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Transient electron excitation and nonthermal electron-phonon coupling in dielectrics
irradiated by ultrashort laser pulses

Nils Brouwer* and Baerbel Rethfeld
Department of Physics and OPTIMAS Research Center, Technical University of Kaiserslautern,

Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany
(Received 8 February 2017; revised manuscript received 31 March 2017; published 30 June 2017)

We calculate nonequilibrium electron distributions created by the absorption of an intense, ultrashort laser
pulse in a transparent model-dielectric using a Boltzmann-type collision approach. We compare electron energy
and particle density, as well as electron-phonon energy transfer of a full nonequilibrium simulation with values
of a simulation enforcing instant thermalization, testing the inherent assumption of temperature-based models.
Finally, we calculate electron-phonon coupling parameters of nonequilibrium distributions and compare these
with those of thermalized distributions of the same particle and energy density. We find that the strength as well
as the relaxation of the electron-phonon coupling depends considerably on the excitation parameters.
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I. INTRODUCTION

Femtosecond laser pulses have become a standard tool
of basic fundamental research. Time-resolved experiments
improve our understanding of dynamical processes on the in-
trinsic time scales of quasiparticles in matter [1–5]. Also, their
characteristic length scales have become accessible since di-
rect lattice movement and loss of structural order have been ob-
served with help of ultrafast x-ray diffraction techniques [6–9].

With the ever-increasing availability of intense, tabletop,
femtosecond laser sources, also numerous applications have
become possible, reaching from processing of biological
materials and laser surgery to nanoscale material modifications
and the creation of new states of matter [10–18].

Nonlinear processes enable the generation of free electrons
and thus also the absorption of laser energy in actually trans-
parent materials. The understanding of the interaction of laser
light with dielectrics is not only interesting from a fundamental
point of view but also important for avoiding damage to
expensive optical components. Laser-induced damage of such
transparent solids is usually assumed to occur when a certain
density of electrons is present in the conduction band [19–21].
In that case, the optical parameters of the material change in
such a way that the absorption occurs in a way similar to that
in metals, and energy leading to material modification can be
quickly accumulated.

In transparent dielectrics, electrons are first excited from
the valence band to the conduction band by strong-field
ionization, i.e., multiphoton absorption or tunnelionization
[22]. Then, these newly excited electrons gain more energy
by single-photon absorption. After reaching a critical energy,
they can perform impact ionization, thereby exciting additional
electrons to the conduction band. In Auger-like processes, an
electron of the conduction band recombines with a hole in the
valence band, transferring the excess energy to a conduction
band electron. Auger recombination is the inverse process to
impact ionization and thus counteracts the latter.

While the relevance of these basic mechanisms have been
known for several decades [23–25], there are contradictory re-
sults on the relative importance of either strong-field ionization
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or impact ionization [20,21,26–28]. Part of the controversy has
been solved with help of energy-resolved descriptions like the
multiple rate equation [29–31] or kinetic models based on
Boltzmann collision terms [32,33]. Particularly on ultrashort
time scales, the dependence of the probability of impact
ionization on the kinetic energy of the initiating electron has
appeared to be crucial. This in turn strongly influences the
calculated evolution of the free electron density in comparison
to energy-averaged descriptions.

Recent studies have shown that rather the total absorbed
energy than the density of excited electrons determines the
damage threshold of dielectrics [28]. Though very high
densities may lead to band structure modifications, in semicon-
ductors accompanied with nonthermal melting processes [34],
thermal heating and structural changes of the lattice can only
be reached if the energy absorption in the material suffices
to melt the crystal. The evolution of the temperature of the
excited free carriers as well as of the phonon temperature and
the carrier density has been established in the framework of a
two-temperature model for the description of semiconductors
[35,36]. They are also be applied for the case of dielectrics
[16,37]. Such temperature-based approaches depend on in-
tegrated quantities like electron density and internal energy.
Their dependence on particular electron distributions is ne-
glected. A possible nonequilibrium distribution may, however,
play a considerable role for the energy absorption of the
electrons as well as for the energy transfer to the phonons.

In this work, we study the influence of the laser-induced
electronic nonequilibrium on the evolution of particle density,
energy density, and the energy transfer from excited electrons
to initially cold phonons. To that end, we apply complete Boltz-
mann collision integrals in order to track the nonequilibrium
distribution function of the excited electrons in the conduction
band, as well as of the valence band electrons and the phonons.
We show that nonequilibrium dynamics play an important role
in laser-excited dielectrics, even up to the picosecond regime.
For comparison, we perform simulations enforcing instant
thermalization. We will show that this leads to drastic changes
in the evolution of the integrated quantities, i.e., particle and
energy density of the excited electrons, and in the rate at which
energy is transferred from electrons to phonons.

The energy transfer rate between electrons and phonons is
commonly described in relation to the temperature difference
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of both subsystems and an electron-phonon coupling parame-
ter [35,38–41]. However, from studies of metals, it is known
that nonthermalized electron systems couple differently to
the lattice than thermalized electron systems [42,43]. Since
the electron-phonon coupling parameter is important for all
temperature-based models of ultrafast laser excitation of
solids, we compare in this work the electron-phonon coupling
strength obtained with our full nonequilibrium Boltzmann
collision model for dielectrics with the coupling strength of
corresponding thermalized distributions of the same integrated
quantities. Both differ significantly during and after laser
irradiation. We estimate the equilibration of these values in
dependence on excitation parameters.

The paper is organized as follows: In the next section, we
briefly introduce the theory and assumptions of our Boltzmann
collision model. Section III is devoted to the results of our
calculations. For a certain set of laser parameters, we present
in Sec. III A the details of the dynamics of the distribution
function of both electron bands during and after irradiation. We
show the evolution of the total free electron density and energy
density of the full nonequilibrium simulation as well as of the
model enforcing instant thermalization. In Sec. III B we study
in detail the electron-phonon energy transfer, distinguishing
also between the considered electron bands and phonon modes,
respectively. In Sec. III C we focus on the electron-phonon cou-
pling parameter. We determine this parameter for four different
laser pulses, having different intensities and pulse duration, but
all the same fluence. We compare these values at time instants
during as well as after irradiation, with values obtained for
Fermi-distributed electrons and Bose-distributed phonons. We
close the work with a short summary and conclusions.

II. THEORY

To investigate the electron-phonon coupling under nonequi-
librium conditions, e.g., in laser-excited dielectrics on the
femtosecond timescale, it is necessary to calculate the transient
distribution functions of electrons and phonons. To achieve
this, we used a homogeneous, isotropic approximation of
the Boltzmann equation, further extending the Boltzmann
collision model presented in Refs. [32,44,45]. The conduction
band is modeled with a quasi-free-electron dispersion relation
with an effective mass as introduced in Ref. [32]. The laser ab-
sorption is modeled with transient reflectivity and a dielectric
function as presented in Ref. [44]. In addition, we include the
full valence band dynamics, modeling the valence band with its
own effective mass and implement a transient screening length,
based on the distribution function of conduction and valence
band electrons and Auger recombination as inverse process to
impact ionization [45]. Moreover, we now include the possibil-
ity of energy exchange between both electronic bands without
particle transfer, better known as electron-hole scattering.

In total, we have now two equations for the electron
distribution functions fν :

dfν

dt
=

∑
coll

∂fν

∂t

∣∣∣∣
coll

= ∂fν

∂t

∣∣∣∣
multiph

+ ∂fν

∂t

∣∣∣∣
imp. ion.

+ ∂fν

∂t

∣∣∣∣
Auger

+ ∂fν

∂t

∣∣∣∣
e-e

+ ∂fν

∂t

∣∣∣∣
e-h

+ ∂fν

∂t

∣∣∣∣
e-ph

+ ∂fν

∂t

∣∣∣∣
e-ph-pt

, (1)

where ν is the band index, that is, either conduction band
(cb) or valence band (vb). ∂fν

∂t
|
coll

represent the included
collisions, each given by a complete Boltzmann collision
integral. We include strong field ionization [22] (multiph),
impact ionization (imp. ion), Auger recombination (Auger),
electron-electron intraband collisions (e-e), electron-hole col-
lisions (e-h), electron-phonon collisions (e-ph), and electron-
phonon-photon (e-ph-pt) collisions.

The conduction band versions of the collision integrals (for
multiph, imp. ion, e-e, e-ph, and e-ph-pt) have already been
described in Refs. [32] and [44]. All collision integrals are
based on first-order perturbation theory using Fermi’s golden
rule. The resulting summation over those states taking part
in a collision were approximated as integrals and further
simplified by assuming isotropy. For further details, please
consult Refs. [32] and [44], as well as references therein.
The valence band terms can be derived analogously to the
conduction band terms and only differ due to the different
dispersion relations, i.e., in our case the different effective
masses. The term for Auger recombination, which enables
a balance with its inverse process, impact ionization, was
presented in Ref. [45]. Finally, we included electron-hole
collisions, which exchange energy between both bands.

In addition to the two electron bands, we also model three
phonon modes, that is one longitudinal acoustic (LA) and
two longitudinal optical modes (LO1 and LO2). We neglect
transversal modes, umklapp- and phonon-phonon processes.
The set of equations for the distribution functions sβ of the
three considered phonon modes reads

dsβ

dt
=

∑
coll

∂sβ

∂t

∣∣∣∣
coll

= ∂sβ

∂t

∣∣∣∣
ph-e

+ ∂sβ

∂t

∣∣∣∣
ph-e-pt

, (2)

where β is the mode index. ∂sβ

∂t
|
coll

represent the included
collision integrals: Phonon-electron collisions (ph-e)
represent the change of the phonon distributions due to
collisions with conduction band electrons as well as valence
band electrons, while phonon-electron-photon collisions
(ph-e-pt) represent the change of the phonon distribution due
to intraband photon absorption by conduction band electrons
as well as valence band electrons.

Since electron-phonon energy transfer is the focus of this
work, we will now take a closer look at the contributing
collision integrals. For the electron distribution functions, the
collision term for e-ph and e-ph-pt collisions is given by

∂fν(ε)

∂t

∣∣∣∣
e-ph-pt

= 1

2πh̄3

m∗
ν

kν(ε)

∑
β

∞∑
l=−∞

{ ∫
q∈Q+

β,l,ν

dqq|Me-ph(q,β)|2J̄ 2
l (q,EL,ωL)fν(ε+)[1 − fν(ε)]

× [sβ(q) + 1] − fν(ε)[1 − fν(ε+)]sβ(q)

+
∫

q∈Q−
β,l,ν

dqq|Me-ph(q,β)|2J̄ 2
l (q,EL,ωL)fν(ε−)[1 − fν(ε)]sβ(q) − fν(ε)[1 − fν(ε−)][sβ(q) + 1]

}
, (3)
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where m∗
ν is the effective mass and kν is the electron wave number in band ν. The number of absorbed phonons is given by l and

l = 0 therefore refers to plain e-ph collisions. q is the phonon wave number and the electron-phonon matrix element is denoted
by Me-ph(q,β). The laser field amplitude inside the material, EL, is calculated from the external laser intensity [44], ωL is the
laser frequency, and J̄ 2

l is the direction-averaged squared Bessel function of order l. The electron energy state is given by ε with
ε± = ε + lh̄ωL ± h̄ωβ(q), where h̄ωβ(q) is the phonon energy of mode β. Momentum conservation is ensured by the integration
interval Q±

β,l,ν . The electron-phonon matrix element is denoted by Me-ph(q,β).
For the phonon distribution functions, the corresponding collision term reads

(
∂sβ(q)

∂t

)
ph-e-pt

= 1

2πh̄5

m∗
ν

2

q

∑
ν

∞∑
l=−∞

|Me-ph(q,β)|2J̄ 2
l (q,EL,ωL)

× 1

2

{ ∫
ε∈K+

β,l,ν

dεfv(ε+)[1 − fν(ε)][sβ(q) + 1] − fν(ε)[1 − fν(ε+)]sβ(q)

+
∫

ε∈K−
β,l,ν

dεfν(ε)[1 − fν(ε−)][sβ(q) + 1] − fν(ε−)[1 − fν(ε)]sβ(q)

}
, (4)

where K±
β,l,ν is the integration interval for the electron energy ensuring momentum conservation.

For acoustic phonons, we use a deformation potential theory
approximation leading to the matrix element [32,45]

|Me-ph(q,β)|2 = h̄C2
βq2

2ρωβ (q)[1 + (q0/q)2]
, (5)

where Cβ is the deformation potential of mode β, q0 is the
inverse screening length, and ρ is the mass density of the
material.

For polar optical phonons [32,45], we apply

|Me-ph(q,β)|2 = e2

ε0

h̄ωβ

2[1 + (q0/q)2]

(
1

ε∞
− 1

εr

)
, (6)

where e is the elemental charge, ε0 is the vacuum permittivity,
εr is the relative permittivity, and ε∞ is the optical permit-
tivity. q0 is the inverse screening length, which is calculated
transiently [45] from electron distribution functions of both
bands. Note that the Boltzmann equation is inherently using
the Markov approximation and therefore neglecting memory
effects, and correlation effects are only considered in form of
the aforementioned transiently calculated static screening.

In total, we obtain a system of five coupled integrodif-
ferential equations that has to be solved numerically. We
discretized the energy axis for the electron bands and the
wave number axis for the phonon modes. To gain an accurate
measure of the electron-phonon energy transfer, minimizing
interpolation errors is very important. Since the typical electron
energy scale in a laser excited dielectric is on the order of the
band-gap energy and therefore several orders of magnitudes
higher than a typical phonon energy, we chose to discretize
the electron energy in very tiny steps, 3000 points for each
band, while we used only 75 points for each phonon mode.
In order to keep computational cost manageable, we use the
GNU scientific library implementation [46], of the MISER
Monte Carlo integration algorithm, to calculate the various
electron-electron integrals. Finally, the system of differential
equations was solved using an adaptive time step, between 1
as and 1 fs, based on the change of the distribution function.

III. RESULTS

In this section, we present results of our simulation based
on the Boltzmann collision model for a model-dielectric
based on material parameters of fused silica. We use the
same values as presented in Ref. [45] and references therein,
with the exception that the parameters for the polar electron-
phonon matrix element were taken from Ref. [47]. Here,
we shortly summarize the most important parameters: sound
velocity of longitudinal acoustic (LA) phonon mode [32]
vs = 5935 m/s entering the dispersion relation, ω(q) = vsq;
deformation potential of the LA mode [48] Cβ = 6 eV entering
Eq. (5); phonon energies and polar matrix element [47] of
the first longitudinal optical mode (1 LO) h̄ω = 0.063 eV,
ε−1
∞ − ε−1

r = 0.063, and second longitudinal optical mode
(2 LO) h̄ω = 0.153 eV, ε−1

∞ − ε−1
r = 0.143 entering Eq. (6);

and effective mass in valence band [45] m∗
v = 3.52me and

conduction band [48] m∗
c = me.

With these parameters, the model is suitable for intensities
between 1017 and 1019 W/m2, since lower intensities will not
lead to sufficient excitation and at higher intensities relativistic
effects would have to be taken into account. The pulse duration
should not be much smaller than 50 fs, as that would stretch
the limits of the carrier envelope approximation, for visible
laser wavelength.

A. Nonequilibrium electron dynamics

In this section, we analyze the nonequilibrium electron
distribution, density, and energy in a dielectric exited by an
intense ultrashort laser pulse and compare with a modified
simulation enforcing instant thermalization. The system is
assumed to be excited with a 400-nm, τL = 100 fs FWHM
Gaussian-shaped laser pulse centered at 0 fs with a maximum
intensity of Imax = 2×1018 W/m2.

Figure 1 shows the electron distribution, resolved by
electron energy, at different times during excitation, namely
on the rising flank (black solid line), the maximum (red dotted
line), and the falling flank of the pulse (green dashed line).
Here in Figs. 1 and 2 the transient distributions of conduction
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FIG. 1. Quasilogarithmic representation (7) of the nonequilib-
rium distribution of valence and conduction band electrons at different
times during laser pulse of τL = 100 fs (FWHM).

and valence band electrons during and after laser excitation
are shown in a pseudologarithmic representation,


 = − ln

(
1

f
− 1

)
. (7)

Similar to a logarithmic representation, it shows variations
in the distribution on different orders of magnitude, while
still being a monotonously rising function of the electron
distribution. Moreover, it directly resolves also the distribution
of holes as distribution of valence band electrons. In addition,
Fermi distributions are represented by straight lines with
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FIG. 2. Quasilogarithmic representation (7) of the nonequilib-
rium distribution of valence and conduction band electrons after laser
pulse. The time after pulse maximum is indicated.

slopes inversely proportional to the temperature of the Fermi
distribution.

The black solid line in Fig. 1 shows the distribution at
50 fs before maximum laser intensity, when half of Imax is
reached. Its most prominent feature is the peak structure in
the conduction band and the corresponding dip structure in
the valence band. These arise from a combination of several
effects: First, we have multiphoton ionization of the lowest
possible order. For the combination of photon energy and
band gap used in the present calculation, the process is of
third order. In addition, higher order multiphoton ionization,
called above-threshold ionization (ati), contributes to the peak
structure. With equal effective masses in conduction and
valence bands, momentum conservation would lead to ati
peaks half a photon energy above the lower order peak. In
our calculations, the peaks are shifted by less than half the
photon energy as compared to the peak of lower order, due to
different effective masses in valence and conduction band.
Finally, intraband single-photon absorption will reproduce
each peak at an energy larger by one photon energy, leading
to an ever-increasing number of increasingly smaller peaks at
higher electron energies. A more detailed description of the
peak structure can be found in Ref. [45].

The red dotted curve in Fig. 1 shows the electron distribu-
tion at maximum laser intensity. In comparison to the black
solid line, it features similar peaks and dips, but their location
has shifted towards the band gap. This shift in the energy of the
peak positions results from the increase in laser field strength
raising the effective ionization potential [22,32,45]. As a result,
the third-order multiphoton peak has completely vanished. The
lowest order mpi is now a fourth-order process. In addition,
the distribution function of conduction band electrons has
increased, while the distribution function of valence band
electrons has decreased. This is expected as electrons are
excited from the valence band to the conduction band.

Finally, conduction band states over about 18 eV are slightly
more populated than the overall slope of the distribution
would suggest. This is the result of Auger recombination
processes already contributing to the population of higher
energy conduction band states, resulting in a so-called Auger
bump [49].

The green dashed curve in Fig. 1 shows the electron
distribution function at 50 fs after maximum laser intensity. In
comparison to the red dotted curve, the distribution function
of conduction band electrons has further increased, while the
distribution function of valence band electrons has further
decreased. However, the peak and dip structures are nearly
completely washed out. This can be attributed to the increased
effect of electron-electron collisions leading to thermalization
and the decreasing strength of strong field ionization. The
remaining visible peak and dip have moved away from the
band gap again, in accordance with the decreasing laser field
strength. Finally, the Auger bump has grown further.

In Fig. 2, the conduction and valence band distribution
functions are shown for times well after the laser pulse. Again,
the pseudologarithmic representation (7) was chosen. The
black solid curve shows the distribution functions 250 fs after
the laser pulse maximum. In contrast to Fig. 1, no sharp peaks
or dips are visible. This is not surprising, since those were
caused by the laser pulse, which is negligible at a time of
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FIG. 3. (a) Conduction band electron density ncb and (b) energy density ucb for the full nonequilibrium simulation and the simulation
enforcing instant thermalization.

2.5 FWHM after the maximum laser intensity. However, the
Auger bump is still present.

The red dotted curve in Fig. 2 shows the distribution
functions 500 fs after the laser pulse maximum. It differs from
the solid black curve in two ways: Its overall slope is steeper
and the Auger bump is more pronounced. The increased
steepness of the curve is caused by electron-phonon collisions,
which reduce the overall energy content of the electron system
by removing electrons from high-energy states and adding
them in low-energy states, therefore increasing the steepness
of the distribution. The second feature, the growing Auger
bump, is actually directly related to the first feature: Since
the whole electron system has less energy per electron than
before, the ratio of conduction band electrons to valence band
electrons must shift in favor of valence band electrons, in order
to reach an equilibrium of electron temperature and density.
Auger recombination decreases conduction band density,
while increasing the energy per electron in the conduction
band. Such a high-energy tail of the electron distribution
caused by Auger recombination has also been found in the
conduction band of aluminum after excitation of electrons
from deep shells with extreme ultraviolet radiation [50,51].

These two trends continue in the picosecond regime, as is
visible in the green dashed curve in Fig. 2, which shows the
electron distribution functions 1000 fs after the laser pulse
maximum.

A steeper distribution in 
 representation would correspond
to lower temperature if the system was thermalized. However,
as the curves are not exactly linear even for as long as 1 ps,
the system actually is still not thermalized on a picosecond
timescale.

Thermalization is an asymptotic process. Therefore, full
thermalization would, strictly speaking, require an infinite
amount of time, yet the concept of such a temperature is widely
applied even down in the subpicosecond regime. So the real

question is how much of a difference do the nonequilibrium
distribution functions make? To test this, we modify our
simulation to enforce instant thermalization; that is, after each
time step we calculate the energy density of each electronic
and phononic distribution function as well as the particle
density of the electronic bands. The distribution functions
are then replaced by Fermi functions of the same particle
and energy density or Bose functions of the same energy
density, respectively, and the changes of these distributions are
determined through Eqs. (1) and (2). The system is replaced
by a thermalized system at each numerical time step. We start
this procedure at peak laser intensity (t = 0 fs) and compare
electron densities and energy densities with the results of the
full nonequilibrium simulation.

In Fig. 3(a), the time evolution of the conduction band
electron density nc is shown. It is calculated from the
conduction band distribution fc(ε) using the density of states
D(ε):

ncb =
∫

fcb(ε) D(ε)dε. (8)

The black solid curve represents the full nonequilibrium
simulation. The conduction band electron density first rises
until about 50 fs after maximum laser intensity, reaching
nearly nc = 6×1027 m−3, and then slowly decreases again.
Interestingly, the slope of the curve decreases slightly around
maximum laser intensity. An analysis of the collision terms
(not shown here) shows that this can be attributed to Pauli
blocking in the final levels of multiphoton ionization in the
conduction band.

The green dotted curve in Fig. 3(a) shows the evolution
of the conduction band electron density for the simulation
enforcing instant thermalization. In contrast to the black
solid curve, it rises much faster and higher, reaching about
ncb = 13×1027 m−3, and then also decreases at a faster rate.
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In contrast to the nonequilibrium simulation, there is no
visible decrease in the slope around maximum laser intensity.
This can be explained by the instantaneous depletion of the
final levels of multiphoton ionization down to an equilibrium
occupation through instant thermalization, thereby avoiding
Paul blocking.

Figure 3(b) shows the time evolution of the conduction
band electron energy density ucb. It is calculated from the
conduction band distribution:

ucb =
∫

fcb(ε) D(ε)εdε. (9)

The black solid curve represents the full nonequilibrium
simulation. The conduction band electron energy density uc

first rises until about 70 fs after maximum laser intensity,
reaching more than uc = 6×109 Jm−3, and then slowly de-
creases again.

The green dotted curve in Fig. 3(b) shows the evolution of
the conduction electron energy density uc for the simulation
enforcing instant thermalization. In contrast to the black
solid curve, it rises much faster and higher, reaching over
uc = 20×109 JM−3, and then also decreases at a faster rate.

While both particle and energy density show a similar
discrepancy between both simulations, the difference is even
more pronounced for the latter.

Enforcing thermalized distribution functions has several
effects, including e.g. an initially lower inverse screening
length; however, the main reason for the difference in electron
excitation visible in Figs. 3(a) and 3(b) is enhanced multipho-
ton ionization. Since the final levels of multiphoton ionization
are instantly restored to the values of a thermalized distribution
whose Fermi edge is below those energy levels, Pauli blocking
has a considerably smaller effect on the multiphoton ioniza-
tion rate than in the nonequilibrium simulation. This initial
enhancement of electron excitation is then further amplified
by a subsequent change in optical parameters, mainly laser
light absorption, due to the increased conduction band density.

In conclusion, we see a considerable difference between
thermalized and nonequilibrium values of the integrated
quantities of the conduction band electrons, i.e. particle and
energy density. This is particularly remarkable, since, for
instance, the conduction band electron density is often used as
a damage criterion.

B. Electron-phonon energy transfer

In this section, we will show electron-phonon energy trans-
fer rates resulting from our full nonequilibrium simulation and
compare them to the rates of the simulation enforcing instant
thermalization. We analyze the contribution of the conduction
and valence band electrons as well as the contribution of the
different phonon modes.

In Fig. 4, the total energy transfer rate from conduction and
valence band to all considered phonon modes is shown.

The combined energy transfer rate ∂u
∂t

|
e-ph

is calculated
from the change of both electron distribution functions due
to electron-phonon collisions:

∂u

∂t

∣∣∣∣
e-ph

=
∑

ν

∫
dfν(ε)

dt

∣∣∣∣
e-ph

D(ε)εdε. (10)
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FIG. 4. Total electron phonon energy transfer rate from valence
and conduction band to all considered phonon modes for the full
nonequilibrium simulation and the simulation enforcing instant
thermalization.

The black solid curve shows the time evolution of the
energy transfer rate for the full nonequilibrium simulation,
while the green dotted curve shows the same variable for the
simulation enforcing instant thermalization. Both curves first
increase, reaching their maximum value at about 80 fs after
maximum laser intensity, and then decrease again. However,
the green dashed curve increases much faster and reaches a
maximum of about 2.5 times higher than the black solid curve.
The decrease of the thermalized simulation is slightly steeper
than that of the nonequilibrium simulation. This means, when
assuming instant thermalization, more energy is transferred
to the phonon system faster. Since, as we have shown in
Ref. [45], electron-phonon coupling in dielectrics strongly
depends on conduction band electron density, a major part of
the increased energy transfer rate most likely can be attributed
to the enhanced density of conduction band electron shown
in Fig. 3(a). However, also the shape of the distribution itself
leads to a difference between electron-phonon energy transfer
in a thermalized and in a nonequilibrium system, as will be
discussed in Sec. III C.

Figure 5 shows the time evolution of the energy transfer
rate to the phonons, but in contrast to Fig. 4, the contribution
of valence band and conduction band electrons is shown
separately. The black solid curve shows the contribution of
the conduction band electrons to the energy transfer rate.
The red dotted curve shows the contribution of the valence
band electrons to the energy transfer rate. The results of
the full nonequilibrium simulation are represented by thick
lines, while the results of the simulation enforcing instant
thermalization are represented by thin lines.

It is clearly visible that the contribution of the valence
band electrons to the electron-phonon energy transfer rate is
the dominating contribution both for the full nonequilibrium
and for the thermalized simulation. Since we used identical
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FIG. 5. The energy transfer from valence and conduction band
to all considered phonon modes is shown for the case of full
nonequilibrium (thick lines) and enforced instant thermalization
(thin lines).

matrix elements for conduction and valence band electrons,
this can be attributed to the higher effective mass and therefore
higher density of states of the valence band. Furthermore,
the conduction band electron-phonon energy transfer rates
decrease more slowly than these of the valence band for
both the nonequilibrium and the thermalized simulation.
Note that the relative contribution of valence and conduction
band electrons to the electron-phonon energy transfer might
vary when introducing more realistic material parameters.
However, it is still likely that the contribution of valence band
electrons is much higher than one would expect in a dielectric
under equilibrium conditions.

Figure 6 shows the time evolution of the electron-phonon
energy transfer rate for both electron bands combined, but
separated for the different phonon modes. The full nonequilib-
rium simulation results are represented by thick lines, while the
simulation enforcing instant thermalization is represented by
thin lines. The energy transfer to the longitudinal acoustic (LA)
mode is represented by a solid black curve. The energy transfer
to the first longitudinal optical mode (1 LO) is represented by a
red dotted line. The energy transfer to the second optical mode
(2 LO) is represented by a blue dashed curve. The qualitative
shape of the curves is similar to their respective equivalent
(i.e., their sum) in Fig. 4.

Both in the full nonequilibrium simulation as well as in
the simulation enforcing instant thermalization, most energy
is absorbed by the second longitudinal optical mode, but
nearly as much energy is absorbed by the longitudinal acoustic
mode. In contrast, the first longitudinal optical mode only
plays a minor role. Hence, electron-phonon energy transfer is
mode dependent. This might indicate that even if the concept
of a temperature would hold, a separation of the phonon
temperatures by modes might be necessary in temperature-
based models. A similar idea was recently proposed for metals
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FIG. 6. Energy transfer from both bands combined to each
phonon mode in the case of full nonequilibrium (thick lines) and
instant thermalization (thin lines).

with regard to transversal modes [52]. Those findings, as
well as ours shown in Fig. 6, raise the question of phonon
thermalization as well as phonon-phonon relaxation times. It
is usually assumed that phonons equilibrate on a picosecond
timescale (e.g., calculations for Si in Ref. [53]).

C. Electron-phonon coupling parameter

In this section, we want to discuss the influence of nonequi-
librium distribution functions on the electron-phonon coupling
parameter. This parameter is applied in the framework of
the two-temperature model [35,38] and connects the energy
transfer rate to the temperature difference of electrons and
phonons. As we have seen in the previous two sections,
enforcing instant thermalization leads to an enhanced electron
excitation with respect to their particle density as well as their
energy density. This leads to an enhanced electron-phonon
energy transfer rate across all considered bands and modes.
In part, the differences can be attributed to a more effective
excitation of conduction band electrons in the thermalized
simulation. In practice, the parameters for laser absorption in
the two-temperature model will often be obtained by fitting
to experimental values. Therefore, the disparity in excitation
strength might be compensated for already.

However, a possible influence of nonequilibrium distri-
butions on electron-phonon coupling may go beyond the
differences in particle and energy density. We will study such
effects in the current section.

To rule out the effect of particle and energy densities,
we compare the electron-phonon coupling strength after laser
excitation with the electron-phonon coupling of thermalized
electron distribution, determined such that they have the
same particle and energy density; see Eqs. (8) and (9). The
temperatures of these corresponding equilibrium distributions
enter the calculation of the electron-phonon coupling param-
eter also in the nonequilibrium case, where a temperature
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FIG. 7. The electron-phonon coupling of conduction band elec-
trons to second longitudinal optical mode at laser peak of four
different excitations with the same incident fluence is represented
by geometric symbols. The applied pulse durations τ1, τ2, τ3, and
τ4 have been 50, 75, 100, and 200 fs, respectively. Electron-phonon
coupling parameters of equilibrium systems are shown as lines. The
color code represents the corresponding electron temperature, or, in
the case of the nonequilibrium situation, their quasitemperature.

is not strictly defined. We will call the temperature of the
corresponding equilibrium distribution the quasitemperature
of the distribution.

As we have seen in the previous section, the electron phonon
energy transfer rate between the various bands and modes
differs quite significantly. Moreover, instead of one electron-
phonon coupling parameter for the whole system, there is
actually one electron-phonon coupling parameter for every
combination of an electron band and a phonon mode. Thus,
even when assigning quasitemperatures, each band and each
mode will have in general a different temperature. In this work,
we will focus on the electron-phonon coupling parameter for
the coupling of the conduction band to the second optical
phonon mode. It is calculated from the electron-phonon energy
transfer rate ∂u/∂t between the conduction band and the second
optical mode, the phonon (quasi)temperature Tph,2.LO of the
second longitudinal optical mode and the conduction band
electron temperature or quasitemperature, respectively, Te,cb

as

gcb,2.LO = 1

Tph,2.LO − Te,cb

∂u

∂t

∣∣∣∣
e-ph(cb,2.LO)

. (11)

In Figs. 7 and 8, the electron-phonon coupling parameter
is shown versus the conduction band electron density. The
solid lines indicate the coupling parameters calculated from
equilibrium distributions of different electronic temperatures,
which are indicated by color coding. Details on the general
dependence of the equilibrium electron-phonon coupling
parameter on the conduction band electron density and
temperature can be found in our previous work [45].
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FIG. 8. Electron-phonon coupling of conduction band electrons
to second longitudinal optical mode at twice laser pulse length after
laser peak. For notation, see Fig. 7; however, note the different
temperature color scale.

We compare the coupling strengths of laser-induced
nonequilibrium electron distributions with their corresponding
equilibrium distributions by choosing four different laser
pulses with the same incident fluence,

F =
∫ +∞

−∞
Imax exp

(
− (2t)2

τ 2
L

ln 2

)
dt =

√
π

2
√

ln 2
ImaxτL, (12)

but different pulse duration τL.
In Figs. 7 and 8 the electron-phonon coupling strengths,

calculated by Eq. (11) at different instants of time, are shown
as symbols. Figure 7 shows the transient nonequilibrium
electron-phonon coupling values at the maximum of different
laser pulses. The quasitemperature of the corresponding
nonequilibrium distribution is indicated by color coding, while
the conduction band density reached at that time is indicated on
the x axis. Pulse lengths between 50 and 200 fs were chosen for
the nonequilibrium calculation and the intensity was adjusted
to yield the same incident fluence.

Looking at the densities and quasitemperatures of the
nonequilibrium simulations, we see that the short, intense
pulses lead to stronger excitations than longer, weaker pulses
with the same fluence. Nevertheless, the electron-phonon
couplings strength is comparable for all considered excitations.
The nonequilibrium electron-phonon coupling values are,
however, systematically lower than the corresponding equi-
librium electron-phonon coupling parameters that match their
quasitemperature and conduction band densities. The more
intense, shorter pulses leading to the highest densities show the
biggest deviations. Intense pulses lead to a stronger deviation
of the distribution function than less intense pulses. This results
in a notable increase of the inverse screening length, which is
the main reason for the decreased electron-phonon coupling
in the nonequilibrium simulation.
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Figure 8 shows the transient nonequilibrium electron-
phonon coupling values at a time instant of two pulse durations
(FWHM) after the maximum intensity for different laser
pulses as dots, with the quasitemperature of the corresponding
distribution functions indicated by color coding. The same
pulse parameters as in Fig. 7 were chosen. In contrast to the
case during irradiation shown in Fig. 7, now the shorter, more
intense pulses (red circle) lead to electron-phonon coupling
values pretty close to those of equilibrium distributions
comparable to their quasitemperature, while the coupling
strengths of the weaker and longer pulses (blue square) have
deviated even further away, as compared to those in Fig. 7. As
is already known for metals [42], nonequilibrium distributions
resulting from stronger excitations thermalize faster, and
therefore the observed smaller deviation from equilibrium
electron-phonon coupling values confirms this finding also
for the excitation of dielectrics.

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the nonequilibrium dynamics
of laser-excited electrons and phonons in a dielectric with
help of complete Boltzmann collision integrals. We have
calculated the nonequilibrium distributions of the conduction
band and valence band electrons, respectively, and determined
their density and energy as well as the energy transfer to the
phonon system. Three longitudinal phonon modes have been
considered.

We have discussed the laser-excited nonequilibrium dis-
tributions of the electrons and have shown that interband
processes as Auger recombination can hinder thermalization
for times up to the picosecond regime, as long as the electronic
system loses energy. We have shown that the energy transfer
rate to phonons strongly depends on the electron band as well
as on the considered phonon mode.

For comparison, we have performed simulations enforcing
instant thermalization in each time step and compared the
results to the full nonequilibrium simulation. We have seen
that the nonequilibrium distribution leads to a reduced
density of excited electrons as well as a reduced energy
content as compared to an instantly thermalized situation.
We conclude that calculations of integrated quantities like
temperature or density should be interpreted carefully. This
might be particularly important for the estimation of damage
thresholds, where the electron density and the absorbed
energy are crucial parameters.

Finally, we have studied the electron phonon coupling
strength, comparing the energy loss of electron distributions
of the same respective electron density and internal energy.
We have shown that the shape of the distribution function, i.e.,
a thermalized distribution vs a laser excited nonequilibrium
distribution, plays a significant role for the strength of electron-
phonon coupling. For high intensities and short pulses, the
difference in the coupling strengths vanishes on a time scale
shorter than 100 fs, while for the lowest considered intensity
it remains up to half a picosecond. Thus, with respect to
the electron-phonon coupling parameter, strong excitations
thermalize faster than weaker excitations.

We conclude that the parameters of temperature-based de-
scriptions may depend not only on the considered material but
also on the particular excitation conditions. Moreover, in such
models, a separation of electron bands and phonon modes is
likely to be necessary, similar to the way proposed in Ref. [52]
for metals for transversal and longitudinal phonon modes. Note
that it was shown for the optical excitation of semiconductors,
that Boltzmann collision integrals tend to underestimate the
thermalization time [54,55] on the femtosecond time scale.
In case this holds for strongly laser-excited dielectrics, one
should be even more cautious when applying thermalized
models. Further studies, e.g., using nonequilibrium Green’s
function methods, would be necessary to shed more light on
the influence of correlations, which, of course, would come at
much higher computational cost when taking into account all
processes that are considered in the present work.

For future studies, it would also be interesting to combine
our method with band structures and matrix elements obtained
from density functional theory calculations (e.g., Refs. [56]
and [57]) in order to obtain material-specific results. It is
known from the study of silicon and diamond that the electron
and phonon band structure of semiconductors and dielectrics
can change significantly during drastic excitations [34,58,59]
and it would be interesting to develop models to capture
the interplay of band structure changes and the dynamics of
nonthermalized electron and phonon distributions in the future.
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