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Quantum kinetic equations for the ultrafast spin dynamics of excitons in diluted magnetic
semiconductor quantum wells after optical excitation
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Quantum kinetic equations of motion for the description of the exciton spin dynamics in II-VI diluted magnetic
semiconductor quantum wells with laser driving are derived. The model includes the magnetic as well as the
nonmagnetic carrier-impurity interaction, the Coulomb interaction, Zeeman terms, and the light-matter coupling,
allowing for an explicit treatment of arbitrary excitation pulses. Based on a dynamics-controlled truncation
scheme, contributions to the equations of motion up to second order in the generating laser field are taken into
account. The correlations between the carrier and the impurity subsystems are treated within the framework
of a correlation expansion. For vanishing magnetic field, the Markov limit of the quantum kinetic equations
formulated in the exciton basis agrees with existing theories based on Fermi’s golden rule. For narrow quantum
wells excited at the 1s exciton resonance, numerical quantum kinetic simulations reveal pronounced deviations
from the Markovian behavior. In particular, the spin decays initially with approximately half the Markovian rate
and a nonmonotonic decay in the form of an overshoot of up to 10% of the initial spin polarization is predicted.

DOI: 10.1103/PhysRevB.95.245203

I. INTRODCTION

The idea behind the spintronics paradigm [1–4] is to
combine state-of-the-art electronics based on carrier charge
with the manipulation and control of the spin degree of
freedom [5–7]. Diluted magnetic semiconductors (DMS)
[8–10] present an interesting subclass of semiconductors
in this context because they can be easily combined with
current semiconductor technology while at the same time
providing a wide range of spin and magnetization-related
effects and applications [11–22]. In DMS, a small fraction
of magnetic ions, usually manganese [23], is introduced into a
semiconductor. While III-V compounds such as Ga1−xMnxAs
are typically p-doped [8] and can thus exhibit carrier-mediated
ferromagnetism [24], II-VI materials such as Cd1−xMnxTe are
found to be intrinsic and paramagnetic due to the isoelectrical
incorporation of the Mn impurities.

A lot of theoretical works on DMS has been devoted to
the understanding of structural properties [25–30]. But in
many experiments, also the spin dynamics studied via optical
pump-probe experiments is of interest [17,18,31]. Theoretical
descriptions of such experiments are less developed in
the literature and are typically based on rate-equation
models [12–14,17,31–35], coinciding with Fermi’s golden
rule for vanishing magnetic field. However, a number of
experiments have provided strong evidence that these models
fail to reproduce some of the pertinent characteristics of
the spin dynamics in DMS. Most notably, experimentally
observed spin-decay rates are found to be a factor of 5 larger
than the Fermi’s golden rule result for spin-flip scattering
of conduction band electrons at magnetic impurities [31].
Camilleri et al. [17] have argued that their optical experiments
probe excitons rather than separate electrons and holes. In
this case, the effective mass entering the spin-flip rate has
to be replaced by the exciton mass [12], offering a potential
explanation for the discrepancy noted in Ref. [31].

On the rate-equation level, some groups have already
investigated the exciton spin dynamics in DMS theoreti-
cally [36–41]. However, recent studies using a quantum kinetic
theory for the spin relaxation of conduction band electrons

in DMS revealed that correlations between the carrier and
impurity subsystems can induce a finite memory [42–45],
which is not captured by rate equations. The resulting non-
Markovian effects were found to be particularly pronounced
for excitations close to the band edge (k ≈ 0) [46] and
become more significant with increasing effective mass [47].
These tendencies suggest that non-Markovian features are
particularly relevant for excitons since, first of all, the
conservation of momentum implies a vanishing center of
mass momentum (K ≈ 0) of optically generated excitons, and
second, the exciton mass is much larger than the effective mass
of conduction band electrons.

In this paper, we develop a microscopic quantum kinetic
theory for the exciton spin dynamics in DMS that is also
capable of describing non-Markovian effects by explicitly
accounting for carrier-impurity correlations. In contrast to pre-
vious works [42] where independent electrons and holes were
considered and where higher-order correlations were treated
within a variant of Kubo’s cumulant expansion [48], here a
dynamics-controlled truncation (DCT) [49,50] is employed
for the treatment of Coulomb correlations. This approach is
especially advantageous for the description of optically driven
systems since it ensures a correct description of the dynamics
up to a given order in the generating field. The theory derived in
this paper is applicable in a wide range of different scenarios
as a number of interactions are accounted for, such as the
magnetic and nonmagnetic interactions between impurities
and electrons as well as holes, the Coulomb interaction
responsible for the formation of excitons, Zeeman terms for
electrons, holes, and impurities, as well as the light-matter
coupling.

Moreover, we show that, in the Markov limit and for
vanishing magnetic field, the quantum kinetic description
coincides with the Fermi’s golden rule result of Ref. [12].
Comparing numerical simulations using the quantum kinetic
theory and Markovian rate equations reveals strong non-
Markovian effects in the exciton spin dynamics. In particular,
the quantum kinetic calculations predict that the exciton spin
initially decays with approximately half the rate obtained from
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Fermi’s golden rule and exhibits a nonmonotonic behavior
with an overshoot of up to 10% of the initial spin polarization.
In contrast to the situation for conduction band electrons,
where nonmagnetic impurity scattering typically strongly
suppresses non-Markovian features [44], here we find that,
for excitons, the presence of nonmagnetic impurity scattering
enhances the characteristics of non-Markovian behavior.

The paper is structured as follows. First, we discuss the
individual contributions to the Hamiltonian that determines
the spin dynamics of optically generated excitons in DMS
quantum wells. Next, quantum kinetic equations based on a
DCT scheme are derived for reduced exciton and impurity
density matrices as well as carrier-impurity correlations. We
then derive the Markov limit of the quantum kinetic equations
of motion. Finally, we present numerical calculations and
discuss the results.

II. THEORY

In this section, we present the Hamiltonian that models the
optical excitation and the subsequent spin evolution of excitons
in II-VI DMS. We explain the derivation of the quantum kinetic
equations and, for comparison, also give the Markov limit of
the equations.

A. Hamiltonian

We consider an intrinsic II-VI DMS quantum well where
initially no electrons are in the conduction band. The time evo-
lution of the system can then be described by the Hamiltonian

H = H e
0 + H h

0 + Hconf + HC + H e
Z + H h

Z + H Mn
Z + Hlm

+ Hsd + Hpd + H e
nm + H h

nm, (1)

where

H e
0 + H h

0 =
∑
lk

El
kc

†
lkclk +

∑
vk

Ev
kd

†
vkdvk (2)

is the crystal Hamiltonian for electrons and holes, respectively.
Here, c†lk (clk) denotes the creation (annihilation) operator of an
electron in the conduction band l with wave vector k. Similarly,
d
†
vk (dvk) creates (annihilates) a hole in the valence band v. The

confinement potentials for electrons and holes responsible for
the formation of a quantum well is denoted by Hconf.

As usual for the description of near band-edge excitations
of semiconductors, we consider the part of the Coulomb in-
teraction conserving the number of electrons and holes, which
corresponds to the typically dominant monopole-monopole
part in a multipolar expansion [50–53]. The Coulomb interac-
tion then reads

HC = 1

2

∑
kk′q

(
Vq

∑
ll′

c
†
l′k′+qc

†
lk−qclkcl′k′

+ Vq

∑
vv′

d
†
v′k′+qd

†
vk−qdvkdv′k′

− 2Vq

∑
lv

c
†
lk′+qd

†
vk−qdvkclk′

)
(3)

with the Fourier transform of the Coulomb potential given
by Vq = e2

εε0

1
q2 , where e is the elementary charge and ε0

is the vacuum permittivity. The dielectric constant ε ≈ 10
includes the contribution of the crystal lattice [54,55]. Thus
HC comprises all direct electron-electron, hole-hole, and
electron-hole Coulomb interactions.

We account for the effects of a homogeneous external
magnetic field B on the electrons, holes, and magnetic impurity
atoms, respectively, via the Zeeman terms

H e
Z = geμB

∑
ll′k

B · se
ll′c

†
lkcl′k, (4a)

H h
Z = −2κμB

∑
vv′k

B · Jvv′d
†
vkdv′k, (4b)

H Mn
Z = gMnμB

∑
Inn′

B · Snn′ P̂ I
nn′ . (4c)

In the above formulas, ge is the g factor of the electrons, κ

is the isotropic valence-band g factor [56], gMn denotes the
impurity g factor, and μB is the Bohr magneton. The vector of
electron-spin matrices is given by se

ll′ , Jvv′ is the vector of 4 × 4
angular momentum matrices when accounting for heavy hole
(hh) and light hole (lh) bands with angular momentum v,v′ ∈
{− 3

2 , − 1
2 , 1

2 , 3
2 } and Snn′ denotes the vector of impurity spin

matrices. In the case of manganese considered here, we have
n,n′ ∈ {− 5

2 , − 3
2 , . . . , 5

2 }. The impurity spin itself is described
by the operator P̂ I

nn′ = |I,n〉〈I,n′| where the ket |I,n〉 denotes
the spin state n of an impurity atom I .

Rather than assuming some initial carrier distribution, we
explicitly account for the optical excitation and thus the light-
matter coupling via the Hamiltonian

Hlm = −
∑
lvk

(E · Mlvc
†
lkd

†
v−k + E · Mvldv−kclk) (5)

with an electric field E and the dipole moment Mlv for a tran-
sition from a state in the valence subband v to the conduction
subband l. Here, the well-known dipole approximation [57]
is used to consider only interband transitions with vanishing
center of mass momentum.

The dominant spin depolarization mechanism in DMS is
given by the sp-d exchange interaction which models the
scattering of s-like conduction-band electrons and p-like
valence-band holes, respectively, at the localized d-shell
electrons of the Mn impurities. These interactions can be
written as [8,9,43]

Hsd = Jsd

V

∑
Inn′
ll′kk′

Snn′ · se
ll′c

†
lkcl′k′ei(k′−k)·RI P̂ I

nn′ , (6a)

Hpd = Jpd

V

∑
Inn′

vv′kk′

Snn′ · sh
vv′d

†
vkdv′k′ei(k′−k)·RI P̂ I

nn′ (6b)

with the hole spin matrices given by sh
vv′ = 1

3 Jvv′ . Note that we
employ the convention that the factor h̄ which typically enters
in the definition of the spin matrices is instead absorbed in the
coupling constants Jsd and Jpd as well as μB in case of the
Zeeman terms.
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In a recently published paper, it was shown that the
combined action of nonmagnetic impurity scattering and
magnetic exchange interaction may have a significant impact
on the spin dynamics of conduction band electrons [44].
Therefore we also include the nonmagnetic impurity scattering
in the form

H e
nm = J e

0

V

∑
I l

kk′

c
†
lkclk′ei(k′−k)·RI , (7a)

H h
nm = J h

0

V

∑
Iv

kk′

d
†
vkdvk′ei(k′−k)·RI (7b)

with scattering constants J e
0 and J h

0 for electrons and
holes, respectively. Considering a DMS of the general form
A1−xMnxB, these can be determined under the assumption
that unit cells containing doping ions experience an energetic
penalty due to being forced into the same structure as the
surrounding semiconductor lattice AB. This allows for an
estimation of the nonmagnetic coupling strength based on the
change of the band gap of the pure AB material compared to
the pure MnB material. Note that we only take into account the
short-range part of the carrier-impurity interaction even though
it stems largely from the Coulomb interaction between the
impurity atoms and the quasifree carriers [44].

We do not include the influence of phonons on the
carrier spin dynamics in our model since typical experi-
ments [17,31,35] are performed at low temperatures of about
2 K where only phonon emission is relevant because there are
no phonons available for absorption. But since we consider
only direct laser-driven excitation of excitons with vanishing
center of mass momenta, phonon emission processes are also
strongly suppressed as there are no final exciton states lower
in energy to scatter to. Additionally, phonons do not couple
directly to the spin and thus represent a secondary relaxation
process, which only becomes relevant in combination with
other effects, such as spin-orbit coupling. Theoretical rate-
equation models that include the scattering due to phonons
also support that the s-d exchange interaction is the most
important scattering mechanism at low temperatures [34].
Given that the recently reported [19] spin-lattice relaxation
time of Mn2+ ions in typical DMS quantum wells is on the
order of μs, the coupling of phonons to the Mn system can also
be disregarded on the typical ps time scale of the carrier spin
relaxation [31,44,58]. Furthermore, spin-orbit effects [58] as
well as the hyperfine interaction [59] due to nuclear spins
typically also only become relevant at much longer time
scales.

In a quantum well, it is convenient to switch from a
three-dimensional basis set to a description where only the
in-plane part consists of plane waves and the z dependence is
treated separately. One can then expand the single-particle
basis functions � in terms of a complete set of envelope

functions, which yields

�(r,z) = 1√
A

∑
nk

anke
ik·r ue/h

n (z) (8)

with envelope functions ue/h
n (z) of electrons and holes, respec-

tively, and expansion coefficients ank. Here and throughout the
remainder of this paper, the appearing wave vectors k as well
as the in-plane position r are two-dimensional quantities.

For narrow quantum wells, where the energetic separation
between the individual confinement states is large, it is a
good approximation to only consider the lowest confinement
state [60] ue/h

0 (z), which corresponds to setting ank = 0 for
all n �= 0. Thus we project the Hamiltonian given by Eq. (1)
onto the corresponding subspace. For the carrier-impurity
interactions in Eqs. (6) and (7), this amounts to substituting∑

kzk′
z
→ d|ue/h

0 (ZI )|2. In numerical calculations, we assume

infinitely high potential barriers at z = ± d
2 , so that the

envelope functions for electrons and holes become

ue/h
0 (z) =

√
2

d
cos

(
π

d
z

)
. (9)

B. Dynamical variables and truncation scheme

Our main target is the modeling of the electron or hole
spin dynamics in a system where all particles are excited
optically as electron-hole pairs. Within the DCT scheme
this is most conveniently achieved by deriving quantum
kinetic equations of motion for the four-point density matrices
〈c†l1k1

d
†
v1k2

dv2k3cl2k4〉 from which all relevant information can
be deduced [50]. To provide an example, the electron density
matrix is given by〈

c
†
l1k1

cl2k2

〉 =
∑
vk

〈
c
†
l1k1

d
†
vkdvkcl2k2

〉 + O(E4). (10)

Starting from the Hamiltonian given by Eq. (1) and using the
Heisenberg equation of motion, one ends up with an infinite
hierarchy of equations that needs to be truncated in order to
be solvable. In this paper, we employ a dynamics-controlled
truncation [49] which classifies all appearing expectation
values in terms of their order in the generating optical field.
Using this procedure, we keep all contributions up to the order
O(E2), which is sufficient in the low-density regime [61].

However, since we are dealing with a DMS, we also have to
treat correlations between carriers and Mn atoms. This is done
using a correlation expansion similarly to Ref. [42] where, due
to the Mn atoms being far apart in a DMS, correlations that
involve magnetic dopants at different sites are disregarded.
Applications of correlation expansions in condensed matter
physics are manifold and can be found explained numerous
times in the literature [42,57,62–65].

Setting up the equations of motion for an on-average
spatially homogeneous system, a closed set of equations
of motion can be formulated for the following dynamical
variables:

Mn2
n1

(z) = d

NMn

∑
I

δ(z − ZI )
〈
P̂ I

n1n2

〉
, (11a)
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Y
v1l1
k1

= 〈
dv1−k1cl1k1

〉
, (11b)

N
l1v1v2l2
k1k2k3k4

= 〈
c
†
l1k1

d
†
v1−k2

dv2−k3cl2k4

〉
δk1−k2,k4−k3 , (11c)

QY
n2v1l1
n1k1k2

(z) = V
d

NMn

∑
I

δ(z − ZI )
〈
dv1−k1cl1k2e

i(k2−k1)·RI P̂ I
n1n2

〉
, for k1 �= k2, (11d)

Ȳ
v1l1
k1k2

(z) = V
d

NMn

∑
I

δ(z − ZI )
〈
dv1−k1cl1k2e

i(k2−k1)·RI
〉
, for k1 �= k2, (11e)

QN
n2l1v1v2l2
n1k1k2k3k4

(z) = V
d

NMn

∑
I

δ(z − ZI )
〈
c
†
l1k1

d
†
v1−k2

dv2−k3cl2k4e
i(k2−k1+k4−k3)·RI P̂ I

n1n2

〉
, for k1 − k2 �= k4 − k3, (11f)

N̄
l1v1v2l2
k1k2k3k4

= V
d

NMn

∑
I

δ(z − ZI )
〈
c
†
l1k1

d
†
v1−k2

dv2−k3cl2k4e
i(k2−k1+k4−k3)·RI

〉
, for k1 − k2 �= k4 − k3. (11g)

In the above equations, Mn2
n1

(z), Y v1l1
k1

, and N
l1v1v2l2
k1k2k3k4

repre-
sent the Mn density matrices, the electron-hole coherences, and
the exciton density matrices, respectively. The magnetic and
nonmagnetic correlations between coherences and impurity
atoms are given by QY

n2v1l1
n1k1k2

(z) and Ȳ
v1l1
k1k2

(z), respectively,

and in turn by QN
n2l1v1v2l2
n1k1k2k3k4

(z) and N̄
l1v1v2l2
k1k2k3k4

between excitons
and impurities. In addition to the usual quantum mechanical
average of the operators, the brackets 〈.〉 in Eqs. (11) as well as
throughout the rest of this paper also contain an average over
the distribution of Mn positions in the sample. This distribution
is assumed to be random but homogeneous on average, so that
〈ei(k2−k1)·RI 〉 = δk1,k2 . The delta distribution in Eq. (11c) is a
consequence of the spatial homogeneity of the system.

Using these variables, it is straightforward but lengthy to
set up a hierarchy of equations of motion whilst retaining only
terms up to O(E2) according to the DCT scheme. However, it
turns out that the magnetic interactions Hsd and Hpd introduce
additional source terms in the equations for the correlations
that are not expressible using the variables from Eqs. (11)
because they contain products of Mn operators as well as
exponential functions containing the randomly distributed Mn
positions RI in the exponent. Following along the lines of
Ref. [42], where a correlation expansion has been successfully
employed to treat these terms, we sketch the general method of
such an expansion when applied to the expressions derived in
this paper. Our approach for dealing with random impurity
positions can also be related to the treatment of interface
roughness via random potentials as well as the influence of
disorder in semiconductors [66–68].

Consider a general expectation value of the form

SQ = 〈
Xei�k·RI ei�k′ ·RI ′ P̂ I

n1n2
P̂ I ′

n′
1n

′
2

〉
, (12)

where X contains up to four Fermi operators so that 〈X〉 is up
to O(E2) and �k �= 0. Using the DCT scheme, it can be easily
shown that assisted expectation values such as the quantity in
Eq. (12) are of the same order in the generating electric field
as the corresponding bare expectation values of the Fermi
operators. We then treat the expression in Eq. (12) as follows.

(i) The situation I = I ′ has to be considered separately
since in this case we are dealing with Mn operators on the

same site, so that Eq. (12) reduces to

SQ
I=I ′= 〈

Xei(�k+�k′)·RI P̂ I
n1n

′
2

〉
δn2,n

′
1

(13)

in accordance with the definition of the Mn operators P̂ I
nn′ .

The remaining quantity can then be expressed in terms of the
variables introduced in Eq. (11).

(ii) If �k′ = 0, we get

SQ
�k′=0= 〈

Xei�k·RI P̂ I
n1n2

P̂ I ′
n′

1n
′
2

〉
, (14)

so that the number of operators effectively is reduced by one.
(iii) In the most general case, i.e., I �= I ′ and �k′ �= 0, we

decompose Eq. (12) using a correlation expansion. This yields

SQ = δ
〈
Xei�k·RI P̂ I

n1n2

〉〈
ei�k′ ·RI ′ 〉〈P̂ I ′

n′
1n

′
2
〉

+ δ〈Xei�k·RI 〉〈P̂ I
n1n2

〉〈ei�k′ ·RI ′ 〉〈P̂ I ′
n′

1n
′
2

〉
(15)

with true correlations denoted by δ〈. . . 〉. In the above equation,
we have only written down the nonvanishing terms of
the expansion by neglecting correlations evaluated either at
different Mn sites or involving two or more impurity operators.
Furthermore, it can be shown that correlations of the form
δ〈ei�k·RI P̂ I

n1n2
〉, which could be used to model impurity spin

waves, are not driven during the dynamics if they are zero
initially and thus need not be explicitly accounted for.

This approach enables the formulation of a closed set of
equations of motion containing only reduced density matrices
and the true correlations. However, instead of using the true
correlations as dynamical variables, we switch back to the
nonfactorized correlations [c.f. Eqs. (11)] because this allows
for a much more condensed and convenient notation of the
equations of motion.

C. Transformation to the exciton basis

Since the highest-order density matrices depend on four
wave vectors, the resulting equations are numerically very
demanding. Instead, when essentially only bound excitons are
excited, it is much more convenient and efficient to use a two-
particle basis [50,61,69–71], which in this case allows for a
significant reduction of relevant basis states. We note in passing
that one could also change to the exciton basis before deriving
equations of motion. However, this way a classification of
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contributions to the equations of motion in terms of powers
of the electric field is not straightforward. Therefore we first
derive the equations of motion in the single-particle basis and
transform to the two-particle basis afterwards.

We consider the excitonic eigenvalue problem in the
quantum well plane given by

(
H e

0 + H h
0 + HC

)
ψxK(re,rh) = ExKψxK(re,rh) (16)

with the exciton energy ExK and the two-dimensional position
vectors of the electron and the hole re and rh, respectively.
Using the effective mass approximation as well as the strong
confinement limit of the Coulomb interaction, the Hamiltoni-
ans read

H e
0 = − h̄2

2me

(
∂2
xe + ∂2

ye

) + Eg, (17a)

H h
0 = − h̄2

2mh

(
∂2
xh + ∂2

yh

)
, (17b)

HC = −
∫

dz

∫
dz′ e2

∣∣ue
0(z)

∣∣2∣∣uh
0(z′)

∣∣2
4πεε0

√
(re − rh)2 + (z − z′)2

(17c)

with in-plane electron and heavy-hole effective masses me and
mh, respectively, as well as the band gap Eg. The exciton wave
function can be decomposed into a center of mass and a relative
part according to

ψxK(re,rh) = 1√
A

eiK·Rφx(r) (18)

with the exciton center of mass momentum K and the
exciton quantum number x. The relative coordinate is given
by r = re − rh and R = ηere + ηhrh denotes the center
of mass coordinate of the exciton with the mass ratios
ηe := me

M
and ηh := mh

M
, where M = me + mh is the exciton

mass.
Using polar coordinates, the relative part of the exciton

wave function in two dimensions can be further decomposed
into a radial part Rn(r) with a principal quantum number n ∈ N
and an angular part eilϕ with angular momentum quantum
number |l| = 0,1, . . . ,n − 1 according to [72,73]

φx(r) = Rn(r)eilϕ, (19)

where the quantum numbers n and l are condensed into a single
index x.

The creation operator of an exciton with an electron in the
conduction band l and a hole in the valence band v can be
written as

Ŷ
†
lvxK =

∫
d2re

∫
d2rh ψxK(re,rh) χ̂

†
lre χ̂vrh (20)

using the Wannier operators

χ̂
†
lre = 1√

A

∑
ke

e−ike·re
c
†
lke , (21a)

χ̂vrh = 1√
A

∑
kh

e−ikh·rh
d
†
vkh . (21b)

Then, the relation between the exciton creation operator and
the Fermi operators reads

Ŷ
†
lvxK =

∑
kekh

ψ
ke,−kh

xK c
†
lked

†
v−kh , (22a)

c
†
lked

†
v−kh =

∑
xK

(
ψ

ke,−kh

xK

)∗
Ŷ
†
lvxK (22b)

with the matrix element

ψkekh

xK := 1√
A

δK,ke+kh

∫
d2r e−ir·(ηhke−ηekh)φx(r). (23)

Using the transformation in Eq. (22a), we switch from the
quantities defined in Eqs. (11) to the new dynamical variables
in the exciton basis:

Y
v1l1
x10 =

∑
k1

(
ψ

k1,−k1
x10

)∗
Y

v1l1
k1

, (24a)

N
l1v1v2l2
x1K1

=
∑
k1k2
k3k4

ψ
k1,−k2
x1K1

(
ψ

k4,−k3
x1K1

)∗
N

l1v1v2l2
k1k2k3k4

, (24b)

QY
n2v1l1
n1x1K1

(z) =
∑
k1k2

(
ψ

k2,−k1
x1K1

)∗
QY

n2v1l1
n1k1k2

(z), (24c)

Ȳ
v1l1
x1K1

(z) =
∑
k1k2

(
ψ

k2,−k1
x1K1

)∗
Ȳ

v1l1
k1k2

(z), (24d)

QN
n2l1v1v2l2
n1x1K1x2K2

(z) =
∑
k1k2
k3k4

ψ
k1,−k2
x1K1

(
ψ

k4,−k3
x2K2

)∗

×QN
n2l1v1v2l2
n1k1k2k3k4

(z), (24e)

N̄
l1v1v2l2
x1K1x2K2

(z) =
∑
k1k2
k3k4

ψ
k1,−k2
x1K1

(
ψ

k4,−k3
x2K2

)∗
N̄

l1v1v2l2
k1k2k3k4

(z). (24f)

D. Equations of motion

Applying the DCT scheme and the correlation expansion
in the equations of motion in the electron-hole representation
and subsequently using the transformation to the exciton basis
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according to Eqs. (24) leads to the following equations of motion:

ih̄
∂

∂t
Mn2

n1
(z) =

∑
n

(
Sn2nM

n
n1

(z) − Snn1M
n2
n (z)

) ·

⎛
⎜⎜⎜⎝h̄ωMn + Jsd

V
d
∣∣ue

0(z)
∣∣2 ∑

ll′v
xK

se
ll′N

lvvl′
xK + Jpd

V
d
∣∣uh

0(z)
∣∣2 ∑

vv′l
xK

sh
vv′N

lvv′l
xK

⎞
⎟⎟⎟⎠

+ Jsd

V 2
d
∣∣ue

0(z)
∣∣2 ∑

ll′vn

xKx ′K′

se
ll′ · f

KK′
−ηhxx ′

(
Sn2nQN

nlvvl′
n1xKx ′K′(z) − Snn1QN

n2lvvl′
nxKx ′K′(z)

)

+ Jpd

V 2
d
∣∣uh

0(z)
∣∣2 ∑

vv′ln
xKx ′K′

sh
vv′ · f

KK′
ηexx ′

(
Sn2nQN

nlvv′l
n1xKx ′K′(z) − Snn1QN

n2lvv′l
nxKx ′K′(z)

)
, (25a)

ih̄
∂

∂t
Y

v1l1
x10 = −E · Mx1

l1v1
+

(
E

v1l1
x10 + (J e

0 + J h
0 )NMn

V

)
Y

v1l1
x10 +

∑
l

h̄ωe · se
l1l

Y
v1l
x10 +

∑
v

h̄ωh · sh
v1v

Y
vl1
x10

+ NMn

V 2

∑
nn′
xK

Snn′ ·
∫

dz
(
Jsd

∣∣ue
0(z)

∣∣2 ∑
l

se
l1l

f
0K

−ηhx1x
QY

n′v1l
nxK (z) + Jpd

∣∣uh
0(z)

∣∣2 ∑
v

sh
v1v

f 0K
ηex1x

QY
n′vl1
nxK (z)

)

+ NMn

V 2

∑
xK

∫
dz

(
J e

0

∣∣ue
0(z)

∣∣2f 0K
−ηhx1x

Ȳ
v1l1
xK (z) + J h

0

∣∣uh
0(z)

∣∣2f 0K
ηex1x

Ȳ
v1l1
xK (z)

)
, (25b)

ih̄
∂

∂t
N

l1v1v2l2
x1K1

= E · (Mx1
v1l1

Y
v2l2
x10 − Mx1

l2v2

(
Y

v1l1
x10

)∗)
δK1,0 + (

E
v2l2
x1K1

− E
v1l1
x1K1

)
N

l1v1v2l2
x1K1

+
∑

l

h̄ωe · (se
l2l

N
l1v1v2l
x1K1

− se
ll1

N
lv1v2l2
x1K1

) +
∑

v

h̄ωh · (sh
v2v

N
l1v1vl2
x1K1

− sh
vv1

N
l1vv2l2
x1K1

)

+ JsdNMn

V 2

∫
dz

∣∣ue
0(z)

∣∣2 ∑
lnn′
xK

Snn′ · (se
l2l

f
K1K

−ηhx1x
QN

n′l1v1v2l
nx1K1xK(z) − se

ll1
f

KK1
−ηhxx1

QN
n′lv1v2l2
nxKx1K1

(z)
)

+ JpdNMn

V 2

∫
dz

∣∣uh
0(z)

∣∣2 ∑
vnn′
xK

Snn′ · (sh
v2v

f K1K
ηex1x

QN
n′l1v1vl2
nx1K1xK(z) − sh

vv1
f KK1

ηexx1
QN

n′l1vv2l2
nxKx1K1

(z)
)

+ J e
0 NMn

V 2

∫
dz

∣∣ue
0(z)

∣∣2 ∑
xK

(
f

K1K
−ηhx1x

N̄
l1v1v2l2
x1K1xK(z) − f

KK1
−ηhxx1

N̄
l1v1v2l2
xKx1K1

(z)
)

+ J h
0 NMn

V 2

∫
dz

∣∣uh
0(z)

∣∣2 ∑
xK

(
f K1K

ηex1x
N̄

l1v1v2l2
x1K1xK(z) − f KK1

ηexx1
N̄

l1v1v2l2
xKx1K1

(z)
)
, (25c)

ih̄
∂

∂t
QY

n2v1l1
n1x1K1

(z) =
(

E
v1l1
x1K1

+
(
J e

0 + J h
0

)
NMn

V

)
QY

n2v1l1
n1x1K1

(z) + β
n2v1l1
n1x1K1

(z)
I + β

n2v1l1
n1x1K1

(z)
II + β

n2v1l1
n1x1K1

(z)
III

, (25d)

ih̄
∂

∂t
Ȳ

v1l1
x1K1

(z) =
(

E
v1l1
x1K1

+
(
J e

0 + J h
0

)
NMn

V

)
Ȳ

v1l1
x1K1

(z) + β̄
v1l1
x1K1

(z)
I + β̄

v1l1
x1K1

(z)
II + β̄

v1l1
x1K1

(z)
III

, (25e)

ih̄
∂

∂t
QN

n2l1v1v2l2
n1x1K1x2K2

(z) = E · (Mx1
v1l1

QY
n2v2l2
n1x2K2

(z)δK1,0 − Mx2
l2v2

(
QY

n2v1l1
n1x1K1

(z)
)∗

δK2,0
) + (

E
v2l2
x2K2

− E
v1l1
x1K1

)

×QN
n2l1v1v2l2
n1x1K1x2K2

(z) + b
n2l1v1v2l2
n1x1K1x2K2

(z)
I + b

n2l1v1v2l2
n1x1K1x2K2

(z)
II + b

n2l1v1v2l2
n1x1K1x2K2

(z)
III

, (25f)

ih̄
∂

∂t
N̄

l1v1v2l2
x1K1x2K2

(z) = E · (Mx1
v1l1

Ȳ
v2l2
x2K2

(z)δK1,0 − Mx2
l2v2

(
Ȳ

v1l1
x1K1

(z)
)∗

δK2,0
) + (

E
v2l2
x2K2

− E
v1l1
x1K1

)
N̄

l1v1v2l2
x1K1x2K2

(z)

+ b̄
l1v1v2l2
x1K1x2K2

(z)
I + b̄

l1v1v2l2
x1K1x2K2

(z)
II + b̄

l1v1v2l2
x1K1x2K2

(z)
III

. (25g)
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The mean-field precession frequencies and directions of
impurities, electrons, and holes, respectively, are given by

ωMn = 1

h̄
gMnμBB, (26a)

ωe = 1

h̄
geμBB + JsdNMn

h̄V

∫
dz

∣∣ue
0(z)

∣∣2〈S(z)〉, (26b)

ωh = − 6

h̄
κμBB + JpdNMn

h̄V

∫
dz

∣∣uh
0(z)

∣∣2〈S(z)〉, (26c)

where 〈S(z)〉 = ∑
nn′ 〈Snn′Mn′

n (z)〉 is the mean impurity spin.
In the exciton representation, the dipole matrix element
becomes Mx

lv := Mlvφx(r = 0). The wave-vector dependent
form factors that arise in Eq. (25) are given by

f K1K2
ηx1x2

:=
∫

d2r e−iη(K1−K2)·rφ∗
x1

(r)φx2 (r)

= 2π

∫ ∞

0
dr rRn1 (r)Rn2 (r)i−�lei�lψ12J�l(ηK12r)

(27)

with η ∈ {−ηh,ηe},�l = l2 − l1,K12 = |K1 − K2|, and
J�l(x) denoting the cylindrical Bessel function of integer
order �l. Furthermore, ψ12 is the angle between the vector
(K1 − K2) and the x axis. To arrive at the above formula,
the Jacobi-Anger expansion has been used. The source terms
β, β̄, b, and b̄ for the correlations are listed in Eqs. (A1) in
Appendix A.

In the equations of motion, one can identify terms with
different physical interpretation. For instance, in Eq. (25b),
the first term on the right-hand side represents the optical
driving by the laser field, followed by a homogeneous term
proportional to the quasiparticle energy of the exciton. Note
that the nonmagnetic impurity interaction renormalizes the
band gap and therefore the quasiparticle energy. The terms
proportional to ωe and ωh describe the precession around
the effective field due to the external magnetic field as
well as the impurity magnetization. The influence of the
magnetic carrier-impurity correlations is given by the terms
proportional to the magnetic coupling constants Jsd and Jpd ,
while terms proportional to J e

0 and J h
0 describe the effects of the

nonmagnetic correlations. Apart from the term proportional to
ωMn in Eq. (25a), which describes the mean-field precession
of the impurity spins around the external magnetic field, all
other contributions in Eqs. (25a)–(25c) can be interpreted
analogously.

A similar classification is possible for the source terms
of the correlations in Eqs. (25d)–(25g): source terms with
the upper index I contain inhomogeneous driving terms
that only depend on the coherences Y

v1l1
x10 and the exciton

densities N
l1v1v2l2
x1K1

and not on carrier-impurity correlations.
The index II denotes homogeneous contributions that cause
a precession-type motion of the correlations in the effective
fields given by Eqs. (26). Finally, terms labeled by the index
III describe an incoherent driving of the magnetic and non-
magnetic correlations by other carrier-impurity correlations
with different wave vectors.

It is noteworthy that, in the absence of an electric field,
Eqs. (25) conserve the number of particles as well as the total

energy comprised of mean-field and correlation contributions,
which can be confirmed by a straightforward but lengthy
analytical calculation. This provides an important consistency
check of the equations and can be used as a convergence
criterion for the numerical implementation.

E. Reduced equations for exciton-bound electron spins

An optical excitation with circularly polarized light gen-
erates excitons composed of electrons and holes with cor-
responding electron and hole spins in accordance with the
selection rules. Here, we are dealing with a narrow semicon-
ductor quantum well, where the hh and lh bands are split at
the � point of the Brillouin zone due to the confinement as
well as strain [56]. We consider the generation of heavy-hole
excitons as they typically constitute the low-energy excitations.
In this case, the hh spins are typically pinned because the
precession of a hole spin involves an intermediary occupation
of lh states which lie at higher energies. Furthermore, for direct
transitions between the − 3

2 and 3
2 hh states, the corresponding

matrix elements in the Hamiltonian given by Eq. (1) are zero.
As a consequence, if the hh-lh splitting is large enough, hh
spins do not take part in the spin dynamics and the initially
prepared hole spin does not change. Therefore it is sufficient
to concentrate only on the dynamics of the exciton-bound
electron spins, which can be described by a reduced set of
equations of motion.

In the following, we focus on an excitation with σ−
polarization, so that heavy-holes with mJ = − 3

2 and electrons
in the spin-up state ↑ are excited. Then, it is instructive to
consider the dynamical variables

nx1K1 = 1

2π

∫ 2π

0
dψ1

∑
σ

Nσσ
x1K1

, (28a)

sx1K1 = 1

2π

∫ 2π

0
dψ1

∑
σσ ′

sσσ ′Nσσ ′
x1K1

, (28b)

y↑/↓
x1

= 1

2π

∫ 2π

0
dψ1 Y

↑/↓
x10 , (28c)

q
↑/↓x2

ηlx1K1
= 1

2π

∫ 2π

0
dψ1 f 0K1

ηx2x1

∫
dz|u0(z)|2

∑
nn′

Sl
nn′

×QY
n′↑/↓
nx1K1

(z), (28d)

z
↑/↓x2

ηx1K1
= 1

2π

∫ 2π

0
dψ1 f 0K1

ηx2x1

∫
dz|u0(z)|2Ȳ ↑/↓

x1K1
(z),

(28e)

Q
αx2K2

ηlx1K1
= 1

4π2

∫ 2π

0
dψ1

∫ 2π

0
dψ2 f K1K2

ηx1x2

∫
dz|u0(z)|2

×
∑
σσ ′
nn′

Sl
nn′s

α
σσ ′QN

n′σσ ′
nx1K1x2K2

(z), (28f)

Z
αx2K2

η x1K1
= 1

4π2

∫ 2π

0
dψ1

∫ 2π

0
dψ2 f K1K2

ηx1x2

∫
dz|u0(z)|2

×
∑
σσ ′

sα
σσ ′N̄

σσ ′
x1K1x2K2

(z) (28g)
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with l ∈ {1,2,3} and α ∈ {0,1,2,3}, where s0
σ1σ2

= δσ1,σ2 . We
have introduced an average over polar angles ψi of the wave
vectors Ki , which does not introduce a further approximation
in an isotropic system as defined by the Hamiltonian in Eq. (1)
but significantly reduces the numerical demand. In Eqs. (28),
nx1K1 is the occupation density of the excitons with quantum
number x1 and modulus of the center of mass momentum
K1 and sx1K1 describes the spin density of exciton-bound
electrons. The interband coherences are described by yx1 and
the remaining variables are correlation functions modified by
the form factors fη defined in Eq. (27).

Note that, in order to obtain a closed set of equations for
the dynamical variables defined in Eqs. (28) starting from
Eqs. (25), the source terms βIII , β̄III , bIII , and b̄I II have to
be neglected. However, since these terms contain only sums of
correlations with different wave vectors, they can be expected
to dephase very fast compared to the remaining source terms.
In previous works on the spin dynamics of conduction band
electrons [74], similar terms were shown to be irrelevant
by numerical studies. Furthermore, the optically generated
carrier density is typically much lower than the number of
impurity atoms in the sample. This results in a negligible
change of the impurity spin over time which is therefore
disregarded.

With these assumptions, quantum kinetic equations of
motion for the variables defined in Eqs. (28) can be derived.
The results are given in Appendix B where we have introduced
the angle-averaged products of form factors

Fη2K1K2
η1x1x2

:= 1

4π2

∫ 2π

0
dψ1

∫ 2π

0
dψ2f

K1K2
η1x1x2

(
f K1K2

η2x1x2

)∗

= 2π

∫ 2π

0
dψ

∫ ∞

0
dr

∫ ∞

0
dr ′ rr ′Rn1 (r)Rn2 (r)Rn1 (r ′)

×Rn2 (r ′)Jl1−l2 (η1K12(ψ)r)Jl1−l2 (η2K12(ψ)r ′),

(29)

which contain the influence of the exciton wave function on the
spin dynamics. In the second step, we have used the expansion
in Eq. (27) together with the fact that K12 = |K1 − K2|
depends only on the angle ψ between K1 and K2. For
infinite confinement potentials, the influence of the envelope
functions defined in Eq. (9) enters the spin dynamics via the
factor

I = d

∫ d
2

− d
2

dz|u0(z)|4 = 3

2
. (30)

Note that Eqs. (B1) also contain second moments of
the impurity spin given by 〈SiSj 〉 = ∑

n1n2n3
Si

n1n2
S

j
n2n3M

n3
n1

.
Instead of deriving equations of motion for these second
moments, we once more exploit the fact that the carrier
density is typically much lower than the impurity density,
so that the impurity density matrix is well described by its
initial thermal equilibrium value throughout the dynamics
[74].

F. Markov limit

While the dynamics can in general contain memory effects
mediated by carrier-impurity correlations, it is also instructive
to consider the Markovian limit of the quantum kinetic theory,
where an infinitesimal memory is assumed. On the one hand,
this allows one to obtain analytical insights into the spin-flip
processes described by the theory. On the other hand, a
comparison between quantum kinetic and Markovian results
facilitates the identification of true non-Markovian features
and allows an estimation of the importance of correlations in
the system.

To derive the Markov limit, we formally integrate
Eqs. (B1f)–(B1i) for the correlations. Afterwards, the resulting
integral expressions for the correlations are fed back into
Eqs. (B1a) and (B1b) for the occupation densities nxK and the
spin densities sxK , respectively. This yields integro-differential
equations for nxK and sxK alone. In the Markov limit, the
memory integral in these equations is eliminated by assuming
that the memory is short so that one can apply the Sokhotsky-
Plemelj formula

∫ t

0
dt ′ei�ω(t ′−t) t→∞−→ πδ(�ω) − i

�ω
. (31)

Note that, if a spin precession becomes important, such as in
finite magnetic fields, the precession-type motion of carrier and
impurity spins as well as of carrier-impurity correlations have
to be treated as fast oscillating contributions that have to be split
off in order to identify slowly varying terms that can be drawn
out of the memory integral [74]. This procedure is similar
to a rotating-wave description. The precession frequencies
then lead to a modification of �ω in Eq. (31), which, in
the Markov limit, corresponds to additional energy shifts that
ensure energy conservation during spin-flip processes [43].

In the following, we consider a situation where the impurity
magnetization as well as the precession vectors are parallel or
antiparallel to the external magnetic field. Then, we can write

ωe = σB
e ωeeB, (32a)

ωh = σB
h ωheB, (32b)

ωMn = σB
MnωMneB, (32c)

〈S〉 = σB
S 〈S‖〉eB, (32d)

where the factors σB
e ,σB

h ,σB
Mn,σ

B
S ∈ {−1,1} determine the

direction of the corresponding vector with respect to the
direction of the magnetic field eB . It is convenient to choose
the variables

n
↑/↓
x1K1

= 1
2nx1K1 ± sx1K1 · eB, (33a)

s⊥
x1K1

= sx1K1 − (
sx1K1 · eB

)
eB, (33b)

which describe the spin-up and spin-down exciton density as
well as the perpendicular exciton-bound electron spin density,
respectively. For these variables, the Markovian equations of
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motion are

∂

∂t
n

↑/↓
x1K1

= �
↑/↓
E + πINMn

h̄2V 2

∑
xK

{
δ
(
ωxK − ωx1K1

)(
n

↑/↓
xK − n

↑/↓
x1K1

)[(
J 2

sdb
‖ ± 2JsdJ

e
0 b0 + 2J e

0
2)

FηhKK1
ηhxx1

+ (
J 2

pdb
‖ − 2JpdJ

h
0 b0 + 2J h

0
2)

FηeKK1
ηexx1

+ (
4J e

0 J h
0 − 2JpdJ

e
0 b0 ± 2JsdJ

h
0 b0 ∓ 2JsdJpdb

‖)F ηeKK1
−ηhxx1

]
+ δ

(
ωxK − (

ωx1K1 ± (
σB

e ωe − σB
MnωMn

)))
J 2

sdF
KK1
xx1

(
b±n

↓/↑
xK − b∓n

↑/↓
x1K1

)}
, (34a)

∂

∂t
s⊥
x1K1

= �⊥
E + πINMn

h̄2V 2

∑
xK

{
δ
(
ωxK − ωx1K1

)(
s⊥
xK − s⊥

x1K1

)[(
2J e

0
2 − J 2

sdb
‖)FηhKK1

ηhxx1
+ (

J 2
pdb

‖ + 2J h
0

2 − JpdJ
h
0 b0

)

×FηeKK1
ηexx1

− (
2JpdJ

e
0 b0 + JpdJ

h
0 b0 − 2J e

0 J h
0

)
F

ηeKK1
−ηhxx1

]
−

[
b−

2
δ
(
ωxK − (

ωx1K1 + (
σB

e ωe − σB
MnωMn

)))

+ b+

2
δ
(
ωxK − (

ωx1K1 − (
σB

e ωe − σB
MnωMn

))) + 2b‖δ
(
ωxK − ωx1K1

)]
J 2

sdF
ηhKK1
ηhxx1

s⊥
x1K1

}

+ (
ωe × s⊥

x1K1

){
1 + 1

ωe

INMn

h̄2V 2

∑
xK

[
Jsd

ωxK − ωx1K1

((
2Jpdb

‖ − 2J h
0 b0

)
F

ηeKK1
−ηhxx1

− 2J e
0 b0FηhKK1

ηhxx1

)

+
(

b+

ωxK − (
ωx1K1 − (

σB
e ωe − σB

MnωMn
)) − b−

ωxK − (
ωx1K1 + (

σB
e ωe − σB

MnωMn
)))1

2
J 2

sdF
ηhKK1
ηhxx1

]}
. (34b)

In the above equations, the shorthand notation b± :=
1
2 (〈S2 − (S · eB)2〉 ± σB

S 〈S‖〉), b‖ := 1
2 〈(S · eB)2〉, and b0 :=

σB
S 〈S‖〉 has been used for the second moments of the Mn

spin. Here, we model the optical excitation by the generation
rates �

↑/↓
E and �⊥

E for the spin-up and spin-down occupations
and the perpendicular spin component, respectively.

In Eq. (34a), the term proportional to (n↑/↓
xK − n

↑/↓
x1K1

)
describes processes conserving the exciton spin, whereas the
term proportional to (b±n

↓/↑
xK − b∓n

↑/↓
x1K1

) is responsible for the
spin-flip scattering of excitons. The delta functions ensure con-
servation of energy. Similarly, the terms proportional to (s⊥

xK −
s⊥
x1K1

) in Eq. (34b) can be interpreted as exciton-spin conserv-
ing contributions, whereas the prefactors of s⊥

x1K1
are responsi-

ble for a decay of the perpendicular spin component. Finally,
the cross product ωe × s⊥

x1K1
describes the mean-field preces-

sion around ωe which is renormalized by terms resulting from
the imaginary part of the memory integral given by Eq. (31).

The exciton spin-conserving parts of Eq. (34) lead to a re-
distribution within a given energy shell as well as to transitions
between excitonic states with different quantum numbers, as
can be seen from the argument of the corresponding delta
functions. In situations where spin-orbit coupling and thus
a D’yakonov-Perel’-type spin dephasing is important, these
terms give rise to an additional momentum scattering and
thereby indirectly influence the spin dynamics. However,
spin-orbit coupling is typically of minor importance for the
spin dynamics in DMS compared with the carrier-impurity
interaction [58]. In an isotropic system as considered here, the
exciton spin-conserving parts of Eqs. (34) do not influence the
spin dynamics. Since the magnetic coupling constant Jpd for
the valence band as well as the nonmagnetic coupling constants
J e

0 and J h
0 only enter these terms, the nonmagnetic interactions

and the pd interaction do not affect the spin dynamics on the
Markovian level.

For spin-flip scattering processes, an exciton with a given
spin an energy h̄ωx1K1 is scattered to a state with opposite
spin and energy h̄ωxK . The appearance of the energy shift
±h̄(σB

e ωe − σB
MnωMn) in the corresponding delta function

in Eq. (34a) can be understood as follows: a flip of the
exciton-bound electron spin requires or releases a magnetic
energy h̄σB

e ωe. However, since a flip of a carrier spin also
involves the flop of an impurity spin in the opposite direction,
the corresponding change in magnetic energy of the impurity
spin h̄σB

MnωMn has to be accounted for to ensure conservation
of energy.

An interesting limiting case can be worked out for zero
external magnetic field, vanishing impurity magnetization, and
optical excitation resonant with the 1s exciton state. Then,
Eqs. (34) can be condensed into the simple rate equation

∂

∂t
s1sK1 = −τ−1

1sK1
s1sK1 , (35)

where the spin-decay rate is given by

τ−1
1sK1

= 35

12

NMnIJ 2
sdM

h̄3dV
F

ηhK1K1
ηh1s1s (36)

and d denotes the width of the DMS quantum well. In contrast
to the quasifree electron case, where the spin-decay rate is
constant in a quantum well [11,59], the decay rate for excitons
explicitly depends on K , which is consistent with previous
findings in the literature [12].

III. RESULTS

We now apply our quantum kinetic theory to the exciton
spin dynamics for vanishing external magnetic field and
impurity magnetization after an ultrashort laser pulse resonant
with the exciton ground state and compare the results with the
corresponding Markovian calculations. In order to do so, it is
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TABLE I. Selected material parameters of Cd1−xMnxTe and
Zn1−xMnxSe. The coupling constant is chosen such that it is
consistent with the band offsets at a CdTe/Cd1−xMnxTe and
ZnSe/Zn1−xMnxSe interface, respectively [44]. The cubic lattice
constant is given by a and m0 denotes the free electron mass.

Parameter Cd1−xMnxTe Zn1−xMnxSe

a (nm) [10] 0.648 0.567
me/m0 [60,75] 0.1 0.15
mhh/m0 [60,75] 0.7 0.8
Jsd (meV nm3) [10] −15 −12
Jpd (meV nm3) [10] 60 50
J e

0 (meV nm3) [10] 110 22
J h

0 (meV nm3) [10] 7 0
ε [55] 10 9

necessary to first calculate the exciton wave functions and the
resulting form-factor products F

η2x2K2
η1x1K1

.

A. Exciton form factors

In order to calculate the exciton form factors, we first
decompose the exciton wave function according to Eq. (19)
and then numerically solve the Coulomb eigenvalue problem
given by Eq. (16) for the radial part using a finite-difference
method, which yields the exciton energies as well as the wave
functions. From the exciton wave functions, the form-factor
products defined in Eq. (29) are calculated. The steps and
cutoffs in the real-space discretization have been adjusted to
ensure convergence.

The results for the form-factor product F
ηhK1K2
ηh1s1s relevant for

spin-slip scattering on the 1s exciton parabola can be found
in Fig. 1(a) as a function of wave numbers K1 and K2 using
the parameters for Cd1−xMnxTe listed in Table I. It can be
seen that F

ηhK1K2
ηh1s1s is symmetric with respect to the bisectrix

and decreases continuously with increasing wave number.
In Fig. 1(b), we present the spin-decay rate in the Markov
limit according to Eq. (36), which follows the diagonal values
F

ηhK1K1
ηh1s1s . To compare the resulting rate to the quasifree electron

case, we also plot the spin-decay rate from Ref. [44] for
electrons and normalize both results to the exciton spin-decay
rate for K = 0. The spin-decay rate for excitons at K = 0
is about eight times faster than the electron spin-decay rate,
which is due to the much larger exciton mass. Furthermore, the
exciton spin-decay rate strongly depends on K and can even
be smaller than the constant electron spin-decay rate for large
wave numbers.

The fact that the spin-decay rate for excitons depends on K

has already been pointed out in Ref. [12]. There, an exponential
ansatz with a variational parameter for the radial part of the
exciton wave function leads to the decay rate [12]

1

τsf
(K) = 1

τsf
(0) φ(α2K2), (37)

where the constant α contains the parameters of the model and
the function φ is given by [12]

φ(x) = 1
2 (1 + (1 + x))(1 + 2x)−

5
2 . (38)

To compare this result to our calculations, we fit the constant
α in Eq. (37) to our data obtained from Eq. (36) and plot the
result in Fig. 1(b). It can be seen that the predictions of Ref. [12]
agree with the Markovian limit of our quantum kinetic theory.

B. Spin dynamics

Having obtained the exciton form factors, we can now
calculate the spin dynamics according to the quantum kinetic
Eqs. (B1). To address the question of the importance of
quantum kinetic effects in the exciton spin dynamics, we
also present numerical solutions of the Markovian (34).
Furthermore, we study the influence of nonmagnetic scattering
as well as the magnetic pd coupling.

For the numerical implementation, we use a forth-order
Runge-Kutta algorithm to solve the differential equations in the
time domain and discretize the K space up to a cut-off energy
of a few tens of meV. This is done in the quasicontinuous limit∑

K → ∫
dKD2d (K) using the two-dimensional density of

states D2d (K) = A
2π

K for a quantum well with area A. For all
calculations, we have checked that the number of excitons in
the system as well as the total energy remain constant after the
pulse.

We limit our study to the exciton ground state and treat
the optical excitation in a rotating-wave approximation. As
discussed in Sec. II E, we focus on a situation where the hh
spins are pinned and do not take part in the dynamics. Thus
our main quantity of interest is the time evolution of the spin of
the exciton-bound electron. In all cases, the optical excitation
is modeled by a circularly polarized Gaussian laser beam with
a width (FWHM) of 100 fs centered at t = 0 ps resonant
to the exciton ground state and we consider a quantum well
with width d = 10 nm. We calculate the time evolution of the
exciton spin for two different materials, namely Cd1−xMnxTe
[Fig. 2(a)] as well as Zn1−xMnxSe [Fig. 2(b)] with impurity
concentration x = 5%. The relevant parameters for these two
materials, which are both of zinc blende crystal structure [10],
are collected in Table I.

The mean-field results displayed in Fig. 2 show no spin
decay because the time evolution of the exciton density
matrix [cf. Eq. (B1b)] after the optical excitation in the
absence of a magnetic field is governed by the magnetic
and nonmagnetic correlations, which are neglected in the
mean-field approximation. If the correlations are treated on
a Markovian level, the spin decays exponentially with the
spin-decay rate τ−1

1sK1
defined in Eq. (36). The spin dynamics

in Cd0.95Mn0.05Te is slower than in Zn0.95Mn0.05Se, which is
mainly due to the larger exciton mass in ZnSe.

However, the full quantum kinetic spin dynamics in both
materials is clearly nonmonotonic and shows a pronounced
overshoot after approximately 5 ps of about 10% of the spin
polarization immediately after the pulse in the situation de-
picted in Fig. 2(a). Furthermore, for the first few picoseconds,
the quantum kinetic result is actually closer to the results of
a calculation using only half the Markovian spin-decay rate.
The spin overshoot in Fig. 2 is absent if the nonmagnetic
impurity scattering of electrons and holes in the DMS as well
as the pd exchange interaction are neglected, as suggested
by a calculation with J e

0 = J h
0 = Jpd = 0 (cf. black boxes in

Fig. 2). Without these contributions, the time evolution of the
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FIG. 1. (a) Angle-averaged form-factor product F
ηhK1K2
ηh1s1s for the exciton ground state (1s) as a function of the center of mass momentum

K . (b) K dependence of the Markovian spin-decay rate for excitons (τ−1
ex ), which follows the diagonal of plot (a), is compared to the constant

rate found for quasifree electrons [43] (τ−1
el ). Both rates are normalized with respect to the exciton spin-decay rate for K = 0 and are calculated

without external magnetic field. Additionally, Eq. (37) is used to fit τ−1
sf to the exciton spin-decay rate of our model.

spin virtually coincides with an exponential decay with half
the Markovian spin-decay rate. Note that the nonmagnetic
scattering as well as the pd interaction do not influence the spin
dynamics on the Markovian level, as follows from Eqs. (34).

Interestingly, the role of nonmagnetic impurity scattering
is here opposite to what has been found for the electron spin
dynamics in the band continuum [44]: while for excitonic
excitations this scattering enhances the overshoot, for above

band-gap excitations it typically almost completely suppresses
the nonmonotonic time dependence of the electron spin
polarization.

The deviations from the Markovian limit can be traced back
to the optical excitation at the bottom of the exciton parabola
(K ≈ 0): while the memory kernel in the Markovian limit
given by Eq. (31) contracts to a delta function in energy space,
for finite times the energy-time uncertainty relation leads to a

FIG. 2. Spin dynamics of the exciton-bound electron in a 10-nm quantum well using the parameters of (a) Cd0.95Mn0.05Te and (b)
Zn0.95Mn0.05Se for vanishing external magnetic field after an optical excitation with a circularly polarized Gaussian laser beam resonant to the
exciton ground state. The time axis is chosen such that the pulse maximum lies at t = 0 ps with a width (FWHM) of 100 fs. For each material,
we show the quantum kinetic results based on Eqs. (B1) (QKT) as well as Markovian calculations using Eqs. (34) (Markov), a spin decay with
half the Markovian rate (Markov, half rate), and the results of a calculation where all correlations are neglected (mean field). Additionally, we
plot the spin dynamics in the artificial situation where different coupling constants J e

0 , J h
0 , and/or Jpd are set to zero. All results are normalized

with respect to the mean-field spin polarization for long times. The inset in figure (a) shows the kinetic energy (Ekin), the magnetic sd/pd

correlation energies (Ecorr
sd/pd ), the nonmagnetic correlation energy (Ecorr

nm ), and the total energy (Etot) normalized with respect to the exciton
density after the pulse.
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FIG. 3. Sketch of the 1s exciton parabola together with the real
part of a typical memory kernel ∝ sin[(E−E1)t/h̄]

(E−E1)/h̄ [cf. the left-hand
side of Eq. (31)] for a fixed time t with E1 = E1s0 (blue solid line)
and E1 > E1s0 (red dashed line). For excitons optically generated at
K ≈ 0, the memory is effectively cut in half.

finite spectral width as sketched in Fig. 3. In a quantum well,
the spectral density of states is constant but vanishes below
the vertex of the exciton parabola, resulting in a cut-off of the
memory kernel in energy space [46]. At K = 0, the integral
over the memory kernel yields therefore only half the value
predicted by the Markovian assumption of a deltalike memory.
This translates into a reduction of the effective spin-decay rate
by a factor of 1

2 .
The influence of nonmagnetic impurity scattering manifests

itself in a redistribution of center of mass momenta on the
1s exciton parabola. As a result, states further away from
K = 0 are populated. For these states, the cutoff of the memory
integral due to the density of states is shifted correspondingly
and oscillates with time, which causes the overshoots in the
dynamics of the spin polarization in Fig. 2. It is noteworthy
that, even if the heavy-hole spins are pinned throughout the
dynamics, the magnetic pd exchange interaction can still
influence the dynamics of the exciton-bound electron spin
since it allows for spin-conserving scattering of exciton-bound
holes at magnetic impurities. In this sense, the magnetic pd

interaction has a similar effect as nonmagnetic scattering. This
can be seen from the results depicted in Fig. 2 where either
the nonmagnetic or the pd interactions are switched off. In the
case of Cd0.95Mn0.05Te, where Jpd ≈ 1

2J e
0 , both interactions

are of similar importance. However, for Zn0.95Mn0.05Se, where
Jpd ≈ 2J e

0 , the magnetic pd interaction dominates the spin
dynamics and nonmagnetic impurity scattering is almost
negligible.

The fact that the pd interaction and the nonmagnetic
impurity scattering facilitate a redistribution of center of mass
momenta can be seen from the inset of Fig. 2(a), which shows
the time evolution of the kinetic energy as well as correlation
energies. A significant increase in kinetic energy of about
5 meV per exciton is found, which is mainly provided by a
build-up of correlation energies due to nonmagnetic scattering
and due to the pd interaction. The inset in Fig. 2(a) also
shows that the total exciton energy is indeed conserved after
the pulse and obtains a small negative value with respect
to the mean-field energy of a 1s exciton at K = 0. This is
possible because carrier-impurity correlations are built up

already during the finite width of the pulse. In the case of
Cd0.95Mn0.05Te, the magnetic pd interaction as well as the
nonmagnetic impurity scattering lead to similar correlations
energies, which is consistent with their comparable influence
on the time evolution of the spin as depicted in the main panel
of Fig. 2(a).

IV. CONCLUSION

We have derived quantum kinetic equations for density
matrices in the exciton representation that describe the time
evolution of the exciton spin in laser-driven DMS in the
presence of an external magnetic field. Our theory takes into
account contributions up to second order in the generating
laser field and explicitly keeps correlations between the carrier
and the impurity subsystem. The model not only includes the
magnetic sp-d interaction between electrons, holes, and Mn
atoms, but also accounts for elastic nonmagnetic scattering at
the impurities. This makes our theory a widely applicable tool
to study the ultrafast spin dynamics in DMS beyond the single-
particle Born-Markov picture. Furthermore, we have shown
how rate equations can be straightforwardly extracted from our
quantum kinetic theory by using the Markov approximation
to eliminate the correlations. This approach allows us to
obtain spin-flip scattering rates for situations where the spin
polarization is oriented parallel or perpendicular with respect
to the external magnetic field. In contrast to the situation of
quasifree conduction band electrons studied in Ref. [44], for
excitons it is found that the Markovian spin-decay rate strongly
depends on the wave vector via a form factor reflecting the
shape of the exciton wave function.

A numerical solution of the quantum kinetic equations
including exciton-impurity correlations in the absence of
a magnetic field and for vanishing impurity magnetization
reveals strong deviations from the Markovian predictions in
the form of an overshoot of the spin polarization as well
as a slower initial decay with about half of the Markovian
rate. Accounting for nonmagnetic impurity interaction as
well as the pd interaction in the valence band was found
to have an essential impact on the spin polarization since
the overshoot is only seen in calculations that include these
interactions. In contrast, nonmonotonic behavior in the spin
dynamics of conduction band electrons is strongly suppressed
by nonmagnetic impurity scattering [44].

In Ref. [31], where results for spin-decay rates in DMS
measured by different groups have been compared, it was
found that the experimentally obtained rates for vanishing
magnetic field are consistently about a factor of five larger than
the value expected from Fermi’s golden rule for conduction
band electrons. A possible explanation for this deviation is that
excitons instead of quasifree electrons have to be considered.
Substituting the exciton mass for the electron mass in Fermi’s
golden rule leads to an approximately eight times larger
spin-decay rate. However, in this article, we have found that
non-Markovian effects lead to a spin decay on a time scale
corresponding to about half the Markovian rate. Thus our
theory predicts that the spin-decay rate measurable in ultrafast
optical experiments is about four times larger than predicted
by a Markovian model using quasifree carriers and is therefore
close to the findings of experiments.
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APPENDIX A: SOURCE TERMS FOR THE CORRELATIONS

The source terms for the correlations in Eq. (25) are

β
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APPENDIX B: QUANTUM KINETIC EQUATIONS OF MOTION WITH PINNED HOLE SPIN

In this section, we provide the equations of motion corresponding to the variables defined in Eq. (28) after performing an
angle-averaging in K space. Using the Einstein summation convention, the equations read

∂
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