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We investigate the ground-state properties of the spin-1/2 XXZ model with power-law-decaying (1/rα)
interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and
longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The
long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement
properties of the system by making use of linear spin-wave theory, supplemented with density-matrix
renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct
coupling regimes, depending on the decay exponent α and number of dimensions d: (1) a short-range regime for
α > d + σc (where σc = 1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc = 2
in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α = ∞);
(2) a long-range regime α < d , sharing the same properties as those of the infinite-range interactions (α = 0)
in the thermodynamic limit; and (3) a most intriguing medium-range regime for d < α < d + σc, continuously
interpolating between the finite-range and the infinite-range behavior. The latter regime is characterized by
elementary excitations with a long-wavelength dispersion relation ω ≈ �g + ckz in the gapped phase, and
ω ∼ kz in the gapless phase, exhibiting a continuously varying dynamical exponent z = (α − d)/σc. In the
gapless phase of the model the z exponent is found to control the scaling of fluctuations, the decay of correlations,
and a universal subdominant term in the entanglement entropy, leading to a very rich palette of behaviors for
ground-state quantum correlations beyond what is known for finite-range interactions.
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I. INTRODUCTION

Long-range (LR) interacting quantum many-body systems
have attracted an increasing level of attention in the recent
years. The experimental improvements in cooling, controlling,
and addressing few- to many-body atomic and molecular
quantum systems possessing sizable LR interactions [1–4]
have triggered intense theoretical efforts, aimed at exploring
the possibility that such interactions may stabilize stronger
quantum collective phenomena with respect to the case of
short-range interactions. In trapped-ion experiments, in par-
ticular, it has become possible to engineer Ising and exchange
interactions between the internal state of the ions decaying as
a power-law 1/rα of the distance r , and with a continuously
tunable exponent α (0 < α < 3 [5]). Within this setup,
experimentalists were able to observe how the dynamics of
correlations spreading after a quantum quench is modified by
the long-range interactions with respect to the case of ultracold
neutral atoms interacting via a contact potential [6]. Within
the context of ultracold neutral gases several groups have
attained the quantum degeneracy of atoms possessing a large
intrinsic magnetic moment, namely fermionic and bosonic
isotopes of Cr [7–9], Dy [10,11], and Er [12,13], and they were
able to observe the coherent spin-exchange dynamics in these
systems, induced by the large dipole-dipole (1/r3) interaction
[8,14]. Moreover infinite-range cavity-mediated interactions
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in a Bose-Einstein condensate have been experimentally
demonstrated [15,16], leading to the spontaneous formation
of long-range ordered phases (solid and supersolid). Finally,
recent experimental progress in the manipulation of molecular
systems with a large electric dipole [17,18] and of ensembles of
Rydberg atoms [4,19,20] has opened new perspectives for the
quantum simulation of spin Hamiltonians with LR couplings.

In parallel to these remarkable experimental achievements,
the theoretical efforts have focused on the study of equilibrium
and out-of-equilibrium properties of LR-interacting quantum
lattice models. A large number of works have focused on
the peculiar postquench spreading of correlations [21–29]
and entanglement [22,23,28,30] in LR-interacting systems, in
connection with the breakdown (or generalizations) of Lieb-
Robinson bounds [31] constraining the dynamics [21,25].
Further studies have rather focused on the ground-state
properties of these models, where LR interactions can strongly
affect the decay of correlation functions [32–35], lead to
phase transitions [32,36–38], or modify substantially the
entanglement properties [35]. In particular, the breakdown of
the Mermin-Wagner theorem for sufficiently LR interactions
leads to the possibility of spontaneous breaking of a continuous
symmetry even in one-dimensional systems [32,37,38].

In the face of the mounting body of experimental and
theoretical results on LR-interacting systems, it is of central
importance to develop a broad (and possibly exhaustive)
picture of the effect of LR interactions on the many-body
physics of the system, and particularly so as the strength and
decay law of interactions is varied continuously. While this
endeavor might be too arduous to pursue for all the models of
interest to experiment and theory in recent years, one can adopt
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a different strategy which focuses on a sufficiently simple
model possessing nonetheless a rich phenomenology, and aims
at extracting the most salient features and driving principles—
in terms of excitations, fluctuations, and entanglement—of the
various regimes of LR interactions.

In this work we pursue the latter strategy by focusing
our attention on the ground-state physics of a paradigmatic
model in the theory of magnetism, the XXZ model for
S = 1/2, possessing power-law-decaying (1/rα) isotropic
ferromagnetic interactions for the x and y spin components,
and ferro- or antiferromagnetic interactions for the z spin
components. The LR XXZ model describes also the physical
situation of hard-core bosons with long-range hopping and
density-density interactions. This model offers a rich showcase
of effects of LR interactions on symmetry-breaking phases:
(1) In any number of dimensions d its phase diagram
exhibits an extended ferromagnetic XY phase with breaking
of the continuous rotation symmetry in the xy plane, and
the apparition of a gapless Goldstone mode. In particular in
d = 1 such a phase exists only thanks to the LR interactions,
and it is stabilized by a decay exponent α < 3 against a
Luttinger-liquid (namely gapless disordered) phase. (2) The
above phase is in competition with a Néel phase exhibiting
long-range antiferromagnetic ordering along the z axis and a
gapped spectrum. As a consequence the LR XXZ model allows
us to monitor the effect of LR interactions with a continuously
varying exponent α on phases breaking either a continuous
or a discrete symmetry. In the XY phase the LR interactions
are expected to stabilize against fluctuations the long-range
order which already appears for nearest-neighbor interactions
(in d � 2). This fully justifies treating such fluctuations as
harmonic ones, as done by linear spin-wave (LSW) theory,
on which we base most of our analysis. On the other hand
the Néel phase is destabilized by the LR interactions due to
their frustrated nature. Nonetheless in both phases, as well
as at the transition between the two, the assumption of weak
quantum fluctuations underlying LSW theory is well verified

a posteriori, making our predictions quantitative. The case
of antiferromagnetic XY interactions could also be treated
in principle by LSW theory—but in this case the power-law
decay induces frustration, which is expected to progressively
weaken long-range order, making the LSW approach less and
less justified as α decreases.

In particular LSW theory puts on the center stage the
dispersion relation of free bosonic excitations, which is
found in turn to control the scaling of fluctuations (or,
equivalently, the decay of correlations), and the scaling
of entanglement. In particular a systematic analysis of the
long-wavelength properties of the dispersion relation allows us
to identify three distinct regimes upon varying the α exponent:
(1) a short-range regime for α > d + σc (σc = 1 in the Néel
phase and σc = 2 in the XY phase), whose main properties
reproduce those observed in the limit α = ∞ of finite-range
interactions; (2) a medium-range regime for d < α < d + σc,
whose scaling properties (in the XY phase) are dominated by
a continuously varying dynamical exponent z = (α − d)/σc,
governing the k → 0 limit of the dispersion relation; and
(3) a properly defined long-range regime for α < d, possessing
dispersionless excitations, and reproducing the properties of
the infinite-range limit α = 0 in the thermodynamic limit. In
particular this classification shows that the most interesting
regime is the intermediate (medium-range) one, as it is the
only one with markedly distinct features with respect to the
two extreme limits of finite-range (α = ∞) and infinite-range
(α = 0) interactions which have been thoroughly investigated
in the past. Importantly, the medium-range regime of the XY
phase is also the one in which to frame the dipolar interaction
in d = 1, 2, and 3 (although α = 3 falls on the boundaries
of the medium-range regime for d = 1 and 3, and in its bulk
only for d = 2).

Despite their harmonic nature within LSW theory, ground-
state quantum fluctuations exhibit a very rich structure in
terms of scaling properties, and they are associated with an
equally complex scaling of the entanglement entropy (EE) of

TABLE I. Summary of main results for the long-range ordered XY phase (in d = 2 and 3 for all α, and in d = 1 for α < 3) and the Néel
phase, concerning the dispersion relation and the scaling of fluctuations and of entanglement. The scaling laws refer to a hypercubic-lattice
geometry with linear size L, or to an A subsystem with linear extent LA. The “—” symbols indicate the absence of predictions in the
corresponding regimes: in the XY phase for d = 1 the area-law term in the scaling of the entanglement entropy becomes a subdominant
constant, and the Néel phase is simply absent for α < d (see the phase diagram in Fig. 1).

XY Phase Short Range (α > d + 2) Medium Range (d < α < d + 2) Long Range (α < d)

Dynamical exponent z (ω ∼ kz) z = 1 z = (α − d)/2 z = 0
〈(δSx)2〉 scaling (total system) Lmax(d,2) Lmax(d,2z) Ld

〈(δSy)2〉 scaling (total system) Ld+1 Ld+z Ld

〈(δSz)2〉 scaling (on the A subsystem) Ld−1
A ln LA Ld−z

A Ld
A

Scaling of subsystem entanglement
entropy: dominant term

Ld−1
A (ln LA in 1d) Ld−1

A (ln LA in 1d) —

Scaling of subsystem entanglement
entropy: logarithmic term

d−1
2 ln LA

d−z

2 ln LA
d

2 ln LA

Néel Phase Short Range (α > d + 1) Medium Range (d < α < d + 1) Long Range (α < d)
Dynamical exponent z (ω ∼ �g + ckz) z = min(2,α − d) z = α − d —
〈(δSx(y))2〉 scaling (total system) Ld Ld —
〈(δSz)2〉 scaling (on a the A subsystem) Ld−1

A Ld−1
A —

Scaling of subsystem entanglement
entropy: dominant term

Ld−1
A Ld−1

A —
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a subsystem. A list of such properties in the three regimes of
the LR XXZ model is presented in Table I, which summarizes
the most important results of the present work.

The structure of our paper is as follows: Sec. II introduces
the model and its theoretical treatment; Secs. III and IV discuss
the structure of quantum fluctuations and entanglement in the
ground state, respectively; conclusions are drawn in Sec. V.

II. THE HAMILTONIAN AND ITS LOW-ENERGY
PROPERTIES

In this section, we introduce the model Hamiltonian under
investigation, and proceed to determine its phase diagram
within mean-field theory. We then investigate harmonic quan-
tum fluctuations around the mean-field limit by diagonalizing
the quadratic (LSW) Hamiltonian, and obtaining the dispersion
relation of elementary excitations. The behavior of the disper-
sion relation in the limit of a vanishing wave vector k → 0 is
controlled by the Fourier transform of the power-lay-decaying
interactions, and therefore it fundamentally depends on the
decay exponent α as well as on the number of dimensions d. We
further prove the self-consistency of the LSW approximation,
showing that the LSW corrections to the mean-field solution
are weak throughout the phase diagram, and even vanishing in
the thermodynamic limit for α < d.

A. Model Hamiltonian

The Hamiltonian of the XXZ model with LR interactions
reads

HXXZ =
∑
i �=j

J0

rα
ij

[−(
Sx

i Sx
j + S

y

i S
y

j

) + �Sz
i S

z
j

]
, (1)

where the indices i,j run over the nodes of an N = Ld

hypercubic lattice in d spatial dimensions with periodic bound-
ary conditions (unless otherwise specified). S

β

i (β = x,y,z)
are quantum-spin operators attached to each node. In the
following we shall specify our discussion to the case of
S = 1/2. We consider ferromagnetic interactions for xy

spin components, while the z spin components may have
either ferromagnetic (� < 0) or antiferromagnetic (� > 0)
interactions. The coupling J0 simply sets the overall energy
scale, and it will be set to one in the following.

The choice of S = 1/2 and of ferromagnetic xy couplings
allows for a meaningful mapping of the above Hamiltonian
onto that of hard-core bosons with long-range hopping and
interaction:

HXXZ =
∑
i �=j

J0

rα
ij

[
−1

2
(a†

i aj + a
†
j ai)

+�

(
ni − 1

2

)(
nj − 1

2

)]
, (2)

where ai, a
†
i , and ni = a

†
i ai are hard-core-boson operators

(satisfying the relations {ai,a
†
i } = 1 and [ai,a

(†)
j �=i]), related

to the S = 1/2 spin operators by the transformation ai =
S−

i , ni − 1/2 = Sz
i .

Unless explicitly stated, we shall work with periodic
boundary conditions, and choose the finite-size regularization
r2
ij = ∑d

p=1(�rij )2
p, with

(�rij )p = (L/π ) sin
(
r

(p)
ij π/L

)
, r

(p)
ij = (r i − rj ) · ep. (3)

The distance rij is dimensionless, as it is measured in units of
the lattice spacing. This choice leads to r−α

ij →δ〈ij〉 for α→∞,
where 〈ij 〉 denotes a pair of nearest neighbors; namely, the
α → ∞ limit corresponds to finite-range interactions. On the
opposite end, the limit α → 0 produces couplings with an
infinite range. Traditionally, the distinction between short- and
long-range interactions relies on the convergence properties of
the sum

∑
j �=i 1/rα

ij in the thermodynamic limit. As the latter
diverges whenever α � d, the separation between short- and
long-range interactions is set at α = d.

B. Mean-field phase diagram

In d = 2 and d = 3, the ground state of the Hamiltonian
Eq. (1) exhibits three different phases: an Ising ferromag-
netic phase (FM) with spins aligned along the z direction,
corresponding to an insulating state of hard-core bosons
with one particle per site; a Néel-ordered phase with spins
exhibiting a finite staggered magnetization along the z axis,
corresponding to a checkerboard solid of hard-core bosons;
and an XY phase where the rotational symmetry about the z

axis is spontaneously broken and spins order ferromagnetically
along (for instance) the x axis, corresponding to a superfluid
condensate for the hard-core bosons.

The approximate location of the transition lines between the
different phases is predicted by a simple mean-field argument,
by comparing the energy of the corresponding mean-field
states:

	FM = ⊗i |↑z〉i , (4)

	Néel = ⊗ieven|↑z〉i ⊗jodd |↓z〉j , (5)

	XY = ⊗i |↑x〉i , (6)

where even (odd) sites are located at positions r i such that∑d
p=1 r i · ep is even (odd). The corresponding energies E =

〈	|HXXZ|	〉 are

EFM = s2�
∑
i �=j

r−α
ij ,

ENéel = s2�
∑
i �=j

εiεj r
−α
ij , (7)

EXY = −s2
∑
i �=j

r−α
ij ,

with s = 1/2 in the present case. εi = 1 (−1) if i is an
even (odd) site. For � < −1, the Ising ferromagnet (FM)
has the lowest energy, and in fact it corresponds to the exact
ground state: given that this state does not possess quantum
correlations or entanglement, we shall not discuss it any
further, and we will restrict our attention to the case � > −1. In
the latter range, the condition ENéel = EXY sets the transition
line at

�c(α) = −
∑

i �=j r−α
ij∑

i �=j εiεj r
−α
ij

. (8)

Notice that, since r−α
ij decays with distance between i and j ,

the denominator is always negative, so that the above ratio
is positive. For � > �c(α), the system displays Néel order,
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FIG. 1. Phase diagram of the XXZ Hamiltonian (1) in d = 2.
The false colors indicate the renormalization of the classical order
parameter by quantum fluctuations, calculated on a system size
Lx = Ly = 100. Solid lines are the mean-field prediction of Eq. (7);
a, b, c, and d are the points at which the spectrum is calculated in
Fig. 3.

while for � < �c(α), the in-plane (XY) ferromagnetic order is
favored. For α → ∞, the interactions are restricted to nearest
neighbor, and one recovers the known result �c(∞) = 1. Due
to the frustration of the interaction among z spin components
inherent to the long-range nature of the couplings, we expect
that when α decreases, a larger value of � is necessary to
stabilize the Néel order. And indeed, one can predict that at
α < d, the XY order is always stabler than the Néel order,
since

∑
i �=j εiεj r

−α
ij is always finite, while

∑
i �=j r−α

ij diverges.
One thus obtains the phase diagram shown on Fig. 1. When
including harmonic quantum corrections to the mean-field
solution (as discussed in the following) the phase diagram
preserves its topology in d = 2 and 3. In d = 1, on the other
hand, the XY phase is destabilized for α > 3, in compliance
with Mermin-Wagner theorem [39], as further discussed in
Sec. II D (the correct phase diagram for d = 1 including quan-
tum corrections to mean-field theory is to be found in Fig. 4).

C. Spin waves and excitation spectrum

In this section we study the low-energy properties of the
XXZ Hamiltonian through linear spin-wave theory, represent-
ing a semiclassical expansion around the mean-field ground
state [40].

1. XY phase

The mean-field ground state in the XY phase is a perfect
ferromagnet with all spins aligned along, e.g., the x axis. We
then introduce Holstein-Primakoff (HP) boson operators bi

which describe small deviation with respect to this perfect
ferromagnet (namely the spin waves) [40,41]:

Sx
i = 1

2
− b

†
i bi,

S
y

i = 1

2i
(bi − b

†
i ) + O

(
b3

i

)
,

Sz
i = −1

2
(bi + b

†
i ) + O

(
b3

i

)
. (9)

The LSW approximation consists of discarding all terms
beyond quadratic in the HP transformation as well as in the
resulting Hamiltonian. Its validity relies on the assumption that
the quantum fluctuations of the spins are not strong enough
to destroy the classical order. Technically, this hypothesis
requires the populations of the HP bosons 〈b†i bi〉 to remain
significantly smaller than 1 (or 2s for a generic spin length
s). A systematic comparison of some predictions of the LSW
expansion with exact Monte Carlo calculations in d = 2 has
been presented in Ref. [40], in the α = ∞ (nearest-neighbor)
case and at � = 0, demonstrating a remarkable accuracy for
the LSW results. The accuracy of LSW predictions can only
be expected to improve upon lowering the α exponent, as long
as this does not entail crossing the phase transition separating
the XY phase from the Néel phase, as discussed in the previous
section. If instead one considers values of α and � close to the
transition line in Fig. 1 one may expect the quality of LSW
theory to worsen: nonetheless, as discussed in Sec. II D the
first-order nature of the XY-Néel transition guarantees that our
LSW treatment remains justified.

Taking advantage of the translational invariance, the Hamil-
tonian is conveniently expressed in momentum space. Intro-
ducing bk = N−1/2 ∑

j e−ik·rj bj , and expanding the Hamilto-
nian up to second order in the bk operators, one obtains

H(2) = 1

2

∑
k

(b†k bk)

(
Ak Bk

Bk Ak

)(
bk

b
†
k

)
, (10)

where a constant term has been dropped. We have introduced
the coefficients

Ak = γ0 + (� − 1)γk/2, Bk = (� + 1)γk/2, (11)

and the fundamental geometric coefficient

γk =
∑
r �=0

eik·r

rα
(12)

corresponding to the Fourier transform of the coupling matrix.
The quadratic Hamiltonian H(2) is diagonalized by a

Bogoliubov transformation [42] bk = ukβk − vkβ
†
−k, with

coefficients uk = (1/
√

2)(Ak/
√

A2
k − B2

k + 1)1/2 and vk =√
u2

k − 1, to lead to the form

H(2)
XY =

∑
k �=0

γ0

√
1 − γk

γ0

√
1 + �

γk

γ0
β
†
kβk + Hk=0. (13)

In fact, the Bogoliubov transformation only applies to
k �= 0, while the k = 0 sector deserves a special treatment.
When α > d, γ0 = ∑

r �=0 1/rα is nondivergent, and therefore
the k = 0 sector provides a microscopic contribution to the
Hamiltonian and to the thermodynamic properties [43]. For
α > d,Hk=0 can then be safely ignored in the calculations
when taking the thermodynamic limit. The βk operators
describe quasiparticles which, at the LSW level of approx-
imation, correspond to exact eigenmodes of the many-body
Hamiltonian. They represent collective fluctuations of the
spins above the ground state, with a dispersion relation

Ek =
√

A2
k − B2

k = γ0

√
1 − γk/γ0

√
1 + �γk/γ0. (14)
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FIG. 2. Fourier transform γk of the interaction r−α
ij = 1/|ri −

rj |α , in dimension d = 2. γk is plotted along the (k,k) diagonal of
the Brillouin zone. For α < d, γk diverges as kα−d at small k. For
d < α, γk − γ0 ∼ kmin(2,α−d) (see text).

The LSW approximation is dynamically stable if Ek is real for
any k. Since γk � γ0, the term

√
1 − γk/γ0 is not problematic.

As γk is maximally negative for K = (π,π, . . . ) (see
Fig. 2), we must require � < −γ0/γK , coinciding with the
condition � < �c(α), Eq. (8), for the mean-field stability
of the XY phase; this condition must be supplemented
with � > −1 to avoid the instability towards the Ising
ferromagnetic phase. The resulting spectrum is gapless at
k = 0, corresponding to the Goldstone mode associated with
the broken U(1) rotational symmetry around the z axis. An
important qualitative difference from the short-range regime is
that the usual linear dispersion ω ∼ k for this Goldstone mode
is altered for d < α < d + 2 into ω ∼ kz, with z = (α − d)/2,
as we shall discuss below. For α < d, on the other hand, one
observes that γ0 → ∞, while γk remains convergent. As a
consequence, the excitation spectrum (rescaled in units of
γ0) becomes dispersionless in the thermodynamic limit. We
further discuss the case α < d in Sec. II E.

Dynamical exponent. The geometric coefficient γk controls
the low-energy dispersion relation Ek [see Eq. (13) and
Eq. (19)], and the long-distance decay of the spin correlations
is also directly controlled by the small-k behavior of γk (see
Appendix B). In order to obtain the correct scaling regimes,
independently of the details of the lattice (as expected in
the small-k limit), and to recover simultaneously the correct
dispersion relation in the limit α → ∞, we found it convenient
to treat exactly the nearest-neighbor contribution to γk, and to
approximate the rest of the sum by an integral. We thus have

γk = γ
(nn)
k +

∫
ρ>1

ddρ
eiak·ρ

ρα
, (15)

where ρ = r/a, a is the lattice constant, and γ
(nn)
k

[= 2
∑d

i=1 cos(kia) on the cubic lattice under the present
investigation] is the value of γk for α → ∞, i.e., for nearest-
neighbor interactions only. For any α > d, γ0 is expressed via
a convergent integral. In Appendix A, we show that γk has the

FIG. 3. Excitation spectrum along kx = ky in dimension d = 2.
(a) � = 0 and α = 5 (XY phase); (b) � = 2 and α = 5 (Néel phase);
(c) � = 4 and α = 3 (Néel phase); (d) � = 2 and α = 3 (XY phase).
The a, b, c, and d points are indicated on the phase diagram, Fig. 1.

following behavior at small k:

γ0 − γk ∼ kα−d (for α < d + 2),

γ0 − γk ∼ k2 (for α > d + 2). (16)

As a consequence
√

γ0 − γk develops a cusp around k = 0
for d < α < d + 2, turning into a divergence for α < d (see
Fig. 2).

Interestingly, although the calculation of the integral in
Eq. (15) requires a different treatment for each value of d,
the low-k dispersion shows a clear change at the simple
d-dependent value of the α exponent, α = d + 2. When
α > d + 2, the qualitative behavior of γ0 − γk is the same
as for the short-range limit α → ∞, with a prefactor of the k2

scaling that depends on α and on the details of the lattice, and
which diverges at α = d + 2.

In Fig. 2, we have plotted γk in d = 2 along the (k,k)
diagonal of the Brillouin zone.

Excitation spectrum and sound velocity. Given the ex-
pressions of the excitation spectrum Ek in the XY phase
Eq. (13), and given the discussion of the previous paragraph
[see Eq. (16)], the small-k behavior of the excitation spectrum
is straightforwardly derived.

The result is summarized in Table I, and illustrated in Fig. 3
at various representative points of the phase diagram. The
spectrum is gapless in the whole XY phase, corresponding to
the Goldstone mode of the broken U(1) rotational symmetry.
Remarkably, the linear dispersion relation of this Goldstone
mode, well known in the short-range regime [Fig. 3(a)], is
recovered only when α > d + 2, with an α- and �-dependent
sound velocity ∂Ek/∂k|k=0, while for d < α < d + 2, the
dispersion relation behaves as kz, with z = (α − d)/2 < 1,
and the group velocity diverges as kz−1 at small k [Fig. 3(d)].

2. Néel phase

In the Néel phase, the Holstein-Primakoff bosons rep-
resent small deviations around the reference mean-field
state 	Néel, and they are introduced via the following
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transformation:

Sz
i = εi

(
1

2
− b

†
i bi

)
,

S
y

i = εi

1

2i
(bi − b

†
i ) + O

(
b3

i

)
, (17)

Sx
i = 1

2
(bi + b

†
i ) + O

(
b3

i

)
,

with εi = 1 for even sites and εi = −1 for odd sites. The
reduction to an effective quadratic Hamiltonian goes along the
same line as for the XY ferromagnet. The Ak,Bk coefficients
take the form [with again K = (π,π, . . . )]

Ak = −�γK − (γk + γk−K )/2,
(18)

Bk = −(γk − γk−K )/2,

resulting in the following quadratic Hamiltonian:

H(2)
Néel =

∑
k

√
(�γK + γk)(�γK + γk−K )β†

kβk. (19)

The spectrum is gapped and twofold degenerate (because it
is folded onto the smaller magnetic Brillouin zone, which is
half the geometric one) with Ek = Ek−K (see Fig. 3). The
stability requirement that the spectrum be real is equivalent to
the condition � > −γ0/γK , which is again the same criterion
defining the phase boundary between the Néel phase and the
XY ferromagnetic phase. Near k = 0, the spectrum behaves
as Ek ≈ �g + ckz, where �g = γK

√
� + 1

√
� + γ0/γK , c is

some (α- and �-dependent) constant, and z = min(α − d,2).
The dispersion relation expected in the short-range regime is
therefore recovered when α > d + 2 [Fig. 3(b)]. Moreover,
for d < α < d + 1, the maximal group velocity (moving from
a finite k towards k = 0) diverges as vmax

G = maxk |∇kEk| ∼
kα−d−1 [Fig. 3(c)].

D. Stability of the spin-wave approximation

In this section, we briefly discuss the self-consistency of the
LSW approximation in the different regimes. Self-consistency
requires that the modification of the order parameter mSW, due
to the nonzero population of Holstein-Primakoff bosons, re-
mains small with respect to its classical value mcl = 1/2. In the
XY phase, the order parameter m is the average magnetization
along x, while it is the staggered magnetization in the Néel
phase. According to the Holstein-Primakoff transformations
Eqs. (9) and (17), one thus has to evaluate (mcl − mSW)/mcl =
2〈b†i bi〉 = (2/N )

∑
k nk, with nk = 〈b†kbk〉 = v2

k. This integral
is always finite in the gapped Néel phase, but could possibly
diverge in the XY gapless phase due to the small-k behavior
of v2

k ∼ 1/Ek ∼ k−z; this happens if z � d. Given that z = 1
for α � d + 2 and z < 1 otherwise, the only true instance of
instability of the LSW approximation is found in d = 1 for
α > 3 in the XY phase, featuring a logarithmic divergence
in the system size. The strongest renormalization of the
order parameter due to quantum fluctuations is found for
α → ∞ and � = 1, namely at the Heisenberg point of the
XXZ model with nearest-neighbor interactions. Therefore in
d = 2 and d = 3 the renormalization of the order parameter
throughout the �−α phase diagram is upper-bounded by
that of the nearest-neighbor Heisenberg model, namely 40%

FIG. 4. Phase diagram of the XXZ Hamiltonian (1) in d = 1.
The false colors indicate the renormalization of the classical order
parameter by quantum fluctuations as calculated on a system of size
L = 1000. Solid line is the mean-field prediction of Eq. (7), while the
dashed line marks the breakdown of LSW theory at α = 3, signaling
the XY-LL transition. See [37] for a more complete study in d = 1.

on the d = 2 square lattice and 16% on the d = 3 cubic
lattice [44]. This means in particular that the Néel-to-XY
quantum phase transition at α < ∞ does not possess stronger
quantum renormalization than those at the Heisenberg point,
and therefore it is still quantitatively described by LSW theory.
This is intrinsically due to the first-order nature of the phase
transition, which implies that true quantum critical fluctuations
and entanglement do not develop.

In d = 1, the renormalization of the classical order diverges
in the thermodynamic limit when α → 3−. For a finite-size
system the calculation still delivers a finite renormalization;
e.g., for α = 3 and L = 105 the renormalization reaches 86%.
The breakdown of LSW theory for α � αc = 3 signals a phase
transition, absent at the mean-field level, between a long-
range-ordered XY ferromagnet (or a superfluid condensate)
for α < αc and a quasi-long-range-ordered Luttinger-liquid
(LL) phase [45] for α > αc. The phase diagram in d = 1 is
reported in Fig. 4. This quite unusual phase transition, specific
to d = 1, has been studied in more detail in [37,38] beyond the
harmonic approximation, while LSW theory can only indicate
the existence of such a transition, but it cannot quantitatively
describe it. In particular, as shown in Ref. [37] the phase
transition occurs at a �-dependent value αc(�) < 3. In view
of the limitations of LSW results in this regime, in Sec. IV C 2
we shall complement them with fully quantitative ones based
on the DMRG approach, in order to investigate the evolution
of entanglement properties across the XY-LL transition.

E. Exact ground state for α < d

When 0 < α < d, LSW theory predicts that classical order
is not renormalized by quantum fluctuations, irrespective of
the dimension d and of the precise value of α. Indeed, in this
long-range regime—which for � > −1 always falls into the
XY phase—γ0 diverges, while γk goes to a constant for any
fixed nonzero k in the thermodynamic limit. This implies that
Ak/Bk → 0 at any k �= 0, so that uk → 1 and vk → 0 in the
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thermodynamic limit. In other words, the spin waves b
†
k|0〉

become exact eigenstates of the Hamiltonian, whose ground
state is the mean-field trial state. One is thus left with an
effective dynamics for the ground state which occurs only in
the k = 0 sector (the collective spin Stot = ∑

i Si). One might
question the reliability of the LSW approach to draw a definite
conclusion on the nature of the ground state. However, we can
show that the prediction of LSW theory is essentially exact:
the XY ferromagnetic state, while not being the exact ground
state on a finite-size system, has a vanishingly small energy
density above the ground state in the thermodynamic limit. In
order to do so, we first rewrite the Hamiltonian as

HXXZ =
∑

k

γk
(−Sx

kSx
−k − S

y

kS
y

−k + �Sz
kS

z
−k

)
, (20)

where we have introduced S
β

k = N−1/2 ∑
i e

ik·r i S
β

i . Since
γk �=0/γ0 → 0 in the thermodynamic limit, we may keep only
the k = 0 sector, which reproduces the so-called Lipkin-
Meshkov-Glick model [46]:

HXXZ/γ0 ≈ 1

N

[−(Stot)
2 + (1 + �)

(
Sz

tot

)2]
. (21)

The latter model is readily diagonalized by the total-spin basis
|S,M〉 to give

HXXZ|S,M〉 = γ0

N
[−S(S + 1) + (1 + �)M2]|S,M〉. (22)

As long as � > −1, the ground state is

|	0〉 = |S = N/2,M = 0〉 (23)

with an energy E0 = −N/4 − 1/2 (since γ0 diverges for
N → ∞, we measure energy in units of γ0, so that the
thermodynamic limit is well defined). The state |	0〉—often
referred to in the atomic-physics literature as the spin-squeezed
state—is obtained from the application of (

∑
i S

+
i )N/2 to the

state with all spins down. Being the symmetric, equal-weight
superposition of all possible spin configurations with N/2
spins up and N/2 spins down, it contains no further correlation
between the spins beyond the global constraint that the total
spin along z be zero. And, in the thermodynamic limit, the
mean-field XY ferromagnet (which does not possess any
form of correlation) has a vanishingly small energy density
compared to the squeezed state:

(EXY − E0)/N = 1/2N → 0, (24)

and it has essentially the same properties as the true ground
state. Another way to understand this result, following the early
works of Anderson [47,48], is to realize that the mean-field
XY ferromagnet also lies in the S = N/2 manifold, but it
is a superposition of many states with different values of
M . Those states differ in energy with respect to the ground
state by E(N/2,M) − E0 = (� + 1)(M2/N) which scales to
0 as 1/N , building up the famous “tower of states.” Any
superposition of states in the S = N/2 sector sufficiently
peaked around M = 0 thus becomes degenerate with the true
ground state in the thermodynamic limit. This latter point
of view only partly applies to the XY ferromagnet, since
the distribution of M has, in that case, a width of order
O(

√
N ), and hence an excitation energy of order O(1), as we

have shown above. If the behavior on finite-size systems can

TABLE II. Decay exponent of the correlation functions for α > d .
Here “long.” and “trans.” stand for longitudinal and transverse
(with respect to the direction of the order parameter). In the XY
phase, z = min[1,(α − d)/2] is the dynamical exponent of Table I.
In the Néel phase, the gap induces a short-distance exponential
decay, while the algebraically decaying interaction as 1/rα gives
a long-distance algebraic tail for arbitrary α. The correlation function
〈Sz

i S
z
j 〉 − 〈Sz

i 〉〈Sz
j 〉 < 0 for i �= j in the XY phase, and shows a

staggered pattern in the Néel phase.

Correlation functions XY Néel〈
Sν

i S
ν
j

〉 − 〈
Sν

i

〉〈
Sν

j

〉 ∼ 1/rην ∼ e−r/ξ + 1/rην

ηx (long.) 2(d − z) (trans.) α

ηy (trans.) d − z (trans.) α

ηz (trans.) d + z (long.) 2α

strongly deviate from the mean-field one, one can nevertheless
conclude that any correlation effect for α < d is a finite-size
effect. The entanglement properties in the long-range regime
will be further discussed in Sec. IV A.

III. STRUCTURE OF QUANTUM CORRELATIONS AND
FLUCTUATIONS IN THE GROUND STATE

A. Decay of correlation functions

In this section, we discuss the LSW predictions for the
large-distance decay of the spin correlations in the ground
state. We focus on α > d, since all correlations vanish in
the thermodynamic limit for α < d; they just stem from the
conservation of Sz = ∑

i S
z
i (see Sec. II E). Our observations

are summarized in Table II, and the calculations leading to the
various spin correlations are detailed in Appendix B.

1. XY phase

In the XY phase, the rotational symmetry about the z axis
is spontaneously broken. As a result, the spin correlations
in the xy plane are not isotropic: the SySy spin correlations
(transverse to the order parameter) do not possess the same
decay as the SxSx spin correlations (longitudinal to the order
parameter). The SzSz spin correlations exhibit a third distinct
decay behavior. Figure 5 shows the various spin correlations
in the XY phase for d = 2.

LSW predicts the following behaviors:〈
Sx

i Sx
j

〉 − 〈
Sx

i

〉〈
Sx

j

〉 ∼ 1/r2(d−z), (25)〈
S

y

i S
y

j

〉 ∼ 1/rd−z, (26)〈
Sz

i S
z
j

〉 ∼ 1/rd+z. (27)

An analytical understanding for these decay exponents can
be obtained from the small-k behavior of the structure
factor S

ββ

k = N−1 ∑
i,j eik·(rj −r i )〈Sβ

i S
β

j 〉 (β = x,y,z). In Ap-
pendix B, we show indeed that Szz

k ∼ kz while S
yy

k ∼ k−z;
then the decay exponent of the correlation function can be
related to that of the small-k behavior of the corresponding
structure factor via the calculation of Appendix A, assuming
algebraically decaying correlations. Moreover the fact that the
decay exponent of the SxSx correlation function is twice the
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FIG. 5. Spin-spin correlations in the XY phase [panels (a), (b),
(c)] and SySy correlations in the Néel phase [panel (d)]. We chose
� = 0 in the XY phase, and Lx = 5000, Ly = 1000. Deviations from
the theoretical scaling are finite-size effects, mainly due to the fact that
the k = 0 mode has been removed from the calculations. In the Néel
phase, SzSz correlations (not showed) exhibit a staggered pattern.
Black solid lines indicate the power-law decays in accordance with
the predictions of Table II; when possible, they are offset with respect
to the LSW data for better readability of the figure.

one of the SySy correlation function can be understood in that
SxSx is quartic in the HP bosons, while SySy is quadratic (see
Appendix B). As the large-distance decay of the spin-spin cor-
relations is controlled by the α- and d-dependent z exponent,
we can conclude that the same decay exhibited for finite-range
interactions (α = ∞) is recovered over the whole short-
range regime α > d + 2, while in the medium-range regime
(d < α < d + 2) the decay exponents continuously depend on
α exhibiting a broad variety of different correlation regimes.
Note that the exact ground state on a finite-size system does
not break the U(1) symmetry, and the LSW prediction for the
ηy exponent is the one which reproduces the power-law decay
of correlations in the symmetric case.

2. Néel phase

In the Néel phase, the rotational symmetry about the z

axis is preserved, so that the correlations in the xy plane are
fully isotropic—a feature reproduced by the LSW approach,
as we show in Appendix B. As illustrated in Fig. 5, the
spin correlations show a hybrid decay (exponential at short
distance, followed by an algebraic decay at long distance):

〈
S

y

i S
y

j

〉 ∼ ae−rij /ξ + 1/rα
ij , (28)〈

Sz
i S

z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉 ∼ εiεj

(
a′e−rij /ξ + 1/r2α

ij

)
, (29)

with a, a′ some (α- and �-dependent) constants. The simple
exponential decay expected in the finite-range regime is thus
recovered only for α → ∞ in a rather nontrivial way, while
for any α < ∞ the spatial decay of interactions dictates the
long-distance spatial decay of correlations. Similar findings
were reported earlier on other gapped systems in Refs. [34,35].
The hybrid decay (exponential followed by a power law)
is a common feature of gapped systems with long-range

interactions; it has been observed, for instance, in the dynamics
following a quench [49], and in the ground state of a spin-1
topological phase [50].

B. Fluctuations of the collective spin

To complement the analysis of the long-distance decay
of the spin correlations, we offer in this section a scaling
analysis of the associated fluctuations of the collective spin.
Considering the collective spin component Sβ = ∑

i S
β

i with
β = x,y,z, one has

〈(δSβ)2〉 =
∑

i

〈(
δS

β

i

)2〉 + ∑
i �=j

〈
δS

β

i δS
β

j

〉
(30)

(where we have introduced the symbol δO = O − 〈O〉);
namely, the fluctuations are composed of a local term and
of a correlation term. If [Sβ,H] �= 0—namely, for the noncon-
served spin components β = x,y of the collective spin—the
ground state of the Hamiltonian has finite global fluctuations
of the collective spin component in question, whose scaling
can be readily estimated from the knowledge of the power-law
decay of the correlation function 〈δSβ

i δS
β

j 〉 ∼ r
−ηβ

ij . Indeed,
from Eq. (30) one readily deduces that

〈(δSβ )2〉 ∼ O(Ld ) + O(Ld )
∫ L

a

drrd−1−ηβ . (31)

Clearly, if d − 1 − ηβ < −1 (ηβ > d), then the scaling of
fluctuations is O(Ld ), while d − 1 − ηβ > −1 (ηβ < d) will
provide a correction to the conventional volume law of
fluctuation scaling, namely

〈(δSβ)2〉 ∼ L2d−ηβ . (32)

In the Néel phase, ηx,y = α > d, so that corrections to volume
scaling of fluctuations do not appear.

In the XY phase, on the other hand, given the results
presented in Table II, the whole medium-range regime is
characterized by a violation of the volume law of fluctuations
for the Sy collective spin, 〈(δSy)2〉 ∼ Ld+z, while the longitu-
dinal fluctuations of the order parameter 〈(δSx)2〉 ∼ Lmax(d,2z)

could violate a volume law only if z � d/2, implying 2d <

α < d + 2, a condition which is only satisfied in d = 1 for
2 < α < 3 [see Fig. 6(a)].

When considering instead the Sz spin component, which is
conserved by the XXZ Hamiltonian, one has that 〈(δSz)2〉 = 0,
so that the only meaningful question to ask concerns the scaling
of the fluctuations of the Sz

A = ∑
i∈A Sz

i operator defined on
subsystem A. In particular the fluctuations of the local Sz

A spin
component can be expressed entirely in terms of correlations
between A and B, namely〈

δ2Sz
A

〉 = −〈
δSz

AδSz
B

〉
= −

∑
i∈A

∑
j∈B

[〈
Sz

i S
z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉]
. (33)

The scaling of 〈δ2Sz
A〉 is then fundamentally governed by the

decay of correlations. Considering that the system is defined
on a hypertorus, and considering an equal A-B bipartition of
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FIG. 6. Scaling exponents of the collective spin fluctuations in
a subsystem of linear size L: 〈δ2S

β

A〉 ∼ Lγβ for β = x,y,z. Here we
consider the XY phase for d = 1 and 2. For α > d + 2, we find in
fact a logarithmically violated area law for the z component: 〈δ2Sz

A〉 ∼
Ld−1 ln L. Solid lines are the theoretical predictions of Table I, while
the dots result from fits with A half of the total system, which is an
L × 2L torus in d = 2 and a 2L circle in d = 1. Fitting functions
were chosen of the form 〈δ2S

β

A〉 = aLγ + b. Sizes L = 10 . . . 200 in
d = 2 and L = 104 . . . 105 in d = 1 were used for the fits.

the system (namely LA,LB ∼ L), one can show that

∑
i∈A

∑
j∈B

1

|ri − rj |ηz
∼

⎧⎨
⎩

L2d−ηz if ηz < d + 1,

Ld−1 ln L if ηz = d + 1,

Ld−1 if ηz > d + 1.

(34)

Details on the calculation are provided in Appendix C, showing
that further logarithmic corrections are expected if ηz = d or
ηz = d − 1. Hence in the Néel phase, where ηz = 2α > 2d �
d + 1, an area-law scaling of Sz fluctuations is verified over
the whole medium- and short-range regimes in all dimensions
d � 1.

In the XY phase, on the other hand, ηz = d + z, so that
the whole of the short-range regime with z = 1 exhibits a
logarithmically violated area law for the Sz fluctuations, as
observed in the finite-range limit [51], whereas the medium-
range regime with z < 1 exhibits a continuous violation of the
area law, 〈δ2Sz

A〉 ∼ Ld−z, up to a fully developed volume-law
scaling in the long-range regime.

Our findings for the scaling of fluctuations are summarized
in Table I. Figure 6 shows the predicted scaling exponents
for the collective-spin fluctuations in the XY phase compared
with the numerical reconstruction of the exponents via direct
calculations on systems with sizes L = 104 . . . 105 in d = 1
and L = 10 . . . 200 in d = 2, showing that finite-size effects
may be significant, yet they do not prevent us from observing
the strong α dependence of the scaling of fluctuations in the
medium-range regime.

IV. SCALING OF THE SUBSYSTEM
ENTANGLEMENT ENTROPY

In this section we investigate the entanglement properties of
the ground state, focusing on the scaling of the entanglement
entropy of a subsystem. The latter is defined starting from
the reduced density matrix (RDM) ρA of subsystem A as a
partial trace of the ground-state projector over B (namely the
complement of A):

ρA = TrB |	0〉〈	0|. (35)

The entanglement entropy (EE) is then defined as the von
Neumann entropy of the RDM, SA = −TrρA ln ρA. It is useful
to recall that any quantum state admits a so-called Schmidt

decomposition [52] related to the A−B bipartition of the
system, in the form

|ψAB〉 =
∑

p

√
λp

∣∣ψ (p)
A

〉 ⊗ ∣∣φ(p)
B

〉
, (36)

where the states |ψ (p)
A 〉 (resp. |φ(p)

B 〉) form an orthogonal basis
of the Hilbert space HA (resp. HB) of subsystem A (resp. B).
The EE is then simply obtained as the Shannon entropy of the
Schmidt coefficients λp, SA = −∑

p λp ln λp.
LSW theory allows for a very efficient calculation of the

entanglement properties of the ground state, thanks to the
Gaussian form of the RDM of any subsystem. We refer the
reader to Sec. IV B and to Refs. [53–55], where the calculation
of the EE for quadratic bosonic systems is detailed.

A. Entanglement and fluctuations in the long-range regime

When α < d the Schmidt decomposition of the exact
ground state in the thermodynamic limit can be determined
explicitly, allowing for an exact calculation of the EE [46].
We have argued in Sec. II E that for α < d the ground
state is, in the thermodynamic limit, |	0〉=|S =N/2,M =0〉.
Introducing |S = N/2,M = −N/2 + p〉 for the symmet-
ric, equal-weight superposition of all states having p

spins up and N − p spins down, the Schmidt decompo-
sition of |	0〉 ∝ (

∑
i S

+
i )N/2|SA = NA

2 ,MA = −NA

2 〉 ⊗ |SB =
NB

2 ,MB = −NB

2 〉 for a bipartition into NA � N/2 and NB =
N − NA spins is then simply

|	0〉 =
NA∑
p=0

√
λp

∣∣∣∣SA = NA

2
,MA = −NA

2
+ p

〉

⊗
∣∣∣∣SB = NB

2
,MB = −NB

2
+ N

2
− p

〉
, (37)

where λp = (NA

p
)( NB

N/2−p
)/( N

N/2 ) counts the number of ways
(normalized to unity) in which to distribute p up-spins
among NA spins, and N/2 − p up-spins among NB spins,
the remaining N/2 spins being down-spins. The distribution
of the subsystem magnetization MA = Sz

A is also given by
λp, and it is centered around Sz

A = 0 with a width of order√
NA, hence a variance scaling as NA ∼ Ld

A, consistent with
the scaling Ld−z

A and z = 0 (compare Table I).
The EE is simply the entropy of the λp distribution, which

scales as (d/2) ln LA; indeed, the entropy is of order ln �,
with � ∼ √

NA the typical number of nonzero λp’s. In this
long-range regime, the Schmidt basis |ψ (i)

A 〉 is contained in
a small subspace of the local Hilbert space (namely that of
symmetric superposition states with a fixed magnetization),
having dimensions O(NA) to be contrasted with the local
Hilbert space dimensions (2NA). The example at hand high-
lights the existence of a simple relation between the structure
of ground-state entanglement and that of the fluctuations
of the subsystem magnetization Sz

A, the latter being the
only physical mechanism responsible for entanglement. Even
though such a simple relationship cannot be found in the
short- and medium-range regimes, one can always say that,
if Sz is globally conserved in the system, its fluctuations on
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subsystem A are a sufficient condition for the existence of AB

entanglement [55].

B. Entanglement and fluctuations in the medium-
and short-range regime

In this section, we discuss the scaling of the EE of a
subsystem in the medium- and short-range regime as obtained
via LSW theory, contrasting it with the scaling of the fluctu-
ations of the subsystem magnetization 〈δ2Sz

A〉. Our findings
concerning the scaling of EE are summarized in Table I. In the
gapped Néel phase, both quantities are found to obey an area
law [56], namely to scale as the boundary of A, in both regimes.
In the XY phase, on the other hand, there is a stark contrast
between the scaling of entanglement and that of magnetization
fluctuations. Indeed entanglement is always found to obey an
area law in both medium- and short-range regimes, while
fluctuations exhibit systematic violations of the area-law
scaling, as discussed in Sec. III B. In particular the contrast
is very pronounced in the medium-range regime, in which
the prefactor of the area-law scaling of entanglement vanishes
progressively as α is reduced towards d [see Fig. 7(b)], while
the scaling of Sz

A fluctuations moves from an area-law one at
α = d + 2 to a volume-law one at α = d [see Fig. 7(a)].

In Fig. 7(b) we fitted the EE as

SA = aLd−1
A + b ln LA + c, (38)

with an additional subdominant logarithmic contribution
b ln L, and a constant term c. Figure 7(d) shows that the
area-law coefficient decreases monotonically to zero when α

decreases towards d. The b coefficient, shown in Fig. 7(c),
can be attributed to the Goldstone modes associated with the
broken rotational symmetry [57], and it will be discussed in
Sec. IV C 1, while the special case of d = 1 (possessing a
logarithmic scaling even in the absence of long-range order)
will be analyzed in Sec. IV C 2.

The strong decrease of the EE upon decreasing α can
be understood from the structure of the single-particle en-
tanglement spectrum, and from its comparison to the (bulk)
physical spectrum. The single-particle entanglement spectrum
is defined starting from the Gaussian structure of the RDM ρA

describing the A subsystem, which in turn is a consequence of
the harmonic approximation made within LSW theory [55]:

ρA =: exp(−HA) = exp[−(b†,b)T hA(b,b†)], (39)

where HA is the so-called entanglement Hamiltonian, b =
(b1,b2, . . . ,bNA

) is the vector of Bose operators on the
A subsystem, and hA is the single-particle entanglement
Hamiltonian. The diagonalization of hA [55] brings the
quadratic entanglement Hamiltonian to the form HA =∑

k||,n Ẽk||,nβ
†
k||,nβk||,n, where k|| is the momentum along the

A−B cut—representing a good quantum number for the
half-torus geometry of subsystem A that we adopt here—and
n is a further mode index related to the dynamics generated by
HA transversely to the cut.

The Gaussian RDM ρA describes a thermal gas of quasi-
particles with dispersion relation given by Ẽk||,n at unit
temperature, whose thermal entropy is identical to the EE.
Figure 8 shows that the low-lying modes of the single-particle
entanglement spectrum Ẽk||,n become increasingly stiff as α

FIG. 7. Area law of entanglement entropy (EE) and violation of
the area law for 〈(Sz

A)2〉 in d = 2 in the XY phase (� = 0). A is half of
a 2L × L torus, with L = 10 . . . 200. (a) 〈(Sz

A)2〉 is plotted for various
values α as a function of L. Solid lines are fits of the form 〈(Sz

A)2〉 =
aLd−z + bLd−1 + c when α < d + 2, and 〈(Sz

A)2〉 = aLd−1 ln L + b

when α > d + 2. (b) EE SA for various values α as a function of the
boundary area A (= 2L in d = 2). Solid lines are fits of the form
SA = aA + b ln L + c. (c), (d) b and a coefficients of the scaling of
EE, plotted as a function of the decay exponent α. The log-coefficient
b is compared to the prediction b = NG(d − z)/2, where NG = 1 is
the number of Goldstone modes, d = 2 the dimension of space, and
z the dynamical exponent.

decreases, in striking analogy with the physical spectrum of
spin-wave excitations, whose low-energy density of states
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FIG. 8. Entanglement spectrum (top panels) versus physical spectrum (bottom panels) in d = 2 at � = 0 for α = 5 (a), α = 3 (b), and
α = 2.2 (c) (XY phase). The entanglement spectrum is plotted as a function of the momentum k‖ parallel to the boundary cut between A and
B (only the two lowest branches are shown), and the physical spectrum along the diagonal (k,k) of the Brillouin zone. The apparent gap at
k‖ = 0 in the entanglement spectrum scales to zero upon increasing the system size [55].

behaves as ρ(ω) ∼ ωd/z−1, becoming smaller when α [and
z = (α − d)/2] decrease. A progressive reduction in the low-
energy density of states of the single-particle entanglement
spectrum Ẽk||,n obviously implies a reduction of entropy at
fixed temperature for ρA, namely of EE. Conversely, the EE
is maximal along the phase-transition line between the XY
and Néel phases, as shown on Fig. 9, and this increase can
be again associated with the Ẽk||,n spectrum, which, at the
transition, acquires a second zero mode at k|| = (π,π, . . .),
besides the one already present at k|| = 0, as shown in Fig. 10.
The appearance of a second soft mode obviously boosts
the low-energy density of states, leading to an increase of
the EE [58]. Correspondingly, the spin-wave spectrum (also
shown in Fig. 10) shows the same appearance of a second
soft mode [at K = (π,π, . . .)], which signals the instability
of the XY ground state to the appearance of long-range

FIG. 9. Entanglement entropy SA above the ground-state phase
diagram of the 2D-XXZ Hamiltonian. A is half of a 60 × 30 torus.
Dots indicate the points where the entanglement spectrum and
physical spectrum are compared in Fig. 8 and Fig. 10.

staggered spin order as in the Néel phase. The corresponding
increase in the low-energy density of states of the spin-wave
excitations implies in turn a stronger quantum correction of the
classical ordered moment; hence the simultaneous softening
of the spin-wave dispersion relation and of the single-particle
entanglement spectrum at the transition is responsible for
the striking similarity between the strong enhancement of
entanglement (Fig. 9) and of quantum fluctuations of the order
parameter (Fig. 1) around the XY-Néel transition.

Finally, Fig. 11 shows the variance of Sz
A and of S

y

A across
the phase diagram (for a fixed finite size). The evolution of
spin fluctuations along the y axis strongly resembles that of
the entanglement shown in Fig. 9, although it more clearly
reveals the first-order nature of the transition with a jump in
the fluctuation properties. The jump is related to a sudden
change in the scaling properties of the fluctuations, as detailed
in Table I. A jump is also to be observed in the EE, albeit much
weaker as the dominant scaling behavior of entanglement is
the same area law on both sides of the transition.

C. Medium- and short-range regime in the XY phase:
Subleading contribution to the entanglement entropy

We now take a closer look at the details of the entanglement
scaling in the XY phase, focusing on the observed logarithmic
corrections to the area-law scaling of EE, as reported in
the previous section. We first recall in Sec. IV C 1 the
origin of this logarithmic contribution in the presence of a
broken symmetry, as stemming from the interplay between
the tower-of-state entanglement spectrum of a subsystem and
the low-lying Goldstone modes coupling two subsystems. In
so doing we shall rephrase arguments which have been put
forward in earlier works [57,59], but we will also generalize
them to the case of long-range interactions, which add the
new ingredient of a continuously varying dynamical exponent
z � 1. Furthermore we shall specialize in Sec. IV C 2 our
discussion to the case of d = 1, where the analysis is somewhat
more subtle. There the logarithmic correction to the area law
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FIG. 10. Entanglement spectrum (top panels) versus physical spectrum (bottom panels) in d = 2 at α = 3 for � = 3.3 (d), � = 3.429 (e),
and � = 4 (f). The entanglement spectrum is plotted as a function of the momentum k‖ parallel to the boundary cut between A and B (only
the two lowest branches are shown), and the physical spectrum along the diagonal (k,k) of the Brillouin zone. The apparent gap at k‖ = 0 in
the entanglement spectrum in (d1) and (e1) scales to zero upon increasing the system size [55].

becomes the dominant term in the medium-range regime,
and interestingly a similar logarithmic scaling persists also
in the short-range regime, featuring a Luttinger-liquid (LL)
phase with conformal invariance; supplementing our LSW
calculations with numerical DMRG data will allow us to study
the evolution of entanglement across the XY-LL transition.

1. XY phase: Logarithmic term from the tower-of-state spectrum

A universal additive logarithmic contribution to the
area-law scaling of EE has been predicted to appear in
systems breaking a continuous symmetry in their ground
state in Ref. [57], and extensively verified numerically in
Refs. [54,55,59]. Such a contribution can be traced back to
the existence of a low-lying tower of states (TOS) in the
entanglement spectrum of a subsystem A, akin to the low-
lying spectrum of a finite-size system exhibiting spontaneous
symmetry breaking in the thermodynamic limit [48]. If isolated
from its complement B, subsystem A would indeed possess

FIG. 11. Variance of the z (left) and y (right) component of the
total spin of a subsystem A throughout the ground-state phase diagram
of the 2D-XXZ Hamiltonian. Geometry as in Fig. 9.

such a TOS in the low-lying excitation spectrum, described
by the effective Hamiltonian H (TOS) = L2/2I . Here L stands
for the generator of the symmetry spontaneously broken in the
thermodynamic limit—in the case of XY symmetry at hand
L = Sz

A, the generator of rotations in the xy plane. The TOS
Hamiltonian describes therefore the angular momentum of a
rigid rotor living on an N -dimensional sphere, where N is the
number of components of the order parameter (N = 2 in our
case), and possessing a moment of inertia I ∼ Ld

A, scaling as
the volume of the subsystem. The exact same observations
apply to subsystem B.

The coupling between subsystems A and B creates en-
tanglement between the A and B rigid rotors in the joint
ground state. As a consequence of the A−B coupling the
system possesses NG = N − 1 Goldstone modes spreading
coherently across the two subsystems. In particular the
characteristic energy scale for the coupling of the A and B rigid
rotors is set by the smallest-wave-vector Goldstone mode(s)
with k ∼ 1/L, to which we attribute an energy �G = �G(L).
As discussed in Ref. [57,59], the Hamiltonian of the coupled
A and B rotors can then be approximated as that of a harmonic
oscillator of frequency �G/h̄. Tracing out subsystem B leads
to a density-matrix description of subsystem A, in which
TOS modes are populated up to an energy of the order of
�G, namely up to an angular momentum Lmax ∼ (I�G)1/2;
hence, knowing that TOS levels L have a degeneracy of order
LN−2, the EE can be estimated by simple state counting as
SA ∼ ln �A, where

�A ∼
∫ Lmax

0
LN−2dL = (I�G)(N−1)/2. (40)

As a consequence the EE receives a contribution from the TOS
spectrum of the kind

STOS = N − 1

2
ln

(
Ld

A�G

) + const. (41)
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As discussed at length in Sec. II C, in the long-range XXZ
model of interest here �G ∼ L−z, leading then to the result

STOS = NG(d − z)

2
ln LA + const. (42)

The above result generalizes to the case z �= 1 the universal
logarithmic term in the EE of a continuous-symmetry-breaking
phase first obtained in Ref. [57].

Within LSW theory there is no guarantee that this additive
logarithmic contribution can be accurately captured, especially
in view of the fact that the LSW approach cannot describe
the TOS sector of the spectrum, as it assumes an explicitly
broken symmetry even on finite-size systems. Nevertheless,
in the case of linearly dispersing (z = 1) Goldstone modes it
has been shown [53,55] that a careful treatment of the k = 0
sector of the LSW Hamiltonian enables one to actually capture
the universal logarithmic term within LSW theory. This is
possible by gapping out the k = 0 LSW mode with the addition
of a small term −BSx

tot in the Hamiltonian which stabilizes
the ferromagnetic order and introduces a gap of order

√
B at

k = 0. The choice B = 1/L2d allows one therefore to mimic
the 1/Ld scaling of the TOS spectrum in the thermodynamic
limit. As shown in Figs. 7(b) and 7(c), this procedure leads
to the appearance of a logarithmic term b ln LA in the EE
extracted from the LSW data, whose b prefactor reproduces
rather closely the predicted universal form b = (d − z)/2. The
deviations can be in part attributed to finite-size effects, which,
for a given maximum size L used in the fits of the entanglement
scaling, become more significant the lower α, justifying the
modest agreement, observed at low α in Fig. 7(c), between
finite-size LSW calculations and the universal prediction.

2. From Luttinger-liquid behavior to the XY phase in d = 1

As already commented above, the case d = 1 is rather
special in that the system possesses two ground-state phases in
the XY regime upon varying α: an XY phase with long-range
order for α < 3, and a Luttinger-liquid (LL) phase with
algebraic correlations for α > 3. In the latter regime the low-
energy physics of the system is captured by conformal field
theory (CFT) [60], predicting a universal logarithmic violation
of the entanglement area law in the form SA = (nc/6) ln LA,
where c = 1 is the central charge of the CFT, and n (= 1,2)
is the number of common boundaries between subsystem
A and its complement B. On the other hand, for α < 3
conformal invariance breaks down (as z < 1) and the system
develops long-range order. The EE still possesses a universal
logarithmic term, as discussed in the previous section, that is
independent of the geometry of the A−B boundary. It becomes
therefore extremely interesting to explore the evolution of
the EE across the XY-LL transition to track how the CFT
prediction and the TOS contribution evolve into each other.

LSW theory is obviously inadequate to the latter scope, as it
breaks down for α � 3 (and it becomes increasingly inaccurate
as α → 3−). Therefore we complement our approach with
ground-state DMRG calculations [61,62], a method that gives
easily access to the EE of a partition of the system. We
perform the numerical simulations on lattices up to L = 50
sites implementing both open (OBC) and periodic boundary
conditions (PBC) and setting � = 0. Since the Hamiltonian

Eq. (1) commutes with total magnetization we restrict our
study to the zero-magnetization sector. In order to keep a
truncation error smaller than 10−7, throughout the simulations
we used up to M = 300 states. We chose a hopping amplitude
of the form 1/|ri − rj |α for both OBC and PBC, both in the
DMRG and the LSW calculations.

The scaling of half-chain EE is shown in Fig. 12 for OBC
and PBC in panels (a) and (b), respectively, for different values
of α ranging from 0.1 to 5. A general form for the dominant
term of the EE scaling reads

SA = (nbCFT + bTOS) ln LA + · · · , (43)

where one expects bCFT = c/6 and bTOS = 0 for α >

3, bCFT �= 0 and bTOS = (d − z)/2 = (3 − α)/4 for 1 < α <

3, and bCFT = 0 and bTOS = 1/2 for α < 1. The meaning
of bCFT in the 1 < α < 3 range (which lacks conformal
invariance) is simply that of the prefactor to a logarithmic
term which depends on the number of boundaries n. The ability
of both LSW theory [63] and DMRG to simulate both OBC
(n = 1) and PBC (n = 2) allows us to systematically extract
finite-size estimates of the b coefficients as

bCFT = bPBC − bOBC,

bTOS = 2bOBC − bPBC. (44)

The coefficients so extracted are shown in Fig. 12; there
we find a relatively good agreement between the theoretical
expectations—valid in the infinite-size limit—and the finite-
size numerical data, coming both from the quadratic LSW
approximation and from exact DMRG calculations. Finite-size
effects appear to be very significant (and especially so at
small α). Yet the application of a transverse field B ∼ 1/L2

allows us to use LSW theory on finite sizes even in the regime
α > 3, and it is remarkable to observe that even in this regime
LSW theory on finite system sizes remains predictive when
compared with DMRG.

V. CONCLUSIONS AND PERSPECTIVES

Inspired by the possibilities of quantum simulation in
ultracold atoms, we studied the low-energy properties of the d-
dimensional XXZ Hamiltonian with ferromagnetic couplings
in the xy plane and both ferro- and antiferromagnetic along
the z axis, both decaying as a power law 1/rα with the
distance. Linear spin-wave theory proved to be a reliable tool
to determine the ground-state phase diagram, the low-energy
excitation spectrum, and the correlation and entanglement
properties in the various phases exhibited by the system:
a gapped antiferromagnetic Néel-ordered phase, a gapless
ferromagnetic XY phase, and a gapped ferromagnetic Ising
phase.

In the gapped Néel phase (present only for α > d), we
identified two fundamentally different regimes of interactions:
a short-range regime (α > d + 1) and a medium-range regime
(d < α < d + 1). Both regimes are similar in most aspects to
the α → ∞ (nearest-neighbor) limit, with the main qualitative
difference that the spin-spin correlations exhibit a short-
distance exponential decay controlled by the gap �g followed
by a long-distance power-law decay of the correlations in
the ground state, controlled directly by the exponent α.
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FIG. 12. Scaling of half-chain entanglement entropy determined via DMRG simulations for different system sizes L = 20,22, . . . ,50 and
� = 0. Simulations have been performed for both OBC (a) and PBC (b). (c) The coefficients bOBC and bPBC result from fitting the entanglement
entropy as SL/2 = b ln L + c. For the LSW data, we have used the same system sizes as in the DMRG calculations to fit the coefficients
(having added a small transverse field term −Sx

tot/L
2). The LSW coefficients show very little finite-size effects, and they are not found to

change significantly when extending the size of the system up to L = 105. (d) Extraction of bCFT = bPBC − bOBC and bTOS = 2bOBC − bPBC and
comparison with the theoretical prediction bTOS = (1 − z)/2 (black solid line; see text).

Furthermore, in the medium-range regime (d < α < d + 1)
the short-range regime dispersion relation Ek ∼ �g + ck2

acquires a cusp Ek ∼ �g + ckα−d at small k, while the
short-range dispersion relation is recovered at α > d + 2.

In the XY phase, our calculations identify three funda-
mentally distinct regimes of interactions: a short-range regime
(α > d + 2) characterized by a dynamical exponent z = 1 akin
to the finite-range limit (α = ∞), a medium-range regime
(d < α < d + 2) with an α-dependent dynamical exponent
z = (α − d)/2, and a long-range regime (α < d) exhibiting
the same properties as the infinite-range regime (α = 0) in the
thermodynamic limit, namely correlations uniquely stemming
from finite-size effects. In all regimes the dynamical exponent
z is found to control directly the long-distance decay of the spin
correlations and the scaling of fluctuations of the collective
spin in the ground state. In particular, the medium-range
regime of the XY phase exhibits a continuously varying
palette of scalings for the collective-spin fluctuations, all
of them violating the scalings exhibited in the conventional
short-range regime. In particular the local fluctuations of the
conserved collective spin (Sz) on a subsystem exhibit algebraic
corrections to the area law, as a result of the coherent exchange
of magnetization quanta between two subsystems mediated by
the nonlocal couplings.

The scaling of fluctuations is in sharp contrast with the
behavior of entanglement entropy, which in the XY phase is
found to always satisfy an area law (plus additive logarithmic
corrections), and with an area-law prefactor which generically
decreases when the range of interactions increases. This
behavior can be traced back to the density of states in

the quasiparticle entanglement spectrum (as well as in the
physical spectrum), which is lowered upon decreasing α as the
dispersion relation of quasiparticle excitations stiffens. Finally,
an additive logarithmic correction to the area-law scaling
is found in the XY phase, associated with the spontaneous
breaking of the continuous U(1) symmetry. The prefactor
to the logarithmic term is universal, uniquely depending on
the z exponent and the number of components of the order
parameter; our prediction generalizes in a nontrivial manner
that of Ref. [57] for short-range interacting systems, and it
can be quantitatively tested against accurate density-matrix
renormalization group results in d = 1.

Beside their intrinsic theoretical interest, our results have
a direct relevance for ongoing experiments on ultracold
atoms in optical lattices. Indeed the Hamiltonian (1) with
α = 3 in d = 2 is realized by the Mott-insulating phase of
magnetic atoms [8] when imposing the conservation of the
magnetization along the quantization axis. Furthermore its
d = 1 implementation can be envisioned in trapped ions
[3,64], which also enable us to vary continuously the α

exponent of the power-law decay of interactions. In par-
ticular the existence of a medium-range regime exhibiting
an α-dependent, “curved” dispersion relation of elementary
excitations, as well as an α-dependent scaling of fluctuations,
represents a prediction which lends itself rather naturally to an
experimental test. In the case α = 3, generalizing the model
to antiferromagnetic interactions in the xy plane (while taking
� = 0) would mimic the physics of lattice-trapped Rydberg
atoms with resonant interactions [4,20]. The XX model with
nearest-neighbor (α = ∞) interactions on a bipartite lattice
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has the same physics irrespective of the sign of the interactions.
Therefore, in the case α > d—for which nearest-neighbor
interactions dominate the energetics of the system—we may
expect that much of the physics observed in the ferromagnetic
case carries over to the antiferromagnetic one, as long as one
restricts the discussion to bipartite lattices. The exploration of
antiferromagnetic xy interactions on bipartite lattices, as well
as on non-bipartite ones, represents an exciting extension of
our present work.

Our work shows that long-range interactions offer a very
rich landscape in terms of scaling properties of ground-state
quantum fluctuations and subsystem entanglement entropy.
Establishing a quantitative link between the two is necessary
to connect entanglement to directly measurable properties,
yet it appears rather challenging. A strategy we shall pursue
in the future is based on the concept of “local entanglement
thermodynamics” [65], postulating an explicit ansatz for the
entanglement Hamiltonian in the form of the original micro-
scopic Hamiltonian of the system, yet with spatially modulated
coupling constants. Finally, the existence of sharply distinct
regimes for the dispersion relation of elementary excitations
in the model of interest suggests that the nonequilibrium
unitary dynamics following a quench will also be extremely
rich, revealing an unconventional spreading of correlations
which directly reflects the existence of a continuously varying
dynamical exponent z [66].
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APPENDIX A: FOURIER TRANSFORM OF
THE INTERACTION POTENTIAL

In this section, we prove the scaling behavior of Eq. (16).
To this goal, we analyze the small-k behavior of the integral

γk − γ
(n.n)
k = aα−d

∫
r>a

dd r
eik·r

rα
(A1)

for α > d. More precisely, we will analyze γ0 − γk at small
k. Since γ

(n.n)
0 − γ

(n.n)
k = 2

∑d
i=1[1 − cos(kia)] ∼ (ka)2 on the

hypercubic lattice we consider, γ0 − γk will always scale at
least as fast as (ka)2 at small k. Note that although we can
obtain the correct scaling for γ0 − γk, we are not able to
predict the correct prefactors, as they depend on the details
of the lattice which are not captured by our continuous
approximation. Finally, we note that if α < d,

γk ∼ (ak)α−d (α < d). (A2)

1. d = 1

In d = 1, one has to evaluate

aα−1
∫ ∞

a

dr
2 cos(kr)

rα
= 2(ak)α−1

∫ ∞

ak

dx
cos x

xα
. (A3)

As α > 1, the integral diverges at k → 0. One thus integrates
by parts to obtain∫ ∞

ak

dxx−α cos x =
[

x1−α

1 − α
cos x

]∞

ak

+
∫ ∞

ak

dx
x1−α

1 − α
sin x.

(A4)

Now, since 1 − α < 0, the first term on the right-hand side is
cos(ak)(ak)1−α/(α − 1). Second, since x1−α sin x ∼ x2−α for
x → 0, the integral on the right-hand side converges to a finite
value C when 1 < α < 3 (note that it diverges for any α < 1
and it is not defined for α = 1). Therefore we can establish
that, for 1 < α < 3,

aα−1
∫ ∞

a

dr
2 cos(kr)

rα
= 2 cos(ka)

α − 1
+ 2C(ak)α−1 (A5)

for some constant C (which depends on α). Since 2/(α − 1)
is the value of the integral on the left-hand side at k = 0, and
since α − 1 < 2, the dominant scaling at small k in d = 1 is

γ0 − γk ∼ kα−1 + O(k2) (1 < α < 3). (A6)

If α > 3, the integral on the right-hand side of Eq. (A4)
diverges at k → 0 as k3−α , so that one obtains

aα−1
∫ ∞

a

dr
2 cos(kr)

rα
= 2

α − 1
+ C ′(ak)2 + O(k4) (A7)

for some constant C ′. Hence we can prove that in d = 1

γ0 − γk ∼ k2 (α > 3). (A8)

2. d = 2

In d = 2, the integral to be calculated is

aα−2
∫ ∞

a

dr

∫ 2π

0
dθr1−αeikr cos θ

= 2π (ak)α−2
∫ ∞

ak

dxx1−αJ0(x), (A9)

whereJn(x) = (1/2π )
∫ 2π

0 ei(x cos θ−nθ)dθ is a Bessel function.
As J0(0) = 1, the integral on the right-hand side is divergent
for α > 2, and we perform an integration by parts. Using the
fact that J ′

0(x) = −J1(x), one has∫ ∞

ak

dxx1−αJ0(x)

=
[

x2−α

2 − α
J0(x)

]∞

ak

+
∫ ∞

ak

dx
x2−α

2 − α
J1(x). (A10)

The first term on the right-hand side gives (ak)2−α/(2 − α) +
O(k4−α), while, as J1(x) ∼ x at small x, the integral on the
right-hand side converges when 2 < α < 4 and diverges for
α > 4 [note that as J1(x) ∼ √

2/πx cos(x − 3π/4) for x →
∞, the integral converges in +∞]. Thus, we have proved that,
for 2 < α < 4,

2π (ak)α−2
∫ ∞

ak

dxx1−αJ0(x) = 2π

2 − α
+ Ckα−2 + O(k2)

(A11)

for some constant C. As 2π/(2 − α) is the value of the integral
on the left-hand side of Eq. (A9) at k = 0, we have thus

245111-15



FRÉROT, NALDESI, AND ROSCILDE PHYSICAL REVIEW B 95, 245111 (2017)

established that in d = 2,

γ0 − γk ∼ kα−2 + O(k2) (2 < α < 4). (A12)

If α > 4, the integral on the right-hand side of Eq. (A10)
diverges as k4−α when k → 0, so that

2π (ak)α−2
∫ ∞

ak

dxx1−αJ0(x) = 2π

2 − α
+ C ′k2 + O(k3)

(A13)

for some constant C ′. We have thus established that, in d = 2,

γ0 − γk ∼ k2 (α > 4). (A14)

3. d = 3

In d = 3, we have to evaluate

aα−3
∫ ∞

a

dr

∫ π

0
dθ2πr2 sin θ

eikr cos θ

rα

= 4π (ak)α−3
∫ ∞

ak

dx
sin x

xα−1
. (A15)

The integral on the right-hand side diverges in k = 0 for α > 3,
and we integrate it by parts. The remaining integral shows the
same divergence in k = 0, so that a second integration by parts
is needed. One obtains∫ ∞

ak

dx
sin x

xα−1
= (ak)3−α

α − 3
−

∫ ∞

ak

dx
x3−α sin x

(2 − α)(3 − α)

+O(k5−α). (A16)

The first term on the right-hand side gives the k = 0 value of
the integral to evaluate in Eq. (A15). If 3 < α < 5, the integral
on the right-hand side or Eq. (A17) converges, so that one
obtains the scaling behavior in d = 3:

γ0 − γk ∼ kα−3 + O(k2) (3 < α < 5). (A17)

If 5 < α, the integral on the right-hand side of Eq. (A17)
diverges in k → 0 as k5−α , thus the result

γ0 − γk ∼ k2 (α > 5). (A18)

APPENDIX B: STRUCTURE FACTOR OF
THE SPIN CORRELATIONS

In this Appendix, we detail all the calculations of the spin
correlations in the ground state at the level of the spin-wave
approximation. The starting point is the Holstein-Primakoff
(HP) representation of the spin operators (we consider a
general spin s):

Sx
i = s − b

†
i bi, (B1)

S
y

i =
√

2s

2i
(bi − b

†
i ) + O

(
b3

i

)
, (B2)

Sz
i = −

√
2s

2
(bi + b

†
i ) + O

(
b3

i

)
, (B3)

in the XY ferromagnetic phase (where the reference mean-field
state has all spins pointing towards +X). In the Néel phase

(where the reference state has spins pointing alternatingly
towards ±Z), we have

Sz
i = εi(s − b

†
i bi), (B4)

S
y

i = εi

√
2s

2i
(bi − b

†
i ) + O

(
b3

i

)
, (B5)

Sx
i =

√
2s

2
(bi + b

†
i ) + O

(
b3

i

)
, (B6)

where εi = +1 on even sites, and εi = −1 on odd sites. As
the LSW approximate ground state, being the ground state of
a quadratic Hamiltonian, satisfies Wick’s theorem [42], all the
properties of the quantum fluctuations in the ground state are
contained in the two-point correlation functions 〈b†i bj 〉 and
〈bibj 〉. Higher order correlations can be expressed, through
Wick’s theorem, as a function of two-point ones [42]. If one
assumes translational invariance, the correlations are most
naturally expressed in momentum space. As the Bogoliubov
rotation reads bk = ukβk − vkβ

†
−k, and given the form of the

Hamiltonian Eq. (10) in the main text, one obtains

〈b†kbk′ 〉 = δk,k′v2
k,

(B7)
〈bkbk′ 〉 = −δk,−k′ukvk,

where v2
k = (1/2)(Ak/Ek − 1) and ukvk = Bk/2Ek. Here,

Ek =
√
A2

k − B2
k , and Ak and Bk take the expressions in

Eqs. (11) and (18).
Notice that none of the correlation functions possesses an

imaginary part. An equivalent expression for the correlations
in Fourier space is then

〈b†kbk〉 = 1

2

(
Ak

Ek
− 1

)
, 〈bkb−k〉 = − Bk

2Ek
. (B8)

The other correlations vanish.
XY phase. In the XY phase, the rotational invariance about

the z axis is spontaneously broken. As a consequence, the SySy

and SxSx spin correlations need not have the same structure.
At the level of the LSW approach, the SxSx spin correlation is
indeed of order 4 in the HP boson operators, while the SySy

correlation is only of order 2. One may thus expect that the
decay exponent of the SxSx spin correlations is twice the decay
exponent of the SySy spin correlations, and this expectation
is indeed confirmed numerically. The calculation for the SxSx

spin correlations is better formulated in real space:〈
Sx

i Sx
j

〉 − 〈
Sx

i

〉〈
Sx

j

〉
= 〈(s − b

†
i bi)(s − b

†
j bj )〉 − 〈s − b

†
i bi〉〈s − b

†
j bj 〉

= 〈b†i bib
†
j bj 〉 − 〈b†i bi〉〈b†j bj 〉

= 〈b†i b†j 〉〈bibj 〉 + 〈b†i bj 〉〈bib
†
j 〉, (B9)

where on the last line, we have used Wick’s theorem.
On the other hand, the SySy spin correlations read (notice

that 〈Sy

i 〉 = 0)〈
S

y

i S
y

j

〉 = − s

2
〈(bi − b

†
i )(bj − b

†
j )〉

= − s

2

∑
k

[2〈bkb−k〉 − 2〈bkb
†
k〉 − 1]eik·(r i−rj ), (B10)
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where we have used the fact that the correlation functions are
real. One can directly deduce from this formula the expression
of the static spin structure factor for the y spin components:

S
yy

k = s

2

√
Ak + Bk

Ak − Bk
= s

2

√
1 − �γk/γ0

1 − γk/γ0
. (B11)

Finally, the SzSz correlations are

〈
Sz

i S
z
j

〉 = s

2
〈(bi + b

†
i )(bj + b

†
j )〉

= s

2

∑
k

[2〈bkb−k〉 + 2〈bkb
†
k〉 + 1]eik·(r i−rj ), (B12)

and we obtain the structure factor for the z spin components
as

Szz
k = s

2

√
Ak − Bk

Ak + Bk
= s

2

√
1 − γk/γ0

1 − �γk/γ0
. (B13)

As
√

1 − γk/γ0 ∼ kz at small k, we thus obtain the scaling
behavior for the structure factors in the XY phase:

S
yy

k ∼ k−z, (B14)

Szz
k ∼ kz. (B15)

In correspondence with the small-k behavior of the structure
factors, we find that the associated correlations decay at large
distance as

〈
S

y

i S
y

j

〉 ∼ 1/rd−z, (B16)〈
Sz

i S
z
j

〉 ∼ 1/rd+z. (B17)

Indeed, if one assumes that correlations decay algebraically
with distance, this behavior follows from the calculations of
Appendix A, where we proved that

FT

[
1

xd+σ

]
(k) ∼ kσ (B18)

as long as −d < σ < 2, and FT stands for Fourier transform.
On the other hand, we verified numerically that the SxSx

spin correlations decay algebraically with a decay exponent
twice as large as the decay exponent of the SySy correlations,
as expected in view of the fact that the SxSx correlation is
quartic in the HP bosons, while SySy is quadratic:〈

Sx
i Sx

j

〉 − 〈
Sx

i

〉〈
Sx

j

〉 ∼ 1/r2(d−z). (B19)

Néel phase. In the Néel phase, the rotational symmetry
about the z axis is not broken, so that one expects Sxx

k = S
yy

k .
Given the formula for the HP transformation, the expression
of Sxx

k in the Néel phase is exactly the same as the expression
of Szz

k in the XY phase, namely,

Sxx
k = s

2

√
Ak − Bk

Ak + Bk
. (B20)

On the other hand, the calculation for the SySy spin correla-
tions gives [with K = (π,π, . . . )]〈

S
y

i S
y

j

〉 = − s

2
ei K ·(r i−rj )〈(bi − b

†
i )(bj − b

†
j )〉

= − s

2

∑
k

[2〈bkb−k〉 − 2〈bkb
†
k〉 − 1]ei(k−K )·(r i−rj ),

(B21)

from which we can deduce the structure factor:

S
yy

k = s

2

√
Ak−K + Bk−K

Ak−K − Bk−K
. (B22)

Given the expression of Ak and Bk in the Néel phase, we
thus have Sxx

k = S
yy

k , as expected. The structure factor scales
as the dispersion relation at small momentum:

Sxx
k = S

yy

k ∼ � + k2z. (B23)

From the expression of the structure factor, one can then
reconstruct the spatial decay of the spin correlations. We find
an exponential decay at short distance (associated with the gap
�), and an algebraic decay at large distance, with an exponent
α, directly controlled by the decay of the spin-spin interaction.
Finally, the SzSz spin correlations read〈

Sz
i S

z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
= ei K ·(r i−rj )[〈b†i b†j 〉〈bibj 〉 + 〈b†i bj 〉〈bib

†
j 〉], (B24)

which also decays as 1/|r i − rj |α at large separation, and
show a staggered pattern.

APPENDIX C: SCALING OF THE COVARIANCE

In this appendix, we provide details on the calculation
leading to the prediction of Eq. (34). Considering two
subsystems A and B of linear size L and two observables
OA/B = ∑

i∈A/B Oi , the covariance of OA and OB is given by

〈δOAδOB〉 = 〈OAOB〉 − 〈OA〉〈OB〉 (C1)

=
∑
i∈A

∑
j∈B

〈δOiδOj 〉. (C2)

Assuming that the correlation function decays as a power law
with distance,

〈δOiδOj 〉 ∼ 1

|r i − rj |η , (C3)

we can relate the scaling behavior of 〈δOAδOB〉 to the
exponent η. For the sake of mathematical simplicity, we take A

and B translationally invariant in d − 1 dimensions (they are
thus lines in d = 1 and cylinders in d = 2, while in d = 3, the
geometry is more difficult to visualize, since the A-B contact
area has the topology of a torus). As our aim is simply to predict
the scaling of the covariance with the linear size of A and B,
their precise shape is irrelevant. The analysis proceeds in two
steps: (1) We analyze the decay of the correlation contour [55],

Ci =
∑
j∈B

〈δOiδOj 〉, (C4)
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FIG. 13. Geometry of the variables used in the integration leading
to the scaling of the covariance 〈δOAδOB〉.

where i is a site in A, whose distance from the A-B boundary
is denoted as x, as illustrated in Fig. 13. (2) We deduce the
scaling of 〈δOAδOB〉 = ∑

i∈A Ci from the decay of Ci when
moving away from the A-B boundary.

Decay of the contour. We have to evaluate the scaling
behavior of

C(x) ∼
∫ L

0
dx ′

∫ L

0
dr

rd−2

[r2 + (x + x ′)2]η/2

∼ xd−η

∫ L/x

0
du(1 + u)d−1−η

×
∫ (L/x)/(1+u)

0

dvvd−2

(1 + v2)η/2
. (C5)

The last integral converges if η � d − 1 and is of order
[(L/x)/(1 + u)]d−1−η otherwise (with logarithmic corrections
if η = d − 1). In this latter case (η < d − 1), we find that
C(x) ∼ Ld−η. If η > d − 1, we have that

C(x) ∼ xd−η

∫ L/x

0
du(1 + u)d−1−η. (C6)

If η > d, the integral converges and C(x) ∼ xd−η. If η < d,
the integral is of order (L/x)d−η and we find again that C(x) ∼
Ld−η. We also predict logarithmic corrections if η = d. To sum
up, we have the following behavior for the contour:

C(x) =
∑
j∈B

1

|r i − rj |η ∼
{
Ld−η if η < d,

xd−η if η > d,
(C7)

with logarithmic corrections if η = d or η = d − 1.
Scaling of the covariance. Summing the contour Ci over

all sites in A gives a trivial factor of Ld−1 for the d − 1
directions transverse to x. Integrating the distance x to the
A-B boundary gives the final result of Eq. (34) with further
logarithmic corrections if η = d or η = d − 1.
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