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Orbital nodal surfaces: Topological challenges for density functionals
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Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham
density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge
along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic
limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-
functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111,
036402 (2013)] and Becke88 [Phys. Rev. A 38, 3098 (1988)] energy functionals, i.e., the corresponding semilocal
exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006)] and van Leeuwen–
Baerends (LB94) [Phys. Rev. A 49, 2421 (1994)] model potentials, we explicitly demonstrate exponential
divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have
similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham
equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form,
enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on
or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding
such divergences.

DOI: 10.1103/PhysRevB.95.245118

I. INTRODUCTION

Kohn-Sham (KS) density-functional theory (DFT) [1,2] has
become the method of choice for calculating the electronic
structure of physical, chemical, and biological systems. This
success is based on the favorable ratio of accuracy to
computational cost that DFT offers, especially with semilo-
cal approximations for the exchange-correlation (xc) energy
Exc[n(r)]. However, while the low computational cost of
semilocal functionals has very much contributed to the success
of DFT because it enables access to large systems of practical
relevance, the functional derivatives of typical semilocal func-
tionals, i.e., their corresponding xc potentials, miss important
features of the exact xc potential, in particular discontinuities
[3,4] and step structures [5–9] that are relevant, e.g., in
charge-transfer situations [10–12] and ionization processes
[5,13–16]. Many attempts have been made to incorporate some
of the missing features into semilocal DFT [17–27]. In recent
years, it was the Becke-Johnson (BJ) model potential [28] in
particular that sparked interest in this respect [22,29–35]. Its
key characteristic is to effectively mimic nonlocal exchange
features in the asymptotic behavior of the potential by means
of having a nonzero limiting value far away from a finite
system. This key characteristic was later adopted for the
Armiento-Kümmel 2013 energy functional (AK13) by two of
the present authors [36]. While this asymptotic behavior of the
xc potential has a variety of implications [37], one particularly
striking consequence becomes most apparent in systems with
nodal surfaces of the highest occupied (homo) KS orbital.

Such orbital nodal surfaces have emerged as a topic of
particular interest in DFT in recent years. To be precise, by
the term “nodal surface” we refer here to the situation in
which the highest occupied KS orbital in the ground state
of a finite system has a nodal surface that extends to infinity.
The first observation that such nodal surfaces of the homo play
a special role in KS theory came from studying the exact KS

exchange potential. It has been shown—first in the localized
Hartree-Fock approximation [38,39] and then exactly via
optimized effective potential (OEP) calculations [40,41]—that
a pronounced “ridge” appears in the bare exchange potential
along a nodal surface at intermediate distances. At large
distances, it contracts exponentially to a set of zero measure. As
visualization of this counterintuitive feature might be helpful
for further discussion, we refer to Fig. 3 of Ref. [41] and to
Fig. 3 of this article. It has been argued that such ridges are of
practical relevance as they can significantly affect unoccupied
KS orbitals and eigenvalues [38,39], i.e., quantities that are
important in particular for time-dependent DFT calculations
or perturbation theory methods.

However, the ridge feature has also sparked interest from a
fundamental perspective. Along a ridge, the exact KS exchange
potential asymptotically goes to a nonzero constant. In all
other directions of space, it asymptotically falls off to zero.
One may argue that no physical potential may go to different
asymptotic limits in different directions of space, because
this would allow us to build some sort of perpetuum mobile:
Consider an electron from the center of the system out to
infinity along some direction that does not coincide with the
nodal surface, i.e., does not coincide with the ridge. Common
sense tells us that independent of the shape of the potential,
there cannot be any interaction between the electron and the
system when the electron is at infinity, so at infinity the
electron can be moved at zero energy cost to any point,
e.g., a point on the nodal surface and thus to the top of the
ridge. Then bring the electron back into the center of the
system right along the ridge. When the full cycle has been
completed, the electron will have gained an amount of energy
that is proportional to the height of the ridge “out of nothing.”
Obviously this cannot be, so how can the KS exact exchange
potential show such an “unphysical” feature? The gist of the
matter is that the KS potential is not a physical potential, but
a mathematical object defined as a functional derivative [46].
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FIG. 1. Contour plot of the AK13 potential landscape of benzene
in the plane of the molecule. The semilocal AK13 potential diverges
exponentially along the three nodal planes. Due to serious numerical
difficulties, which are intensified by the nodal surfaces issues, the
AK13 potential could not be calculated self-consistently. For this
plot, the AK13 potential was evaluated on a tightly converged self-
consistent LDA valence density obtained from the Bayreuth version
[42] of the PARSEC real-space code [43] with a sphere radius of 30a0

and a grid spacing of 0.3a0.

Therefore, one cannot move electrons (KS particles are not
electrons) around in the KS potential and obviously cannot
build an “exact exchange perpetuum mobile.” Nevertheless,
the question of whether the nonvanishing asymptotic constants
and associated ridge structures are only a feature of bare
exchange, or whether these signatures of nodal surfaces would
prevail also in the total exchange-correlation potential, has
been debated [47,48]. The discussion of nodal surfaces has
gained further momentum through the recent discovery [49]
that nodal surfaces can also lessen the significance of so-called
“iso-orbital indicator” functionals that have been frequently

used, e.g., for the purpose of eliminating self-correlation
errors.

One may wonder why nodal surfaces of an orbital can play
such a special role in DFT, although a ground-state density
itself does not have nodes [50]. The answer is that although
the ground-state density is nodeless, it is nevertheless strongly
affected by homo nodal surfaces. While the asymptotic density
is governed by the homo in almost all of space, we discuss in
this work that not all asymptotic properties of the density
(such as certain partial derivatives) are determined solely by
the homo in the vicinity of nodal surfaces. As a consequence,
semilocal functionals that use derivative information can show
unexpected and quite violent features in the vicinity of nodal
surfaces. This is exemplified by Fig. 1, which shows the AK13
potential for benzene: The potential diverges exponentially
in the vicinity of a nodal surface. We show in this paper
that such an anomalous behavior is also found for the BJ
exchange potential and even—though in somewhat weaker
form—also for generalized gradient approximations (GGAs)
with less strongly diverging enhancement factors than that of
AK13. The most prominent example of such an affected GGA
is the Becke 1988 exchange functional (B88) [51], which is the
semilocal ingredient of the hybrid functional B3LYP [52,53].
As the latter is one of the most used density functionals for
molecular systems, the relevance of the nodal surface features
that we discuss here is apparent.

In addition to conceptual questions that a diverging poten-
tial raises, divergences at nodal surfaces can also severely
hinder self-consistent calculations. This has far reaching
consequences, because many systems of practical relevance, in
particular organic molecules from a chemical and biological
context, exhibit at least one and often even multiple nodal
planes. Furthermore, simple systems can also show nodal
planes. As a prime example, Fig. 2 visualizes the orbital
structure of the boron atom with its noded pz orbital. Similar
features are seen in the density of many open-shell atoms. In
first-principles electronic structure theory for finite systems,
the occurrence of nodal surfaces is therefore the rule rather
than the exception.

FIG. 2. Contour plots of the highest (right) and of the second highest occupied spin-up orbital densities (left) for the boron atom based
on self-consistent LSDA all-electron calculations with the real-space grid program DARSEC [44,45]. While the homo-1 is of perfect spherical
symmetry and exhibits a single radial node, the homo is a paradigm of a pz orbital with its nodal plane at z = 0.
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In this paper, we take a close look at the density in the
vicinity of nodal surfaces, and we show how nodal surfaces can
affect density functionals. Toward that end, we first introduce
a minimal model of auxiliary orbitals that serves as a paradigm
system with nodal planes. The model is then utilized to
investigate the asymptotic behavior of the density, reduced
density derivatives, and the kinetic energy density in the
vicinity of nodal surfaces. Based on these findings, we study
the exchange potentials of AK13 and B88, as well as the model
potential of BJ and van Leeuwen and Baerends (LB94) [17],
and we comment on several other functionals. We deliberately
focus only on the exchange part in this analysis of approximate
functionals, as the design criteria that led to irregular behavior
in the vicinity of asymptotic nodal surfaces are specific to
exchange. This is a consequence of the fact that the long-range
part of the exact xc potential is dominated by exchange.
Consequently, also approximate correlation potentials are
typically constructed such that they vanish considerably faster
than their exchange counterparts in the asymptotic region.
Therefore, they are of little relevance in the present context.
We conclude by discussing the implications of our findings.
Hartree atomic units are used throughout.

II. MINIMAL NODAL SURFACE MODEL

In the following, we introduce a minimal model describing
the simplest kind of nodal plane. The model is of general
utility and inspired by the ground state of a neutral cluster of
four sodium atoms [41]. It can be motivated equally well as a
schematic variant of the boron-atom shown in Fig. 2. When the
Na4 cluster is described in the pseudopotential approximation
[54,55], its two valence orbitals that are each occupied by
two electrons are smooth and can be approximated by s and
p orbitals, respectively. The energetically lower orbital is of
s character, and for simplicity modeled by a 1s orbital. The
highest occupied orbital is of p character and chosen to be
described by a 2pz orbital. Therefore, the nodal plane in our
minimal model is given by the x − y plane and extends to
infinity. Due to rotational symmetry with respect to the z axis,
we chose cylindrical coordinates {r,z,φ}. The density of the
minimal model is thus given by

n(r,z) =2n0
s exp(−αs

√
r2 + z2)

+ 2n0
p z2 exp(−αp

√
r2 + z2), (1)

where n0
s = α3

s /8π and n0
p = α5

p/32π for normalization. It
is known that the exponential decay lengths αs and αp of
the corresponding orbital contributions to the density are
determined by their respective eigenvalues. All subsequent
results are derived without explicit values for αs and αp,
given that αs > αp > 0. Nonetheless, for the purpose of
visualization we choose these free parameters inspired by the
EXX eigenvalues of the cluster Na4, given in Ref. [41], via
αs = 2

√−2εs ≈ 1.1873 and αp = 2
√−2εp ≈ 1.0587, and

thus we conclude our model.
The density is asymptotically dominated by the pz orbital

except in the neighborhood of the nodal plane (z = 0). In fact,
for every distance to the nodal plane, z > 0, there exists a finite
distance from the center of the molecule r such that n(r,z) is

FIG. 3. EXX potential (shown in the KLI approximation [56])
evaluated in the minimal model of a nodal plane located at z = 0 using
MATHEMATICA [57]. The characteristic pronounced “ridge” is visible
in the potential along the nodal surface at intermediate distances.
For large distances, the ridge contracts exponentially to the nodal
plane—a set of zero measure.

arbitrarily accurately described by only its p component,

np(r,z) = 2n0
p z2 exp(−αp

√
r2 + z2). (2)

This non-ground-state density, np(r,z), will be referred to as
the pure model of the nodal plane, as it features an actual node.
In the limit r → ∞ and except for a set of zero measure, given
by the nodal plane itself, semilocal potentials are completely
determined by this density of the pure model.

However, when considering a given finite value of r , the
s-density part of the minimal model contributes noticeably
in a small region of space that encloses the nodal plane. We
will refer to this region as the transition region, as semilocal
quantities in this region are typically determined by the
interplay of contributions from both orbitals. In the limit r →
∞, it contracts exponentially to a set of zero measure. Closely
connected to this region is the behavior exactly on the nodal
plane. While the p contribution to the density itself vanishes
by construction on or along this plane, the p contribution
to the Laplacian of the density, ∇2n, remains finite and even
dominates in the large-r limit, essentially explaining why some
semilocal potentials with critical asymptotics diverge along
nodal surfaces, as we will show below.

To showcase the capabilities of this minimal model of a
nodal plane, we have plotted the EXX potential evaluated
within this model in Fig. 3. For this purpose, the EXX potential
is approximated by solving the KLI equation [56] for the fixed
auxiliary orbitals of the minimal model. The clearly visible
pronounced potential ridge along the nodal plane serves as
verification of the model. The behavior of the EXX potential
in this figure will be utilized as a reference to the subsequent
study of the exchange potentials of AK13, BJ, B88, and LB94.
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III. RESULTS FOR THE ASYMPTOTICS OF SEMILOCAL
FUNCTIONAL EXPRESSIONS

Before examining the full expressions of semilocal poten-
tials, we will use the minimal model to study the asymptotics
of a few semilocal ingredients appearing in such potentials.
We begin from the common definitions of reduced spatial
derivatives of the density,

s = |∇n|
2γ n4/3

, t = ∇2n

4γ 2n5/3
, u = ∇n · ∇|∇n|

8γ 3n3
, (3)

where γ = (3π2)1/3, and the positive-defined kinetic energy
density is

τ = 1

2

∑
i

fi |∇ϕi |2 (4)

with fi the occupation number of KS orbital i.
For an electron density n(r) that decays regularly, i.e.,

governed by the highest occupied orbital in a spherical
symmetric manner, one finds [58]

n(r) ∼ n0|r|q exp(−α|r|) as |r| → ∞, (5)

where n0 and q are system-dependent constants, and the decay
parameter

α = 2
√

−2
(
εho − v∞

xc

)
(6)

is determined by the homo eigenvalue εho relative to the
limiting value of the potential v∞

xc = lim|r|→∞ vxc(r).
For a density that decays isotropically according to Eq. (5),

one finds that the following characteristic combinations of
semilocal components approach nonzero limiting values:

u

s3
∼ 1,

t

s2
∼ 1 − 2

3

1

ln(s)
,

2γ n1/3s ∼ α,
τ

n
∼ α2

8
(7)

as |r| → ∞.
However, when the density does not decay regularly, e.g.,

due to a nodal plane of the homo, the asymptotic behaviors of
the quantities in Eq. (7) are different. Figures 4–7 show these
quantities evaluated in the minimal model via cross sections
perpendicular to the nodal plane for several distances from the
molecular center r .

The behavior of t/s2 = n∇2n/|∇n|2 is shown in Fig. 4:
Well outside of the nodal plane (for large z values) the semilo-
cal ratio approximately approaches its spherical asymptotic
limit, t/s2 ∼ 1. Exactly on the plane, t/s2 fails to balance
the exponential decay of the density, due to the finite p

contribution to ∇2n, and it diverges exponentially as r → ∞.
However, the transition region surrounding this divergence
contracts to a set of zero measure in the same limit, leaving
the behavior of the quantity t/s2 given by the pure model of
the nodal plane [cf. Eq. (2)], which can by summarized by the
asymptotic relation

t

s2
∼ 1

2
+

(
1

8
− 1

αpr

)
α2

pz2 (8)

as z → 0+. In summary, the quantity t/s2 diverges expo-
nentially along a nodal plane, but the region affected by the

FIG. 4. Cross section of t/s2 evaluated in the minimal model of a
nodal plane (z = 0), cf. Eq. (1). Different lines correspond to different
values of r as indicated by the subscripts.

divergence contracts to a set of zero measure leaving an almost
everywhere finite limiting value. This value, however, differs
considerably from its spherical symmetric limit in the vicinity
of the nodal plane.

The ratio u/s3 = n∇n · ∇|∇n|/|∇n|3, shown in Fig. 5,
behaves similar to t/s2: In the pure model, which is approached
as r → ∞ nearly everywhere, one obtains

u

s3
∼ 1

2
+

(
1

4
− 3

4αpr

)
α2

pz2 (9)

as z → 0+, and likewise far outside the nodal plane u/s3

approaches its ordinary spherical asymptotic limit, u/s3 ∼ 1.
However, exactly on the nodal plane this ratio is given solely
by the s contribution, thus u/s3 converges to the spherical
asymptotic limit instead of diverging. This limit is surrounded
by a transition region, which features exponentially diverging
elements but contracts to the nodal plane as r → ∞.

So far all diverging contributions to semilocal potentials
that we have examined contract to a set of zero measure in the
limit r → ∞, i.e., when evaluated in the pure model of the
nodal plane. The quantity 2γ n1/3s = |∇n|/n, which is key to
the construction of AK13, is different in this respect, as Fig. 6

FIG. 5. Cross section of u/s3 evaluated in the minimal model of
a nodal plane.
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FIG. 6. Cross section of 2γ n1/3s evaluated in the minimal model
of a nodal plane.

demonstrates. Far from the nodal plane, i.e., for |z| → ∞,
2γ n1/3s approaches the system-dependent constant αp, which
is given by the homo as expected by Eq. (7). Once more,
exactly on the nodal plane the quantity is solely determined by
the s contribution and therefore approaches αs , the analogous
constant of the underlying s orbital. As the neighborhood
affected by this limit contracts to the nodal plane as r → ∞,
the semilocal ratio approaches its behavior on the pure nodal
plane, which is given by

2γ n1/3s ∼ 2

z
+

(
1

4
− 1

αpr

)
α2

pz2 (10)

as z → 0+. Hence, unlike t/s2 or u/s3, 2γ n1/3s is not almost
everywhere smooth as r → ∞, but it develops a pole of first
order: its denominator n has a double root on the pure nodal
plane, while its numerator |∇n| exhibits only a single root.
Therefore, even infinitely far outside of the molecule the region
affected by the nodal plane maintains a finite width for this
quantity.

Finally, the semilocal quantity 2
√

2τ/n, which is key to the
BJ potential, is examined. It is shown in Fig. 7. The kinetic
energy density, τ , is constructed in analogy to the density of

FIG. 7. Cross section of 2
√

2τ/n evaluated in the minimal model
of a nodal plane.

Eq. (1) by evaluating Eq. (4) with the orbitals of the minimal
model. Since the prefactor is chosen such that the quantity
approaches the same spherical symmetric limit as 2γ n1/3s, the
behavior of 2

√
2τ/n is similar to this quantity for |z| → ∞ and

the system-dependent constant αp is likewise approached far
outside the nodal surface. Exactly on the nodal plane, however,
2
√

2τ/n does not approach the constant αs , but it diverges
exponentially along the plane, as the p contribution to τ does
not vanish. Because the pure model, which is approached as
r → ∞ almost everywhere, is determined by a single orbital
only, 2

√
2τ/n equals 2γ n1/3s strictly in this limit, as τW =

|∇n|2/8n is the single orbital limit of τ . Hence, on the pure
nodal plane

2

√
2τ

n
∼ 2

z
+

(
1

4
− 1

αpr

)
α2

pz2 (11)

as z → 0+, which features a pole of first order, implying once
more a region of finite width affected by the nodal plane as r →
∞. Further insight into the consequences that nodal surfaces
have when τ is used as a part of an iso-orbital indicator, e.g.,
in the context of local hybrid functionals [59], is discussed in
Ref. [49].

IV. RESULTS FOR THE ASYMPTOTICS OF SEMILOCAL
POTENTIALS

We now evaluate the behavior of semilocal potentials in the
vicinity of a nodal surface based on the minimal model. We
focus on two aspects: First, we examine the behavior exactly
along the nodal plane, which is described by the complete
minimal model. While this gives insight into whether and
how rapidly the potential diverges along the nodal plane, the
affected region might be arbitrarily small and might contract
with increasing distance from the center of the system r .
Therefore, secondly, the pure model is used to classify the
impact of the nodal surface on its neighborhood as r → ∞.

A. The BJ potential functional in the vicinity of nodal surfaces

Various modifications of the BJ exchange potential func-
tional are used quite frequently in the literature [29–35].
Therefore, we begin our application of the minimal model
with the BJ expression. The BJ functional directly models the
exchange potential as a sum of the Slater exchange potential
[60] and a term expressed in the kinetic energy density,

vBJ
x = vSlater

x + C	v

√
2τ

n
, (12)

where C	v = √
5/12/π . As it is a potential functional, it has

the major drawback that no corresponding exchange functional
exists [24,61–63]. For a regular decaying density in the sense
of Eq. (5), the correction term to the Slater potential approaches
its characteristic positive asymptotic constant,

vBJ
x ∼ C	v

2
α, (13)

as |r| → ∞.
Since the Slater potential vanishes ∝ −1/|r| isotropically

even in the presence of nodal surfaces, we can restrict the
investigation to the correction term, which is proportional
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to the semilocal quantity 2
√

2τ/n of the last paragraph.
Therefore, we can conclude that the BJ potential diverges
exponentially along the nodal plane; insertion of the model
density yields

vBJ
x (r,z = 0) ∼ C	v

√
n0

p

n0
s

exp [(αs − αp)r/2]. (14)

Hence, the rate of the exponential divergence is given by the
difference of the decay parameters of the homo, αp, and that of
the underlying orbital, αs , which in turn are closely connected
to the corresponding eigenvalues. A combination of Eq. (11)
with the asymptotics of the Slater potential gives the behavior
of the BJ potential in the vicinity of the pure nodal plane,

vBJ
x ∼ C	v

z
− 1

r
+ O(z2) (15)

as z → 0+. Therefore, the divergence of the BJ potential
affects a finite region enclosing the nodal plane and does not
contract to a set of zero measure as r → ∞. A visualization
of the asymptotic BJ potential in the vicinity of a nodal plane
was essentially given in Fig. 7.

While it has already been noted in the original work
that the BJ potentials diverges at orbital nodes, and should
consequently be used with ground-state configurations only
[28], our analysis aggravates these observations, as it shows
them to be relevant for ground-state configurations as well.

B. AK13 in the vicinity of nodal surfaces

We now turn to the AK13 functional, which is based on the
usual GGA form of the exchange energy,

EGGA
x = Ax

∫
n4/3F (s)d3r. (16)

In the case of AK13, the enhancement factor F (s) is given by

F AK13(s) = 1 + B1s ln(1 + s)

+ B2s ln [1 + ln(1 + s)], (17)

where the constants B1 = 2/27 + 8π/15 and B2 = 4/81 −
8π/15 have been determined in a nonempirical fashion. Its key
feature is that its corresponding potential, i.e., the functional
derivative of Eq. (16),

vGGA
x = Ax

4

3
n1/3

[
F (s) − s∂sF (s) + 3

4

(
u

s3
− t

s2

)
s∂sF (s)

+
(

1 − 3

4

u

s3

)
s2∂2

s F (s)

]
, (18)

typically approaches a positive system-dependent constant
outside of a finite system. This novel GGA feature was inspired
by the BJ exchange potential that we investigated in Sec. IV A.
The asymptotic constant of the AK13 potential,

vAK13
x ∼ −AxB1

6γ
α (19)

as |r| → ∞, follows formally from inserting the asymptotic
relations for a regular decaying density, Eq. (7), together with
the asymptotic enhancement factor of AK13 as s → ∞ in

leading order,

F AK13(s) ∼ B1s ln(s) + B2s ln[ln(s)]. (20)

Hence, the asymptotic constant is related to the precise leading
term in the divergent enhancement factor F (s) ∝ s ln(s) as
s → ∞, which we will refer to as “critical asymptotic.” It is
the threshold between asymptotic GGA potentials that are, for
a regularly decaying density, vanishing and diverging in the
limit |r| → ∞.

To discuss the behavior of a GGA potential in the vicinity
of a nodal plane, Eq. (18) has to be examined in the limit
s → ∞ as well. The key difference is that one has to consider
the altered relations of n, s, t , and u due to the presence
of the nodal surface, which we have discussed in Sec. III.
In particular, it was shown that the Laplacian contribution to
the GGA potential is dominant exactly along the nodal plane.
Therefore, the asymptotic of the GGA potential along the plane
is given by

vGGA
x (r,z = 0) ∼ −Axn

1/3 t

s
∂sF (s). (21)

Inserting the asymptotic enhancement factor of AK13 as
s → ∞ in leading order given by Eq. (20), i.e., ∂sF

AK13(s) ∼
B1 ln(s), and using the density of the minimal model, we find

vAK13
x (r,z = 0) ∼ −AxB1r

3γ

(
n0

p

n0
s

)
exp [(αs − αp)r]. (22)

Thus, the AK13 potential diverges exponentially along nodal
surfaces at twice the rate of the BJ potential; cf. Eq. (14).

To evaluate the behavior of the AK13 potential in
the neighborhood of the nodal plane as r → ∞, we use
the pure minimal model: Inserting relations (8)–(10) into the
asymptotic GGA potential, deduced from Eq. (18), yields

vAK
x ∼ −AxB1

2
n1/3s ∼ −AxB1

2γ

1

z
(23)

as z → 0+. Hence, far from the center of the molecule, the
AK13 potential behaves similar to the BJ potential, i.e., as
if it had a pole of first order on the nodal plane; even the
amplitude of the pole is approximately of the same strength.
Consequently, the region affected by the nodal plane has a
fixed width and does not contract to a set of zero measure in
the case of the AK13 potential, either. Figure 8 visualizes the
AK13 potential in the vicinity of the nodal plane via cross
sections.

In addition to the features that we just discussed, Fig. 8
demonstrates that local minima surrounding the nodal surface
show up in the AK13 potential. To explain the mechanism
behind them, we have to revisit the asymptotic GGA potential
and note that the AK13 construction relies on the cancellation
of the first-order terms, i.e., contribution to the potential ∝
s ln(s). To achieve the cancellation, the asymptotic limits of
t/s2 and u/s3 have to be equal, as they are in the spherical
symmetric case and exactly on a pure nodal surface. However,
for a fixed distance to the nodal surface z > 0 the limits of these
semilocal ratios differ slightly as r → ∞, as a comparison of
the second-order terms in the asymptotic relations (8) and (9)
readily demonstrates. Consequently, the leading-order terms
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FIG. 8. Cross sections of the AK13 potential at different r

values evaluated in the neighborhood of the nodal surface in the
minimal model. Exactly at the nodal plane (z = 0) the potential
diverges exponentially as r → ∞, being surrounded by an area
where the potential behaves ∝ 1/z. Given a finite r value, the
potential approaches the constant v∞

x for z → ∞. Additionally, with
an increasing r value, local minima surrounding the nodal surface
show up, as the potential diverges linearly in r toward negative infinity
for every finite z 	= 0.

remain, i.e.,

vAK13
x ∼

[
lim

r→∞

(
u

s3
− t

s2

)]
AxB1

6γ
α2

pr (24)

as r → ∞ for z > 0 fixed. This implies a linearly diverging
potential. Hence, except for right on the nodal surface (a set
of zero measure where the potential diverges exponentially
to positive infinity), the AK13 potential approaches negative
infinity linearly in r with a z-dependent slope. This results in a
further amplification of the divergence. A nodal behavior very
similar to the AK13 potential is to be expected of the potentials
of exchange-enhanced GGAs [64] due to their usage of the
same s ln(s) asymptotics.

C. B88 in the vicinity of nodal surfaces

Next, we turn to GGAs with enhancement factors F (s) 

s ln(s) as s → ∞, i.e., identified above as subcritical asymp-
totics. The potential of these GGAs will vanish with increasing
distance from a finite spherically symmetric system. However,
we will demonstrate that this condition is not sufficient to
avoid the divergence of the corresponding potential along
nodal surfaces. We discuss this issue with the widely used
B88-GGA serving as an example. To reproduce the correct
asymptotic behavior of the exact exchange-energy density, the
B88 enhancement factor diverges slightly slower than that of
AK13,

F B88(s) ∼ − γ

3Ax

s

ln(s)
(25)

as s → ∞, causing the corresponding potential to vanish ∝
−1/|r|2 [65] in the asymptotic region outside of nodal surfaces.
Utilizing Eq. (21) and the minimal model gives the asymptotic

FIG. 9. Cross sections of the B88 potential at different r values
evaluated in the immediate vicinity of the nodal surface in the minimal
model. Exactly at the nodal plane (z = 0) the potential diverges
exponentially as r → ∞, being surrounded by an area where the
potential behaves ∝ −1/[z ln2(z)] (visible from 64a0 onward), which
in turn contracts ∝ 1/r2 as r → ∞.

behavior of the B88 potential along the nodal plane,

vB88
x (r,z = 0) ∼ 1

α2
s r

(
n0

p

n0
s

)
exp [(αs − αp)r] (26)

as r → ∞. Consequently, the B88 potential diverges slightly
slower than the AK13 potential along nodal surfaces, while
maintaining the same exponential rate, which is twice the rate
of the BJ potential.

On the pure model and close to the nodal plane, the leading-
order terms cancel and we find

vB88
x ∼ −γ

6

n1/3s

ln2(s)
(27)

as s → ∞ and for |z| 
 1. While the numerator n1/3s features
a pole of first order in z [cf. Eq. (10)], the denominator is
ambivalent, as, on the one hand,

ln(s) ∼ −5

3
ln(z) (28)

as z → 0+ for fixed r , and, on the other hand,

ln(s) ∼ αpr/3 (29)

as r → ∞ for fixed z > 0. Therefore, the B88 exchange
potential exhibits a negative pole on the pure nodal surface,

vB88
x ∼ − 3

50

1

z ln2(z)
(30)

as z → 0+, but the region affected by the pole contracts, as
for fixed z > 0 the quantity n1/3s approaches a constant as
r → ∞; cf. Fig. 6. Therefore, the potential vanishes,

vB88
x ∼ −3

2
γ n1/3s

1

α2
pr2

(31)

as r → ∞ for a fixed z > 0. All of these aspects are visualized
in Fig. 9 by cross sections of the B88 potential in the immediate
vicinity of the nodal plane.
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The exchange parts of the AM05 functional [66] as well
as QrevLB94 [67] are expected to be similar to B88 with
respect to their nodal surface properties, because they share
the asymptotic enhancement factor ∝ s/ ln(s) with B88.

D. LB94 potential functional in the vicinity of nodal surfaces

The final potential we wish to discuss in this context is
the exchange model potential of van Leeuwen and Baerends
(LB94) [17], as it also exhibits irregularities, but ones that are
qualitative different from the ones of AK13, BJ, or B88. The
LB94 model potential is designed as a semilocal correction
to the exchange LDA potential based on n and s, with the
aim to incorporate the correct −1/|r| asymptotic as well as
an atomic-shell structure. In the asymptotic region, i.e., for
s → ∞, the LB94 model potential is generally described by
the relation

vLB94
x ∼ −2γ

3

n1/3s

ln(s)
(32)

even along or in the vicinity of nodal surfaces. Importantly,
due to its model potential character, the LB94 potential does
not depend on the Laplacian of the density, in contrast to GGA
potentials that are functional derivatives. Consequently, the
LB94 potential does not diverge exponentially exactly along a
nodal plane, but vanishes there in Coulombic fashion ∝ −1/r ,
and likewise in any other direction. Nevertheless, the LB94
potential features divergent behavior in a region enclosing the
nodal plane. This can best be understood by using the pure
minimal model, which gives the asymptotic relation

vLB94
x ∼ 2

5

1

z ln(z)
(33)

as z → 0+, and it describes a negative pole of the LB94
potential on the pure nodal plane. In the full model, these poles
translate into minima of the LB94 potential surrounding the
nodal plane at intermediate distances. As r → ∞, the depth
of these minima grows without bounds as the position of the
minima converges exponentially to the nodal plane. Yet, in the
same limit the region affected by the minima contracts as the
LB94 potential vanishes,

vLB94
x ∼ −2γ n1/3s

1

αpr
(34)

for a fixed z > 0. This follows from the same arguments as
in the discussion of the B88 potential, i.e., for fixed z > 0 the
quantity n1/3s approaches a constant while ln(s) shows a linear
behavior in r . Figure 10 visualizes these findings for the LB94
potential, once more via cross sections in the vicinity of the
nodal plane. We note that the nodal surface behavior of the
model potentials of Lembarki et al. [68] can be expected to be
similar to that of LB94.

E. Potential landscapes of semilocal potentials

For a final comparison of the behavior in response to nodal
surfaces of all exchange potentials that were discussed in
this article, we have plotted these potentials along the nodal
plane of the minimal model in Fig. 11 and the landscapes of
the potentials in Fig. 12. Figure 11 confirms the asymptotic
relations of Eqs. (14), (22), and (26), while the EXX potential

FIG. 10. Cross sections of the LB94 potential at different r values
evaluated in the vicinity of the nodal surface in the minimal model.
Exactly at the nodal plane (z = 0), the potential does not diverge
but vanishes ∝ −1/r , being surrounded by a divergent area where
the potential behaves ∝ 1/[z ln(z)], which in turn contracts ∝ 1/r as
r → ∞.

tends to a finite positive value in the same limit. Whereas the
B88 potential diverges formally faster than the BJ potential,
this is only relevant in the far asymptotic region, which is
typically not part of numerical calculations.

Figure 12 displays the effect of the nodal plane on all
four exchange potentials within the typical spatial range of a
numerical calculation, and it should be compared to the EXX
potential in Fig. 3. Aside from the (irregular) behavior exactly
along the nodal plane, the landscapes demonstrate how the
width of the affected region differs. In the case of EXX, the
region affected by the nodal plane, i.e., the ridge, contracts
exponentially with increasing distance from the center of
the system. The closest to this ideal is the B88 potential,
though the affected region contracts even faster. Therefore, the

FIG. 11. Exchange potentials along the nodal surface of the
homo (z = 0) in the minimal model. While the EXX potential [in
the Krieger-Li-Iafrate (KLI) approximation [56]] reaches a positive
constant, the AK13, B88, and the BJ potentials diverge exponentially
as r → ∞. The LB94 potential is not visible in this figure, as it
behaves regularly exactly on the nodal plane and approaches zero
from below.
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FIG. 12. Semilocal exchange potentials in the minimal model of a nodal plane located at z = 0. Note that the scale of the potential axis as
well as the coloring visualizing the height of the potentials are not standardized. For a comparison to EXX, see Fig. 3. Except for LB94, all
exchange potentials diverge exponentially along the nodal plane, though with different magnitude and width. All potentials were evaluated and
plotted using MATHEMATICA [57].

numerical resolution of the B88 potential irregularity is highly
questionable in practice, unless grid points exactly along the
nodal plane are used. In the case of BJ, the region affected by
the nodal plane is qualitatively different, as it does not contract
but approaches a finite width as r → ∞. The AK13 potential
is similar in principle, though one could argue that in the case
of AK13 the width is even expanding as minima surrounding
the divergent region grow without limits. It is noteworthy that
even though the GGA potentials of AK13 and B88 diverge
along the nodal plane, their corresponding exchange energies
per volume remain finite throughout.

V. FORMAL CONSTRAINTS FOR WELL-BEHAVED
GGA POTENTIALS

The rate of divergence of a GGA potential for exchange
along the nodal plane is determined by the leading power d of
the asymptotic enhancement factor, F (s) ∝ sd as s → ∞ ne-
glecting logarithmic contributions, i.e., F (s) ∼ Csd lnc(s) ∝
sd regardless of the precise value of C and c; consequently,
in the case of AK13 and B88, d = 1. For more general
enhancement factors, d may be defined via

d = inf
{
b ∈ R

∣∣ lim
s→∞ F (s)/sb = 0

}
. (35)

Additionally, if F (s) approaches a finite constant F (∞) as
s → ∞, one should replace F (s) in the equations above by
[F (s) − F (∞)], which then corresponds to a negative leading
power d < 0.

One can show that in general

vGGA
x (r,z = 0) ∝ exp

[(
2 + d

3
αs − αp

)
r

]
(36)

based on Eq. (21) and the insight that ∇2n is in contrast to n

and ∇n governed by the p orbital exactly along the nodal plane
as r → ∞—a detailed derivation can be found in Appendix
A. Thus, avoiding a divergence along a nodal surface requires

d � −2 + 3
αp

αs

=: dc, (37)

or system-independently and therefore strictly formulated,

d � −2. (38)

Consequently, F (s) ∼ C1 + C2/s
2 as s → ∞ is a sufficient

condition to avoid a divergence along a nodal surface, while
an asymptotic enhancement factor in the range −2 < d < 1
will diverge in some systems with a nodal surface, but not
in all. Note that for exactly d = 0 without any logarithmic
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contribution there is no divergence, because the proportionality
constant in Eq. (36) vanishes trivially. The system-specific
threshold value dc depends on the difference between the
highest and second highest occupied orbital eigenvalues.
While a nearly degenerate situation corresponds to dc ≈ 1,
the lower limit dc = −2 is approached in the case of a weakly
bound highest occupied orbital on top of a strongly bound
second highest occupied orbital. The threshold of our minimal
model is, for instance, dc ≈ 0.775 and thus describes a rather
degenerate case.

Exchange GGAs that we therefore expect to show a system-
dependent exponential divergence of the potential along the
nodal planes are, e.g., PW86 [69] and B86b [70] with d = 2/5
as well as the Local Airy gas approximation (LAG) [71] with
d ≈ 0.9. Additionally, GGAs for exchange that are designed to
satisfy the correct nonuniform coordinate scaling limit [72,73]
via F (s) ∼ Cs−1/2 as suggested in Ref. [74] might in rare
cases (αs > 2αp) lead to an exponential divergence of the
corresponding potential along the nodal plane as well.

In addition to the exponential divergence along the nodal
plane, irregular behavior in the neighborhood of the nodal
plane has to be considered. To avoid this, i.e., a pole on the
pure model of the nodal plane, the leading asymptotic power
of the enhancement factor d, F (s) ∝ sd as s → ∞ neglecting
logarithmic contributions, has to be in general less than or
equal to 2/5. This follows from Eq. (18), when using the
asymptotic relations Eqs. (8) and (9) via

vGGA
x ∝ n1/3sd ∝ z(2−5d)/3 (39)

as z → 0+. As this requirement is naturally included in the
constraint of Eq. (38), i.e., d � −2, the latter is sufficient to
avoid any irregular behavior of a GGA potential in the vicinity
of nodal surfaces. It follows from this argument that several
widely used semilocal functionals for exchange are free of any
irregular behavior in the vicinity of nodal surfaces, as they
fulfill this sufficient condition. Among these are LDA, B86a
[75], and PBE [76].

A rather far-reaching consequence of this analysis is that
for the GGA exchange form, the design criteria of either a
nonvanishing asymptotic constant in the potential or the correct
asymptotic Coulombic behavior of the potential or of the
energy density are all incompatible with the regular behavior
of the potential in the vicinity of asymptotic nodal surfaces.
The detailed line of arguments that leads to this conclusion is
given in Appendix B.

VI. DISCUSSION

While many of the results of the previous sections were
derived utilizing a model system, we expect them to be at
least qualitatively transferable to true nodal surfaces of real
molecules or atoms. Our reasoning is that the behavior of
the density in the vicinity of an asymptotic nodal surface is
universal in the sense that it essentially consists of two additive
contributions. Both contributions vanish exponentially, but
with different decay lengths. Whereas the slower decaying
contribution is smooth and nodeless in the asymptotic region,
the faster decaying contribution features a nodal surface,
which is likely to be approximate harmonically in terms of
the distance to the nodal surfaces. Since these conditions

are sufficient to derive all presented results to leading order
and are satisfied by our minimal model, our results are of
general relevance. For example, our arguments also apply to
other nodal surfaces as, e.g., generated by higher spherical
harmonics. In the latter case, all results will be maintained
qualitatively, as well as quantitatively in leading order, when
one measures the distance to a specific nodal surface by z,
and the coordinate along the nodal surface by r . One may also
specifically wonder how our arguments change if one replaces
the pz orbital in our model by the linear combination px + ipy ,
changing the homo density into a torus. In this case, the nodal
plane would reduce to a single line, the z axis. Yet, except for an
interchange of r and z, the results and plots would look nearly
indistinguishable to the ones that we present here. In addition to
these arguments, the relevance of our findings is also evident
from the divergences that are observed in real systems, as
demonstrated, e.g., in Fig. 1 for the benzene molecule and the
AK13 functional.

We observe that all functionals that we know of that
incorporate in a semilocal fashion either a system-dependent
asymptotic constant or the correct asymptotic Coulombic
behavior of the potential or the energy density are affected
by nodal surfaces issues—this list even includes Laplacian
based meta-GGA constructions [19,77]. Additionally, we
attempted to combine any of these asymptotic criteria with
regular behavior on nodal surfaces in density functionals of
rather general semilocal form—but without success so far. For
the GGA exchange form in particular, such asymptotics are
incompatible with a potential that behaves regularly in the
vicinity of asymptotic nodal surfaces; cf. Appendix B. This
is in line with the observation that commonly used semilocal
functionals do not perform well when the exact xc hole is not
localized around its electron. The hole-localization condition
is radically violated in the asymptotic limit, where the electron
is far out but its hole remains well inside the system. Therefore,
the above-mentioned asymptotic features are very challenging
design criteria for semilocal functionals.

The exponentially diverging semilocal exchange potentials
of AK13, BJ, B88, and LB94 have several potentially unpleas-
ant implications. Diverging potentials are suspicious from a
conceptual perspective. Even though it was found that the
EXX potential approaches a positive constant [38–41] in the
direction of nodal surfaces, its implications and the behavior
of the combined xc potential are still controversially discussed
[47,48]. Adopting a positive perspective, one may interpret
the divergences that we discuss here as a contribution to this
discussion.

However, in terms of the practical application of these
semilocal functionals, their irregular behavior is problematic.
In particular, when the irregularities are confined to very
narrow regions of space, such as, e.g., in the case of B88,
a numerical representation in terms of some chosen basis set
may not resolve the divergence. In this case, the numerical
calculation may converge without problems. Strictly speaking,
however, such a calculation has concealed a feature that is part
of the proper functional derivative. On the other hand, choosing
the numerical resolution such that it captures the divergence
can have detrimental consequences: As a divergence of these
potentials is generated in a semilocal fashion, small, normally
insignificant changes of the density in the asymptotic region
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close to a nodal surface can cause tremendous feedback
on these potentials. Hence, in an iterative KS calculation,
a positive feedback loop for irregularities and numerical
instabilities can arise, impeding a self-consistent solution of
the KS equations. We find this to be very much the case for
our own attempts at converging AK13 results for systems with
nodal surfaces, and also other authors have reported numerical
problems with self-consistent calculations [78]. Furthermore,
unusual oscillations in the AK13 potential have also been
observed in the interstitial region of Si crystals [35], and these
might be another consequence of the features that we discussed
here for finite systems. Quite generally, one might speculate
that similar issues could have influenced the convergence of
some of the many published values obtained with B88- and
BJ-based potential functionals.

VII. SUMMARY AND CONCLUSIONS

We have introduced and used a minimal model of general
utility to examine exchange potentials along nodal surfaces
of the highest occupied orbital. The model was used to
investigate the corresponding potentials from the exchange-
energy functionals AK13 and B88, as well as the BJ and LB94
model exchange potentials. We commented on several other
functionals that are expected to have nodal surface properties
in close similarity to these four paradigm cases. None of these
potentials is well-behaved in the vicinity of a nodal surface,
but rather they diverge exponentially. The AK13 functional has
the most strongly divergent potential, which appears to prevent
numerical convergence in practical calculations on molecular
systems with nodal surfaces. The present work gives results
and tools that should be useful for the investigation of other
functional constructs, and for creating future expressions that
avoid nodal surface anomalies. In particular, we derived a
condition that is sufficient for avoiding nodal surface problems,
and we pointed out that, e.g., LDA, B86a, and PBE fulfill this
condition. Our results are relevant for the developers of density
functionals, and also for users of DFT: Divergent potentials
pose a challenge for the numerical convergence of solutions
to the KS equations. Our work serves to caution that great
care has to be taken in calculations with functionals that show
special features close to nodal surfaces.
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APPENDIX A: ASYMPTOTICS OF GGA POTENTIALS
EXACTLY ALONG THE NODAL PLANE OF THE

MINIMAL MODEL

Here we provide a detailed derivation of Eq. (36), i.e., rate
of divergence for GGA potentials exactly along a nodal plane

of the minimal model: As we have demonstrated in Sec. III,
the Laplacian of the density is the only ingredient of the GGA
potential of Eq. (18) whose p contribution does not vanish
exactly on the nodal plane and therefore dominates,(∇2n

)
(r,z = 0) ∼ (∇2np

)
(r,z = 0) ∝ exp

(−αpr
)

(A1)

in the limit r → ∞. On the contrary, the p contribution to n,
∇n, and ∇|∇n| vanishes at z = 0, thus their dominant behavior
as r → ∞ is determined by the exponential decay of the s

orbital,

n(r,z = 0) ∝ (∇n)(r,z = 0) ∝ (∇|∇n|)(r,z = 0)

∝ ns(r,z = 0) ∝ exp (−αsr). (A2)

Because the exponential divergence of GGA potentials along
nodal planes stems from the occurrence of these different decay
lengths, it is given by Eq. (21),

vGGA
x (r,z = 0) ∼ −Axn

1/3 t

s2
s ∂sF (s), (A3)

where we have to consider F (s) in the limit s → ∞, as this
limit is approached for r → ∞ on the nodal plane (just as in the
spherically symmetric case for |r| → ∞). Now, we consider
a general asymptotic enhancement factor in this limit,

F (s) ∼ Csd lnc(s), (A4)

where C, d, and c are arbitrary constants. Therefore,

vGGA
x (r,z = 0) ∼ −AxC dn1/3 t

s2
sd lnc(s). (A5)

Concerning the exponential divergence, we can neglect the
prefactor and the logarithm as lnc(s) is only polynomial in
r . Inserting the definitions of s and t [cf. Eq. (3)] and using
relations (A1) and (A2) gives the final result,

vGGA
x (r,z = 0) ∝ n1/3 t sd−2

∝ n1/3−5/3−(d−2) 4/3(∇2n)|∇n|d−2

∝ n−(d+2)/3
s np ∝ exp

[(
2 + d

3
αs − αp

)
r

]
,

(A6)

which was presented in Eq. (36) and discussed thereupon.

APPENDIX B: INCOMPATIBILITY OF ASYMPTOTIC
SEMILOCAL DESIGN CRITERIA WITH

NODAL SURFACES

Under the assumption of a regularly decaying density in the
sense of Eq. (5), one can connect a given asymptotic behavior
of the corresponding potential, e.g., a nonvanishing asymptotic
constant or the correct Coulombic −1/|r| asymptotic, to the
asymptotic enhancement factor F (s) of an exchange-only
GGA. The connection is based on an asymptotic differential
equation, which was derived in the supplemental material
of Ref. [36] and determines F (s) as s → ∞ for a given
asymptotic behavior of the corresponding potential,

F (s) − s

(
1 − 1

2 ln(s)

)
F ′(s) + 1

4
s2F ′′(s) = ν(s). (B1)

The source term on the right-hand side of this equation
is uniquely determined by the asymptotic behavior of the
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potential,

ν(s) ∼ 3

4Ax

vGGA
x [n,s]

n1/3
, (B2)

as s → ∞ via |r| → ∞. Therefore, a nonvanishing asymptotic
constant corresponds to ν(s) ∝ s, and the correct Coulomb
asymptotics corresponds to

ν(s) = − γ

2Ax

s

ln(s)
. (B3)

Thus, up to a linear combination of the two homogeneous
solutions h1(s) and h2(s) of this differential equation, F (s)
is asymptotically uniquely determined by the behavior of the
potential. To leading order, the homogeneous solutions are
characterized by the relations

h1(s) ∼ s ln2/3(s) (B4)

and

h2(s) ∼ s4

ln8/3(s)
(B5)

as s → ∞, i.e., in terms of Eq. (35) by d = 1 and 4. Therefore,
both homogeneous solutions represent enhancement factors

that lead to irregular behavior in the vicinity of nodal surfaces.
Consequently, if for a given potential asymptotic the particular
solution [79] for F (s) also exhibits nodal surfaces issues, then
this specific potential asymptotic is (in the GGA exchange
form) incompatible with a potential that behaves regularly
in the vicinity of nodal surfaces. This is the case for the
criteria of a nonvanishing asymptotic constant and of the
correct Coulombic −1/|r| asymptotic of the potential, where
the asymptotics of the particular solutions are F (s) ∼ B1s ln(s)
and F (s) ∼ −(γ /Ax)s as s → ∞, correspondingly. The latter
asymptotic is, e.g., used in a recent GGA of Carmona-
Espíndola et al. [27].

Moreover, the correct asymptotic behavior of the exchange-
energy density, ex(r) ∼ −n(r)/2|r|, is in the GGA form only
realizable by the asymptotic enhancement factor

F (s) ∼ − γ

3Ax

s

ln(s)
, (B6)

as implemented in the B88-GGA. Therefore, we conclude
based on Sec. IV C that this asymptotic-design criterion is also
incompatible with regular behavior close to nodal surfaces.
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