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We define a class of “diagonal” t-J ladders rotated by π/4 relative to the canonical lattice directions of the
square lattice, and study it using density matrix renormalization group. Here, we focus on the two-leg cylinder
with a doped hole concentration near x = 1

4 . At exactly x = 1
4 , the system forms a period 4 charge density wave

and exhibits spin-charge separation. Slightly away from 1
4 doping, we observe several topologically distinct types

of solitons with well-defined fractionalized quantum numbers. Remarkably, given the absence of any obvious
small parameter, the effective masses of the emergent solitons differ by several orders of magnitude.
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I. INTRODUCTION

As a paradigm for the description of high-temperature
superconductors, the t-J model [1], and the closely related
Hubbard model [2,3] have been studied extensively by many
different numerical methods and are thought to possess a rich
phase diagram [4–56]. In most of these studies, the system is
taken to be oriented parallel to the primitive lattice vectors of
the square lattice. However, in attempting to extrapolate the
results to the thermodynamic limit in two dimensions (2D), it
is also useful to study ladders with different geometries [6–9].

A diagonal cylinder, rotated by π/4 relative to the primitive
lattice directions of the sort shown in Fig. 1(a), has several
advantages over the usual one. For example, since a mirror
symmetry along the unit-cell diagonal is preserved, it is possi-
ble to make sharp distinctions between states whose signatures
on a regular ladder would be identical; for instance, one can
distinguish d-wave superconductivity [10–18] from s-wave
superconductivity and vertical “stripe” [unidirectional charge
density wave (CDW)] order [19–31] from “checkerboard”
(bidirectional CDW) order, and a nematic phase [32–35]
would correspond to a phase that spontaneously breaks this
mirror symmetry. Moreover, while on usual ladders of width
larger than two legs, there is a clear tendency for stripe
order to come at the expense of long-range superconducting
coherence, on diagonal cylinders of appropriate width, CDW
order resembling the stripes on a barber pole can involve
infinite length stripes, which might therefore compete less
strongly with superconducting coherence.

Here, we present the first results of a planned extensive
density matrix renormaliization group (DMRG) [57,58] study
of the t-J model on diagonal ladders with cylinder boundary
condition (CBC). Although our principal interest in this model
concerns the extrapolation to 2D, it is also of interest in the
context of multicomponent one-dimensional (1D) systems.
Indeed, the results concerning the two-leg cylinder near x = 1

4
doping are already interesting from this 1D perspective.

At precisely x = 1
4 , the system exhibits an interesting

commensurate CDW with long-range order. While the period
of the density wave order is four lattice constants, the period 2
“harmonic” is highly dominant and the period 4 “fundamental”

is extremely weak. Looking at the excitation spectrum, in
contrast to the usual two-leg ladder, this diagonal ladder
exhibits clear spin-charge separation. Indeed, multiple types
of fractionalized soliton excitations arise with different topo-
logical characters and associated with different (fractional)
quantum numbers, as presented in Table I. These solitons
are somewhat analogous to the solitons that arise in the
mean-field solution of the electron-phonon (commensurate
Peierls) problem [59–61], but here they arise directly from
the strong electronic correlations. In particular, we identify
two flavors of solitons: one is a highly local charge excitation
with a large creation energy, while the other is an extended
spin excitation (spinon) with a creation energy that is at least
several orders smaller.

II. MODEL

The Hamiltonian we study in this paper is the nearest-
neighbor t-J model

H = −t
∑
〈ij〉σ

(c†iσ c,jσ + H.c.) + J
∑
〈ij〉

(
Si · Sj − 1

4
ninj

)
,

(1)

where t > 0 is the uniform hopping integral, J > 0 is the
superexchange coupling, ciσ is the electron annihilation
operator at site i = (x,y) with spin polarization σ =↑/↓, S is
the spin operator, ni = ∑

σ c
†
iσ ciσ is the electron density, and

〈ij 〉 denotes pairs of nearest-neighbor sites. We henceforth
take units of energy such that t = 1. The Hilbert space
has a no-double-occupancy constraint, i.e., ni = 0, 1. The
lattice structure of the diagonal two-leg cylinder is illustrated
schematically in Fig. 1(a). For convenience, we label each site
by its location (x,y), where y ranges from 1 to 2 designating
the legs and x from 1 to L denoting the position of rungs. In
our DMRG simulations of this model, we keep up to 3000
states in the DMRG block and sweep around 30 times such
that the truncation error εtrun is at most 10−7.

Note that, aside from the global symmetries such as the
mirror symmetry along diagonal bonds, the Hamiltonian on
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(a)
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FIG. 1. (a) Diagonal two-leg ladder with cylinder boundary
condition (CBC): open in x, periodic in y; empty circles and dashed
lines represent the periodic boundary. (b) The local site-exchange
symmetry of two-leg ladder. The dotted circle indicates one rung.
Exchanging the two sites on the rung preserves the Hamiltonian.

the diagonal two-leg cylinder exhibits a local symmetry:
exchanging the two sites on any rung preserves the Hamilto-
nian, as illustrated in Fig. 1(b). Since this local site-exchange
symmetry on any rung is equivalent to a Z2 gauge symmetry,
the ground states cannot spontaneously break this symmetry
due to the Elitzur’s theorem [62]. Thus, 〈n̂x,1〉 = 〈n̂x,2〉 and
〈ĉ†x,1ĉx ′,1〉 = 〈ĉ†x,2ĉx ′,2〉 = 〈ĉ†x,1ĉx ′,2〉 = 〈ĉ†x,2ĉx ′,1〉 for x �= x ′.
Among other things, this precludes the existence of a nematic
phase; this peculiar local symmetry is not a general feature of
wider diagonal ladders or cylinders.

III. DMRG RESULTS AT x = 1
4

As usual, the doping level of the system away from
the half-filling is defined as x = 1 − 1

N

∑
iσ 〈c†iσ ciσ 〉, where

N = 2L is total number of sites. We perform large-scale
DMRG simulations to study the t-J model on the diagonal
two-leg cylinder with open boundary conditions along the leg
direction, we adopt a canonical value of J/t = 1

3 , and for
present purposes we focus on the doping around x = 1

4 . Since

TABLE I. Physical quantities of three kinds of solitons. The
solitons are illustrated in Fig. 4. For charged solitons, their creation
energies refer to half of the energy cost of creating a pair of solitons
with opposite charge. The dynamical mass is related to the zero-point
energy to confine a soliton to a region of size L according to
E ∼ 1

2M∗ ( π

L
)2.

Soliton Spin Charge Creation energy Dynamical mass

S1/2
0 1/2 0 � 10−4t ∼101t−1

S0
±e/2 0 ±e/2 0.206t very large

S0
±e 0 ±e 0.227t very large
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FIG. 2. (a) Density profile of the ground state of a 2 × 123 diago-
nal cylinder with 2 × 31 doped holes. We use an odd length cylinder to
minimize the boundary effects. (b) Enlarged view of the red rectangle
part in (a). There is a period 4 density pattern ABAB̃. (c) The length
dependence of δρAB̄ ≡ ρ(A) − [ρ(B) + ρ(B̃)]/2; extrapolated to the
limit L → ∞ this difference approaches 3.631(3) × 10−2. (d) The
length dependence of δρB̃B ≡ ρ(B̃) − ρ(B); extrapolated to the limit
L → ∞ this difference approaches 0.279(3) × 10−2. Here, ρ is the
averaged density of one type of site in the bulk. The lattice length
varies from L = 67 to 123.

all correlation functions on the legs are exactly the same, we
show numerical results only on the leg y = 1.

It turns out that the diagonal cylinder at finite doping has
many delicate metastable states as shown previously [6] such
that its ground states and low-energy excitations have not
previously been obtained. In order to sort out the lowest-energy
states by DMRG simulation, we employ the strategy of
applying appropriate training fields during the calculations
whose details are discussed in the Appendix A.

The ground-state charge density profile of a 2 × 123
cylinder with 2 × 31 holes is shown in Fig. 2(a). Although
the average value of x differs slightly from 1

4 , deep in the
bulk (i.e., far from the open boundary) x = 1

4 , as discussed
below. We find that the ground state of the system exhibits
commensurate period 4 CDW, with a periodic pattern of sites
of the form ABAB̃, as clearly shown in the zoomed in region in
Fig. 2(b). The difference in the density on the A and the average
of the B and B̃ type sites, δρAB̄ ≡ ρ(A) − [ρ(B) + ρ(B̃)]/2,
is an order of magnitude larger than the difference between
the B and B̃ type sites, δρB̃B ≡ ρ(B̃) − ρ(B). To understand
the significance of this, note that in the limit δρB̃B → 0, the
CDW would have period 2; in Fourier transform, this means
the “fundamental” period 4 mode has a small amplitude ∼δρB̃B

while the period 2 first harmonic has a large magnitude ∼δρAB̄ .
To obtain a quantitative estimate valid in the thermodynamic
limit, we compute δρAB̄ and δρB̃B for L = 8n + 3 with various
n and then plot the results as a function of 1/L. Here, we
choose system length L = 8n + 3 to minimize the boundary
effects. The same result can be obtained in the bulk of cylinders
of any L. As shown in Figs. 2(c) and 2(d), both density
differences vary linearly with 1/L and approach finite values
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in the thermodynamic limit: δρAB̄ → 3.631(3) × 10−2 and
δρB̃B → 2.79(3) × 10−3.

The ground state always lies in the spin-0 sector. However,
although, as we discuss below, there are theoretical reasons to
expect a spin gap, if such a gap exists it is exceedingly small.

A. Solitons in the LG effective field theory

As it is an aid to intuition, we can express the CDW in
terms of the ground-state configuration of a pair of complex
scalar fields, φ1 ≡ |φ1|eiα1 and φ2 ≡ |φ2|eiα2 , representing the
two harmonics of the density wave:

ρ(x) = ρ̄ + |φ1| sin

(
π

2
x + α1

)
+ |φ2| cos (πx + α2), (2)

where ρ̄ = 3
4 is the average density, and the four symmetry-

related ground states correspond to |φ1| = 1
2δρB̃B  |φ2| =

1
2δρAB̄ , α2 = 2α1, and α1 = nπ/2 with n = 0, 1, 2, and 3.
In terms of these fields, we could write an effective Landau-
Ginzburg Lagrangian of the form

L[φ1,φ2] = L1[φ1] + L2[φ2] − λ1

4
[(φ1)4 + c.c.]

− λ2

2
[(φ2)2 + c.c.] − λ12[φ∗

2 (φ1)2 + c.c.] + · · · ,

(3)

whereLj are of the usual form as for an incommensurate CDW,
and the terms proportional to λj produce the commensurate
lock-in to the lattice. The term proportional to λ12 locks the
relative phase of the two harmonics, and since it is linear in φ2,
its presence implies that in any state with nonzero φ1 there will
necessarily be an induced (possibly small) harmonic φ2. The
only really unusual feature here is that the parameters which
enter Lj are such that the ground-state magnitude of φ2 is, in
fact, much larger than φ1.

Topological solitons (domain walls) with fractional quan-
tum number appear as low-energy excitations in Peierls
systems [59–61]. Analogously, we find stable topological
solitons which carry different (fractional) quantum numbers.
Specifically, we expect three distinct domain walls which
can be characterized by the phase change 
α1 (subject to
the constraint 
α2 = 2
α1), as shown in Fig. 3. From a
topological perspective, the 
α1 = π and 3π/2 domain walls
can be viewed as bound-states of, respectively, two and three

α1 = π/2 domain walls.

B. Solitons from DMRG

We induce soliton states by adding holes or electrons, by
flipping spins, or by applying (and then removing) suitable
training fields.

(1) The ground-state density and spin profile in the sector
of Sz

tot = 1 are shown in Fig. 4(a). The changes relative to the
ground state are spread out. However, it is apparent that the
spin density is doubly peaked, with spin 1

2 in each half of
the system, consistent with the existence of two delocal-
ized spin- 1

2 particles. Manifestly, these particles are neutral.
Moreover, comparing CDW pattern in the middle and at
the boundaries of the cylinder, we find a π phase shift.

FIG. 3. Schematic illustrations of three topologically distinct
domain walls. The first chain is a reference without any domain
walls. The three dashed rectangles below enclose the domain walls
with different subtended angle 
α1. Each domain wall is associated
with different solitons S.

We conclude that the spin-1 ground state consists of two
delocalized neutral spin- 1

2 solitons with 
α1 = π , which we

label as S
1/2
0 in Fig. 3(c). The soliton creation energy, 


s=1/2
c=0 ,

is expected to approach half of the spin gap 
s in the limit
L → ∞. As we will see, 
s is sufficiently small, 
s � 10−4,
that we cannot determine its L → ∞ value from even the
largest system sizes we have studied. The dynamical mass
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FIG. 4. Density profiles of the L = 123 lattice with 5 � i � 118
(excluding boundary regions). (a) The ground state with 2 × 31 doped
holes and S tot

z = 1 supports two neutral solitons. The density and spin
are shown in blue and red, respectively. (b) A metastable state with
S tot

z = 0 and 2 × 31 doped holes. (c), (d) Two metastable states with
S tot

z = 0 and 2 × 30 doped holes. (e), (f) Two metastable states with
S tot

z = 0 and 2 × 32 doped holes.
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M∗ refers to the zero-point energy to confine a soliton to a
region of size L according to E ∼ 1

2M∗ (π
L

)2. As explained in
the Appendix B, we extract the dynamical mass of spin- 1

2
soliton M∗

s ∼ 101 in the small-L region.
(2) A metastable excited state with Sz

tot = 0 can be prepared
by applying a proper training field in the initial DMRG
simulation, with the result shown in Fig. 4(b). It contains
charge ±e and spin-0 solitons (S0

±e) with 
α1 = π . The
solitons are sufficiently “heavy” that they remain localized
for as many DMRG iterations as we can execute, which
also means the dynamical mass of charged solitons M∗

e is
effectively infinity. The creation energy of a pair of charge ±e

solitons is 
s=0
c=e + 
s=0

c=−e = 0.453, which is much larger than



s=1/2
c=0 . Note there is no particle-hole symmetry relating the

solitons with opposite charge.
(3) The addition of two electrons with Sz

tot = 0 to the “un-
doped” system (with x = 1

4 ) results in various configurations,
depending on the form of the initial training fields. In Fig. 4(c),
two S0

e solitons identical to the left soliton in Fig. 4(b) are
clearly seen. In Fig. 4(d), the right soliton has been broken into
two S0

e/2 solitons, each associated with a 
α1 = π/2 domain
wall [Fig. 3(d)]. By comparing the energies of the states
in Figs. 4(c) and 4(d), we obtain 2
s=0

c=e/2 − 
s=0
c=e = 0.021.

Similarly, by adding two holes we can obtain the soliton
configurations shown in Figs. 4(e) and 4(f). In Fig. 4(f), there
are two charge −e/2 solitons associated with the 
α1 = 3π/2
domain walls. By comparing energies in Figs. 4(e) and 4(f), we
obtain 2
s=0

c=−e/2 − 
s=0
c=−e = 0.350. A charge −e soliton has

much lower creation energy than a pair of −e/2 solitons, which
means that the binding between two charge −e/2 solitons can
be induced. However, comparing with the dynamical mass, this
binding energy is very tiny. As discussed before, due to this
large dynamical mass, the charged solitons remain localized in
simulations. Therefore, we can observe both integer charges
and fractional charges in DMRG simulations.

IV. SPINON EXCITATION

As mentioned above, the spin gap at x = 1
4 doping is

extremely small, which is a novel feature worth further
understanding. Because of the period 4 CDW ordering, the
enlarged unit cell now has eight sites and consequently six
electrons. Thus, consistent with Haldane’s conjecture, we
should expect a finite spin gap. For finite L, 
s is always
larger than 0, but by extrapolation we would infer that

s → 3.0 × 10−5 as L → ∞, as shown in Fig. 5(a). This is a
small enough value that it could be consistent with 
s → 0.
More importantly, it would imply a spin-correlation length
ξs ∼ J/
s , which is larger than any accessible system size,
making the quantitative aspect of this estimate unreliable. At
an intuitive level, the small gap is related to the small value
of the principal harmonic of the CDW; in the limit δρBB̃ → 0,
the CDW has period 2 with three electrons per unit cell, and
hence (presumably) no spin gap.

To flesh out this intuition, we consider the same problem
in the context of a “bosonized” effective field theory. The
noninteracting band structure consists of a flat band [63] and
a dispersing band, as shown in Fig. 5(b). For x = 1

4 , the lower
dispersive band is partially filled with kF = 3π/4, while the
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FIG. 5. (a) Dependence of the spin gap on 1/L; the extrapolation
L → ∞ yields 
s = 3.0(1) × 10−5. L varies from 51 to 99. (b) The
schematic band dispersion of diagonal two-leg cylinder at 1

4 doping.
The orange line is the unoccupied flat band. The blue one is the
dispersive band with two Fermi points (black dots) at kF = ±3π/4.

flat band is empty. Thus, by adiabatic continuity, we expect that
the low-energy fermionic modes can be expressed in terms of
two bosonic fields φc,φs and their duals θc,θs :

ψσ,λ(x) = Nσ eiλkF x exp

[
−i

√
π

2
(θc + σθs + λφc + λσφs)

]
,

where σ = ±1 is the polarization of the spin and λ = ±1
for right- and left-moving fermions. The period 2 and 4
CDW orders come from the expectation value of O4kF

≡
ψ

†
↑,+ψ

†
↓,+ψ↓,−ψ↑,− and O2kF

≡ ψ
†
σ,+ψσ,−, respectively:

O4kF
= N4kF

ei3πxei
√

8πφc , (4)

O2kF
= N2kF

ei3πx/2ei
√

2πφc cos[
√

2πφs]. (5)

Because of the cos [
√

2πφs] factor in Eq. (5), ordering ofO2kF
,

i.e., a period 4 CDW, requires condensing φs , which gives rise
to a finite spin gap 
s . To obtain an estimate of the expected
gap magnitude, we invoke the expected scaling relations
〈ei

√
8πφc〉 ∼ [〈ei

√
2πφc〉]4 and 〈cos[

√
2πφs]〉 ∼ √


s/� where
� is a UV cutoff to obtain


s ∼
〈
O2kF

〉2
√〈

O4kF

〉�. (6)

By further identifying 〈O2kF
〉 ∼ δρB̃B , 〈O4kF

〉 ∼ δρAB̄ , and
� ∼ t , we estimate 
s ∼ 4 × 10−5 which is small and re-
markably consistent with the estimate obtained from finite-size
scaling.

V. CONCLUDING REMARKS

From both numerical results and bosonization analysis, we
infer that the creation energy of the spinon 


s=1/2
c=0 is extremely

small. This is a quite surprising result; the creation energies
of the charged solitons are three or four orders of magnitude
larger. Without any fine tuning or small parameters in the
microscopic model, a striking mass hierarchy emerges in the
low-energy physics of the t-J model on the diagonal two-leg
cylinder!

We have also carried out similar DMRG studies for
values of J/t other than 1

3 , including J/t = 1
4 , 1

6 , 1
10 . We find

qualitatively similar results both for the fractional quantum
numbers of the solitons at x = 1

4 and the mass hierarchy.
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Therefore, this mass hierarchy occurs without fine tuning close
to the quantum critical point [64]. For other values of x, still
more complicated forms of solitons arise. A systematic study
of the phase diagram as a function of both J/t and x will be
discussed in future work.
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APPENDIX A: DETAILS OF DMRG SIMULATIONS

Due to the delicate metastable states, the DMRG simulation
of diagonal cylinder easily converges at a local minimum. To
encounter this problem, we apply a training field in the initial
step of DMRG simulation to help it converge to the low-energy
state. Different from the pining field which is permanently
applied to pin down the orders, the training field is removed
after few sweeps so it does not introduce additional bias in
the simulation. In our model, the simple external training field
term in Hamiltonian reads as

Htrain =
∑
x,y,σ

u(x,y)nx,y,σ ,

u(x,y) = u0(−1)x max

(
0,

N0 − nsweep

N0

)
, (A1)

here u0 ∼ 100 is a constant number, and nsweep counts the
DMRG sweep. The external potential u(x,y) plays a role as
a training field which is gradually reduced during DMRG
sweeps. In our calculation, this training term is finally removed
after 14 sweeps (N0 = 15).

The initial training field in Eq. (A1) leads to a perfect CDW
state which has the lowest energy. More importantly, via Htrain

we can even take advantage of those high-energy metastable
states to study the property of soliton excitations. By slightly
changing the form of u(x,y), we can create different CDW
domain walls and study the physics property of soliton
excitations associated with them. Here, we take the metastable
state shown in Fig. 4(b) as an example. To create a pair of
charge ±e solitons at location x+ and x−, respectively, we
can simply change the external training field u(x+ ± δ,y) →
−|u(x+ ± δ,y)| and u(x− ± δ,y) → |u(x− ± δ,y)|, where δ =
0,1,2. This training field can make the DMRG simulation
stuck at the metastable state with two solitons at the first few
sweeps. After the training field is removed, this metastable
state remains even after we tried nearly 400 more sweeps. In
general, the metastable state will tunnel to the ground state
after sufficient times of sweeps and kept states. However, due
to the extremely heavy masses of the soliton excitations, this
tunneling process has not been observed in our simulation up
to 6000 kept state and 400 sweeps.

APPENDIX B: CREATION ENERGY AND DYNAMICAL
MASS OF SOLITONS

We study two types of effective masses of the solitons. One
is the creation energy 
, which in the context of a relativistic
quantum field theory is referred to as the mass. The second
is the dynamical mass M∗, which determines the extent to
which the soliton tends to delocalize, specifically, the energy
to localize the soliton in a (large) box of length L is 1

2M∗ (π
L

)2.
For charged solitons, we can measure their creation energy

by creating a pair of solitons with opposite charges. However,
their dynamical masses are almost infinite within the present
level of computational accuracy because they remain localized
even after hundreds of DMRG sweeps.

For spin- 1
2 solitons, both their creation energy and dynam-

ical masses are much smaller than the charged ones. We can
measure the dynamical mass of the spin solitons by looking at
the energy of two soliton states as a function of system size.
As an extended excitation, the interaction between the two
solitons needs to be considered. For small enough L, we can
write a perturbative theory in powers of interaction V :


s(L) = 
s(∞) + 1

2M∗
5π2

L2
+ V

L
[A + BL−2 + · · · ]

−V 2M∗L−1[C + · · · ] + · · · , (B1)

where 
s(∞) is the creation energy, 1
2M∗

5π2

L2 is the energy
to localize two noninteracting solitons in a system of length
L. A, B, and C are constant. The perturbation theory breaks
down at large L. By fitting 
s(L) at small L region, we obtain
M∗ ≈ 28 ∼ O(101).

APPENDIX C: SPIN-SPIN CORRELATIONS

On the relatively small systems (comparing with large ξs ∼
J/
s), we measure the spin-spin correlation function S(i,j ) =
〈Si,1 · Sj,1〉 ∼ e−|i−j |/ξs in a higher accuracy εtrun < 10−10 and
find a rather long correlation length ξs which is compatible to
the system size, as shown in Fig. 6. The blue line stands for the
linear fitting of 1/ξs in the small system sizes. It means that
the correlation length ξs increases when the cylinder becomes
longer, which supports that ξs is restricted by the small system
sizes. Although the linear fitting indicates that 1/ξs is close to 0
in the thermodynamic limit, the data from larger system (L �
163) show a deviation from blue line which weakly implies a
finite correlation length in the thermodynamic limit.

0.000 0.005 0.010 0.015
1�L0.00

0.01

0.02
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FIG. 6. Length dependence of inverse of spin-spin correlation
length 1/ξs on systems varied from L = 67 to 195.
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