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Effects of asymmetric dot-lead couplings
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We explore the effects of asymmetry of hopping parameters between double parallel quantum dots and the
leads on the conductance and a possibility of local magnetic moment formation in this system using functional
renormalization group approach with the counterterm. We demonstrate a possibility of a quantum phase transition
to a local moment regime [so-called singular Fermi liquid (SFL) state] for various types of hopping asymmetries
and discuss respective gate voltage dependencies of the conductance. We show that, depending on the type of the
asymmetry, the system can demonstrate either a first-order quantum phase transition to an SFL state, accompanied
by a discontinuous change of the conductance, similarly to the symmetric case, or the second-order quantum
phase transition, in which the conductance is continuous and exhibits Fano-type asymmetric resonance near the
transition point. A semianalytical explanation of these different types of conductance behavior is presented.

DOI: 10.1103/PhysRevB.95.245129

I. INTRODUCTION

Nanostructures based on quantum dots attract growing
interest due to an opportunity of tuning of their transport
and magnetic properties [1–7], which makes them promising
candidates for quantum spintronics and quantum information
processing applications [8–15]. At appropriate conditions,
these systems consist of discrete energy levels of quantum dots,
which are hybridized with the leads, having continuous energy
bands. It is well known that physical properties of such zero-
dimensional structures are strongly influenced by Coulomb
electron interaction effects, leading to nontrivial interaction-
induced effects [16–18] (e.g., the Kondo effect [19]).

On the other hand, a specific quantum dots arrangement,
in which multipath propagation through system are possible,
can give rise to quantum interference effects [20–23]. The
essential feature of these effects is the appearance of resonance
peak structures in the conductance, making electronic transport
properties very sensitive to small changes of parameters, which
may be important for practical applications. In this context, the
interplay and cooperation between the correlation effects and
quantum interference, associated with a system geometry, can
be significantly important and provide unexpected electron
transport features [24–28].

Recently, it was found that quantum dot systems with
ring geometries, realizing quantum interference effects in
the presence of interaction, may demonstrate the interaction-
induced quantum phase transition to the so-called singular
Fermi liquid (SFL) state, characterized by local magnetic
moment in one of the effective (“odd”) states [2,29–31].
In particular, in the simplest ring geometry of the system,
consisting of two quantum dots coupled in parallel to two
common leads, the appearance of the phase transition to the
SFL state is related to the specific electron redistribution
between the even and odd states. For the parallel quantum dot
system with all hopping parameters between dots and leads
equal, the SFL state has been studied by various methods
[31,32] and was shown to appear due to the full decoupling
of the odd state from the leads, which yields formation of the
local magnetic moment in the system.

Although the electronic transport in various mod-
els of asymmetric parallel double quantum dot systems
(e.g., noninteracting [21,23] and with Coulomb interactions
[24–26,29,33–37]) was studied earlier, the effect of asymmetry
on SFL state remains not fully investigated. For strong
Coulomb interaction it was suggested [35] that in the presence
of weak asymmetry of interactions on quantum dots the
formation of the spin-half SFL state is realized with decreasing
temperature via the underscreened Kondo effect [38]. At the
same time, the effect of the asymmetry of dot-leads hopping
parameters (which is unavoidably present in the experimental
setups) on the presence of the local moments and the possibility
of realization of SFL state, especially for not-too-strong
Coulomb interaction, was not investigated in detail.

Numerical efforts, which are necessary for the existing
numerical methods (e.g., numerical renormalization group
(NRG) [39], quantum Monte Carlo [40,41], continuous-time
quantum Monte Carlo [42], exact diagonalization [43–45],
dynamic mean-field theory for nanoscopic systems [46–51],
and nano-D�A [48,52]) grow fast with increasing system
size or asymmetry, such that the comprehensive analysis of
complex quantum dot systems (especially the conductance)
is rather difficult for purely numerical methods. Therefore,
developing and using semianalytical techniques is important
for description of such systems.

One of promising methods, which mostly overcomes the
above-discussed numerical difficulties and has been suc-
cessfully applied for investigating the effects of electron
interaction in different nanoscopic systems is the functional
renormalization group (fRG) method [53,54]. This method
results in an exact hierarchy of differential flow equations
for the irreducible vertex functions (self-energy, effective
two-particle interaction, and higher-order irreducible ver-
tices). With a suitable truncation fRG equations can be
reduced to a closed set and then can be easily integrated
numerically. The implementation of the fRG approach is
rather flexible comparing to the existing numerical methods;
this method recently has been formulated in the Keldysh
formalism (see, e.g., Refs. [55,56]) and on the real-time axis
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[57], which makes it applicable to different nonequilibrium
problems (e.g., considering a finite bias voltage or a real-time
evolution).

Although this method was adapted to study quantum dot
systems, including fairly complex geometries, a long time ago
[17,24,25,58], only recently its modification, allowing us to
describe the SFL state and providing a good agreement with the
numerical renormalization group data for a parallel quantum
dot system up to the intermediate value of the interaction, was
proposed [32].

In the present paper, using this latter approach, we present
a systematic study of the effects of an asymmetric coupling
of parallel quantum dots to the leads on electron transport and
local magnetic moment formation, yielding a possibility of
realizing the SFL state. We find that formation of the local
magnetic moment in a parallel double quantum dot system
takes place for a wide range of asymmetries. We also clarify
what features can be observed in the gate voltage dependence
of the zero-temperature linear conductance in the limit of zero
magnetic field for each class of asymmetry of hybridizations
and their effect on quantum phase transition. We show that for
some types of asymmetry the asymmetric Fano-like resonance
is formed in the linear conductance. Finally, a semianalytical
explanation of the observed features for arbitrary asymmetry
is provided.

This paper is organized as follows. In Sec. II we introduce
the model and briefly formulate the counterterm extension of
fRG method. In Sec. III we present the fRG results for the
conductance and analyze a possibility of the local moment
formation. Finally, in Sec. IV, we present conclusions.

II. MODEL AND METHOD

We consider a system (see Fig. 1), consisting of two single-
level quantum dots, QD1 and QD2, coupled in parallel to two,
left (L) and right (R), noninteracting leads.

The Hamiltonian of the system is given by

H = Hdot + Hlead + Hcoupl. (1)

The first term represents the Hamiltonian of isolated quantum
dots

Hdot =
∑

σ

2∑
j=1

[(
εσ − U

2

)
nj,σ + U

2
nj,σ nj,σ̄

]
, (2)

where nj,σ = d
†
j,σ dj,σ denotes the electron number operator,

with creation (annihilation) operators d
†
j,σ (dj,σ ) for an electron

with spin projection σ = ±1/2 and σ̄ = −σ on quantum dot
j = {1,2}, and εσ and U denote the level position and the

L R

QD1

QD2 tR2

tR
1

tL2

tL1

FIG. 1. Illustration of the quantum dot system.

on-site Coulomb interaction, respectively. The level position
εσ can be changed by applying of the gate voltage Vg and
magnetic field H , thus εσ = Vg − σH . The leads are modeled
by

Hlead = −τ
∑

α=L,R

∞∑
j=0

∑
σ

(c†α,j+1,σ cα,j,σ + H.c.), (3)

where c
†
α,j,σ (cα,j,σ ) is the corresponding creation (annihi-

lation) operator and τ denotes nearest-neighbor hopping
between the sites of the leads. Finally, the coupling between
quantum dots and the leads is given by

Hcoupl = −
∑

α=L,R

∑
j

∑
σ

(
tαj c

†
α,0,σ dj,σ + H.c.

)
, (4)

where tαj is the hopping matrix element between lead α and
j th quantum dot.

Method. To treat the effects of two-particle interaction
U , we use the one-particle irreducible (1PI) version of
the fRG method [53], supplemented by the counterterm,
recently introduced in Ref. [32], which allows for treatment
of local moments. This method starts with considering the
noninteracting propagator of quantum dot system, obtained
by projection of the leads and taking the wide-band limit
[25,59,60] as a matrix in the quantum dot space [25],

G−1
0,σ (iω) = (iω − εσ + U/2)I

+ i

(
�L

1 + �R
1 �12

�12 �L
2 + �R

2

)
sgn(ω), (5)

where �α
j = π |tαj |2ρlead(0) denotes the energy-independent

hybridization strength in the wide-band limit of the leads,
ρlead is the local density of the states of the leads, �12 =∑

α (�α
1 �α

2 )1/2, and I denotes identity matrix in the quantum
dot space.

To construct the fRG flow, this noninteracting propagator
is replaced by a flow parameter 
-dependent one, such that
G
=
0

0,σ (iω) = 0 corresponds to the noninteracting problem,
while G
=0

0,σ (iω) = G0,σ (iω) corresponds to the problem stud-
ied and 
0 is the initial value of the parameter 
. Specifically,
we choose [32]

G

0,σ (iω) = [

G−1
0,σ (iω) + f 
(ω) + χ


σ

]−1
, (6)

where second term f 
 in the square brackets of Eq. (6)
regulates (fermionic) infrared modes of the bare propagator.
We use the Litim-type regulator [61] of the form [32]

f 
(ω) = iI(
 − |ω|)�(
 − |ω|)sgn(ω),

which, as shown in Ref. [32], somewhat improves the results
of the standard fRG scheme with the sharp cutoff.

The last term χ

σ in Eq. (6) is a counterterm, which serves

as an infrared regulator in the two-particle sector, and, as
shown in the previous paper [32], eliminates the problem of
the divergences of the vertices in the fRG flow, allowing us
to describe the SFL phase of the system. The counterterm
provides switching on/off of the additional magnetic field H̃

at the beginning (
 = 
0)/end (
 → 0) of the fRG flow and
is chosen to have linear dependence on the cut-off parameter
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of the form

χ

σ = σH̃ min(1,
/
c)I. (7)

The parameter 
c in the above equation determines the scale
of switching off the additional field H̃ and is chosen according
to the value of this field [32].

After differentiation generating functional of the irreducible
vertex functions with respect to 
, one obtains an infinite
hierarchy of differential equations for the n-particle vertex
functions �n. In the present study, following Ref. [25], we
truncate the fRG equations by discarding the contribution of
the vertices with n > 2 and neglect frequency dependence
of the one-particle (self-energy 
) and two-particle (effective
two particle interaction �
) vertices. This approximation was
shown to describe well the electronic and transport properties
of single- and multiple quantum dot systems [25,32]. In
particular, it allows us to describe the singular Fermi-liquid
state, which appears because of the disconnection of the odd
level from the leads [32]. In this way, we obtain a closed set
of standard fRG equations of the form [25]

∂


m′m = −

∫
dω

2π
S


nn′�


m′n′mn,

∂
�

m′n′mn =

∫
dω

2π
S


kk′G

ll′

{
�


m′n′lk�


l′k′mn

− [
�


m′k′ml�


l′n′kn + (l � k,l′ � k′)

]
+ [

�

n′k′ml�



l′m′kn + (l � k,l′ � k′)

]}
, (8)

where each index collects the dot and spin indexes, e.g.,
m = (i,σ ) and summation over repeated indexes is as-

sumed, G

m,m′ ≡ G


ii ′,σ δσσ ′ = [[G

0 ]

−1 − 
]
−1

mm′ and S
 =
G
∂
(G


0 )
−1G
 are the dressed Green function and single-

scale propagator, respectively, which are matrices in the dots
space.

Using the Green function obtained at the end of the fRG
flowG
→0(iω), which provides an approximation for the exact
Green function of an interacting quantum dot system, we
calculate the average occupation numbers

〈nj,σ 〉 =
∫

dω

2π
eiω0+G
→0

jj,σ (iω), (9)

and the T = 0 linear conductance G = ∑
σ Gσ , which can be

written in the form of Landauer formula as (see, e.g., Ref. [62])

Gσ = 2G0

∣∣∣∣∣∣
∑
j,j ′

√
�R

j �L
j ′G
→0

jj ′,σ (0)

∣∣∣∣∣∣
2

, (10)

where G0 = 2e2/h is the conductance quantum; Eq. (10) can
be derived from the Kubo formula, neglecting the vertex cor-
rections, which is justified, e.g., for the frequency-independent
self-energy [25,59,60,63].

III. FRG RESULTS FOR DIFFERENT TYPES
OF ASYMMETRY

A. Left-right asymmetry

We first consider the double quantum dots system with
up-down symmetry �

L(R)
1 = �

L(R)
2 , but left-right coupling

asymmetry �R
1(2) = χ�L

1(2), where, without loss of generality,
we assume that 0 < χ � 1. In particular, when χ = 1, the
hopping matrix elements are equal; this case has been con-
sidered within the fRG with counterterm approach previously
[32]. In agreement with NRG predictions [2], in this case
the conductance exhibits a discontinuity at a gate voltage,
corresponding to the first-order phase transition from the SFL
to FL phase, and almost reaches the unitary limit value 2e2/h

at Vg = 0.
For an arbitrary parameter χ a double quantum dot system

with the left-right hybridization asymmetry can be effectively
considered as a fully hybridization symmetric system with
the effective hybridization parameters �̃α

j = (1 + χ )�L
1 /2 for

α = L,R and j = 1,2. This reflects the fact that the explicit
expression for the Green function of the system [see Eq. (5)] is
invariant under the transformation �α

j ↔ �̃α
j . In this way, the

dimensionless conductance of original system g = 2G/G0 is
related to that of the effective system geff with hybridization
parameters �̃α

j by

g(Vg) = 4χ

(1 + χ )2
geff(Vg). (11)

Thus, the gate voltage dependence of the conductance for
an asymmetric system can be obtained from the one for the
symmetric system with dots-leads hybridizations �̃α

j < �α
j by

multiplying the latter by a factor 4χ/(1 + χ )2 < 1, which is
similar to the Meier-Wingreen formula [64]. This means that
left-right coupling asymmetry does not lead to new features in
the conductance in respect to those appearing in the symmetric
case.

In Fig. 2, the gate voltage dependence of the total con-
ductance g(Vg) is shown for different left-right asymmetries
χ = 0.8, 0.5, 0.2, and �L

1 = U/4. One can see that, as
expected, the behavior of the conductance is quite similar to
the isotropic case: For any choice of the parameter χ , the
conductance shows discontinuity caused by a quantum phase
transition at a gate voltage Vg = V c

g (χ ), which weakly depends
on the strength of the left-right asymmetry.

As can be seen from Fig. 2, for different parameters
χ the conductance almost reaches a maximum value of

0 0.5 1 1.5 2
Vg/U

0

0.4

0.8

1.2

1.6

2

g

FIG. 2. The dependence of the dimensionless linear conductance
g on gate voltage Vg at zero magnetic field H → 0 and T = 0
for parallel double quantum dot system with left-right coupling
asymmetry: �L

1 = �L
2 = U/4 and �R

1 = �R
2 = χ�L

1 , with χ = 0.8
(blue solid line), 0.5 (red dashed line), and 0.2 (black dashed-
dotted line) within the fRG approach with the linear counterterm
(H̃ /U = 0.1,
c/U = 0.05).
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0 0.5 1 1.5 2
Vg/U

0

0.4

0.8

1.2

1.6

2
g

FIG. 3. The dependence of the dimensionless linear conductance
g on gate voltage Vg at zero magnetic field H → 0 and T = 0
for parallel double quantum dot system with up-down coupling
asymmetry: �L

1 = �R
1 = U/4 and �L

2 = �R
2 = γ�L

1 , with γ = 0.8
(blue solid line), 0.5 (red dashed line), and 0.2 (black dashed-
dotted line) within the fRG approach with the linear counterterm
(H̃ /U = 0.1,
c/U = 0.05).

gmax = 8χ/(1 + χ )2 at the half-filling (Vg = 0). The first-
order phase transition point V c

g (χ ) slightly shifts towards
higher gate voltages with decreasing χ , which can be attributed
to the fact that with decreasing of χ the ratio U/�̃α

j =
2(1 + χ )−1U/�L

1 increases, and, consequently, according to
the phase diagram in Ref. [31], obtained for isotropic quantum
dot system within the NRG approach, the region of existence
of the SFL phase gradually grows.

B. Up-down asymmetry

In the case of up-down hybridization asymmetry �
L(R)
2 =

γ�
L(R)
1 , the gate voltage dependence of the conductance

changes due to the generation of the effective electron hopping
between even and odd orbitals during the fRG flow, as
discussed below. In Fig. 3 the dimensionless conductance g as
a function of the gate voltage Vg for �

L(R)
1 = U/4 is plotted for

several values of the asymmetry parameter γ = 0.2, 0.5, 0.8.
One can see that for different values of the parameter γ the
conductance g(Vg) is continuous and exhibits the distinct sharp
asymmetric antiresonance at some gate voltage, depending on
the parameter γ ; when γ increases, the antiresonance becomes
narrower and its position shifts to lower gate voltages. At gate
voltages |Vg| smaller than the position of the antiresonance,
the conductance increases with decreasing |Vg| and near
half-filling (Vg = 0) it almost reaches the unitary limit value
g(0) = 2 (G = 2e2/h). As discussed in Ref. [32], this behavior
of the conductance is an indication of a singular Fermi-liquid
(local moment) state at sufficiently small gate voltages.

To explain the observed features of the conductance, we
pass to the even-odd orbitals (see the explicit form of the even-
odd transformation in the Appendix) and rewrite the dimen-
sionless conductance per spin in fRG approach gσ = 2Gσ/G0

in the form

gσ = 4�L
e �R

e

q2
σ + �2

e

, (12)

where �α
e = π |tαe |2ρlead(0) and tαe = √

1 + γ tα1 are the hy-
bridization and hopping from the leads to the even state and
�e = �L

e + �R
e is the total level broadening of the even state.

The parameter qσ = (εo,σ εe,σ − (tσeo)2)/εo,σ is determined by
the renormalized energies of even and odd states,

εe(o),σ = [
ε1(2),σ + η2ε2(1),σ ∓ 2ηtσ12

]/
(1 + η2), (13)

and the effective (renormalized) hopping parameter between
even and odd orbitals,

tσeo = [
η(ε1,σ − ε2,σ ) − tσ12(η2 − 1)

]/
(1 + η2), (14)

where εj,σ = εσ + 
→0
jj,σ and tσij = −
→0

ij,σ correspond to
the renormalized quantum dot energy levels and interdot
hopping parameters, respectively, η = γ 1/2. As it is shown
in the Appendix, in the absence of a magnetic field the total
conductance can be obtained from that for only one spin
projection: g = g↑ + g↓ = gσ (Vg) + gσ (−Vg).

In the absence of up-down asymmetry γ = 1 (considered
in previous subsection) the conductance depends only on
the position of the renormalized even energy level, gσ =
(4�L

e �R
e )/(ε2

e,σ + �2
e ), and does not vanish for any gate volt-

age, reaching maximal value gmax
σ = (4�L

e �R
e )/�2

e . One can
see from Eq. (14), however, that for γ = 1 the renormalized
hopping parameter tσeo is not zero identically and hence
the conductance also depends on the position of the odd
orbital energy level. This level has a nontrivial effect on
the conductance; in particular, complete suppression of gσ

is possible when εo,σ = 0 due to destructive interference
between the contributions of even and odd states. On the other
hand, the maximum value of the conductance gmax

σ is realized
if the energy levels εe/o,σ and hopping parameter tσeo fulfill the
relation qσ = 0.

In Fig. 4 the Vg dependence of the conductance g↑
and the absolute value of the parameter q↑ for the spin-up
electrons are plotted for one of the parameter sets of Fig. 3,
�L

1 = �R
1 = U/4 and γ = 0.2. One can see that q↑ becomes

zero at the value of the gate voltage Vg = V (1)
g (marked by

black filled circle), which is close to half-filling Vg = 0,
and at the gate voltage Vg = V (3)

g (green filled square).
From previous consideration it follows that both of these
values of the gate voltages yield the conductance maximum

0

0.5

1

1.5

2

g,
 g

-1 -0.5 0 0.5 1
Vg/U

0

0.3

0.6

|q
|

g =1

g =0

g =1

FIG. 4. Upper panel: Gate voltage dependencies of the total con-
ductance g = g↑ + g↓ (black dashed line) and spin-up conductance
g↑ (blue solid line). Lower panel: Gate voltage dependence of the
parameter |q↑| (see text). The parameters are the same as in the case
of γ = 0.2 of Fig. 3.
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[see Eq. (12)] g↑ = gmax
↑ = 4�L

e �R
e /�2

e = 1 [see Fig. 4(a)].
For Vg < 0, q↑ behaves smoothly and its absolute value
reaches a minimum near the gate voltage Vg = −V (3)

g , which
results in the maximum of the spin-up/spin-down conductance
in the vicinity of Vg = ∓V (3)

g . Consequently, the total conduc-
tance g(Vg) = g↑(Vg) + g↑(−Vg) exhibits maximum at Vg =
V (3)

g with g(V (3)
g ) ≈ 2. The same value of the conductance is

obtained close to half-filling due to the maximum of g↑ at
Vg = V (1)

g .
On the other hand, the parameter q↑ diverges when Vg →

V (2)
g (red filled triangle) because of the crossing of the odd

energy level εo,σ of the Fermi level of the lead, which is put
to zero. Consequently, according to Eq. (12), conductance g↑
abruptly falls, vanishing at Vg = V (2)

g . This corresponds to the
above-mentioned sharp antiresonance with g(V (2)

g ) ≈ 1.
To study the relation of the observed features of the

conductance to the formation of local moments, we consider
occupation numbers and the square of the spin. By using again
the transformation to the even-odd orbitals, the total average
occupation numbers for each spin direction 〈nσ 〉 = ∑

j 〈nj,σ 〉
can be written explicitly as

〈nσ 〉 = 1 − 1

π
arctan

qσ

�e

− 1

2
sgn

(
εσ

o

)
,

and thus each minimum gσ = 0 or maximum gσ = 1 value of
the partial conductance corresponds to integer 〈nσ 〉 ∈ {0,1,2}
or half-integer 〈nσ 〉 ∈ {1/2,3/2} values of the occupation
numbers, respectively.

In Fig. 5 we plot the occupation numbers 〈ne(o)〉 and
the square of the spin 〈S2

e/o〉, corresponding to the even
and odd orbitals (see Appendix) for strong anisotropy of
hopping parameters γ = 0.2. One can see that at small gate
voltages Vg (i.e., close to half-filling) 〈no〉 � 1 and there is
substantial square of the local moment 〈S2

o〉 � 3/4. Both 〈no〉
and 〈S2

o〉 change continuously, dropping sharply at the critical
gate voltage V c

g , coinciding with the above-introduced gate
voltage V (2)

g , at which the conductance reaches minimum. The
continuous change of these parameters is due to generation
of the effective hopping between the odd and even orbitals
[see Fig. 5(c)]. The gate voltage V c

g = V (2)
g can be therefore

identified with the quantum phase transition point from the
singular to the regular Fermi-liquid phase. We have verified
by performing additional numerical renormalization-group
calculations that small finite value of 〈S2

o 〉 (related to small
spin splitting of energy levels) at |Vg| > V c

g is an artifact
of the considered fRG method, but the transition remains
continuous. Apart from the narrow vicinity of the transition
(where qualitatively correct results are obtained at |Vg| < V c

g ),
the considered approach describes the behavior of conductance
and occupation numbers quantitatively correct.

One can see, therefore, that the local moment in the odd
orbital is almost fully preserved even for rather strong up-
down asymmetry. The reason is that, as well as for a perfectly
symmetric case [32], the spin splitting of the energy levels
in an infinitesimally small magnetic field is provided by the
“Hund” term in the Hamiltonian, rewritten in terms of even
and odd states (see Appendix), which appears to be of the
order of the interaction strength U . At the same time, the
generated hopping between even and odd orbitals is much

-1 -0.5 0 0.5 1
Vg/U

-0.15

0

0.15

 t     
eo

 
  

/U

0

0.2

0.4

0.6

0.8

1

1.2

<
 S    

e/
o

2
>

,<
 S    2

>

0

0.5

1

1.5

2

<
n e

>
,<

n o
>

(a)

(c)

(b)

FIG. 5. The average occupation numbers of the odd 〈no〉 (red
solid line) and even 〈ne〉 (black dashed line) states (a), the average
square of magnetic moment 〈S2

e(0)〉 in the odd (red solid line) and
even (black dashed line) states, as well as the average of the square of
the total spin 〈S2

t 〉 = 〈(S1 + S2)2〉 (blue dashed-dotted line) (b), and
the hopping parameter between the even and odd levels (c) tσ

eo (solid
red/dashed black line for σ =↑ / ↓) as a function of the gate voltage
Vg for γ = 0.2 (the other parameters are the same as in Fig. 3). The
vertical dashed line correspond to gate voltage V (2)

g (red triangle),
introduced in Fig. 4 and discussed in the text.

smaller, |tσeo| � U , see Fig. 5(c), and therefore it does not
destroy the local moment in the odd state, even for rather
strong asymmetry.

C. Mixed asymmetry

In the case of both up-down and left-right types of
asymmetry, �

L(R)
2 = γ�

L(R)
1 , �R

1(2) = χ�L
1(2), 0 < γ < 1, 0 <

χ < 1, analogously to the previous consideration, instead
of the initial quantum dot system one can consider the
effective system, which has only the up-down asymmetry with
�̃

L(R)
1 = (1 + χ )�L

1 /2 and �̃
L(R)
2 = γ (1 + χ )�L

1 /2. Then, the
expression for the conductance can be written in the form
Eq. (11), where geff(Vg) represents now the gate voltage
dependence of the conductance for an effective quantum dot
system with up-down coupling asymmetry. Therefore, for
fixed Coulomb interaction, both conductance curves differ
only by a constant factor, which depends on the left-right
asymmetry of the system. As an example, in Fig. 6 we plot
the gate voltage dependence of the linear conductance for
U = 2�L

1 and the following configurations of asymmetry:
(γ,χ ) = (0.2,0.2), (0.2,0.8). As expected, the conductance
behaves the same way as in the up-down asymmetry case
and as in the previous cases for Vg = 0 shows the maximum
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FIG. 6. The dependence of the dimensionless linear conductance
g on gate voltage Vg at zero magnetic field H → 0 and T = 0 for
parallel double quantum dot system with mixed coupling asymmetry:
�

L(R)
2 = γ�

L(R)
1 , �R

1(2) = χ�L
1(2) with (γ,χ ) = (0.2,0.8) (solid black

line), (0.2,0.2) (red dashed line), and �L
1 = U/2 within the fRG

approach with the counterterm (H̃ /U = 0.1,
c/U = 0.05).

value gmax = 8χ/(1 + χ )2 < 2, which does not depend on the
up-down asymmetry parameter γ .

D. General asymmetry

In more complicated cases, when the dots-leads hopping
parameters are fully independent, one can use the transforma-
tion to some effective even and odd states, which are chosen
according to some criterion. In general, the coupling of the
effective odd orbital to the leads does not vanish, and there is
no fully local moment in the odd state even at Vg = 0; however,
as we will see below, the local moment can be almost formed
in the sense that 〈S2

o〉 � 3/4.
In the presence of general asymmetry, the effective “even”

and “odd” energy levels can be determined similarly to
previous sections and are given by (see Appendix)

εe(o),σ = a2ε1(2),σ + (1 − a2)ε2(1),σ ∓ 2a(1 − a2)1/2tσ12,

while the effective “even”-“odd” state hopping parameter is

tσeo = a(1 − a2)1/2(ε1,σ − ε2,σ ) + (2a2 − 1)tσ12,

where the parameter a is related to previously used in Eqs. (13)
and (14) parameter η by a = (1 + η2)−1/2, but its relation to
asymmetry of the hybridizations is more involved. Specifically,
we will determine the parameter a from the condition of the
minimum of the coupling between leads and the “odd” orbital,

F (a) = ∣∣tLo (a)
∣∣ + ∣∣tRo (a)

∣∣, (15)

where tαo (a) = atα2 − (1 − a2)1/2tα1 . This way we find

a =
{
tL1 /tL, tL � tR;

tR1 /tR, tL � tR,
(16)

where tα =
√

(tα1 )2 + (tα2 )2.

1. Diagonal asymmetry

Let us first consider the case of diagonal coupling asym-
metry tL1(2) = tR2(1) [�L

1(2) = �R
2(1)], in which, except for case

of tL1 = tR1 (when the system is completely symmetric),

0 0.5 1 1.5 2
Vg/U

0

0.4

0.8

1.2

1.6

2

g

FIG. 7. The dependence of the dimensionless linear conductance
g on gate voltage Vg at zero magnetic field H → 0 and T = 0
for parallel double quantum dot system with diagonal symmetric
coupling: �L

1 = �R
2 = U/2, �L

2 = �R
1 = �RL

12 . From upper to lower
curve �RL

12 /U = 0.45,0.25,0.2,0.15,0.1, respectively. The calcula-
tions were performed within the fRG approach with the counterterm
(H̃ /U = 0.1,
c/U = 0.05).

tL1 /tL2 = tR1 /tR2 . In Fig. 7 the gate voltage dependence of
the conductance is shown for �L

1 = �R
2 = U/2 and different

values of �R
1 = �L

2 = �RL
12 . One can see that the behavior of

the conductance strongly depends on the system asymmetry.
For not-too-strong deviation from the isotropic case (�RL

12 =
0.45) the conductance (thick solid line) behaves similarly to
the up-down asymmetry case, showing a sharp asymmetric
antiresonance. With increasing asymmetry of the system,
the gate voltage dependence of the conductance changes
significantly and the value of the conductance at Vg = 0
decreases. For intermediate asymmetries (�RL

12 = 0.25) (thick
dashed line) and (�RL

12 = 0.2) (thick dashed-dotted line), the
antiresonance is preserved, but its width becomes larger as
�RL

12 decreases. For sufficiently large asymmetry, we find that
the above-discussed form of the resonance disappears and the
conductance is strongly suppressed near zero gate voltage.

From this gate voltage dependence of the conductance,
one can guess partial formation of local moments near half-
filling in a rather broad range of asymmetries 0.25 � �RL

12 <

0.5. This is confirmed by plotting the �RL
12 dependence of

the conductance at Vg = 0 [see Fig. 8(a)], which has an
asymmetric bell-shaped form with the maximum g ≈ 2 at the
symmetric point �RL

12 = 0.5. As can be seen from Fig. 8(b),
large conductance at zero gate voltage corresponds to an
essential spin splitting of electronic states in the considering
limit H → 0, which is similar to the previously considered
isotropic case [32] and the above-discussed cases of left-right
and up-down asymmetries. To show explicitly that the above-
considered behavior of the conductance is closely related to
the presence of the partially formed local magnetic moment
on the quantum dots, we plot the square of the moment at the
“even” and “odd” orbitals [see Fig. 8(c)], introduced according
to the recipe, outlined above. One can see that the moment on
the “odd” orbital is peaked in the same range of asymmetries
as the conductance and spin splitting. From Fig. 8(d), one can
see that the hybridization of the “odd” orbital with the leads
in the respective asymmetry range is sufficiently small, which
provides a possibility of the existence of local moment.
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FIG. 8. The dimensionless conductance (a), the average occupa-
tion numbers (b) 〈nσ 〉 = ∑

j 〈nj,σ 〉 [solid (red) line for σ =↑ and
dashed (black) line for σ =↓], the average square of magnetic
moment 〈S2

e(o)〉 in the even [solid (black) line] and odd [dashed
(red) line] states, as well as the average of the square of the total
spin 〈S2

t 〉 = 〈(S1 + S2)2〉 [dashed-dotted (blue) line] (c) and the
hybridization between leads and even �α

e [thin solid (black) line
for α = L and thin dashed (red) line for α = R] and odd �α

o [thick
solid (blue) line for α = L and thick dashed (green) line for α = R]
orbitals (d) as a function of �RL

12 /U for parallel double quantum
dot system with diagonal symmetric coupling with �L

1 = �R
2 = U/2

and Vg = 0, H → 0 within the fRG approach with the counterterm
(H̃ /U = 0.1,
c/U = 0.05).

2. Arbitrary asymmetry

We have assumed so far that the hybridization parameters
are linked to each other by some relations, which leads to
a certain symmetry of the system. For completeness, in this
section, as an example, we consider the quantum dot system,
in which all hybridization parameters are independent.

The conductance and average of the square of the total spin
for system with �L

1 /U = 0.27, �L
2 /U = 0.16, �R

1 /U = 0.33,
�R

2 /U = 0.24 are plotted as functions of the gate voltage
in Fig. 9 (for the purpose of comparison with previous
results we use the same ratio of hybridizations with the
leads as in Ref. [25] but with somewhat smaller interaction
strength U ). The conductance [see Fig. 9(a)] shows an overall

0 0.5 1 1.5 2
Vg/U

0

0.4

0.8

1.2

<
 S    2

>

0.4

0.8

1.2

1.6

2

g

(a)

(b)

FIG. 9. The dimensionless conductance (a) and average of the
square of the total spin (b) as a function of the gate voltage
Vg/U for parallel double quantum dot system with �L

1 /U = 0.27,
�L

2 /U = 0.16, �R
1 /U = 0.33, �R

2 /U = 0.24, and H → 0 within the
fRG approach with the counterterm (H̃ /U = 0.1,
c/U = 0.05).

feature, observed in Sec. IIIB for the up-down asymmetry—the
presence of the antiresonance, accompanied by an increase of
conductance at small gate voltages, which is characteristic for
the partial local moment formation. From Fig. 9(b) we can con-
clude that even for this rather general hybridization parameter
the local moment can be rather well defined near the half-
filling. The formation of a local moment near the half-filling
for the present set of parameters can be easily understood
on the basis of “even-odd” states, defined in the beginning
of Sec. IIID. Indeed, by passing to these states, the system
can be mapped onto one with hybridizations �L

e ≈ 0.429,
�R

e ≈ 0.570, �L
o ≈ 0.001, and �R

o ≈ 0, which means that the
“odd” orbitals are almost disconnected from the leads. Thus,
the condition �α

o � �α
e can be viewed as a general criterion

of the presence of the partially formed local magnetic moment
on quantum dots in the presence of arbitrary asymmetry.

IV. CONCLUSION

In the present paper, within the counterterm extension of
the fRG approach [32], we have performed a systematic study
of the effects of asymmetric coupling between the dots and
leads on the conductance and possibility of a local magnetic
moment formation for a parallel double quantum dot system.

First, we have examined the quantum dot systems, in
which one (odd) orbital can be completely disconnected
from the leads by an appropriate canonical transformation
to the even-odd basis. This concerns the case of up-down
�

L(R)
2 = γ�

L(R)
1 and left-right �R

1(2) = χ�L
1(2), 0 < γ,χ < 1,

types of asymmetry. In this case, the quantum dot system can be
viewed as an effective system with only up-down asymmetry,
with the same asymmetry parameter γ . At the same time, the
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conductance for these systems differs only by the constant
factor, depending on the left-right asymmetry parameter χ ,
and, consequently, this mixed type of asymmetry inherits the
typical behavior of the conductance for the case of up-down
asymmetry.

In particular, for up-down symmetry �
L(R)
2 = �

L(R)
1

(Sec. IIIA), the system, like for the isotropic case [2,32],
shows the first-order quantum phase transition to the SFL
phase accompanied by the jumplike (discontinuity) change
of the conductance at the transition point for any choice of the
left-right asymmetry 0 < χ < 1. In the case where up-down
symmetry is absent (γ = 1) (Secs. IIIB and IIIC), a well-
defined local magnetic moment also occurs even for rather
strong up-down asymmetry (small γ ), which is confirmed by
the substantial increase of the square of the local moment
for the odd state near the half-filling almost up to the value
〈S2

o〉 = 3/4. In contrast to the up-down symmetry case, the
conductance is continuous and exhibits sharp asymmetric
antiresonance at the transition point to the SFL state. We have
found that the appearance of the antiresonance is related to the
contribution of the odd state, which for the case of up-down
asymmetry provides suppression of the conductance when the
energy of the odd state coincides with the Fermi level of the
leads. With decreasing the up-down asymmetry (increasing
the parameter γ ), the antiresonance in the conductance
becomes narrower and its position shifts towards lower gate
voltages.

We have also considered quantum dot systems with more
general asymmetry. By constructing of the effective “even-
odd” states from the requirement of the minimal (although
in general nonzero) absolute value of coupling of the “odd”
orbital to the leads, we have shown that the almost formed local
moment can occur in a broad range of asymmetries, for which
the hybridization of the effective odd orbitals is sufficiently
small. In particular, we have demonstrated that the partial local
moment formation takes place for not-too-strong diagonal
coupling asymmetry �L

1(2) = �R
2(1), �L

1 = �L
2 , and also for a

particular example of parallel quantum dot system with rather
different hybridization parameters.

Although this paper has focused on the parallel double
quantum dot system, we expect similar behavior in other

ring geometry systems with larger numbers of quantum dots,
which, however, requires further investigations. In particular,
the fRG approach with the counterterm used in this study can
be extended to consideration of more complicated quantum
dot systems and nonequilibrium situations. The possibility to
manipulate the formation of local moment and conductance
by small changes of gate voltage even in the presence of
moderate asymmetry of hybridizations to the leads, studied
in the present paper, may be useful in nanoscopic devices.
In this respect, more realistic multilevel quantum dot systems
and contacts with realistic density of states also require further
consideration.
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APPENDIX: THE TRANSFORMATION
TO EVEN-ODD STATES

We first consider the case tα2 = ηtα1 ,α ∈ {L,R},0<η�1,
which includes up-down (tL1,2=tR1,2) and left-right (η=1,

tL1,2 = tR1,2) asymmetry and perfect symmetry (η = 1,tL1 = tR1 )
regimes of tunneling through the quantum dot system. In this
case it is possible to define even- (de,σ ) and odd-parity (do,σ )
orbitals: (

de,σ

do,σ

)
= 1√

1 + η2

(
1 η

−η 1

)(
d1,σ

d2,σ

)
, (A1)

in which only even-parity orbitals are directly connected to the
leads and the coupling part of the Hamiltonian (4) takes the
form:

Hcoupl = −
∑

α=L,R

∑
σ

(
tαe c

†
α,0,σ de,σ + H.c.

)
, (A2)

where tαe =
√

1 + η2tα1 .
The dot part Hdot of the Hamiltonian (2) in the even-odd

basis can be represented as

Hdot =
∑

σ

∑
p∈{e,o}

(
εσ − U

2

)
np,σ − 2Jeo SeSo + U (1 + η4)

(1 + η2)2
(ne,↑ne,↓ + no,↑no,↓) + Jeo

2
neno

+ Jeo(d†
e,↑do,↑d

†
e,↓do,↓ + H.c.) + Uη(1 − η2)

(1 + η2)2

∑
σ

(d†
e,σ do,σ + d†

o,σ de,σ )(no,−σ − ne,−σ ), (A3)

where the particle number operators ne/o,σ and spin operators
Se/o are defined as:

ne/o =
∑

σ

ne/o,σ =
∑

σ

d
†
e/o,σ de/o,σ ,

Se/o = 1

2

∑
σ,σ ′

d
†
e/o,σ σde/o,σ ′ , (A4)

where σ are the Pauli matrices. Thus, the Hamiltonian (2) can
be mapped onto the two-orbital Hamiltonian, which includes
the diagonal quadratic part (the first term), and the standard
Hund exchange interorbital interactions (the second term) with
the exchange constant Jeo = 2Uη2/(1 + η2)

2
, which has the

maximum value J max
eo = U/2 at the η = 1; the density-density

intraorbital and interorbital interactions as well as pair hopping
term (third to fifth terms); and correlated hopping, which is
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generated due to asymmetry of the system (the last term) and
absent in the symmetric case η = 1.

After the fRG approach is applied, due to the frequency
independence of the vertices, the initial quantum dot system
can be viewed as the noninteracting one with the effective
Hamiltonian

Heff
dot =

∑
j,σ

εj,σ nj,σ − 1

2

∑
j =j ′,σ

(
tσjj ′d

†
j,σ dj ′,σ + H.c.

)
, (A5)

where εj,σ = εσ + 
→0
jj,σ are the renormalized energy levels

of quantum dots {the term U/2 in Eq. (2) is canceled by the
contribution arising due to integration of the self-energy flow
equation [see Eq. (8)] from the scale 
 = ∞ to finite 
 =

0} and tσij = −
→0

ij,σ represents the renormalized interdot
hopping parameters.

Transformation of the Hamiltonian (A5) to the basis of the
even- and odd-parity orbitals yields

Heff
dot =

∑
σ

[
(εe,σ ne,σ + εo,σ no,σ ) − (

tσeod
†
e,σ d0,σ + H.c.

)]
(A6)

with the effective even and odd energy levels εe/o,σ and
where the effective hopping parameters tσeo are defined by

the Eqs. (13) and (14) of the main text. The corresponding
conductance for each spin projection can be represented in the
form of Eq. (12) of the main text.

It is important to note that from the explicit form of
the fRG equations (8), it follows that in the limit case of
zero magnetic field H → 0 the renormalized energy levels
and hopping parameters satisfy the relations εe/o,σ (Vg) =
−εe/o,−σ (−Vg) and tσeo(Vg) = −t−σ

eo (−Vg), which allows us to
write the total dimensionless conductance of the system g =
g↑ + g↓ = gσ (Vg) + gσ (−Vg). Thus, the total conductance
can be analyzed using the gate voltage dependence of qσ (or gσ )
for only one spin projection.

In case of arbitrary asymmetry, we can use the same
transformation (A1); however, the coupling of the odd orbital
to the leads does not vanish in general, and the corresponding
part of the Hamiltonian takes the form

Hcoupl = −
∑

α=L,R

∑
σ

(
tαe c

†
α,0,σ de,σ + tαo c

†
α,0,σ do,σ + H.c.

)

with tunnel matrix elements tαe = atα1 + (1 − a2)1/2tα2 and
tαo = atα2 − (1 − a2)1/2tα1 where a = (1 + η2)−1/2. The param-
eters η and a are determined in this case in the main text from
the condition (15).
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