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Emergence of a control parameter for the antiferromagnetic quantum critical metal
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We study the antiferromagnetic quantum critical metal in 3 − ε space dimensions by extending the earlier
one-loop analysis [Sur and Lee, Phys. Rev. B 91, 125136 (2015)] to higher-loop orders. We show that the ε

expansion is not organized by the standard loop expansion, and a two-loop graph becomes as important as
one-loop graphs due to an infrared singularity caused by an emergent quasilocality. This qualitatively changes
the nature of the infrared fixed point, and the ε expansion is controlled only after the two-loop effect is taken into
account. Furthermore, we show that a ratio between velocities emerges as a small parameter, which suppresses a
large class of diagrams. We show that the critical exponents do not receive corrections beyond the linear order in
ε in the limit that the ratio of velocities vanishes. The ε expansion gives critical exponents which are consistent
with the exact solution obtained in 0 < ε � 1.

DOI: 10.1103/PhysRevB.95.245109

I. INTRODUCTION

Quantum critical points in metals host unconventional
metallic states which lie outside the realm of Landau Fermi
liquid theory [1–3]. Experimentally, non-Fermi liquids are
often characterized by anomalous dependencies of thermody-
namic, spectroscopic, and transport properties on temperature
and energy [4,5]. On the theoretical side, the quasiparticle
paradigm based on well-defined single-particle excitations
needs to be replaced with theories that capture strong interac-
tions between soft collective modes and electronic excitations
[6–25].

The antiferromagnetic (AF) quantum phase transition arises
in a wide range of strongly correlated materials such as electron
doped cuprates [26], iron pnictides [27], and heavy fermion
compounds [28]. Due to its relevance to many experimental
systems, intensive analytical [29–40] and numerical [41–46]
efforts have been made to understand the nature of the
non-Fermi liquid state. The AF quantum critical metal in two
dimensions is described by a strongly interacting field theory
for the AF spin fluctuations and electronic excitations near
the Fermi surface. Although it seemed intractable, the theory
for the SU (2) symmetric AF quantum critical metal has been
recently solved through a nonperturbative ansatz [47]. The
nonperturbative solution utilizes a ratio between velocities,
which dynamically flows to zero at low energies, as a small
parameter.

According to the nonperturbative solution [47], the AF
collective mode is strongly dressed by particle-hole excita-
tions. In contrast, electrons have zero anomalous dimension,
and exhibit a relatively weak departure from the Fermi liquid
with dynamical critical exponent z = 1. The nonperturbative
solution actually applies to more general theories, and the
same conclusion holds for the AF quantum critical point in
the presence of a one-dimensional Fermi surface embedded
in general dimensions, 2 � d < 3 [48]. However, the exact
critical exponents obtained from the nonperturbative solution
are not consistent with the earlier one-loop analysis of the
theory in 3 − ε dimensions even in the small ε limit [37]. At
the one-loop order, the ratio between velocities which is used

as a small parameter in the nonperturbative solution does not
flow to zero, and the electrons at the hot spots exhibit a stronger
form of non-Fermi liquid with z > 1.

In this work, we resolve this tension. We extend the earlier
one-loop analysis to include higher-loop effects. We find that
the ε expansion is not simply organized by the number of loops,
and certain higher-loop diagrams are enhanced by infrared
(IR) singularities caused by an emergent quasilocality. As a
result, a two-loop diagram qualitatively modifies the nature
of the fixed point even to the leading order in ε [49]. We
show that the ε expansion is controlled with the inclusion of
the two-loop effect. Furthermore, the ratio between velocities
is shown to flow to zero in the low energy limit, which
protects the critical exponents from receiving higher-loop
corrections. This is similar to the nematic critical point in
d-wave superconductors, where an emergent anisotropy in
velocities leads to asymptotically exact results to all orders
in the 1/N expansion [50].

The ε expansion and the nonperturbative solution [47,48]
are independent and complimentary. The former is a brute-
force perturbative analysis, which is straightforward but valid
only near the upper critical dimension. The latter approach
is nonperturbative, and it is based on an ansatz that is
confirmed by a self-consistent computation. The agreement of
the results from the two different approaches provides an inde-
pendent justification of the ansatz used in the nonperturbative
solution.

II. MODEL AND DIMENSIONAL REGULARIZATION

We start with the theory for the AF quantum critical metal
in two dimensions. We consider a Fermi surface with C4

symmetry. The low-energy degrees of freedom consist of the
AF collective mode coupled to electrons near the hot spots,
which are the set of points on the Fermi surface connected by
the AF ordering vector [30–32,37], as is shown in Fig. 1. We
study the minimal model, which has eight hot spots. The AF
ordering is taken to be collinear with a commensurate wave
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FIG. 1. First Brillouin zone of a metal in two dimensions with C4

symmetry. The shaded region represents the occupied states. The AF
ordering wave vector �QAF is denoted by red arrows. The hot spots are
the red dots connected by �QAF.

vector. The action is written as

S =
4∑

n=1

∑
m=±

∑
σ=↑,↓

∫
d3k

(2π )3
ψ (m)∗

n,σ (k)
[
ik0 + em

n (�k; v)
]
ψ (m)

n,σ (k)

+ 1

2

∫
d3q

(2π )3

[
q2

0 + c2|�q|2] �φ(−q) · �φ(q)

+ g0

4∑
n=1

∑
σ,σ ′=↑,↓

∫
d3k

(2π )3

d3q

(2π )3

× [ �φ(q) · ψ (+)∗
n,σ (k + q)�τσ,σ ′ψ

(−)
n,σ ′ (k) + c.c.]

+ u0

4!

∫
d3k

(2π )3

d3p

(2π )3

d3q

(2π )3
[ �φ(k + q) · �φ(p − q)]

× [ �φ(−k) · �φ(−p)]. (1)

Here, k = (k0,�k) denotes the Matsubara frequency and the
two-dimensional momentum �k = (kx,ky). ψ (m)

n,σ are the fermion
fields that carry spin σ = ↑,↓ at the hot spots labeled by
n = 1,2,3,4,m = ±.

The choice of axis is such that the ordering wave
vector is �QAF = ±√

2πk̂x, ± √
2πk̂y up to the reciprocal

lattice vectors
√

2π (k̂x ± k̂y). With this choice the fermion
dispersions are e±

1 (�k; v) = −e±
3 (�k; v) = vkx ± ky , e±

2 (�k; v) =
−e±

4 (�k; v) = ∓kx + vky , where �k is the momentum deviation
from each hot spot. The curvature of the Fermi surface can
be ignored, since the patches of Fermi surface connected by
the ordering vector are not parallel to each other with v 	= 0.
The Fermi velocity along the ordering vector has been set to
unity by rescaling �k. v is the component of Fermi velocity
that is perpendicular to �QAF. �φ(q) is the boson field with
three components which describes the AF collective mode
with frequency q0 and momentum �QAF + �q. �τ represents
the three generators of the SU (2) group. c is the velocity
of the AF collective mode. g0 is the Yukawa coupling between

the collective mode and the electrons near the hot spots and u0

is the quartic coupling between the collective modes.
We generalize the theory by tuning the number of

codimensions of the one-dimensional Fermi surface
[22,37,51]. For this, we pair fermions on opposite sides
of the Fermi surface into two component spinors, �1,σ =
(ψ (+)

1,σ ,ψ
(+)
3,σ )T , �2,σ = (ψ (+)

2,σ ,ψ
(+)
4,σ )T , �3,σ = (ψ (−)

1,σ , − ψ
(−)
3,σ )T ,

and �4,σ = (ψ (−)
2,σ , − ψ

(−)
4,σ )T . In the spinor basis,

the kinetic term for the fermions becomes SF =∑4
n=1

∑
σ=↑,↓

∫
d3k

(2π)3 �̄n,σ (k)[iγ0k0 + iγ1εn(�k; v)]�n,σ (k),
where γ0 = σy and γ1 = σx (σi being the Pauli matrices),
�̄n,σ = �

†
n,σ γ0 with ε1(�k; v) = e+

1 (�k; v), ε2(�k; v) = e+
2 (�k; v),

ε3(�k; v) = e−
1 (�k; v), and ε4(�k; v) = e−

2 (�k; v). The general
theory in d spatial dimensions reads

S =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
dk�̄n,σ,j (k)[i� · K + iγd−1εn(�k; v)]

×�n,σ,j (k) + 1

4

∫
dq[|Q|2 + c2|�q|2]Tr[�(−q)�(q)]

+ i
gμ(3−d)/2√

Nf

4∑
n=1

Nc∑
σ,σ ′=1

Nf∑
j=1

∫
dk dq �̄n̄,σ,j (k + q)

×�σ,σ ′ (q)γd−1�n,σ ′,j (k) + μ3−d

4

∫
dk1dk2dq

× [u1Tr[�(k1 + q)�(k2 − q)]Tr[�(−k1)�(−k2)]

+u2Tr[�(k1 + q)�(k2 − q)�(−k1)�(−k2)]]. (2)

Here we consider SU (Nc) spin and Nf flavors of fermions
for generality. k = (K,�k) is the (d + 1)-dimensional energy-
momentum vector with dk ≡ dd+1k

(2π)d+1 . �k = (kx,ky) still de-
notes the two original momentum components and K =
(k0,k1, . . . ,kd−2) denotes the frequency and the momentum
components along the (d − 2) codimensions that have been
added. � = (γ0,γ1, . . . ,γd−2) together with γd−1 are the
gamma matrices which satisfy the Clifford algebra {γμ,γν} =
2Iδμ,ν with Tr[I ] = 2. �n,σ,j with σ = 1,2, . . . ,Nc and
j = 1,2, . . . ,Nf is in the fundamental representation of
both the enlarged spin group SU (Nc) and the flavor group

SU (Nf ). �(q) = ∑N2
c −1

a=1 φa(q)τ a is a matrix field for the
collective mode, where τ a are the generators of SU (Nc) with
Tr[τ aτ b] = 2δab. The Yukawa interaction scatters fermions
between pairs of hot spots denoted as (n,n̄) with 1̄ = 3, 2̄ =
4, 3̄ = 1, and 4̄ = 2. The Yukawa and quartic interactions
have scaling dimensions (3 − d)/2 and (3 − d), respectively,
at the noninteracting fixed point. μ is the energy scale
introduced to make g,u1,u2 dimensionless. For Nc � 3, u1

and u2 are not independent couplings because of the iden-
tity, Tr[�4] = 1

2 (Tr[�2])2. The energy of the fermions is

given by En(k1, . . . ,kd−2,�k) = ±
√∑d−2

i=1 k2
i + ε2

n(�k), which
supports a one-dimensional Fermi surface embedded in the
d-dimensional momentum space. The theory respects the
U (1) × SU (Nc) × SU (Nf ) internal symmetry. It is also in-
variant under the C4 transformations in the (kx,ky) plane, the
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SO(d − 1) that rotates (k0, . . . ,kd−2), and time reversal. When
Nc = 2, there is an additional pseudospin symmetry, which
rotates �n,σ,j (k) into iτ

(y)
σ,σ ′�̄

T
n,σ ′,j (−k) [32].

In three spatial dimensions the interactions are marginal.
We therefore expand around d = 3 using ε = 3 − d as a

small parameter. We use the minimal subtraction scheme to
compute the beta functions, which dictate the renormalization
group (RG) flow of the velocities and couplings. To make
the quantum effective action finite in the limit the ultraviolet
(UV) cutoff goes to infinity, we add counterterms which can
be written in the following form:

SCT =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
dk �̄n,σ,j (k)

[
iA1� · K + iA3γd−1εn

(
�k;

A2

A3
v

)]
�n,σ,j (k) + 1

4

∫
dq[A4|Q|2 + A5c

2|�q|2]Tr[�(−q)�(q)]

+ iA6
gμ(3−d)/2√

Nf

4∑
n=1

Nc∑
σ,σ ′=1

Nf∑
j=1

∫
dk dq[�̄n̄,σ,j (k + q)�σ,σ ′ (q)γd−1�n,σ ′,j (k)] + μ3−d

4

∫
dk1 dk2 dq

× [A7u1Tr[�(k1 + q)�(k2 − q)]Tr[�(−k1)�(−k2)] + A8u2Tr[�(k1 + q)�(k2 − q)�(−k1)�(−k2)]], (3)

where

An ≡ An(v,c,g,u; ε) =
∞∑

m=1

Zn,m(v,c,g,u)

εm
. (4)

Zn,m(v,c,g,u) are finite functions of the couplings. The
counterterms are computed order by order in ε. The general
expressions for the dynamical critical exponent, the anomalous
scaling dimensions of the fields, and the beta functions of the
velocities and couplings are summarized in Sec. III. More
details on the RG procedure can be found in Ref. [37].

III. MODIFIED ONE-LOOP FIXED POINT

We begin by reviewing the one-loop RG analysis of
Ref. [37]. The conclusion of the analysis is that the theory flows
to a quasilocal non-Fermi liquid state, where c,v flow to zero
as 1/l for d < 3 and as 1/ log(l) at d = 3 in the logarithmic
length scale l, with their ratio fixed to be w ≡ v/c = NcNf

N2
c −1 in

the low energy limit with l → ∞. Along with the emergent
quasilocality, the couplings also flow to zero such that λ ≡
g2/v and κi ≡ ui/c

2 flow to λ∗ = 4π(N2
c +NcNf −1)

N2
c +NcNf −3 ε and κ∗

i = 0
in the low energy limit.

The perturbative expansion is controlled by the ratios
between the couplings and the velocities, and the dynami-

cal critical exponent becomes z = 1 + N2
c +NcNf −1

2(N2
c +NcNf −3)ε. With

w ∼ O(1) at the one-loop fixed point, general diagrams are

estimated to scale as I ∼ λ
Vg

2 κ
Vu

i cVu−Lb+ E−2
2 , where Vg is

the number of Yukawa vertices, Vu is the number of quartic
vertices, Lb is the number of boson loops, and E is the number
of external lines. Because c flows to zero, magnitudes of
higher-loop quantum corrections are controlled not only by
λ but also by c. In particular, the quantum correction to the
spatial part of the boson kinetic term becomes A5 ∼ I/c2 ∼
λ

Vg

2 κ
Vu

i cVu−Lb−2, where the counterterm is further enhanced by
a factor of 1/c2 because the velocity in the classical action is
already small.

In three dimensions (ε = 0), all higher-loop diagrams are
suppressed because λ flows to zero faster (λ ∼ 1/l) than the
velocities [v ∼ c ∼ 1/ log(l)]. Therefore, the critical point
in three dimensions is described by the stable quasilocal
marginal Fermi liquid [52], where the Fermi liquid is broken

by logarithmic corrections from the one-loop effect [37].
Below three dimensions (ε > 0), however, some higher-loop
diagrams cannot be ignored because c flows to zero while
λ∗ ∼ ε. For example, A5 from Fig. 3 is divergent at the
one-loop fixed point. It might seem strange that the higher-loop
graph suddenly becomes important for any nonzero ε while it
is negligible at ε = 0. This apparent discontinuity originates
from the fact that the small ε limit and the low energy
limit do not commute. If the small ε limit is taken first, all
higher-loop graphs are suppressed. However, since we are
ultimately interested in the theory at d = 2, we fix ε to a
small but nonzero value, and then take the low energy limit of
the corresponding theory. In this case, c flows to zero, and the
IR singularity caused by the softening of the collective mode
enhances the magnitude of the two-loop graph. Since certain
higher-loop diagrams can be enhanced by the IR singularity in
the small c limit, we cannot ignore all higher-order quantum
corrections from the outset even in the small ε limit.

The largest contribution to the renormalization of c comes
from the boson self-energy in Fig. 3. We call the addition
of this two-loop diagram to the one-loop diagrams (Fig. 2)
the “modified-one-loop” (M1L) order. As will be shown
later, the flow of c is modified by the two-loop graph in
Fig. 3 such that the effect of other higher-loop diagrams
is negligible in the small ε limit. There also exists a two-
loop diagram made of quartic vertices contributing to A5.
However, the diagram has no enhancement by 1/c2 because
the momentum dependent self-energy comes with c2 due to
the (d + 1)-dimensional rotational symmetry present in the
bosonic sector. The contribution from the quartic vertices are
further suppressed because κi is irrelevant at the fixed point.

Figure 3 gives rise to the quantum effective action whose
divergent part is given by

δ�2L
0,2 = 1

ε

4

NcNf

g4

v2c2
h5(v,c)

∫
dp

1

4
c2| �p|2Tr[�(−p)�(p)],

(5)

where h5(v,c) is given by h5(v,c) = h∗
5

v
c

with h∗
5 ≈ 5.7 ×

10−4 in the limit v,c,v/c are small. The full definition of
h5(v,c) is given in Appendix B. The positive sign of Eq. (5)
implies that the two-loop correction prevents c from flowing to
zero too fast [49]. If c is small, the quantum correction makes
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(a) (b)

(c) (d)

(e)

FIG. 2. One-loop diagrams.

the collective mode speed up until the quantum correction
becomes O(1), 1

ε
4

NcNf

g4

v2c2 h5(v,c) ∼ 1. Since g2

v
∼ ε, this

suggests that g2

c3 becomes O(1) in the low energy limit. Once c

becomes comparable to g2/3 ∼ v1/3, it flows to zero together
with v, although at a slower rate than v. As a result, w = v/c

flows to zero at the M1L fixed point for ε > 0, unlike at

FIG. 3. Two-loop diagram for the boson self-energy.

ε = 0. This emergent hierarchy in the velocities plays a
crucial role in the nonperturbative solution [47,48]. In order
to confirm this picture, we examine the RG flow in the space
of {λ,x,w,κi}, where x ≡ g2

c3 is expected to flow to an O(1)
value at the fixed point.

The beta functions for the five parameters are expressed in
terms of the counterterms as

dλ

dl
= zλ(ε + Z′

2,1 + Z′
3,1 + Z′

4,1 − 2Z′
6,1),

dx

dl
= zx

(
ε + 1

2
(6Z′

1,1 − 2Z′
3,1 − Z′

4,1 + 3Z′
5,1 − 4Z′

6,1)

)
,

dw

dl
= 1

2
zw(2Z′

1,1 − 2Z′
2,1 − Z′

4,1 + Z′
5,1), (6)

dκ1

dl
= zκ1(ε + Z′

4,1 + Z′
5,1 − Z′

7,1),

dκ2

dl
= zκ2(ε + Z′

4,1 + Z′
5,1 − Z′

8,1),

where Z′
n,1 ≡ ( 1

2g∂g + ui∂ui
)Zn,1 and z = [1 + Z′

1,1 −
Z′

3,1]−1 is the dynamical critical exponent. In the limit that
v,c,v/c are small, the beta functions at the M1L level become

dλ

dl
= zλ

(
ε − 1

4π
λ + 1

2πNcNf

λw

)
, (7)

dx

dl
= zx

(
ε − 3N2

c − 7

8πNcNf

λw +
(
N2

c − 1
)

2π2NcNf

(λw)
3
2

x
1
2

+ 1

8π
λ − 12 h∗

5

NcNf

λ x

)
, (8)

dw

dl
= 1

2
zw

(
−

(
N2

c − 1
)

4πNcNf

λw −
(
N2

c − 1
)

π2NcNf

(λw)
3
2

x
1
2

+ 1

4π
λ − 8 h∗

5

NcNf

λ x

)
, (9)

dκ1

dl
= zκ1

(
ε − 1

4π
λ − 8 h∗

5

NcNf

λ x − 1

2π2

((
N2

c + 7
)
κ1 + 2

(
2Nc − 3

Nc

)
κ2 + 3

(
1 + 3

N2
c

)
κ2

2

κ1

))
, (10)

dκ2

dl
= zκ2

(
ε − 1

4π
λ − 8 h∗

5

NcNf

λ x − 1

2π2

(
12κ1 + 2

(
Nc − 9

Nc

)
κ2

))
, (11)

with z = (1 − N2
c −1

8πNcNf
λw)

−1
. The beta functions exhibit a

stable fixed point given by

λ∗ = 4πε, x∗ = NcNf

32π h∗
5

, w∗ = 0, κ∗
i = 0. (12)

It is noted that x is O(1) and v,c,v/c all vanish at the fixed
point.

In order to understand the flow near the fixed point, we first
examine the beta functions for x and λ. Although it may seem
arbitrary to focus on the flow of x,λ first with fixed w, this
is actually a good description of the full RG flow because the

flow of x,λ is much faster than that of w, as will be shown
in the following. From Eqs. (7), (8), the beta functions for
(δλ,δx) ≡ (λ − λ∗,x − x∗) are given by

dδλ

dl
= fλ(w) − εδλ + · · · ,

dδx

dl
= fx(w) − NcNf

32π h∗
5

(
48π h∗

5εδx

NcNf

+ δλ

4π

)
+ · · ·

(13)
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FIG. 4. RG flow in the space of (λ,x,w) for ε = 0.01 and Nc =
2,Nf = 1. The axes are scaled as x̄ ≡ x/10, λ̄ ≡ 10λ. The fixed point
(λ̄∗,x̄∗,w∗) = (1.26,3.49,0) is denoted as a red dot. The solid curves
represent the numerically integrated RG flows, and the dotted (orange)
line represents the one-dimensional manifold given by dx

dl
= dλ

dl
= 0.

to the linear order in the deviation from the fixed point for
small w, where fλ(w) = dλ

dl
|
λ=λ∗,x=x∗ , fx(w) = dx

dl
|
λ=λ∗,x=x∗ ,

and · · · represent terms that are higher order in δλ, δx. Equa-
tion (13) implies that the perturbations in λ and x are irrelevant
at the fixed point, and they flow to w-dependent values
exponentially in l. This can be seen from Fig. 4, which shows
the full numerical solution to the beta functions for (λ,x,w).
Once the RG flow reaches the one-dimensional manifold given
by (λ,x,w) = (λ∗ + fλ(w)

ε
,x∗ + 2

3ε
[fx(w) − NcNf fλ(w)

128π2 h∗
5ε

],w), w

flows to the fixed point at a slower rate. To compute the flow
within this manifold, we set dλ

dl
= dx

dl
= 0 in Eq. (6) to express

Z1,1, Z4,1 in terms of Zn,1 with n = 2,3,5,6. This gives the
beta function for w within the manifold,

dw

dl
= 2z

3
(−Z

′
2,1 + Z

′
3,1)w, (14)

which reduces to

dw

dl
= −64

√
2h∗

5

(
N2

c − 1
)

3(NcNf )3/2
ε3/2 w5/2 (15)

to the leading order in w. Because the flow velocity of w

vanishes to the linear order in w, w flows to zero as a power law
in the logarithmic length scale, w ∼ l−2/3/ε. At the fixed point,
the quartic couplings are irrelevant and their beta functions
become

dκi

dl
= −εκi, (16)

to the leading order in w and κi . This confirms that the fixed
point in Eq. (12) is stable.

In the small ε limit, Eq. (12) does not converge to the
one-loop fixed point, λ∗ = 0, x∗ = 0, w∗ = NcNf

N2
c −1 , κ∗

i = 0,
which represents the correct fixed point at ε = 0. Although
the beta functions are analytic functions of ε, the fixed point
is not because the low energy limit and the ε → 0 limit do

not commute. One way to understand this noncommutativity
is in terms of the “RG time” that is needed for the flow to
approach Eq. (12) for nonzero but small ε. In order for w

to decrease by a factor of 1/2, the logarithmic length scale
has to change by �l ∼ ε−3/2 according to Eq. (15). The fixed
point described by Eq. (12) can be reached only below the
crossover energy scale, μ ∼ �e−ε−3/2

, where � is a UV cutoff
scale. The crossover energy scale goes to zero as ε becomes
smaller, and the fixed point in Eq. (12) is never reached at
ε = 0. A converse issue of noncommutativity arises in 2 + ε′
dimensions [48]. In order to capture the correct physics in
two dimensions, one needs to take the ε′ → 0 limit first before
taking the low energy limit. If the other order of limits is taken,
some logarithmic corrections are missed [48].

Although the two-loop diagram in Fig. 3(a) is superficially
O(ε2), it becomes O(ε) at the fixed point because the IR
singularity caused by the vanishingly small velocities enhances
the magnitude of the diagram. Formally, a factor of g2 coming
from one additional loop is canceled by an IR enhancement
of c−3 in Eq. (5), which makes the two-loop diagram as
important as the one-loop diagrams in the small ε limit. This
is rather common in field theories of Fermi surfaces where
the perturbative expansion is not organized by the number of
loops [17,22,32,49].

The breakdown of the naive loop expansion is analogous
to the case of the ferromagnetic quantum critical point [53].
In the disordered ferromagnetic quantum critical metal, the
perturbative expansion breaks down even near the upper
critical dimension, as a dangerously irrelevant operator enters
in the beta functions of other couplings in a singular manner
[54,55]. In our case, the velocities play the role of dangerously
irrelevant couplings which spoil the naive loop expansion.
Although they are marginally irrelevant, one cannot readily
set the velocities to zero as quantum corrections are singular
in the zero velocity limit. This leads to a subtle balance between
the Yukawa coupling and the velocities, making the two-loop
diagram as important as the one-loop diagrams. Then the
natural question is the role of other higher-loop diagrams.
In the following, we show that other higher-loop diagrams are
suppressed and the ε expansion is controlled, as is the case for
the SDW critical metal with C2 symmetry [49].

IV. EMERGENT SMALL PARAMETER

In this section, we show that the ε expansion is controlled,
by providing an upper bound for the magnitudes of general
higher-loop diagrams at the M1L fixed point. Furthermore, we
show that a large class of diagrams are further suppressed by w,
which flows to zero in the low energy limit. Since κi = 0 at the
M1L fixed point, only those diagrams without quartic vertices
are considered. Among the diagrams made of only Yukawa
vertices, we first focus on the diagrams without self-energy
corrections. The diagrams without self-energy corrections
scale as

I ∼ g2L+E−2

vLf cL−Lf
, (17)

up to potential logarithmic corrections in v and c, where L

is the total number of loops, Lf is the number of fermion
loops, and E is the number of external lines. The derivation
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of Eq. (17), which closely follows Ref. [47], can be found in
Appendix C.

A diagram whose overall magnitude is given by Eq. (17)
contributes to the counterterm as

A1,A2,A3,A4,A6 ∼ λLwL−Lf ,
(18)

A5 ∼ λL−1wL−Lf −1x,

up to logarithmic corrections in v and c, where the relations

g = ( λ3w3

x
)

1
4 , v = ( λw3

x
)

1
2 , and c = ( λw

x
)

1
2 are used. A5 scales

differently from the rest of the counterterms because quantum
corrections to the spatial part of the boson kinetic term are
enhanced by 1

c2 . Since the classical action c2|�q|2 vanishes
in the c → 0 limit, the relative magnitude of quantum
corrections to the classical action is enhanced as A5 ∼ 1

c2 I .

For example, the two-loop diagram in Fig. 3 is A5 ∼ g4

vc3 .
On the other hand, A2 is not enhanced by 1

v
, even though

the fermion kinetic term also loses its dependence on kx (ky)
for n = 1,3 (n = 2,4) in the small v limit. The difference
is attributed to the fact that the fermion self-energy takes
the form of �(k) ∼ g2L

v
Lf c

L−Lf
�̃(k0,vkx,ky) for n = 1,3 and

�(k) ∼ g2L

v
Lf c

L−Lf
�̃(k0,kx,vky) for n = 2,4. Besides the overall

factor of g2L

v
Lf c

L−Lf
from Eq. (17), �̃ becomes independent of kx

(ky) for n = 1,3 (n = 2,4) in the small v limit. This is because
in all fermion self-energy diagrams the external momentum
can be directed to flow through a series of fermion propagators
of type n = 1,3 (n = 2,4) only, and the fermion propagators
become independent of kx (ky) when v = 0. For example, the
one-loop fermion self-energy with L = 1,Lf = 0 in Fig. 2

is at most � ∼ g2

c
(vkx − ky) for n = 1. Explicit calculation

actually shows that the one-loop diagram is further suppressed
by c for an unrelated reason [37].

Now we consider the consequences of Eq. (18). We
initially ignore the potential logarithmic corrections in v,c.
First, higher-loop diagrams are systematically suppressed by
λ∗ ∼ ε as the number of loops increases. However, there
is an exception to the usual rule that L-loop diagrams are
suppressed by εL. The quantum correction to the spatial part
of the boson kinetic term is suppressed only by εL−1, due to
the enhancement by 1/c2. Although Eq. (18) suggests that the
one-loop contribution to A5 scales as λ0w−1x, its contribution
to A5 is actually zero because Fig. 2(a) is independent of
momentum. Since all self-energy corrections are at most O(ε),
diagrams with self-energy insertions are further suppressed by
ε. This implies that the ε expansion is controlled, and the M1L
includes all quantum corrections to the linear order in ε.

Second, a large class of higher-loop diagrams are further
suppressed by w which flows to zero in the low energy limit.
Unlike ε, which is fixed at a given dimension, w flows to zero
dynamically in the low energy limit. The suppression by w

is controlled by the number of nonfermion loops. The only
diagram with L − Lf = 0 is the one-loop boson self-energy
in Fig. 2(a). SinceA5 from Fig. 2(a) vanishes, the leading order
contribution to A5 comes from the two-loop boson self-energy
in Fig. 3 at O(w0). Among the diagrams without self-energy
insertions, only Fig. 2(a) and Fig. 3 survive in the small w

limit. When those self-energy corrections are included inside
a diagram, the diagram with dressed boson propagators is

, , ,

, ,

, . . .

,

,

,,

FIG. 5. Some examples in the infinite series of diagrams that
survive in the small w limit.

not further suppressed by w (although they are suppressed
by ε). Other self-energy corrections, including all fermion
self-energies, are negligible because they are suppressed by w.
Therefore, the complete set of diagrams which survive in the
small w limit are generated by dressing the boson propagator in
Fig. 3 by the self-energy in Fig. 2(a) and Fig. 3. This generates
a series of diagrams, some of which are shown in Fig. 5.

Now we turn our attention to the subleading corrections
that are potentially logarithmically divergent in v and c in
Eq. (18). Diagrams suppressed by at least one power of w

still vanish in the small w limit even in the presence of
logarithmic divergences in v or c. However, the effect of the
logarithms on the diagrams in Fig. 5 [which are O(w0)] cannot
be ignored, and this can in principle jeopardize the control of
the ε expansion. In Appendix D, we demonstrate that the ε

expansion is still controlled, by showing that all logarithmic
corrections that arise at higher orders in ε can be absorbed
into x̃ = x/F (c,v), where F (c,v) is defined such that x̃ flows
to x∗ in the low energy limit. Once physical observables are
expressed in terms of the new parameter x̃, they have a well
defined expansion in ε. At least for small ε, the theory is
free of perturbative instabilities toward other competing orders
[32,41,56–59], and it represents a stable non-Fermi liquid state
[22,23,49].

Although κi = 0 at the M1L fixed point, the quartic vertices
are generated from the Yukawa vertices. It happens that
the one-loop diagram in Fig. 2(d) vanishes, and the leading
contributions that source the quartic vertices are shown in
Fig. 6. Once these diagrams are included, the beta functions
for κi are modified as

dκi

dl
= −ε κi + Aiλ

5
2 w

3
2 x

1
2 , (19)

where the Ai’s are functions that diverge at most logarithmi-
cally in w in the small w limit. As a result, the quartic couplings
flow to zero as κi ∼ w

3
2 up to logarithms of w as w flows to

zero.
The small parameter w that emerges in the low energy limit

suppresses all higher-loop diagrams except for the specific
set of diagrams shown in Fig. 5. It turns out that w flows to
zero in the low energy limit in any dimensions, 2 � d < 3
[47,48]. This allows one to extract the exact critical exponents
by nonperturbatively summing the infinite series of diagrams
through a self-consistent equation.
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(a) (b)

(c)

FIG. 6. Quantum corrections that renormalize the quartic vertices
in the small w,ε limit.

V. PHYSICAL PROPERTIES

Now, we examine the scaling form of the Green’s functions.
The dynamical critical exponent and the anomalous scaling
dimensions at the fixed point are given by

z = 1, ηψ = 0, ηφ = ε

2
. (20)

These critical exponents do not receive higher-order correc-
tions in ε in the small w limit, as is shown in Appendix D.
Indeed, w flows to zero in the low energy limit, and the critical
exponents in Eq. (20) are exact in any 0 < ε � 1 [47,48].
At intermediate energy scales, the physical Green’s functions
receive corrections generated from irrelevant parameters of the
theory. The least irrelevant parameter that decays at the slowest
rate is w, which decays as l−2/3 in the logarithmic scale l. This
sublogarithmic flow introduces superlogarithmic corrections
in the Green’s functions. The fermion Green’s function for the
n = 1 patch is given by

G1(K,�k) = 1

iFψ (|K|)

× 1

Fz(|K|)� · K + γd−1
[ πNcNf

4ε(N2
c −1)

kx

log(1/|K|) + ky

]
(21)

in the limit of small frequency |K| and fixed eIz(l)�k ∼ 1,

where Iz(l) = l − 3(N2
c −1)

1
3

2
14
3 (h∗

5)
1
3

l
1
3 and l = log(1/|K|). The univer-

sal functions Fz(|K|) and Fψ (|K|),

Fz(|K|) = exp

⎛
⎝3

(
N2

c − 1
) 1

3

2
14
3 (h∗

5)
1
3

(
log

1

|K|
) 1

3

⎞
⎠, (22)

Fψ (|K|) =
√

log
1

|K| , (23)

contain the contributions from the deviations of the dynamical
critical exponent and the anomalous scaling dimension of the
fermion, respectively, from their fixed point values in Eq. (20).
Due to the superlogarithmic correction, the quasiparticle peak

is destroyed. All other Green’s functions are determined by
this one through the C4 symmetry of the theory.

The scaling form of the spin-spin correlation function is
given by

D(Q,�q) = 1

|Q|2−εFz(|Q|)2Fφ(|Q|)D
⎛
⎝ �q

Fz(|Q|)|Q| ;

NcNf

2
11
3 (h∗

5)
1
3
(
N2

c − 1
) 2

3

1

ε

1

log(1/|Q|) 2
3

⎞
⎠, (24)

in the limit of small frequency |Q| and fixed eIz(log(1/|Q|)) �q ∼ 1.
D is a universal function, and

Fφ(|Q|) = exp

⎛
⎝− 3

(
N2

c − 3
)

2
11
3 (h∗

5)
1
3
(
N2

c − 1
) 2

3

(
log

1

|K|
) 1

3

⎞
⎠ (25)

is the universal function which captures the contribution from
the deviation of the anomalous scaling dimension of the
boson field from its fixed point value in Eq. (20). Unlike
the fermion Green’s function, the boson has a nontrivial
anomalous dimension.

VI. PHYSICAL PICTURE

Finally, we provide a simple physical picture for why
w = v/c emerges as a control parameter. The most important
factor is the Landau damping which describes the decay of the
collective mode into the particle-hole continuum. As the Fermi
surface becomes locally nested near the hot spots in the small
v limit, the phase space for the particle-hole excitations that a
collective mode can decay into increases as 1/v. A single
boson with a fixed momentum can decay into low-energy
particle-hole pairs that lie anywhere along the nested Fermi
surface of length �f /v, where �f is an energy cutoff for
the fermionic excitations. This is illustrated in Fig. 7(a). This
results in a large screening, which renormalizes the Yukawa
vertex to g2 ∼ εv. As the Fermi surface gets nested, g flows
to zero.

The dispersionless particle-hole excitations near the hot
spots renormalize the velocity of the collective mode to zero as
well, through the mixing between the collective mode and the
particle-hole excitations. As the fluctuations of the collective
mode become soft, quantum fluctuations are enhanced at
low energies. On the other hand, the enhanced quantum
fluctuations speed up the velocity of the collective mode
through Fig. 3, and a balance is formed such that c3 ∼ g2 ∼ εv

to the leading order in ε. As a result, the boson velocity c flows
to zero at a much slower rate than v.

Now let us consider the feedback of the collective mode on
the propagation of fermions, by examining the process where
a fermion is scattered by a collecitve mode. With the initial
momentum fixed, the fermion does not have access to the entire
Fermi surface. Instead it can only scatter into a region allowed
by the maximum momentum carried by a collective mode.
The available phase space for the scattering scales as �b/c,
where �b is the energy cutoff of the collective mode. This is
illustrated in Fig. 7(b). Therefore, the scattering of fermions
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FIG. 7. Tilted lines represent patches of Fermi surface connected
by the AF ordering vector, where the red dots denote hot spots. The
Fermi surfaces are not parallel because of nonzero v. (a) Particle-hole
excitations of momentum �QAF can stay within the low-energy states
of energy E < �f as far as their momenta are within the range of
�f /v from the hot spots. Therefore, the phase space available for
Landau damping of the collective mode scales as 1/v in the small v

limit. (b) The shaded region denotes the phase space available for a
fermion when scattered by a collective mode of energy less than �b.
Since the energy of the boson with momentum �q scales as c|�q|, a
boson with energy less than �b can transfer momentum up to �b/c

to a fermion. Therefore, the phase space grows as 1/c in the small c

limit.

is controlled by g2/c ∼ ε v/c, where g2 ∼ εv is used. As v/c

flows to zero in the low energy limit, the scattering of fermions
by collective modes becomes negligible. This explains

why fermions are largely intact in the small w limit, and w

emerges as a control parameter.

VII. CONCLUSION

We extended the earlier one-loop analysis of the antifer-
romagnetic quantum critical metal based on the dimensional
regularization scheme which tunes the number of codimen-
sions of the one-dimensional Fermi surface. We show that the
IR singularities caused by the emergent quasilocality rearrange
the perturbative series such that a two-loop graph becomes as
important as the one-loop graphs in the small ε limit. With
the inclusion of this two-loop effect, higher-loop diagrams are
systematically suppressed, and the ε expansion is controlled.
Furthermore, a ratio between velocities dynamically flows to
zero, which has been confirmed in the nonperturbative solution
in 2 � d < 3 [47,48]. The ε expansion provides an indepen-
dent justification for the ansatz used in the nonperturbative
solution.
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APPENDIX A: BETA FUNCTIONS AND THE ANOMALOUS
DIMENSIONS

In this section we summarize the expressions for the beta
functions and the anomalous dimensions derived from the
minimal subtraction scheme. More details can be found in
Ref. [37]. The renormalized action is given by the sum of the
classical action and the counterterms which can be expressed
in terms of bare fields and bare couplings,

Sren =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
dkB�̄B;n,σ,j (kB)[i� · KB + iγd−1εn(�kB ; vB)]�B;n,σ,j (kB) + 1

4

∫
dqB

[|QB |2 + c2
B |�qB |2]

× Tr[�B(−qB )�B(qB)] + i
gB√
Nf

4∑
n=1

Nc∑
σ,σ ′=1

Nf∑
j=1

∫
dkB dqB [�̄B;n̄,σ,j (kB + qB)�B;σ,σ ′ (qB)γd−1�B;n,σ ′,j (kB)]

+ 1

4

∫
dk1B dk2B dqB [u1BTr[�B(k1B + qB)�B(k2B − qB)]Tr[�B(−k1B)�B(−k2B)]

+u2BTr[�B(k1B + qB)�B(k2B − qB)�B(−k1B)�B(−k2B)]]. (A1)

The renormalized quantities are related to the bare ones

through K = Z−1
τ KB , �k = �kB , �n,σ,j (k) = Z− 1

2
ψ �B;n,σ,j (kB),

�(q) = Z− 1
2

φ �B(qB), v = Z3
Z2

vB , c = [ZφZd−1
τ

Z5
]

1
2
cB , g =

ZψZ
1
2

φ Z2(d−1)
τ

Z6
μ− 3−d

2 gB , u1 = Z2
φZ3(d−1)

τ

Z7
μ−(3−d)u1B , and u2 =

Z2
φZ3(d−1)

τ

Z8
μ−(3−d)u2B , where Zτ = Z1

Z3
, Zψ = Z1Z−d

τ , Zφ =
Z4Z−(d+1)

τ , and Zn = 1 + An. The scaling dimension of �k
is fixed to be 1. By requiring that the bare quantities are
independent of the scale μ, we obtain the dynamical critical
exponent, the anomalous dimensions, and the beta functions
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as

z = [1 + (Z′
1,1 − Z′

3,1)]−1, (A2)

ηψ = −ε

2
z(Z′

1,1 − Z′
3,1) + 1

2
z(2Z′

1,1 − 3Z′
3,1), (A3)

ηφ = −ε

2
z(Z′

1,1 − Z′
3,1) + 1

2
z(4Z′

1,1 − 4Z′
3,1 − Z′

4,1), (A4)

dv

dl
= −zv(Z′

2,1 − Z′
3,1), (A5)

dc

dl
= −1

2
zc(2Z′

1,1 − 2Z′
3,1 − Z′

4,1 + Z′
5,1), (A6)

dg

dl
= zg

[
ε

2
+ 1

2
(2Z′

3,1 + Z′
4,1 − 2Z′

6,1)

]
, (A7)

du1

dl
= zu1[ε − (2Z′

1,1 − 2Z′
3,1 − 2Z′

4,1 + Z′
7,1)], (A8)

du2

dl
= zu2[ε − (2Z′

1,1 − 2Z′
3,1 − 2Z′

4,1 + Z′
8,1)], (A9)

where l = − log(μ) is the logarithmic length scale
and Z′

n,1 ≡ ( 1
2g∂g + ui∂ui

)Zn,1.

APPENDIX B: COMPUTATION OF THE BOSON
SELF-ENERGY AT TWO LOOPS

In this section we compute the quantum corrections to the
spatial part of the boson self-energy. Among the two-loop
diagrams, only Fig. 3 contributes. It is written as

δ�2L
0,2 = −μ2ε

4

4g4

NcNf

∫
dp ϒ2L

0,2(p)Tr[�(−p)�(p)], (B1)

where

ϒ2L
0,2(p) =

∑
n

∫
dk dqTr[γd−1Gn(q + k)γd−1

×Gn̄(p + q + k)γd−1Gn(p + k)γd−1Gn̄(k)]D(q).

(B2)

Since we are interested in the momentum-dependent part, we
set P = 0. We first perform the frequency integrations, which
introduces four Feynman parameters x1,x2,y1,y2, followed by
the spatial integrations. The final expression is given by

ϒ
2L;a
0,2 ( �p) = −1

ε

h5(v,c)

v2

(
p2

x + p2
y

) + O(ε0), (B3)

where h5(v,c) is defined as

h5(v,c) = − 2

(4π )2

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1

0
dy1

∫ 1−y1

0
dy2(Av2 + B), (B4)

with

A = − 1

128π2

(
4(b1 + b2 + b3)(2(1 − y1 − y2) − (x1 + x2)(1 − 2y1 − 2y2))√

a1 a2 a3 a4(1 − x1 − x2)(x1 + x2)2

− 2a1(b1 + b2 + b3)(a2 a4 d2,3 + a3 (a4 d2,2 + a2 d2,4))
(a1 a2 a3 a4)3/2

+ 4(d2,5 + d2,6 + d2,7)√
a1 a2 a3 a4

+ 3(b1 + b2 + b3)(1 − y1 − y2)d3,1√
a1 a2 a3 a

5/2
4 (1 − x1 − x2)2(x1 + x2)2

+ a1(b1 + b2 + b3)(1 − y1 − y2)(a3 d3,2 + a2 d3,3)

(a1 a2 a3 a4)3/2(1 − x1 − x2)2(x1 + x2)2

− 2a1(1 − y1 − y2)(a2 a4 (d3,7 + d3,8 + d3,9) + a3 (a4 (d3,4 + d3,5 + d3,6) + a2 (d3,10 + d3,11 + d3,12)))
(a1 a2 a3 a4)3/2(1 − x1 − x2)2(x1 + x2)2

)
,

B = A with (b2 → −b2,d2,6 → −d2,6,d3,5 → −d3,5,d3,8 → −d3,8,d3,11 → −d3,11).

Here dn,m are defined as

d2,2 = −c1((1 − x1 − x2)(x1 + x2))−2(1 − y1 − y2),

d2,3 = ( − 1 + x1 + x2 − c2(−1 + c4 + x1 + x2) + c4(2 − x1 − x2 + c1(−1 + c4 + x1 + x2)))

× (−1 + y1 + y2)((1 − x1 − x2)(x1 + x2))−2,

d2,4 = (
c1c

2
5(−1 + y1 + y2) + (−1 + x1 + x2)(−1 + y1 + y2) − c2

8

(
1 − c1c

2
4 − x1 − x2 + c2(−1 + c4 + x1 + x2)

+ c4(−2 + x1 + x2 − c1(−1 + x1 + x2))
)
(−1 + y1 + y2) − c5( − 1 + x1 + x2 − c8(−2 + c2 + x1 + x2)

+ c1(2 − x1 − x2 + c8(−1 + 2c4 + x1 + x2)))(−1 + y1 + y2) + c8
( − 4 + 3x1 + 3x2 + 4y1 − 4x1y1 + x2

1y1

− 4x2y1 + 2x1x2y1 + x2
2y1 + 4y2 − 4x1y2 + x2

1y2 − 4x2y2 + 2x1x2y2 + x2
2y2 + c2(−2 + x1 + x2)(−1 + y1 + y2)

− c4(1 − x1 − x2 + c1(−2 + x1 + x2))(−1 + y1 + y2))
)
((1 − x1 − x2)(x1 + x2))−2,

d2,5 = (
c11(−c9 + c8c11)(−1 + x1 + x2)(x1 + x2) + (

c1c
2
5c

2
11 + c1c

2
4(1 + c9 − c8c11)2 + c9(−1 + x1 + x2)

− (−1 + c2)c2
9(−1 + x1 + x2) − 2c8c9c11(−1 + x1 + x2) + c5c9c11(2 − x1 − x2 + c1(−1 + x1 + x2))

+ c2c11(−1 + c8c11)( − 2 + c5 + x1 + x2 − c8(−1 + x1 + x2)) + c11( − 2 − c11 + x1 + c11x1 + x2 + c11x2
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− c9(−2 + x1 + x2)2 + c2
8c11(−1 + x1 + x2) + c8(1 − x1 − x2 + c11(−2 + x1 + x2)2))

− c4(1 + c9 − c8c11)( − 1 − c11 + 2c1c11 − 2c1c5c11 + 2c8c11 − c1c8c11 + c2(1 + c9 − c8c11) + c11x1 − c1c11x1

− c8c11x1 + c1c8c11x1 + c11x2 − c1c11x2 − c8c11x2 + c1c8c11x2 + c9(−2 + x1 + x2 − c1(−1 + x1 + x2)))

− c2c9( − 1 + x1 + x2 + c11(−2 + c5 + x1 + x2 − 2c8(−1 + x1 + x2))) − c5c11(−1 + c11(−1 + x1 + x2

− c8(−2 + x1 + x2) + c1(2 − x1 − x2 + c8(−1 + x1 + x2))))
)
(−1 + y1 + y2)

)
((1 − x1 − x2)(x1 + x2))−2,

d2,6 = ((1 − x1 − x2)(x1 + x2))−2(( − c9c12 + c8c11(−1 + 2c12))(−1 + x1 + x2)(x1 + x2) + (((−1 + c2)c8

+ c1(c5 − c4c8))( − (−1 + c5)c11 − c4(1 + c9 − c8c11))(−1 + c12) − (−1 + c5 − c4c8)(1 + c9 − c8c11

− c2(1 + c9 − c8c11) + c1(c5c11 + c4(1 + c9 − c8c11)))(−1 + c12) + (c8(1 + 2c11 − c5c11 + c1c5c11

− 2c8c11 + c2(−1 + (−1 + 2c8)c11) − (−1 + c1)c4(−1 + (−1 + 2c8)c11)) + c9( − 1 + (−1 + c1)c5(−1 + c12)

+ 2(−1 + c2 + c4 − c1c4)c8(−1 + c12) + 2c12 − c2c12 − c4c12 + c1c4c12) + (−1 + c8)((−1 + c2 − (−1 + c1)c4)c12

+ c11(1 + (−1 + c1)c5 − 2(1 + (−1 + c1)c5 + (−1 + c2 + c4 − c1c4)c8)c12)))(1 − x1 − x2)

− c8c11(−1 + c12)(−1 + x1 + x2)2 + (c9 − c8c11)c12(−1 + x1 + x2)2)(1 − y1 − y2)
)
,

d2,7 = ((1 − x1 − x2)(x1 + x2))−2(((−1 + c12)(c1(c5 − c4c8)(1 + c5(−1 + c12) − (−1 + c4)c8(−1 + c12) − 2c12)

− (1 + c2(−1 + c4) − 2c4)c2
8(−1 + c12) + (−1 + c5)c12 + c8(−2 + c2(1 + c5(−1 + c12) − 2c12) − 2c5(−1 + c12)

+ 4c12 − c4c12)) − c8x1 + (1 − c2 + (−1 + c1)c4)c2
8x1 + (−1 + c1)c5(−1 + c8)c12x1 + c8c12x1 − 2c2

8c12x1

− (−1 + c1)c5c8(−1 + c12)c12x1 + (1 − c2 + (−1 + c1)c4)c2
8c

2
12x1 + c12( − 1 + (1 + (−1 + c1)c5)c12)x1

+ c8(−1 + c12)x2 + (1 − c2 + (−1 + c1)c4)c2
8(−1 + c12)2x2 + (1 + (−1 + c1)c5)(−1 + c12)c12x2

+ c8((c2 − (−1 + c1)c4)c12((−1 + 2c8 + c12)x1 + (−1 + c12)x2) − (−1 + c1)c5(x1 + (−1 + c12)2x2)))(−1 + y1 + y2)

+ c8(−1 + c12)c12(x1 + x2)(3 + (−4 + x1 + x2)y1 + (−4 + x1 + x2)y2)
)
,

d3,1 = c8(1 − c5 + c4c8)( − (−1 + c2)c8 + c1(−c5 + c4c8)),

d3,2 = c1c8,

d3,3 = 1 − c5 + c2(−1 + c5 − 3c4c8) + c4(3c8 + c1(1 − 2c5 + 3c4c8)),

d3,4 = c1c11(−c9 + c8c11),

d3,5 = − c1(c8c11(1 − 2c12) + c9c12),

d3,6 = c1c8(−1 + c12)c12,

d3,7 = c11((−1 + c2)(−1 + c5)c11 + c1c
2
4(−2 − 3c9 + 3c8c11)

+ c4(−2 − 3c9 + c1c11 − 2c1c5c11 + 3c8c11 + c2(2 + 3c9 − 3c8c11))),

d3,8 = c4(−1 + c2 − c1c4)(2 + 3c9)c12 − (−1 + c5 − 3c4c8 − c1c4(1 − 2c5 + 3c4c8) + c2(1 − c5 + 3c4c8))c11(−1 + 2c12),

d3,9 = − (−1 + c5 − 3c4c8 − c1c4(1 − 2c5 + 3c4c8) + c2(1 − c5 + 3c4c8))(−1 + c12)c12,

d3,10 = c1c
2
4c8 + (1 − c5 + c2(−1 + c5 − 3c4c8) + c4(3c8 + c1(1 − 2c5 + 3c4c8)))c2

9 + 3c8(−1 + c5 − c4c8)c11(1 − c2

+ 2(c1c5 + (−1 + c2 − c1c4)c8)c11) + c9
(
(−1 + c2)(−1 + c5 − 2c4c8) − 3

(
(−1 + c2)c8(−2 + 2c5 − 3c4c8)

+ c1(c2
5 + c4c8(2 + 3c4c8) − c5(1 + 4c4c8))

)
c11

) − c4(c1(−1 + 2c5)c9 + c8(−1 + c2 + 2(−1 + c2 − 2c1c4)c9

+ 3(−(−1 + c2)c8 + c1(1 − 2c5 + 2c4c8))c11)),

d3,11 = − c1(−1 + c5)c5c9(−2 + 3c12) + 3c4(1 − c2 + c1c4)c3
8c11(−3 + 4c12) + c2

8

( − c1c
2
4(2 + 3c9)(−2 + 3c12)

+ 3(−1 + c2)(−1 + c5)c11(−3 + 4c12) + c4(4 − 9c1c11 + 18c1c5c11 + c9(6 − 9c12) − 6c12 + 12c1c11c12

− 24c1c5c11c12 + c2(2 + 3c9)(−2 + 3c12))
) + c8((−1 + c5)(1 + 2c9)(−2 + 3c12) − c2(−1 + c5)(1 + 2c9)(−2 + 3c12)

+ c1(c4(−1 + 2c5)(1 + 2c9)(−2 + 3c12) + 3(−1 + c5)c5c11(−3 + 4c12))),

d3,12 = 3c8(1 − c5 + c4c8)( − (−1 + c2)c8 + c1(−c5 + c4c8))
(
1 − 3c12 + 2c2

12

)
,

where an, bn, and cn are given by

a1 = −X1(−1 + y1 + y2)(4v2(−1 + x1 + x2)(x1 + x2))−1,

a2 = −X2(−1 + y1 + y2)(X1(−1 + x1 + x2)(x1 + x2))−1,
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a3 = X3((x1 + x2)X2)−1,

a4 = X4((x1 + x2)X3)−1,

b1 = X−1
4 c2x1y1(−1 + y1 + y2)(c2(−1 + x1)x1y2 + (−1 + c2 − v2)x2

2y2 + x2(−c2 + c2y1 + (−1 + 2c2 − v2)x1y2)),

b2 = −X−1
4 2c2(−1 + v2)x1x2(x1 + x2)y1y2(−1 + y1 + y2),

b3 = X−1
4 c2x2((−1 + c2 − v2)x2

1y1 + c2(−1 + x2)x2y1 + x1((−1 + 2c2 − v2)x2y1 + c2(−1 + y2)))y2(−1 + y1 + y2),

c1 = −X−1
1 c2(−1 + v2)(−1 + x1 + x2),

c2 = −X−1
1 4v2x1,

c4 = c1 X1 X−1
2 x1,

c5 = −X1 X−1
2 x2,

c8 = X−1
3 c2(−1 + v2)x1x2(−1 + y1 + y2),

c9 = X−1
3 c2x1(c2 − c2x1 + (1 − c2 + v2)x2)(−1 + y1 + y2),

c11 = −X−1
4 (c2(−1 + v2)x1x2(x1 + x2)y1(−1 + y1 + y2)),

c12 = −X−1
4 (c2x2((1 − c2 + v2)x2

1y1 − c2(−1 + x2)x2y1 + x1((1 − 2c2 + v2)x2y1 − c2(−1 + y2)))(−1 + y1 + y2)),

with

X1 = (c2 + (−4 + c2)v2)x1 + c2(1 + v2)(−1 + x2),

X2 = c2(−1 + c2 − v2)x2
1 + c2(−1 + x2)( − c2 + (−1 + c2 − v2)x2) + x1(c2(1 − 2c2 + v2) + 2(c4 + 2v2 − c2(1 + v2))x2),

X3 = c2(−1 + c2 − v2)x3
1y1 + c2(−1 + x2)x2(−c2 + (−1 + c2 − v2)x2)y1 + x1((3c4 + 4v2 − 3c2(1 + v2))x2

2y1

+ c2x2((1 − 3c2 + v2)y1 + (−1 + c2 − v2)(−1 + y2)) − c4(−1 + y2)) + x2
1 ((c2(1 − c2 + v2)

+ (3c4 + 4v2 − 3c2(1 + v2))x2)y1 + c4(−1 + y2)),

X4 = c2(−1 + c2 − v2)x4
1y1y2 + x3

1 ((c2(1 − c2 + v2) + 4(−1 + c2)(c2 − v2)x2)y1 + c4(−1 + y2))y2

+ c2(−1 + x2)x2
2y1(−c2 + c2y1 + (−1 + c2 − v2)x2y2) + x1x2(c2(−1 + 2c2 − v2)x2y

2
1

+ c2(−1 + y2)(−c2 + (−1 + c2 − v2)x2y2) + y1(4(−1 + c2)(c2 − v2)x2
2y2 + c4(−1 + 2y2)

+ c2x2(1 − 2c2 + v2 + (1 − 3c2 + v2)y2))) + x2
1 (2(3c4 + 4v2 − 3c2(1 + v2))x2

2y1y2 − c4(−1 + y2)y2

+ c2x2((−1 + c2 − v2)y2
1 + (−1 + 2c2 − v2)(−1 + y2)y2 + y1(1 − c2 + v2 + (1 − 3c2 + v2)y2))).

To extract the leading behavior of h5(v,c) in the limit v,c,w ≡ v/c are small, we approximate the integrand in h5(v,c) by its
leading order term in this limit. This gives h5(v,c) = h∗

5 w with h∗
5 ≈ 5.7 × 10−4 to the leading order in v,c,w. In Fig. 8, we

show the full h5(v,c) as a function of w = v
c

for a small value of c, which confirms the linear behavior in the small w limit. The
two-loop contribution to the quantum effective action is

δ�2L
0,2 = 1

ε

4

NcNf

g4

v2c2
h5(v,c)

∫
dp

1

4
c2| �p|2Tr[�(−p)�(p)] + O(ε0). (B5)

Combining Eq. (B5) with the one-loop quantum effective action obtained in Ref. [37], we obtain the counterterms as

Z1,1 = −
(
N2

c − 1
)

4π2NcNf

g2

c
h1(v,c), (B6)

Z2,1 =
(
N2

c − 1
)

4π2NcNf

g2

c
h2(v,c), (B7)

Z3,1 = −Z2,1, (B8)

Z4,1 = − 1

4π

g2

v
, (B9)

Z5,1 = − 4

NcNf

g4

v2c2
h5(v,c), (B10)
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Z6,1 = − 1

8π3NcNf

g2

c
h3(v,c), (B11)

Z7,1 = 1

2π2c2

[(
N2

c + 7
)
u1 + 2

(
2Nc − 3

Nc

)
u2 + 3

(
1 + 3

N2
c

)
u2

2

u1

]
, (B12)

Z8,1 = 1

2π2c2

[
12u1 + 2

(
Nc − 9

Nc

)
u2

]
. (B13)

Here h1(v,c), h2(v,c), and h3(v,c) are given by [37]

h1(v,c) =
∫ 1

0
dx

√
1 − x

c2 + (1 + v2 − c2)x

= π (1 + v2) − 2c
√

1 − c2 + v2 − i(1 + v2)( log(1 + v2) − 2 log(ic + √
1 − c2 + v2))

2(1 − c2 + v2)3/2
,

h2(v,c) = c2
∫ 1

0
dx

√
1 − x

(c2 + (1 + v2 − c2)x)3 = −c( − 2
√

1 − c2 + v2 − ic(log(−1 − v2) − 2 log(ic + √
1 − c2 + v2)))

(1 − c2 + v2)3/2
,

h3(v,c) =
∫ 1

0
dx1

∫ 1−x1

0
dx2

πc(8v2x1x2 + 2c4(−1 + x1 + x2)2 − c2(−1 + x1 + x2)(1 + 2x1 + 2x2 + v2(−1 + 2x1 + 2x2)))

(4v2x1x2 + c4(−1 + x1 + x2)2 − c2(1 + v2)(−1 + x1 + x2)(x1 + x2))3/2 .

From the expressions for Zn,1, we obtain the beta functions for λ ≡ g2

v
, x ≡ g2

c3 , w ≡ v
c
, κi ≡ ui

c2 ,

dλ

dl
= zλ

(
ε − λ

4π
+ 1

4π3NcNf

λwh3(v,c)

)
, (B14)

dx

dl
= zx

(
ε − 3

(
N2

c − 1
)

4π2NcNf

λwh1(v,c) +
(
N2

c − 1
)

4π2NcNf

λwh2(v,c) + λ

8π
− 12

NcNf

λx

w
h5(v,c) + λwh3(v,c)

4π3NcNf

)
, (B15)

dw

dl
= 1

2
zw

(
−

(
N2

c − 1
)

2π2NcNf

λwh1(v,c) −
(
N2

c − 1
)

2π2NcNf

λwh2(v,c) + λ

4π
− 8

NcNf

λx

w
h5(v,c)

)
, (B16)

dκ1

dl
= zκ1

(
ε − λ

4π
− 8

NcNf

λx

w
h5(v,c) − 1

2π2

((
N2

c + 7
)
κ1 + 2

(
2Nc − 3

Nc

)
κ2 + 3

(
1 + 3

N2
c

)
κ2

2

κ1

))
, (B17)

dκ2

dl
= zκ2

(
ε − λ

4π
− 8

NcNf

λx

w
h5(v,c) − 1

2π2

(
12κ1 + 2

(
Nc − 9

Nc

)
κ2

))
. (B18)

The leading order behavior of hi(v,c) in the limit of small
v,c,w are h1(v,c) = π

2 , h2(v,c) = 2c, and h3(v,c) = 2π2.

10�13 10�10 10�7 10�4 10�1

10�17

10�14

10�11

10�8

10�5

h5�v, c�

c � 10�10

w

FIG. 8. Dots represent h5(v,c) evaluated as a function of w = v/c

at fixed c = 10−10. The line represents L(w) = 5.7 × 10−4w. It is
noted that h5(v,c) deviates from the line beyond w ∼ 0.1.

APPENDIX C: UPPER BOUND OF HIGHER-LOOP
DIAGRAMS

Here we estimate the magnitude of higher-loop diagrams
without self-energy insertions at the M1L fixed point. Since
κi = 0 at the fixed point, we consider diagrams made
of Yukawa vertices only. The discussion closely follows
Appendix A of Ref. [47], and we will be brief here. A general
L-loop diagram can be written as

I ∼ gV

∫ L∏
r=1

dpr

⎛
⎝ If∏

l=1

1

Kl · � + εnl
(kl)γd−1

⎞
⎠

×
(

Ib∏
m=1

1

|Qm|2 + c2
(
q2

m,x + q2
m,y

)
)

. (C1)

Here V is the number of Yukawa vertices. If ,Ib are the number
of fermion and boson propagators, respectively. pr ’s represent
the internal momenta. kl (qm) is the momentum that flows
through the lth fermion (mth boson) propagator, which is given
by a linear combination of the internal and external momenta.
nl is the patch index of the lth fermion line. Without loss of
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generality, we can focus on diagrams that involve only patches
1 and 3. We are ignoring the γ matrices coming from the
Yukawa vertices as they play no role in the estimation.

The dependence of kl and qm on the internal momenta
is determined by the choice of loops. One can choose the
loop momenta such that L − Lf boson propagators become
exclusive propagators, in the sense that each of them depends
exclusively on only one internal momentum, where Lf is
the number of fermion loops. Since the limit of small v,c,w

does not affect the frequency integrations, we focus on the
spatial parts of the propagators. The integrations for pr,x,pr,y

in Eq. (C1) can be written as

I ∼ gV

∫ L∏
r=1

dpr,xdpr,y

⎛
⎝L−Lf∏

m=1

1

(cpm,x)2 + (cpm,y)2

⎞
⎠

×
⎛
⎝ If∏

l=1

1

El(p)

⎞
⎠R[p].

Here we have dropped the frequency variables and all the
γ matrices. The first group represents the exclusive boson
propagators for the L − Lf nonfermion loops. The second
group represents all fermion propagators, and the energy of
the fermion is written El(p) ≡ εl(kl(p)), where kl(p) is the
momentum that flows through the lth fermion propagator
which is a function of internal momenta. R[p] represents the
remaining boson propagators in the diagram.

Now we change variables in a way that the divergence
in the small v,c limit becomes manifest. The first L − Lf

variables are chosen to be p
′
i ≡ cpi,x with 1 < i � L − Lf .

The remaining L + Lf variables are chosen among {El(p)}.
{p′

i ,El(p)} are expressed in terms of {vpr,x,pr,y} as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
′
1

p
′
2
...

p
′
L−Lf

E1

E2
...

EIf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
( c

v
IL−Lf

0

A V

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vp1,x

vp2,x

...
vpL−Lf ,x

vpL−Lf +1,x

vpL−Lf +2,x

...
vpL,x

p1,y

p2,y

...
pL,y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Here, Ia is the a × a identity matrix. A is an If × (L − Lf )
matrix whose matrix elements are given by An,i = 1

v

∂En

∂pi,x
with

1 � n � If and 1 � i � L − Lf . V is an If × (L + Lf ) ma-
trix whose first Lf columns are given by Vn,a−(L−Lf ) = 1

v

∂En

∂pa,x

for L − Lf + 1 � a � L, while the remaining L columns
are given by Vn,b+Lf

= ∂En

∂pb,y
for 1 � b � L. In Ref. [47] it

is shown that the L + Lf column vectors of V are linearly
independent. Therefore, there exist L + Lf row vectors of V
that are linearly independent, which we label to be the lk th rows
with k = 1, . . . ,(L + Lf ). Let Ṽ be the (L + Lf ) × (L + Lf )
matrix consisting of these rows. Then we define p

′
L−Lf +k ≡

Elk with k = 1, . . . ,(L + Lf ) as the remaining (L + Lf )
integration variables. The new momentum variables are given
in terms of the old variables by

⎛
⎜⎜⎜⎝

p
′
1

p
′
2
...

p
′
2L

⎞
⎟⎟⎟⎠ =

(
c
v
IL−Lf

0

Ã Ṽ

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vp1,x

vp2,x

...
vpL−Lf ,x

vpL−Lf +1,x

vpL−Lf +2,x

...
vpL,x

p1,y

p2,y

...
pL,y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

where Ã is the collection of the lkth rows of A, with k =
1, . . . ,(L + Lf ). The Jacobian of this change of variables is
given by Y−1c−(L−Lf )v−Lf , where Y = | det Ṽ| is a numerical
constant independent of v,c. Y is nonzero because Ṽ is invert-
ible. In the new basis, it is manifest that for every integration
variable p

′
r , there is one propagator that guarantees the inte-

grand decays at least as 1/p
′
r , in the limit c,v → 0. Since there

is no subdiagram with a positive degree of UV divergence, the
integrations over p

′
r are at most logarithmically divergent in

the UV cutoff or v,c. Therefore, the diagram is bounded by

I ∼ gV

vLf cL−Lf
, (C4)

up to potential logarithmic corrections in v and c.

APPENDIX D: BEYOND THE MODIFIED
ONE-LOOP ORDER

In this appendix, we consider the effects of higher-loop
diagrams in the small w limit. To the leading order in w, the
higher-loop diagrams that need to be considered are the M1L
diagrams in which the boson propagator is dressed with the
self-energy insertions in Figs. 2(a) and 3. An insertion of the
self-energy in Fig. 2(a) adds one power of λ to Zn,1, while an
insertion of the self-energy in Fig. 3 adds one power of λx, up
to logarithmic corrections in c,v for both insertions. We write
the general form of the counterterms from the higher-loop
diagrams as

Z1,1 = λw

∞∑
n,m=0

λn+mxman,m(c,v), (D1)

Z2,1 = (λw)
3
2

x
1
2

∞∑
n,m=0

λn+mxmbn,m(c,v), (D2)

Z3,1 = −Z2,1, (D3)

Z4,1 = − 1

4π
λ, (D4)

Z5,1 = λx

∞∑
n,m=0

λn+mxmhn,m(c,v), (D5)

Z6,1 = λw

∞∑
n,m=0

λn+mxmrn,m(c,v). (D6)
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Here, an,m(c,v), bn,m(c,v), hn,m(c,v), and rn,m(c,v) are func-
tions that grow at most logarithmically in c,v. For n = m =
0, they are independent of c,v, and given by a0,0(c,v) =
− (N2

c −1)
8πNcNf

, b0,0(c,v) = (N2
c −1)

2π2NcNf
, h0,0(c,v) = − 4 h∗

5
NcNf

, and

r0,0(c,v) = − 1
4πNcNf

. The relation Z2,1 = −Z3,1 still holds
because the external momentum can be passed through a

single fermion line with the opposite patch index to the external
lines.

We first establish that the fixed point still exists in the
presence of general logarithmic corrections in v,c. It is
straightforward to check that w∗ = 0 remains as a fixed point.
At w = 0, the beta functions for λ,x read

dλ

dl
= z λ

(
ε − 1

4π
λ

)
, (D7)

dx

dl
= zx

(
ε + 1

8π
λ + 3

2
λx

∞∑
n,m=0

(n + 2m + 2) λn+mxmhn,m(c,v)

)
. (D8)

While λ still flows to λ∗ = 4πε, x no longer flows to an O(1) fixed point if hn,m(c,v) diverge logarithmically in the small v,c

limit. This may be regarded as an indication that the theory has an instability. However, we show that such a runaway flow is
an artifact of looking at the wrong parameter x for general ε. In other words, the relative rate at which v,c flow to zero depends
on ε, and we have to take the ε dependence into account in choosing the variable that represents the fixed point. To see this, we
define a new variable x̃ ≡ x

F (c,v) with

F (c,v) = 1 +
∞∑

p=1

εp fp(c,v), (D9)

where we leave open the possibility that fp(c,v) depends on both c,v for the sake of full generality. The beta function for x̃ is
given by

dx̃

dl
= zx̃

[
ε +

(
3 + ∂log(c)F

F

)
Z′

1,1 + ∂log(v)F

F
Z′

2,1 −
(

1 + ∂log(c)F

F
+ ∂log(v)F

F

)
Z′

3,1 − 1

2

(
1 + ∂log(c)F

F

)
Z′

4,1

+ 3

2

(
1 + ∂log(c)F

3F

)
Z′

5,1 − 2Z′
6,1

]
, (D10)

where Z′
n,1 ≡ ( 1

2g∂g + ui∂ui
)Zn,1. The point of introducing x̃ is that we can determine F (c,v) such that x̃ flows to an O(1) fixed

point, x̃∗. The conditions dλ
dl

= 0 and dx̃
dl

= 0 imply

1 + 4π x̃∗

⎛
⎝1 +

∞∑
p=1

εp fp(c,v)

⎞
⎠ ∞∑

n,m=0

(n + 2m + 2) εn+m(x̃∗)m

⎛
⎝1 +

∞∑
p=1

εp fp(c,v)

⎞
⎠

m

h̃n,m(c,v) = 0 (D11)

to the leading order in w, where h̃n,m(c,v) = (4π )n+mhn,m(c,v). Equation (D11) can be solved for x̃∗ and fp(c,v) at every order
in ε. For α = 0, we have

1 + 8πx̃∗h̃0,0 = 0,

which gives x̃∗ = − 1
8πh̃0,0

= NcNf

32π h∗
5

= x∗. The equation for general α > 0 contains only fα′ with α′ � α, from which fα is
uniquely fixed. For example, the first few equations in the series read

2h̃0,0f1 + 4x̃∗h̃0,1 + 3h̃1,0 = 0 for α = 1,

2h̃0,0f2 + 6(x̃∗)2h̃0,2 + f1(8x̃∗h̃0,1 + 3h̃1,0) + 5x̃∗h̃1,1 + 4h̃2,0 = 0 for α = 2,

2h̃0,0f3 + 4f 2
1 x̃∗h̃0,1 + 8f2x̃

∗h̃0,1 + 8(x̃∗)3h̃0,3 + 3f2h̃1,0 + 7(x̃∗)2h̃1,2

+ 2f1(9(x̃∗)2h̃0,2 + 5x̃∗h̃1,1 + 2h̃2,0) + 6x̃∗h̃2,1 + 5h̃3,0 = 0 for α = 3,

each of which fixes f1(c,v), f2(c,v), and f3(c,v), respec-
tively. Therefore, fp(c,v) can be determined such that x̃ flows
to an O(1) value to all orders in ε. At the fixed point with
(λ∗,x̃∗,w∗) = (4πε,

NcNf

32π h∗
5
,0), Eq. (D10) implies that Z′

5,1 =
−ε, and Z1,1, Z2,1, Z3,1, and Z6,1 in Eqs. (D1), (D3), (D3),
and (D6) vanish because x is divergent at most logarithmically
in w. The same conclusion holds for all other higher-loop

diagrams suppressed by w. As a result, the ε expansion is
well defined, and the fixed point with w∗ = 0 persists to all
orders in ε. Furthermore, the critical exponents in Eqs. (A2),
(A3), and (A4) do not receive perturbative corrections beyond
the M1L order at the fixed point. This is a rather remarkable
feature attributed to w∗ = 0.

The remaining question is whether the nontrivial fixed
point remains attractive to all orders in ε. In the small ε
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limit this is indeed the case. For general ε, we cannot prove
this from the present perturbative expansion without actually
computing the counterterms to all orders in ε. However, from
the nonperturbative calculation [47,48], it is shown that w

indeed flows to zero for any 0 < ε � 1.

APPENDIX E: COMPUTATION OF PHYSICAL
PROPERTIES

Here we provide some details of the derivation of the scaling
forms of the Green’s functions. The fermion Green’s function
satisfies the renormalization group equation [37],[

zK · ∂

∂K
+ �k · ∂

∂ �k − βw

∂

∂w
− βx

∂

∂x
− βλ

∂

∂λ

− (2ηψ + z(d − 1) − d)
]
Gn(k; w,x,λ) = 0, (E1)

where we have set κi = 0 and βκi
= 0. The solution to this

equation is given by

Gn(k; w0,x0,λ0)

= exp (−Iψ (l))Gn(elK,eIz(l)�k; ,w(l),x(l),λ(l)), (E2)

where

Iz(l) =
∫ l

0

d�

z(�)
, (E3)

Iψ (l) =
∫ l

0
d�

(
2ηψ (�) + z(�)(2 − ε) − (3 − ε)

z(�)

)
, (E4)

and w(l),x(l),λ(l) are solutions to dw(l)
dl

= − βw

z(l) ,
dλ(l)
dl

=
− βλ

z(l) ,
dx(l)
dl

= − βx

z(l) with initial conditions, w(0) = w0,λ(0) =
λ0,x(0) = x0. Because all three parameters flow, the full
crossover structure is rather complicated. However, w decays
at the slowest rate,

w(l)
l�1= NcNf

2
11
3 (h∗

5)
1
3
(
N2

c − 1
) 2

3

1

ε

1

l
2
3

, (E5)

and the crossover at low energies is dominated by the flow of
w. To the leading order in w and ε,

z − 1 =
(
N2

c − 1
)
ε

2NcNf

w − 32
√

2
√

h∗
5

(
N2

c − 1
)
ε

3
2

N
3
2
c N

3
2
f

w
3
2 , (E6)

ηψ = −
(
N2

c − 1
)
ε(2 − ε)

4NcNf

w

+ 8
√

2
√

h∗
5

(
N2

c − 1
)
(5 − 2ε)ε

3
2

N
3
2
c N

3
2
f

w
3
2 . (E7)

Although w flows to zero in the low energy limit, the
slow decay of w renormalizes the scaling of the frequency
and the field at intermediate energy scales as Iz(l) =∫ l

0 d�(1 − (N2
c −1)ε

2NcNf
w(�)) = l − 3(N2

c −1)
1
3

2
14
3 (h∗

5)
1
3

l
1
3 , Iψ (l) = −Iz(l) +

16
√

2
√

h∗
5(N2

c −1)ε
3
2

N
3
2

c N
3
2

f

∫ l

0 d�w(�)
3
2 = −Iz(l) + 1

2 log(l). Using the

fact that the fermion Green’s function reduces to the bare

one in the small w(l) limit, we obtain the scaling form of
the Green’s function for n = 1 in the low energy limit with
eIz(log(1/|K|))�k ∼ 1,

G1(K,�k)

= 1

iFψ (|K|)
1

Fz(|K|)� · K + γd−1
[ πNcNf

4ε(N2
c −1)

kx

log(1/|K|) + ky

] ,

(E8)

where

v(l) = w(l)
3
2

√
λ(l)

x(l)
≈ πNcNf

4
(
N2

c − 1
) 1

ε

1

l
(E9)

and Fz(|K|) and Fψ (|K|) are given by Eqs. (22) and (23),
respectively.

The Green’s function for the boson satisfies the renormal-
ization group equation [37],

[
zQ · ∂

∂Q
+ �q · ∂

∂ �q − βw

∂

∂w
− βx

∂

∂x
− βλ

∂

∂λ

− (2ηφ + z(d − 1) − (d + 1))
]
D(q; w,x,λ) = 0, (E10)

which is solved by

D(q; w0,x0,λ0) = exp(−Iφ(l))D(elQ,eIz(l) �q; w(l),x(l),λ(l)).
(E11)

Here Iz(l) is defined in Eq. (E3) and

Iφ(l) =
∫ l

0
d�

(
2ηφ(�) + z(�)(2 − ε) − (4 − ε)

z(�)

)
, (E12)

with

ηφ = ε

2
+

((
N2

c − 1
)
(ε − 4) + 4

)
ε

4NcNf

w

+ 16
√

2
√

h∗
5

(
N2

c − 1
)
(4 − ε)ε

3
2

N
3
2
c N

3
2
f

w
3
2 . (E13)

From Iφ(l)= − 2Iz(l) + ∫ l

0 d�(ε − (N2
c −3)ε

NcNf
w(l))= − 2Iz(l) +

εl − 3(N2
c −3)

2
11
3 (h∗

5)
1
3 (N2

c −1)
2
3
l

1
3 , the scaling form of the boson propaga-

tor is obtained to be

D(q; w0,x0,λ0)

= exp

⎛
⎝2Iz(l) − εl + 3

(
N2

c − 3
)

2
11
3 (h∗

5)
1
3
(
N2

c − 1
) 2

3

l
1
3

⎞
⎠

× D(elQ,eIz(l) �q; w(l),x(l),λ(l)), (E14)

where l = log(1/|Q|) with eIz(l) �q ∼ 1.
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