(1)
gd (y,z) and V

(3)
gd (y,z) for fixed field strengths

B = 1.41 T, E = 1 kV/cm, but now for a magnetic field
oriented along the [110] direction. In contrast to the previous
field orientation, we now plot the potential surfaces not
in the yz plane but in the plane spanned by the vectors
ez and eη = (ey − ex)/

√
2, respectively. Here, we label the

coordinate with respect to eη with η. Similar to the first field
configuration we find potential surfaces possessing localized
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minima on the negative z axis. However, now the explicit
positions of these minima have changed and are given by
z(1)

min ≈ −0.4 μm, η(1)
min = 0 and z(3)

min ≈ −1.45 μm, η(3)
min = 0,

respectively. Furthermore, compared to the previous field
configuration the global topologies have changed as the
potential surfaces are increasing faster for |η| → ∞ and
z → −∞. From this analysis we clearly see that the topologies
of the giant-dipole potential surfaces depend on the explicit
configuration of both the external electric- and magnetic-field
configurations.

In summary, we have analyzed the topological properties
of potential-energy surfaces in much detail. However, the
question still remains if these potential wells provide the
possibility of bound states. Although this question is still a
topic of ongoing research, we can deduce some information
making some estimations analogously to the study performed
by Dippel et al. [24] for atomic systems. In this paper it
was shown that the energy spacing of bound giant-dipole
states is not entirely determined by the trapping frequencies
of the harmonic approximation near the potential minimum,
but both the sum and differences of these frequencies.
This leads to a comparable small energy spacing in the
case that at least two frequencies are of nearly the same
magnitude, providing a dense spectrum of bound states within
a specific potential well. As we can address the potential’s
topologies directly via both the field strength and orientations
we have direct access to the trapping frequencies. Thus,
we feel confident to tune the external field parameters in
such a way that bound excitonic giant-dipole states are
present.

IV. SUMMARY AND CONCLUSIONS

In the present paper, we have provided the theory of excitons
in Cu2O subject to crossed electric and magnetic fields. In
particular, we have performed a gauge-independent pseu-
doseparation of the center-of-mass motion for the electron-
hole system in crossed fields. In the resulting Hamiltonian we
were able to identify terms that depend on a gauge-dependent
vector potential and belong to the kinetic energy of the relative
motion. The effective gauge fields indicate possible non-
Abelian gauge-field description. The complementary terms
of the Hamiltonian are gauge independent and can therefore
be assigned to an effective single-particle interaction potential
for the relative motion. From this interaction potential we were
able to present a number of potential surfaces for the relative
electron-hole dynamics.

Due to the coupling of the center-of-mass motion to
the internal degrees of freedom, the effective electron-hole
potential exhibits outer potential wells with depths up to
380 μeV. This leads to large spatial electron-hole separation
in the range of 1–60 μm. Due to this large distance of
the well from the Coulomb singularity, bound excitonic
states in the outer well potentially possess large permanent
electric dipole moments. We showed that within the range
of standard laboratory field strengths for both the electric
(E � 1 kV/cm) and magnetic fields (B � 1 T) one can easily

address the topological properties of the potential surfaces
by changing the applied field strengths and field orientations,
respectively.

Furthermore, we have shown that in Cu2O it is sufficient
to excite the excitons to principal quantum numbers starting
from n ≈ 10 in order to obtain binding energies comparable
to the depth of the excitonic potential surfaces. In the case of
hydrogen one would have to excite the electron into Rydberg
states with extremely high n � 223. For this reason, it is
obvious that excitonic systems are a much more promising can-
didate for possible experimental realizations of giant-dipole
species.

For an experimental verification of the existence of ex-
citonic giant-dipole states there are distinct possible routes.
One would be the spectroscopic observation of state-to-state
transitions. For this, a precise knowledge of the excitonic level
spacing is required. To obtain the giant-dipole spectrum, a
complete analysis of the excitonic Hamiltonian including the
nontrivial kinetic-energy terms has to be performed. This issue
is a topic of ongoing research.

Another approach to experimental verification is the direct
measurement of the electric dipole moment. To estimate the
electric dipole moment for excitonic giant-dipole states we
approximate the distance between the electron and the hole by
the distance between the minimum of the outer potential well
and the Coulomb singularity. Applying this approximation,
the dipole moment can reach d ≈ 3 × 106 D. For comparison,
the dipole moment of excitons confined to individual self-
assembled ring-shaped quantum dots in the insulator region
of a metal-insulator-semiconductor heterostructure has been
determined to be around 150 D [39], which is around four
orders of magnitude less than the predicted dipole moments of
the novel excitonic states.

Finally, we point out that in the case of excitonic giant-
dipole states the present paper took place in a complex
solid-state environment, in contrast to ultracold atomic species,
where the experimental preparation in various trap geometries
provides a much higher degree of external control [40,41].
For instance, the application of external electric fields leads
to a strong response of the material such as polarization
and shielding effects of electrons in the conduction bands
forming a quasi-free-electron plasma. Therefore, it is not a
priori clear which conditions are realized inside the considered
solid-state system in case external parameters are applied
[42]. Thus, excitonic giant-dipole states provide a plethora
of interesting problems which can be addressed in future
studies.
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APPENDIX: GIANT-DIPOLE POTENTIAL

The coefficients �i, i = 1,2,3 are functions of the Luttinger parameters γi and the constants Ci [32]. In particular, they are

�1 = 1

2me

− C1

me

+ 1

18

(
9C2

1 + 2C2
2 + 3C2

3

) − γ2

18γ ′
1

(
24C1C2 − 4C2

2 − 3C2
3

) − γ3

12γ ′
1

C3(24C1 − 4C2 − 3C3),

�2 = C2

3me

− 1

72

(
24C1C2 − 4C2

2 − 3C2
3

) + γ2

3γ ′
1

(
3C2

1 − 2C1C2 + C2
2 − C2

3

) − γ3

24γ ′
1

C3(12C1 − 2C2 + 3C3),

�3 = C5

me

− C5

24
(24C1 − 4C2 − 3C3) − γ2

12γ ′
1

(
12C1C3 − 2C2C3 + 3C2

3

)

+ γ3

24γ ′
1

(
72C2

1 − 24C1C2 − 36C1C3 − 16C2
2 − 12C2C3 + 27C2

3

)
,

with me = 0.985γ ′
1. The matrices of the quasispin I = 1 are defined as in Ref. [31] as

Ik = −i
∑
lm

εklm(el ⊗ em).

Then, the matrix representation of the giant-dipole potential V (r) from Eq. (13) is given by

V (r) =
⎡
⎣V + �2(3K̃2

1 − K̃2) �3K̃1K̃2 �3K̃1K̃3

�3K̃1K̃2 V + �2
(
3K̃2

2 − K̃2
)

�3K̃2K̃3

�3K̃1K̃3 �3K̃2K̃3 V + �2
(
3K̃2

3 − K̃2
)
⎤
⎦

with V = �1K̃
2 + E · r − 1

r
, K̃ = K + B × r .
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