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The SU(4)-SU(2) crossover, driven by an external magnetic field h, is analyzed in a capacitively coupled
double quantum dot device connected to independent leads. As one continuously charges the dots from empty to
quarter filled, by varying the gate potential Vg , the crossover starts when the magnitude of the spin polarization of
the double quantum dot, as measured by 〈n↑〉 − 〈n↓〉, becomes finite. Although the external magnetic field breaks
the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg , where 〈n↑〉 − 〈n↓〉 = 0.
Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which
〈n↓〉 (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible
values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo
state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with
SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between gμBh,
the energy gain by the Zeeman-split polarized state and the Kondo temperature T

SU (4)
K , the gain provided by the

SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate
potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover
by V max

g , the value of Vg where 〈n↓〉 reaches a maximum, one finds that the function f relating the Zeeman
splitting, Bmax, which corresponds to V max

g , i.e., Bmax = f (V max
g ), has a similar universal behavior to that of the

function relating the Kondo temperature to Vg . In addition, our numerical results show that near the SU(4) Kondo
temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic
population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient
spin-filter properties to the device, also discussed in detail in the paper. This phenomenology is studied adopting
two different formalisms: the mean-field slave bosons approximation, which allows an approximate analysis of
the dynamical properties of the system, and a projection operator approach, which has been shown to describe
very accurately the physics associated to the ground state of Kondo systems.

DOI: 10.1103/PhysRevB.95.245133

I. INTRODUCTION

The discovery in 1998 of the Kondo effect in artificial
atoms [1], so-called quantum dots (QDs), has greatly motivated
the study of this phenomenon in nanostructures in the last
two decades. Since the pioneering works where QDs were
shown to possess all the properties of real atoms [2], many
investigations were done to determine the behavior of different
structures of QDs associated to the Kondo effect [3–8]. It
has been shown that nanosystems with QDs are powerful
tools to experimentally investigate a variety of properties of
highly correlated electrons [9–12]. QDs have proven as well to
have very interesting applications as quantum gates [13], spin
filters [14–20], and thermal conductors [21–23]. Transport
properties as a function of temperature, magnetic field, and
gate potential, have been analyzed in systems with lateral
QDs [24,25], carbon nanotubes [26], molecular transistors
[27], etc. The major reason the interest in these studies has
increased is due to advances in experimental techniques and in
the fabrication of nanodevices, which have raised the prospect
of many applications in areas like nanoelectronics [28,29],
spintronics [30], and quantum computation [31].
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All this experimental activity has greatly promoted the
development of new theoretical studies and formalisms to
analyze this phenomenology. A large number of theoretical
predictions related to electronic transport have been obtained
using numerical methods. Among the most largely utilized we
can mention are the numerical renormalization group (NRG)
[32], the density matrix renormalization group (DMRG) [33],
and the logarithmic discretized embedded cluster approxima-
tion (LDECA) [34]. Other algebraic approaches have as well
been used such as the various slave boson approximations
[35] and projection operator approach (POA) [36,37] and
others based on the Green’s function formalism such as the
noncrossing and one-crossing approximation (NCA, OCA)
[38–40], and the equation of motion method [41]. In addition,
the use of the perturbative renormalized group approach
[42,43] as well as extensions of Noziere’s Fermi-liquid-like
theories [44–46] should be mentioned.

Recently, several studies have appeared in the literature
related to the Kondo effect in which, in addition to the spin de-
gree of freedom, the nanostructure presents degenerate orbital
degrees of freedom, such that the complete symmetry of the
system corresponds to the SU(N ) Lie group, for N > 2. This
was the case, for N = 4, of a single atom transistor [47], in car-
bon nanotubes [48], and in capacitively coupled double QDs
[49]. Several theoretical interpretations have been proposed
[50] and, in particular, more closely related to our work, it was
theoretically shown that there is an SU(4)-SU(2) crossover
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when the SU(4) symmetry is broken by either introducing a
different gate voltage Vg in each dot or by connecting them to
the leads by different hopping matrix elements V . In addition,
it was shown that by manipulating the parameters of the
system, without explicitly restoring the broken symmetry, the
ground state might display, as an emergent property, the SU(4)
symmetry [51] (see also Ref. [11]). Here, it should be noticed
that Ref. [52] has shown that the conclusions of Tosi et al. [51]
regarding the emergent SU(4) symmetry are asymptotically
achieved if the intradot and interdot Coulomb repulsions are
larger than the half bandwidth (see also Ref. [53]).

Finally, recent theoretical studies of a double quantum
dot (DQD) device, connected to two independent channels,
under the effect of a magnetic field, was shown to exhibit
an exotic SU(2) Kondo state with the property of having
spin-polarized currents (of opposite polarization) through
each QD [54].

In this work, we will concentrate on two main subjects:
(i) the Kondo SU(4)-SU(2) crossover, driven by an external
magnetic field h, occurring in a capacitively coupled DQD
device and (ii) the associated spin-filter properties of this
capacitively coupled DQD device that emerge in the SU(2)
side of the crossover. Although some aspects of related
problems have already been studied (see Ref. [55] for (i) and
Refs. [54,56] for (ii), and references therein), there are very
important properties of this crossover that were not analyzed
yet and will be discussed here.

The main ideas behind the SU(4)-SU(2) crossover can
be summarized as follows. The crossover is driven by the
magnetic field h (causing a Zeeman splitting B) that decreases
the symmetry of the Hamiltonian from SU(4) to SU(2). Despite
the presence of a finite magnetic field, our results show that the
symmetry of the ground state changes from SU(4) to SU(2)
when the gate potential applied to the DQD is reduced. That the
ground state of the DQD may have a higher symmetry, SU(4),
than its SU(2)-symmetric Hamiltonians—a manifestation of
an effect dubbed an emergent SU(4) Kondo ground state
[11]—is by itself an interesting result.

Indeed, we show in Sec. IV, that the SU(4)-SU(2) crossover
can be studied by taking the value of the spin polarization,
i.e., the difference 〈n↑〉 − 〈n↓〉, evaluated in the ground state
of the DQD system, as playing a similar role to an order
parameter that defines the transition between two phases,
although in this case we are dealing with a crossover process.
At a particular value of the external field h, which produces a
Zeeman splitting B = gμBh, the crossover is characterized
as occurring at the gate potential value V max

g where the
electronic spin-down occupation, 〈n↓〉, has a very well-defined
maximum, denoted 〈n↓〉max (see Fig. 4). We name the Zeeman
splitting corresponding to this maximum as Bmax. If we then
analyze the functional relation between Bmax and V max

g , i.e.,
Bmax = f (V max

g ), our results show that, within the Kondo
regime, f has a similar universal behavior to that which the
Kondo temperature has as a function of the gate potential. It
should be noted that the crossover, as defined here, occurs even
when the system is deep inside the charge fluctuation regime,
in which case it cannot properly be said that the system has
a Kondo ground state. The existence of this clear maximum,
irrespective of the regime the system is in, allows Bmax to be
characterized as the energy scale controlling the crossover.

Regarding subject (ii) mentioned above, i.e., the spin-filter
properties of the DQD system studied here, our results show
that in the SU(2) side of the crossover the electronic population
at the QDs is already clearly polarized along the magnetic field.
As to the important question regarding what is the minimum
temperature and minimum magnetic field needed for the DQD
to operate as a spin-filter device, our results show that, as Bmax

is much smaller than the Kondo SU(4) temperature TK
SU (4), it

could operate at temperatures around 10 K, with a field h ≈
0.1 Tesla. These two facts introduce very efficient spin-filter
properties to the device, also discussed in detail in the paper.

This phenomenology is studied adopting two different
formalisms: (i) the mean-field slave bosons approximation
(MFSBA) [57–62], which allows an approximate analysis of
the dynamical properties of the system, and (ii) the POA,
which has been shown to describe, almost exactly, the static
properties associated to the ground state of the Anderson
impurity Hamiltonian [36,37]. Note that we have extended
the POA, originally derived to study single-impurity Kondo
problems, to the analysis of two capacitively coupled local
levels. As it was the case for single-impurity problems, this
extension can be considered to provide almost exact results, as
far as the static zero-temperature properties are concerned. In
Ref. [36] the POA results for various Kondo static properties
agree quite well with the Bethe ansatz [63] exact results. It is
important to mention that both approaches used to study the
system, the MFSBA and the POA, provide the same qualitative
and semiquantitative physical description.

The rest of the paper is organized as follows. In Sec. II, we
provide a description of the capacitively coupled DQD system.
In Sec. III we present the MFSBA and the POA used to study
the properties of the system. Section IV is dedicated to the
analysis of the SU(4)-SU(2) crossover. Section V describes
the spin filter characteristics of the DQD device. We end the
paper in Sec. VI with the conclusions. The theoretical methods
used are discussed in detail in Appendixes A and B.

II. DESCRIPTION OF THE SYSTEM

The system is composed by two parallel QDs, each one
connected to two independent contacts (see Fig. 1). These
QDs, besides an intra-QD Coulomb interaction U , are also
capacitively coupled by an inter-QD Coulomb interaction
U ′. In addition, they are under the influence of an external
magnetic field h, as shown in Fig 1. On one hand, the two
configurations shown in Figs. 1(a) and 1(b) give identical
results from the point of view of the SU(4)-SU(2) crossover
and related physics. On the other hand, whether the QDs
are embedded [Fig. 1(a)] or side-coupled [Fig. 1(b)] to the
contacts plays a fundamental role in the transport properties
of the system, and the difference in these properties will be
explicitly analyzed below when we study the conductance.
The general discussion regarding the SU(4)-SU(2) crossover
is presented for the side-coupled QDs geometry [64]. Note that
similar physics can be obtained using instead a single carbon
nanotube QD, where the extra degree of freedom, besides
spin, is provided by the valley quantum number present in the
graphene honeycomb lattice [26,48].

The system will be described by an extension of the Ander-
son impurity model (AIM) Hamiltonian [65,66], appropriate
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FIG. 1. Capacitively coupled DQD system. U ′ (U ) is the inter-QD
(intra-QD) Coulomb repulsion, and the system is in the presence of an
external magnetic field h that acts only in the QDs. In addition, each
QD is connected to its adjacent leads by a hopping matrix element
V (not shown). The QDs are either embedded (a) into the leads or
side coupled (b) to them. It will be shown in Sec. V that a relatively
small magnetic field can polarize the current transmitted through the
QDs with a polarization parallel to the field for embedded QDs and
antiparallel to it in the case of side-coupled QDs, as schematically
illustrated in (a) and (b), respectively.

for two impurities, plus the Zeeman term, given by

Htot = Hband + HDQD + Hhyb + HZeeman, (1)

where

Hband =
∑

j,kkkj ,σ

εkkkj
c
†
kkkj σ

ckkkj σ , (2)

HDQD =
∑
j,σ

(
Vgnjσ + U

2
njσnjσ̄

)
+ U ′ ∑

σ,σ ′
n1σ n2σ ′ ,

(3)

Hhyb =
∑

j,kkkj ,σ

Vkkkj

(
cdjσ c

†
kkkj σ

+ c
†
djσ ckkkj σ

)
, (4)

HZeeman =
∑

j

gμBSz
jh, (5)

where j = 1,2 labels the QDs and the corresponding attached
contacts (after a symmetric/antisymmetric transformation
between left and right contacts), which are modeled in
Eq. (2) as noninteracting Fermi seas with dispersion εkkkj

,

where c
†
kkkj σ

(ckkkj σ ) creates (annihilates) an electron with spin
σ in contact j . Equation (3) models the QDs, introducing a
Coulomb repulsion U between electrons in the same QD, as
well as an inter-QD repulsion U ′, where c

†
djσ (cdjσ ) creates

(annihilates) an electron with spin σ in QD j, njσ = c
†
djσ cdjσ

is the number operator in QD j , and we assume that the same
gate potential Vg is applied to each QD. In Eq. (4), Vkkkj

couples
each QD to the corresponding lead (see Fig. 1). As usual,
we take the matrix element Vkkkj

= V to be independent of
momentum kkkj . Note that, unless stated otherwise, for the sake
of brevity, as n1σ = n2σ , we will from now on drop the j

subindex when referring to the spin occupation number of
the QDs. Finally, Eq. (5) describes the effect of an applied
magnetic field h acting on spins with magnetic moment gμB

TABLE I. Eigenstate, eigenenergy, assigned slave-boson (SB)
operator, and total number of electrons ntot = ∑

j,σ njσ , for the DQD
system with Zeeman splitting B, for U → ∞ and finite U ′.

Eingenstate Eigenenergy SB ntot

|0; 0〉 0 e 0

|↑; 0〉 Vg − B p
↑
1 1

|↓; 0〉 Vg + B p
↓
1 1

|0; ↑〉 Vg − B p
↑
2 1

|0; ↓〉 Vg + B p
↓
2 1

|↑; ↓〉 2Vg + U ′ d
↑↓
12 2

|↓; ↑〉 2Vg + U ′ d
↓↑
12 2

|↑; ↑〉 2Vg + U ′ − 2B d1
↑ 2

|↓; ↓〉 2Vg + U ′ + 2B d1
↓ 2

in both QDs (where μB is the Bohr magneton and g is the
gyromagnetic factor of the electrons in the QD).

Rigorously speaking, at h = 0, the system only has SU(4)
symmetry when both the gate potential Vg and the hybridiza-
tion matrix element V are independent of j , and, in addition,
U ′ = U . In particular, we assume U and U ′ to be infinite,
which restricts the QDs occupations to be either zero or
one, a condition that simplifies significantly the numerical
calculations. However, within the context of the MFSBA, we
consider a case where U ′ is finite in order to show that in
the appropriate region of the parameter space the physical
properties of the system do not depend upon the particular
value of the inter-QD Coulomb repulsion.

III. MEAN-FIELD SLAVE BOSONS APPROXIMATION
AND PROJECTION OPERATOR APPROACH

In this section, we will briefly discuss the two formalisms
used to study the properties of the DQD system. A more
detailed presentation of these two treatments is given in Ap-
pendixes A and B. Although most of the discussion is restricted
to the case where the inter-QD repulsion is equal to the intra-
QD one, i.e., U = U ′ → ∞, the case of finite U ′ is explicitly
treated in the MFSBA calculations. Although, as mentioned
above, this could be a more realistic situation, we will see that,
in the region of parameter space where |Vg| < U ′, the results
do not qualitatively depend upon the particular value of U ′/U .

A. Mean-field slave bosons approximation

As already mentioned we assume that U → ∞, which
simplifies the treatment, as it eliminates double occupied intra-
QD states from the Hilbert space. However, as just mentioned
above, we will also present results for double inter-QD
occupation, taking a finite value for U ′. Following the MFSBA
formalism [57,58], it is necessary to introduce new bosonic op-
erators. As discussed in detail in Appendix A, seven auxiliary
operators are introduced, each one associated to a different
eigenstate of the isolated DQD system, as shown in Table I.

A new Hamiltonian can be written with the help of these
operators. Restrictions on the Hilbert space are necessary
in order to remove additional nonphysical states, which
is accomplished by imposing relationships among these
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operators [Eqs. (A1) and (A2)]. The boson operators,
within the mean-field approximation [57], are replaced by
their respective expectation values: e→〈e〉, pσ →〈pσ

j 〉,
d12 →〈dσσ̄

12 〉, d1σ →〈d1
σ 〉. The restrictions on the mean

values of the bosonic operators are incorporated through the
Lagrange multipliers λ and λjσ . Following this procedure and
in order to simplify the notation, we assume that the bosons
operators denote their mean values. In this case, the effective
Hamiltonian can be written:

Heff =
∑

j,kj ,σ

εkj
nkj ,σ +

∑
j,σ

(Vg − σB)c†dj,σ cdj,σ

+U ′ ∑
σ

d
σ σ̄†
12 dσσ̄

12 +
∑

σ

(U ′ ± 2B)d1†
σ d1

σ

+
∑
j,σ

Vj

(
c
†
kj ,σ

cdj,σ + h.c
)
Zjσ + λ(I − 1)

+
∑
j,σ

λj,σ (c†dj,σ cdj,σ − Qj,σ ). (6)

The effective Hamiltonian corresponds to a one-body
quasifermionic system in which the local energy levels in
each QD are renormalized by its respective spin-dependent
Lagrange multiplier: εσ = Vg − σB + λσ . As discussed in
Appendix A, the bosonic operator expectation values and
the Lagrange multipliers (λj,σ→λσ ), necessary to impose the
charge conservation conditions, are determined by minimizing
the total energy and the free energy of the system. This requires
the self-consistent solution of a system of nine equations, thus
obtaining the parameters that define the effective one-body
Hamiltonian, Eq. (6), which can then be solved by applying a
standard Green’s function method.

B. Projection operator approach

The ground-state energy, E, of our N -particle system
satisfies the eigenvalue Schrödinger equation

H |�〉 = E|�〉, (7)

where |�〉 represents the ground-state eigenvector of the model
Hamiltonian, Eq. (1). We proceed by projecting its Hilbert
space into two subspaces, S1 and S2, and constructing a
renormalized Hamiltonian Hren that operates in just one of
them [36,37]. For the case of subspace S1,Hren can be written
as [65],

Hren = H11 + H12(E − H22)−1H21, (8)

where,

Hij = |i〉〈i|H |j 〉〈j |, (9)

and state |i〉 belongs to subspace Si . In our case, subspace S1

contains only state |1〉, consisting of the tensor product of the
ground state of the two Fermi seas with the uncharged DQD.
All the other states are contained in subspace S2, which can
be accessed from subspace S1 through successive applications
of the H21 operator. It is convenient to define �E, as the
difference between the ground-state energy E and 2εT , the
sum of the energies of the two uncoupled contact Fermi seas,

�E = E − 2εT , (10)

where εT is given by

εT = 2
∫ 0

−2t

ωρ(ω)dω, (11)

and ρ(ω) is the density of states of the Fermi sea. As shown in
Appendix B, �E can be found by solving

�E = f1(�E), (12)

where f1(ξ ) and f0(ξ ), given by

f1(ξ ) =
∑

σ

∫ 0

−2t

{
ρ(ω)

× 2V 2

ξ + ω − Vg + σB − f0(ξ + ω)

}
dω, (13)

and

f0(ξ ) =
∫ 2t

0

{
ρ(ω)

V 2

ξ − ω − f1(ξ − ω)

}
dω, (14)

are obtained self-consistently.
As briefly described above, the POA results depend on the

choice of a convenient S1 subspace, where the model Hamil-
tonian will be projected, resulting in an effective Hamiltonian.
In our case, consisting of two identical QDs with infinite
intra-QD Coulomb repulsion, two auxiliary functions have
to be self-consistently obtained. Although this requires only
a moderate numerical effort, it becomes more involved, and
therefore computationally more expensive, in a more general
situation of two different QDs and finite intra-QD Coulomb
repulsion, as the number of functions to be self-consistently
determined increases accordingly.

IV. SU(4)-SU(2) CROSSOVER

In this section, we study the SU(4)-SU(2) crossover driven
by an external magnetic field applied to the DQD system. The
QD occupation numbers are used to characterize the crossover.
With this objective, 〈n↑〉 and 〈n↓〉 at each QD is calculated as a
function of the gate potential using both methods, the MFSBA
and the POA. Unless stated otherwise, the parameters taken
to perform the calculations (in units of �, see below) are as
follows: the coupling between each QD and the corresponding
contact is V = 8.0, the half bandwidth of the contacts is D =
64.0, and the Zeeman splitting is given by B = 3.2 × 10−3.
Taking typical values for GaAs, for instance, this corresponds
to a magnetic field h � 0.1 Tesla. Our unit of energy, �, is the
broadening of the localized QD levels, i.e., � = πV 2ρ(εF ),
where ρ(εF ) is the density of states at the Fermi energy.

We discuss first the results obtained using the MFSBA.
The renormalized spin-dependent QD local energy ε̃σ , shown
in Fig. 2(a) as a function of the gate potential, is the same for
both QDs, but is nevertheless spin dependent due to the applied
external magnetic field. Results for σ = ↑ and σ = ↓ are given
by the solid (red) and the dashed (blue) curves, respectively.
As Vg decreases, starting around the Fermi energy εF = 0,
the renormalized energies (for different spin projections) are
undistinguishable down to Vg ≈ −8, where they split (ε̃↓ >

ε̃↑). This indicates that a change in the ground state occurs for
Vg � −8, region in the parameter space where the ground-state
SU(4) symmetry is lost. In particular, continuously reducing
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FIG. 2. (a) Renormalized energy ε̃σ and (b) Z2
σ as a function of

the gate potential Vg for σ = ↑ [solid (red) curve] and σ = ↓ [dashed
(blue) curve] for the DQD system, with U = U ′ → ∞, D = 64.0,
and B = 3.2 × 10−3.

Vg , the renormalized energy ε̃↑ displays a typical Kondo
behavior, within the MFSBA approach, being almost indepen-
dent of the gate potential and taking a value in the immediate
vicinity of the Fermi energy, representing the SU(2) Kondo
peak, while ε̃↓ maintains its value above the Fermi energy.

This spin-dependent splitting also occurs for the parameter
Z2

σ , which renormalizes the matrix elements that connect
the QDs to the electron reservoirs Ṽσ = V Zσ , as shown in
Fig. 2(b), where Z2

σ decreases with the gate potential, and takes
different values for different spin orientations for Vg < −8.0,
in agreement with Fig. 2(a). As Ṽσ controls the width of
the peak associated to ε̃σ , one expects that the peak for
σ = ↑, which reaches the Fermi level (εF = 0) as Vg decreases
[solid (red) curve in Fig. 2(b)], and therefore determines the
properties of the Kondo ground state, such as the Kondo
temperature, will get narrower as the SU(4)-SU(2) transition
occurs, implying that T

SU (4)
K 
 T

SU (2)
K . This indeed will be

shown to be the case by an explicit calculation of the width of
the QD levels, as shown next, in Fig. 3.

The results shown in Figs. 2(a) and 2(b) can be better
understood by comparing the QD’s local density of states
(LDOS), for each spin projection, for gate potential values
above and below Vg = −8, where the ε̃σ splitting occurs.
The LDOS results for the two identical QDs are shown in
Fig. 3, for Vg = −6.4 [Fig. 2(a)], −8.0 [Fig. 2(b)], −9.6
[Fig. 2(c)], −11.84 [Fig. 2(d)], and −13.76 [Fig. 2(e)], for
σ = ↑ [solid (red) curves] and σ = ↓ [dashed (blue) curves].
Figure 3(a) illustrates the situation for gate potential values
above the splitting, where the LDOS peaks for both spin
projections are essentially superposed, showing that although
the magnetic field has broken the SU(4) symmetry, the ground
state preserves it, as this better minimizes its energy. Although
not explicitly shown, this situation prevails in the interval
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FIG. 3. Local density of states as a function of ω for σ =
↑ [solid (red) curve] and σ = ↓ [dashed (blue) curve], for
U = U ′ → ∞, D = 64.0, B = 3.2 × 10−3, and different values of
(a) Vg = −6.4, (b) −8.0, (c) −9.6, (d) −11.84, and (e) −13.76.

−8.0 < Vg < 0. As Vg keeps decreasing, the LDOS peak
narrows and splits up, both of the resulting peaks still located
above the Fermi energy, as shown in Fig. 3(b) of Fig. 3.
Therefore, below Vg = −8, the ground state responds to the
Zeeman splitting, caused by the magnetic field, by explicitly
taking the Hamiltonian’s SU(2) symmetry, as now this better
minimizes its energy. This SU(2)-Kondo is an orbital-Kondo
state, its degenerate DQD states being (using notation from
Table I) |0; ↑〉 and |↑; 0〉.

Further decreasing Vg leads to further narrowing of both
peaks, accompanied by a larger splitting between them, which
is achieved by the σ = ↑ peak accelerating its shift towards
the Fermi energy, while the σ = ↓ peak moves slightly up
in energy. The narrowing of the peaks, as first discussed in
relation to the variation of Z2

σ with Vg [see Fig. 2(b)], is
compatible with the fact that the Kondo temperatures of the
SU(2) and SU(4) Kondo ground states satisfy T

SU (4)
K 
 T

SU (2)
K

(see Ref. [50]). This is clearly illustrated by the sizable
narrowing of the solid (red) peak from Fig. 3(a) to Fig. 3(e).

As will be discussed below in detail, the spin-dependent
renormalization reflects the high spin-filter efficiency of the
device and it is also critical to understand, within the MFSBA,
the abrupt changes in the QD’s occupation as a function of the
gate potential.
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FIG. 4. QD occupation numbers 〈nσ 〉 and 〈nt 〉 = 〈n↑〉 + 〈n↓〉 as
a function of Vg . (a) POA results at zero magnetic field for 〈nσ 〉
[(red) circles] and 〈nt 〉 [(black) squares], as well as a comparison of
〈n↑〉, 〈n↓〉, and 〈nt 〉 results obtained with POA (symbols) with those
obtained with MFSBA (solid lines), for B = 3.2 × 10−3. Note that
results for MFSBA and POA agree semiquantitatively. (b) POA 〈nσ 〉
results for B = 3.2 × 10−4, 3.2 × 10−3, 3.2 × 10−2, and 3.2 × 10−1.
All results in both panels are for D = 64.0,

Taking the same parameters as in Figs. 2 and 3, the spin-
dependent electron occupation in each QD 〈nσ 〉, as a function
of Vg , is calculated using POA and MFSBA, as shown in
Figs. 4(a) and 4(b). In the case of MFSBA, the occupation
numbers are calculated by integrating the density of states at
the QDs obtained from the corresponding Green’s function.
To calculate the same quantities in the POA formalism, we
take the derivative of the ground-state energy with respect to
the gate potential Vg . The B = 3.2 × 10−3 results in Fig. 4(a)
show a semiquantitative agreement between POA (symbols)
and MFSBA (solid lines).

Inspecting the 〈nσ 〉 POA results in Fig. 4(b), for four
different Zeeman splitting values, B = 3.2 × 10−4, 3.2 ×
10−3, 3.2 × 10−2, and 3.2 × 10−1, shows that while the QD
level Vg is near the Fermi level and, as a consequence, the
QDs are still in the charge fluctuating regime, the two smaller
Zeeman splittings (B = 3.2 × 10−4 and 3.2 × 10−3) are not
able to minimize the energy of the system (thus polarizing the
QDs) when compared to the gain in energy brought by the
SU(4)-Kondo-singlet ground state. Therefore, in this regime,
the magnetic field is not a relevant quantity, as the ground
state does not reflect the broken SU(2) symmetry introduced
by the field, as already discussed above (see also Ref. [11]).
However, as the gate potential is further reduced, and the
Kondo temperature T

SU (4)
K exponentially decreases, eventually

becoming smaller than B, a sudden change in the behavior of
the occupation numbers 〈nσ 〉 occurs: 〈n↓〉 reaches a maximum
and undergoes a sharp drop, tending to zero as Vg is further

reduced, while 〈n↑〉 keeps increasing, eventually saturating
at 〈n↑〉 = 1. Obviously, this occurs because the Zeeman
splitting B has overtaken T

SU (4)
K . On the other hand, for the

larger Zeeman splittings (B = 3.2 × 10−2 and 3.2 × 10−1),
the polarization starts to occur for considerably larger values
of Vg , as a small decrease in Vg will be enough to make
T

SU (4)
K � B. It should be clear, however, that the discussion

above does not imply that B should be compared to the
zero-field T

SU (4)
K , as a finite magnetic field does suppress the

Kondo temperature, as shown in Fig. 7(c) [67,68].
The inflexion point in the function 〈n↓〉(Vg) (where

d〈n↓〉/dVg = 0) will be used to characterize the SU(4)-SU(2)
crossover. The results in Fig. 4(b) indicate that V max

g , the value
where the maximum for 〈n↓〉 occurs, as expected, strongly
depends upon the magnetic field: for larger B values, the split
between 〈n↑〉 and 〈n↓〉 occurs for values of V max

g nearer to
the Fermi energy. On one hand, this reflects the fact that,
as the field increases for a fixed value of gate potential, a
Zeeman-split ground state will eventually have a lower energy
than an SU(4)-Kondo-singlet ground state. On the other hand,
the lower is B, more charging of the QDs will be required to
achieve a splitting, thus resulting in a lower value of V max

g .
At this point, it is interesting to mention that the qualitative

results for the occupation numbers do not depend upon taking
U ′ → ∞. As the MFSBA calculations are not restricted to the
condition U = U ′, we show in Fig. 5 the variation of 〈n↑〉
and 〈n↓〉 with Vg for U ′ = 64.0, keeping U → ∞. The results
obtained qualitatively agree with results for U = U ′ → ∞. As
mentioned above, although in this case the Hamiltonian does
not have an explicit SU(4) symmetry (not only because of the
presence of a finite magnetic field, but also because U ′ �= U ),
the ground state of the DQD system still preserves this sym-
metry (up to Vg ≈ −7.0), as an emergent property [51], and
an SU(4)-SU(2) crossover still occurs (compare with Fig. 4).

It is believed that, in the presence of a magnetic field,
a broken SU(4) symmetry will be clearly observable only
when B ≈ T

SU (4)
K [67]. In order to clarify this point, in Fig. 6

we present a semilog plot with POA results for the Zeeman
splitting Bmax in the left axis (in logarithmic scale), and the
corresponding values of V max

g , at which the maximum in 〈n↓〉
occurs, in the horizontal axis. The variation in Bmax spans more
than four orders of magnitude. The main panel results are for
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FIG. 5. MFSBA results for 〈n↑〉 [(red) solid], 〈n↓〉 [(blue)
dashed], and 〈nt 〉 [(green) dotted curve], as a function of gate
potential in a DQD system, for D = 64.0, U → ∞, U ′ = 64.0, and
B = 3.2 × 10−3. Note that the results are qualitatively the same as
the ones obtained for U = U ′ → ∞ (compare with Fig. 4).
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FIG. 6. Semilog plot of the Bmax = f (V max
g ) function calculated,

using POA, for three different values of D = 64.0 [(red) circles],
44.4 [(green) squares], and 16.0 [(blue) triangles]. Note that the lack
of D-dependence of the exponential factor a [see Eq. (15)] reveals
the universal character of the SU(4)-SU(2) crossover, which is driven
by the Zeeman splitting. The Kondo temperature curves for SU(4)
(dotted) and SU(2) (dashed) symmetries [obtained from Eq. (16)]
show that Bmax has an energy scale intermediate between T

SU (4)
K and

T
SU (2)
K .

D = 64.0 [(red) circles], with two extra sets of results plotted
in the inset, for D = 44.4 [(green) squares] and 16.0 [(blue)
triangles]. The results in the main panel and in the inset clearly
show an exponential dependence of Bmax on V max

g , therefore a
least-squares fitting was done, using the expression

Bmax = D exp
(
aV max

g

)
, (15)

and the results of these fittings were plotted as solid lines. The
value of the Zeeman splitting, Bmax, is the relevant energy scale
that controls the SU(4)-SU(2) crossover, which, according to
our definition, occurs when Vg = V max

g . This energy scale has
a universal behavior in the Kondo regime, as described by
Eq. (15), extending into the charge fluctuating regime as well,
although it loses its universal character in the neighborhood
of the Fermi energy. This is illustrated in Fig. 6 by the fact
that the two nearest points to the Fermi energy no longer
coincide with the straight line given by Eq. (15). The loss
of universality is an expected result, clearly showing that the
universal behavior is restricted to the Kondo regime, as is the
case for the Kondo temperature. Anyhow, it is important to
emphasize that for larger values of B, as illustrated for B =
3.2 × 10−1 in Fig. 4(b), 〈n↓〉 reaches a maximum along the
entire charge fluctuation region, therefore defining the energy
scale Bmax as controlling the SU(4)-SU(2) crossover also in
this regime.

In addition, the results in the inset for three different values
of D (keeping �, our unit of energy, constant) clearly show
that the parameter a ∼ 1.23, from Eq. (15), is independent
of D, illustrating the universality of the Zeeman splitting
scale of energy that characterizes the SU(4)-SU(2) crossover.
Finally, the least-squares fitting of the POA results (points)
using Eq. (15) also shows that the choice of the band half
width D as prefactor is correct, as the fitting recovers, with
good numerical accuracy, the values of D used for the POA
calculations [69].
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FIG. 7. (a) POA results for 〈n↑〉 (solid lines) and 〈n↓〉 (dashed
lines), as a function of Zeeman splitting B, for four different values of
Vg = −9.6 [(red) circles], −11.1 [(magenta) down triangles], −14.4
[(green) squares], and −19.2 [(blue) up triangles]. Note both the very
gradual spin polarization when the system is in the charge fluctuation
regime [(red) circles], and the very abrupt transition, at very small
fields, from SU(4) to SU(2) Kondo when the system is deep into the
SU(4) Kondo state at zero field [(blue) up triangles]. (b) Same data as
in (a), but now plotted against B/T

SU (4)
K instead of just B. All data sets

collapse into two single curves, one for each spin orientation. (c) Left
vertical axis: POA results for 〈nσ 〉 as a function of Zeeman splitting B

for Vg = −11.11 [(magenta) down triangles]. Right vertical axis (log
scale): Kondo temperatures T

SU (4)
K (dotted line) and T

SU (2)
K (dashed

line) at B = 0 are represented by horizontal lines. The solid line is
the Kondo temperature for the crossover state, as a function of B,
obtained as a variational interpolation between the SU(4) and SU(2)
states [67,68,72]. All calculations done for D = 64.0, except for the
Vg = −11.1 results, which were obtained for D = 44.4.

Also shown in the same plot (right axis, in logarithmic
scale too) are the Kondo temperatures T

SU (2)
K (dashed line)

and T
SU (4)
K (dotted line) obtained through the expression [70]

T
SU (N)
K = D exp(πVg/N), (16)
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which was obtained through a U → ∞ variational wave
function for the ground state of the system [71], which
coincides as well with the mean-field solution of a slave boson
formalism (also in the same limit) [70]. These curves are
shown in order to facilitate the comparison of their exponential
dependence on Vg , as shown in Eq. (16), with the exponential
dependence of the Zeeman splitting Bmax(V max

g ), as described
in Eq. (15). These two Kondo temperatures are displayed just
for values of V max

g < −7, which roughly corresponds to the
Kondo regime, to emphasize that the expression above is not
valid in the charge fluctuation regime.

Surprisingly enough, the Zeeman splitting exponent factor
a ∼ 1.23 in Eq. (15) has an intermediate value between
those of the T

SU (4)
K and T

SU (2)
K Kondo states [see Eq. (16)]:

π/4 < a < π/2. Moreover, a simple inspection of Fig. 6 shows
that the value of Bmax is between one to two orders of
magnitude less than T

SU (4)
K and equally greater than T

SU (2)
K ,

the larger difference occurring for larger values, in magnitude,
of Vg , deep into the Kondo regime. As the value of the
exponent factor controlling the Zeeman splitting is between
those corresponding to T

SU (4)
K and T

SU (2)
K , it is possible, under

the effect of small magnetic fields, the operation of the DQD
system in a regime of high spin polarization (〈n↑〉 
 〈n↓〉),
with important consequences for its spin filter performance, as
discussed in the next section.

To properly characterize the SU(4)-SU(2) crossover, it is
interesting to do the opposite of what was done up to now,
i.e., instead of fixing the external field and analyzing how 〈nσ 〉
depends upon Vg , we study the variation of 〈nσ 〉, at fixed Vg ,
as a function of magnetic field. This analysis is done using
POA. The main idea is to use Vg to place the system, at zero
field, either well inside the SU(4) Kondo regime or closer to the
charge fluctuation region, and then analyze how the application
of a magnetic field changes the system’s properties. We study
the spin occupation numbers 〈n↑〉 and 〈n↓〉, which are shown
in Fig. 7(a) (where solid lines indicate 〈n↑〉 and dashed ones
〈n↓〉) for four different values of gate potential: Vg = −19.2
[(blue) up triangles] places it well inside the SU(4) Kondo
regime; Vg = −9.6 [(red) circles] places the system nearer
to the charge fluctuation regime; while Vg = −14.4 [(green)
squares] places it halfway between these two. These three
data sets were obtained for D = 64.0 and we add a fourth
one [(magenta) down triangles] at Vg = −11.1, with a smaller
D = 44.4, to analyze the effect of a different half bandwidth
D on the results obtained, as discussed below. The results in
Fig. 7(a) indicate that, closer to the charge fluctuation regime
frontier, (Vg = −9.6 and −11.1), and even well inside the
Kondo SU(4) regime (Vg = −14.4), the spin polarization, as
measured by 〈n↑〉 − 〈n↓〉, is gradually raised in response to an
increasing (from zero) magnetic field (see the circles, down
triangles, and squares curves). This behavior can be explained
by the larger values of T

SU (4)
K for Vg values closer to the Fermi

energy (see dotted curve in Fig. 6) as it will take a larger value
of field to force the system to transition from the SU(4) to the
SU(2) regime. This is especially evident for the Vg = −9.6
results [(red) circles, with the highest T

SU (4)
K ], where a larger

field is needed to generate a sizable spin polarization. One
would expect then that the system will require just a very small
magnetic field to transition from the SU(4) Kondo regime

to the orbital SU(2) Kondo regime once T
SU (4)
K decreases

substantially. This is exactly what is observed for Vg =
−19.2 [(blue) up triangles], where T

SU (4)
K is much smaller

(see Fig. 6) and the system responds much more abruptly to the
magnetic field. In reality, even results for Vg = −14.4 [(green)
squares], where T

SU (4)
K is not so low, show that a small external

magnetic field h ≈ 0.1 Tesla (corresponding to B ≈ 0.0022,
if one takes, for instance, the gyromagnetic factor for GaAs),
is enough to obtain a sizable spin polarization, as shown in
Fig. 7(a).

The results in Fig. 7(a), despite being interesting, were
somewhat expected. What makes them more relevant are the
results presented in Fig. 7(b), where it is shown that if the
〈n↑〉 and 〈n↓〉 data in Fig. 7(a) are plotted against B/T

SU (4)
K

[with T
SU (4)
K as obtained from Eq. (16)], instead of against just

B, all the curves for different parameters collapse into each
other. This is true even for the Vg = −11.1 data [(magenta)
down triangles], which has a different value of D in relation
to the other data sets. This universality result shows that there
is a deep connection between the spin polarization and the
B/T

SU (4)
K ratio when an external magnetic field is applied. It is

important to emphasize that this universality is obtained when
adopting Eq. (16) to calculate T

SU (4)
K , which gives additional

support to the use of Eq. (16) to describe the SU(4) Kondo
state in the U → ∞ limit.

In Fig. 7(c) we reproduce (left axis) the 〈nσ 〉 results for
Vg = −11.1 and D = 44.4, as a function of Zeeman splitting
B [(magenta) down triangles], together with (right axis, in log
scale) the Kondo temperatures T

SU (4)
K (dotted line) and T

SU (2)
K

(dashed line) at zero magnetic field (thus, shown as horizontal
lines), obtained from Eq. (16). As previously discussed, in
the crossover region the system is in a Kondo ground state
that is going through a transformation from SU(4) to SU(2)
symmetry. An estimation of the Kondo temperature of this
crossover state, and its dependence on the magnetic field, can
be obtained from a variational calculation that interpolates, as
a function of the magnetic field, between T

SU (4)
K at B = 0 and

T
SU (2)
K obtained for B → ∞ [72]. This interpolated Kondo

temperature, denoted as T Var
K , is shown in Fig. 7(c) as a black

solid curve. Obviously, it starts at T
SU (4)
K , decreases with B,

and, for the small interval of field variation in the figure,
it stays at least three orders of magnitude above T

SU (2)
K . In

addition, for B ≈ 0.0022 (which corresponds to h ≈ 0.1 Tesla,
as mentioned above), for example, T Var

K is almost equal to
T

SU (4)
K , which, for the parameter values taken, results to be of

the order of 10 K. These values of field and temperature are
perfectly accessible experimental conditions for operation of
the DQD as a spin filter, as described in the next section.

V. SPIN FILTER

Besides the natural intrinsic interest in systems whose
properties depend on spin orientation, they are also important
because, under adequate control, they can have very significant
applications. The spin-filter properties of a QD, or structures
of QDs, is one of these very interesting aspects that have
been studied [14–20]. The proposal of producing polarized
lead currents as they go through a QD is based on the idea
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that the Zeeman splitting can be made much stronger in the
QD than in the leads, thus creating a spin filter. Spin-filter
phenomena are obtained when the QD spin-up sublevel is
located in the transport window, while the spin-down one
can be manipulated to be just outside of it. This requires
high magnetic fields (even considering renormalized g factors
for the QD) and weak coupling of the QD to the leads,
therefore resulting in very sharp localized states, thus properly
separating in energy the spin-up from the spin-down level.
The first restriction introduces experimental limitations to the
applicability of the device, while the last condition reduces
significantly the intensity of the current circulating through it.
Neither of these difficulties are present in our case because
our DQD system, being in the Kondo regime, has a very sharp
Kondo spin-polarized level, tuned to be at the vicinity of the
Fermi energy, well separated from the other spin polarization
[see, for example, Fig. 2(a)]. As the device is required to
be in the Kondo regime, the temperature should be below
the Kondo temperature, which is a limitation. Fortunately,
however, the Zeeman splitting required to separate 〈n↑〉 from
〈n↓〉, as already discussed, although below T

SU (4)
K , can be taken

to be very near it, much larger than T
SU (2)
K .

In order to clarify these points and to show the spin-filter
potentialities of our DQD system, we calculate the current as a
function of the relevant parameters. The quantum conductance,
a dynamical property, can be obtained, within the context of
the MFSBA, using the Keldysh formalism [73]. The current
through one of the QDs is given by [74],

Jc = 2e

h

∫ ∞

−∞
T (ε)[f (ε − εL) − f (ε − εR)]dε, (17)

where T (ε) is the transmission, f (ε) the Fermi-Dirac distri-
bution and εL,R are the Fermi energies of the left and right
reservoirs, respectively. For an infinitesimal bias potential
(thus in the linear regime, where inelastic processes can
be neglected [75]), from Eq. (17) one obtains the familiar
expression for the conductance

G = 2e2

h
T (εF ), (18)

where the transmission, at the Fermi energy, is given by [74],

T (εF ) = 4π2Ve
4ρ1(εF )ρ1̄(εF )

∣∣Gσ
00(εF )

∣∣2
, (19)

where ρ1(εF ) = ρ1̄(εF ) is the LDOS at the first site of the leads,
(see labeling in Fig. 1). For an embedded QD configuration
[see Fig. 1(a)], the Green’s function Gσ

00(εF ) is given by
Gσ

dd (εF ), which is the dressed Green’s function at the QD, and
Ve = V . In the case of side-coupled QDs [Fig. 1(b)], Ve is the
nearest-neighbor hopping matrix element in the tight-binding
representation of the leads, i.e., Ve = t , and Gσ

00(εF ) is given
by

Gσ
00(εF ) = g0 + g2

0V
2Gσ

dd (εF ), (20)

where g0 = −i/
√

4t2 − w2 corresponds to the Green’s func-
tion at the first site of a semi-infinite tight-binding chain.

This calculation is straightforward for the MFSBA, as
the Green’s functions can be obtained directly. From the
perspective of POA, their values at the Fermi energy have to be
calculated from the previously obtained electronic occupations

at the QDs, using the Friedel sum rule [65]. In the next few
paragraphs we briefly describe how to do that.

The Green’s function for a QD connected to an electron
reservoir can be written as

Gσ
dd (ω) = 1

ω − Vg − �1B(ω) − �MB(ω) + iη
, (21)

where �1B(ω) and �MB(ω) are the one- and many-body self-
energies, respectively; and η is a small displacement in the
imaginary plane to regularize the Green’s function for values
of ω outside the band defined by the Fermi sea.

For simplicity, we assume a flat band to describe the leads
density of states. Using the identity,

∂

∂ω
ln

[
Gσ

dd (ω)
]−1 = Gσ

dd (ω)

(
1 − ∂

∂ω
�1B(ω) − ∂

∂ω
�MB(ω)

)
,

(22)

then integrating both sides, using that

〈nσ 〉 = − 2

π

∫ εF

−∞
�{

Gσ
dd (ω)

}
dω (23)

(where �{· · · } means taking the imaginary part) and imposing
the Fermi-liquid conditions [65], we obtain that

�
{
− 1

π
ln

[(
Gσ

dd (ω)
)−1]}εF

−∞
= 〈nσ 〉

2
. (24)

Now, we explicitly introduce the phase of the Green’s
function,

Gσ
dd (ω) = ∣∣Gσ

dd (ω)
∣∣eiφ(ω). (25)

The asymptotic behavior of the one-body propagator,
Gσ

dd (ω → ∞) = 1/(ω+iη), and some algebra, allows us to write
that

φ(−∞) = π, (26)

and

φ(εF ) = π

(
1 − 〈nσ 〉

2

)
. (27)

Then, from the definition of φ and Eq. (24), it is possible to
obtain

∣∣Gσ
dd (εF )

∣∣2 = sin2
[

π
2 〈nσ 〉]

�2
. (28)

From Eqs. (18), (19), and (28) the conductance can be
written in terms of the occupations numbers 〈nσ 〉, for the case
of the embedded QDs, resulting in

Gσ

(
e2

h

)
= sin2

[
π

2
〈nσ 〉

]
. (29)

For side-coupled QDs it is possible to relate |Gσ
00(εF )|2

with the electronic occupations at the QDs 〈nσ 〉 through
Eq. (20). Reasoning in an analogous way as just done above,
the conductance results to be

Gσ

(
e2

h

)
= 1 − sin2

[
π

2
〈nσ 〉

]
. (30)

Using the equations just obtained, we show in Fig. 8(a)
MFSBA (lines) and POA (symbols) conductance results

245133-9



V. LOPES, R. A. PADILLA, G. B. MARTINS, AND E. V. ANDA PHYSICAL REVIEW B 95, 245133 (2017)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0

(a)
U = U ' → ∞
B = 3.2 10-3

D = 64.0

G
σ

(e
2 /h

) POA  ↑
POA  ↓

MFSBA ↑
MFSBA ↓

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0

(b)

G
σ

(e
2 /h

)

Vg

POA  ↑
POA  ↓

MFSBA ↑
MFSBA ↓

FIG. 8. MFSBA (lines) and POA (symbols) conductance for spin
σ electrons versus Vg for D = 64.0, B = 3.2 × 10−3, and U = U ′ →
∞ for cases (a) embedded and (b) side-coupled to the leads.

obtained for the case of embedded QDs, under the effect of an
external magnetic field, as a function of Vg . An inspection of
the figure allows us to conclude that both approaches provide
qualitatively equivalent results for the transport properties.
In the region Vg < −12.0 (for both panels) the spin-up
conductance is almost 2e2/h, while it is close to zero for
spin-down. This is an interesting result, showing that even for
relatively low magnetic fields B = 3.2 × 10−3 (h < 0.1 Tesla,
for the case of GaAs), in the appropriate region of the parameter
space, the DQD device operates as a very effective spin filter.
It is interesting to notice that, in the case of side-coupled QDs,
Fig. 8(b), the role of the electron spin is interchanged, i.e.,
the transmitted electrons are down-spins (opposing the field
direction), while for embedded QDs the transmitted electrons
are up-spins (along the field direction). For the side-coupled
QD configuration [Fig. 1(a)], when the system is in a Kondo
regime, an up-spin electron circulating through the system
has two channels to go through, one connecting the leads
directly, and another channel that visits the side-coupled QD.
As they have opposite phases, the destructive interference
between them gives rise to a typical Fano antiresonance. This
destructive interference, regarding spin polarization, results in
the opposite effect (polarization opposite to field direction) in
comparison to embedded QDs. In this case, the spin-down elec-
tron is the one that is transmitted, while the spin-up conduc-
tance rapidly vanishes for decreasing Vg , as shown in Fig. 8(b).

VI. CONCLUSIONS

We studied the SU(4)-SU(2) crossover driven by an external
magnetic field for two capacitively coupled QDs connected to
metallic leads. The crossover is characterized by the Zeeman
splitting Bmax at which the 〈n↓〉 has a well-defined maximum as
a function of the gate potential for a value denoted as V max

g . The
functional dependence of Bmax = f (V max

g ), turns out to have

a universal character, Bmax = D exp (aV max
g ), in the Kondo

regime, as discussed in detail in Fig. 6. This universality is
lost as one enters into the charge fluctuating regime, the same
way as it happens to the Kondo temperature. However, it is
important to emphasize that the occurrence of the maximum
extends into the valence fluctuating regime, what permits to
define the energy scale Bmax as the magnitude that controls the
SU(4)-SU(2) crossover independently of the system regime.

We were able to show that already in the crossover region,
in an SU(2) ground state, for an effective Kondo temperature
near the SU(4) one, the electronic populations at the QDs
are significantly spin polarized along the magnetic field.
Moreover, depending upon the parameters of the system, this
can be obtained even for small magnetic fields (h � 0.1 Tesla
for the case of GaAs and a Kondo temperature that could be of
the order of several degrees Kelvin). In that respect, we should
mention that, in comparison to a similar device proposed in
Ref. [15], our device can operate at considerably lower field.

In addition, this DQD structure was studied adopting the
MFSBA and a POA formalisms, which were able to de-
scribe the mentioned properties, giving qualitatively equivalent
results. With this purpose, it was necessary to extend the
POA, originally derived to study one Kondo impurity, to
the analysis of two capacitively coupled local levels. This
extension provides almost exact results, as far as the static
zero-temperature properties are concerned.

We conclude that this DQD system, under the influence
of a magnetic field, has very interesting crossover properties
and, studying its conductance, that it could also operate as an
effective spin filter, with potential applications in spintronics.
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APPENDIX A: MEAN-FIELD SLAVE BOSONS
APPROXIMATION

In the slave bosons approximation, extra bosonic operators
are introduced to represent all the possible states of charge
occupation of our DQD system. In our case these operators are
defined in Table I in the main text. The charge conservation
condition for each QD and the completeness condition impose
relations that the boson operators should fulfill, given by

Qjσ = p
†
jσ pjσ + d

σσ̄†
12 dσσ̄

12 δ1j + d
σ̄σ†
12 dσ̄σ

12 δ2j d1†
σ d1

σ

= c
†
dj,σ cdj,σ , (A1)

and

I = e†e +
∑
j,σ

p
†
jσpjσ +

∑
σ

d
σ σ̄†
12 dσσ̄

12 +
∑

σ

d1†
σ d1

σ = 1,

(A2)

where Qjσ is the charge per spin in QD j = 1,2, for σ =
↑/↓, I = 1 defines the completeness condition, and δij is the
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Kronecker delta. The fermionic operators of the impurity,
in the context of the slave bosons formalism, transform as
follows: c

†
dj,σ→Z

†
j,σ c

†
dj,σ , where the Zjσ operator, consisting

of all bosonic operators associated with processes in which an
electron with spin σ is annihilated, is defined as

Zjσ = Q
− 1

2
jσ

(
e†pjσ + p

†
j̄ σ̄

(
dσσ̄

12 δ1j + dσ̄σ
12 δ2j

)

+p
†
j̄σ

d1
σ

)(
1 − Q

− 1
2

jσ

)
. (A3)

The mean-field approximation of this formalism, the so-called
MFSBA, consists in replacing the bosonic operators by their
mean values. For the sake of simplicity, they are named
by the same letter as the operators themselves. These mean
values and the Lagrange multipliers λ and λσ , incorporated
to satisfy the slave boson conditions, are determined by
minimizing the free energy of the system. These conditions
create a set of nine nonlinear equations (one for each of the
six bosonic operators and three Lagrange multipliers), which
should be self-consistently solved to obtain the parameters of
the effective one-body Hamiltonian:

∂〈Heff〉
∂e

= 2
∑

σ

V
∂Zσ

∂e
(〈c†k,σ cd,σ 〉 + H.c.) + 2λe = 0,

(A4)

∂〈Heff〉
∂p↑

= 2
∑

σ

V
∂Zσ

∂p↑
(〈c†k,σ cd,σ 〉 + H.c.)

+ 4(λ − λ↑)p↑ = 0, (A5)

∂〈Heff〉
∂p↓

= 2
∑

σ

V
∂Zσ

∂p↓
(〈c†k,σ cd,σ 〉 + H.c.)

+ 4(λ − λ↓)p↓ = 0, (A6)

∂〈Heff〉
∂d12

= 2
∑

σ

V
∂Zσ

∂d12
(〈c†k,σ cd,σ 〉 + H.c.)

+ 4(λ − λ↑ − λ↓ + U ′)d12 = 0, (A7)

∂〈Heff〉
∂d1↑

= 2
∑

σ

V
∂Zσ

∂d1↑
(〈c†k,σ cd,σ 〉 + H.c.)

+ 2(λ − 2λ↑ + U ′ − 2μBB)d1↑ = 0, (A8)

∂〈Heff〉
∂d1↓

= 2
∑

σ

V
∂Zσ

∂d1↓
(〈c†k,σ cd,σ 〉 + H.c.)

+ 2(λ − 2λ↓ + U ′ + 2μBB)d1↓ = 0, (A9)

∂〈Heff〉
∂λ

= e2 + 2p2
↑ + 2p2

↓ + 2d2
12 + d2

1↑ + d2
1↓ − 1 = 0,

(A10)

∂〈Heff〉
∂λ↑

= 〈c†d↑cd↑〉 − p2
↑ − d2

12 − d2
1↑ = 0, (A11)

∂〈Heff〉
∂λ↓

= 〈c†d↓cd↓〉 − p2
↓ − d2

12 − d2
1↓ = 0, (A12)

where Heff is given by Eq. (6), and e2, p2
σ , d2

12, d
2
1σ , as

previously mentioned, are taken to be the mean values of the
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FIG. 9. Expectation values of the bosonic operators
e2, 2p2

σ , 2d2
12, d

2
1σ (per spin σ ) as a function of Vg , for

D = 64.0, B = 3.2 × 10−3, and U = U ′ → ∞.

corresponding bosonic operators. Figure 9 shows results of
all these mean values, as functions of Vg , for U = U ′ → ∞
and B = 10−4. For positive values of Vg , the empty QD
state, represented by the mean value e2, is dominant, but
rapidly decreases as Vg approaches the Fermi level. We can
observe the splitting of the spin-dependent occupancy p2

σ , for
Vg ≈ −4.0, indicating the SU(4)-SU(2) crossover. The double
occupancy state |↑,↑〉 has probability d2

1↑ = 0, as it costs an
infinite energy to simultaneously populate the QDs with two
electrons due to the infinite U ′ interdot Coulomb repulsion.
For a finite value of U ′, the occupation numbers (not shown),
in the parameter region Vg > −U ′, are almost identical to
those for U ′ = U → ∞. This indicates that in this region of
parameter space the value of U ′ does not change the results
qualitatively.

APPENDIX B: PROJECTION OPERATOR APPROACH

As discussed in the main text, the central idea of the POA
is to separate the Hilbert space of the system of interest, which
ground state |�〉 obeys,

H |�〉 = E|�〉, (B1)

into two different subspaces: (i) the subspace S1, containing a
single state, denoted |1〉 and (ii) subspace S2, containing the
rest of the states in the Hilbert space, which are generically
denoted as |2〉. The idea is to choose |1〉 so that, by operating in
S1 with a renormalized Hamiltonian, one can obtain not only
the ground-state energy E, but also some of its static properties
[36,37]. The renormalized Hamiltonian that operates in the S1

subspace can be written as,

Hren = H11 + H12(E − H22)−1H21, (B2)

where,

Hij = |i〉〈i|H |j 〉〈j |, (B3)

such that the renormalized Hamiltonian satisfies,

Hren|1〉 = E|1〉, (B4)

which permits us trivially to obtain,

〈1|Hren|1〉 = E. (B5)

The self-consistent solution of this last equation,
the renormalized Hamiltonian depends explicitly
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upon the energy E, permits to find the ground-state
energy E of the system. It is important to adequately choose
the state |1〉. We take it as given by the ground state of the
two Fermi seas and the two uncharged QDs. All other states
that belong to subspace S2 can be obtained by successive
applications of the Hamiltonian H21 on state |1〉.

To obtain the ground-state energy it is necessary to calculate
〈1|Hren|1〉. The first term is the expected value of H11, given
by,

εT = 〈1|H11|1〉 = 2
∑

εkkk<εF

εkkk. (B6)

The contribution to the energy of subspace S2 is cal-
culated assuming the QDs to be connected to identical
leads through matrix elements Vkjkjkj

= V that are taken to
be independent of the momentum kjkjkj . The energy can be
written as [36,37],

E = �E + 2εT (B7)

�E = f1(�E) (B8)

f0(ξ ) =
∑

εKKK>εF

V 2

ξ − εKKK − f1(ξ − εKKK )
(B9)

f1(ξ ) =
∑

σ,εkkk<εF

2V 2

ξ + εkkk − Vg + σB − f0(ξ + εkkk).
(B10)

In the thermodynamic limit these equation can be written
as

f0(ξ ) =
∫ 2t

0

{
ρ(ω)

V 2

ξ − ω − f1(ξ − ω)

}
dω (B11)

f1(ξ ) =
∑

σ

∫ 0

−2t

{
ρ(ω)

2V 2

ξ + ω − Vg + σB − f0(ξ + ω)

}
dω,

(B12)
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FIG. 10. The function f1(ξ ) solved self-consistently for different
values of Vg with a zero external magnetic field. The ground state
energy solutions obtained by ths POA approximation are given by
intersections indicated by arrows.

where ρ(ω) is the density of states of the leads. It can be written
as

ρ(ω) = ρLC(ω) = 1

π
√

4t2 − ω2
(B13)

or

ρ(ω) = ρSC(ω) =
√

4t2 − ω2

2πt2
, (B14)

which corresponds to a one dimensional linear chain,
Eq. (B13), or to two linear semichains, Eq. (B14), depending
on the geometry of the system.

The behavior of the function f1(ξ ) is represented on Fig. 10
for three values of Vg . The ground-state solution corresponds
to the lesser value of the intersection between the straight line
and the f1(ξ ) curves, which occurs on ξ = �E. It can be shown
that the derivative of the function f1(ξ ) is singular at the point,
�E = f1(�E), from which the energy is determined [36,37].
As we decrease Vg , the peak with a minimum value becomes
sharper and other solutions with greater energy are possible.
However we are interested only in the ground-state energy of
the system.
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