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Theoretical study of the photocurrent in transition-metal dichalcogenide materials
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Motivated by photocurrent spectroscopy experiments with MoS2, the direct band-to-band transition
contribution to the photocurrent of transition-metal dichalcogenides is computed starting from the microscopic
Hamiltonian in the Keldysh-Schwinger formalism. It turns out that the band tilting induced by source to
drain voltage is necessary for a nonvanishing photocurrent. The photon energy dependence of the normalized
photocurrent is found to be consistent with experimental data. For circular polarization the helicity-dependent
component of the photocurrent perpendicular to the band-tilting direction is predicted, which essentially originates
from the valley Hall effect.
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I. INTRODUCTION

Atomically thin two-dimensional (2D) crystals [1,2] are
a very unique class of materials which are currently under
intensive study, and they also provide a new arena for next-
generation electronic devices [3,4].

Among these, graphene was studied in detail formerly [5].
Graphene has a honeycomb lattice structure which can be
regarded as a hexagonal lattice with two basis atoms in a
unit cell. The key feature of the energy band of graphene is
the existence of two gapless Dirac cones at the corners (K
and K ′) of the Brillouin zone (BZ), and this structure at K

and K ′ constitutes the so-called valley degrees of freedom. In
spite of many remarkable physical properties, the gapless band
structure (semimetallicity) of graphene often poses limitations
from the viewpoint of conventional semiconductor electronic
devices. Furthermore, the spin-orbit coupling of graphene is
very small, making its application to spintronics very difficult.

Layered transition-metal dichalcogenides (TMDCs) is a
class of materials which can be tailored into a monolayer
with a band gap [1], lifting the limitations associated with the
semimetallicity of graphene. The chemical formula of TMDCs
takes the form MX2, where M is a transition-metal element
such as Mo or W and X is a chalcogenide element such as S,
Se, or Te. TMDCs have the same hexagonal Bravais lattice as
graphene; therefore, they inherit the same valley degrees of
freedom with the sublattice degrees of freedom of graphene
replaced by the species of d orbitals of M of TMDCs. Also,
the strong spin-orbit coupling stemming from the d orbital
of M, being combined with the broken inversion symmetry
of the monolayer, leads to a significant spin-orbit splitting in
the valence band [6]. This is an important feature relevant to
spintronics applications.

The valley degrees of freedom is an internal quantum
number and it can play a role similar to that of real spin
[7]. For layered TMDCs, the layer index can be also regarded
as another sort of internal quantum number. These internal
quantum numbers are often called pseudospin, and they can
give rise to diverse physical phenomena such as the valley Hall
effect [7]. We will see below that this valley Hall effect also
manifests itself in our study of photocurrents [see Eq. (63)].
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As the number of layers of a TMDC decreases to 1, the band
structure is found to evolve from an indirect gap to a direct
gap at K and K ′ [8,9]. The direct-gap (in the visible range)
nature of monolayer TMDCs is very crucial in understanding
its optical properties. The optical absorption experiments on
TMDCs clearly reveal the exciton states with very large
binding energies of the order of a few hundred meV [9], which
are consistent with theoretical calculations [10,11]. These large
binding energies are attributed to the insufficient screening in
2-dimensional monolayers compared to bulk 3-dimensional
material [12].

The aforementioned excitons are also clearly observable in
the photocurrent spectroscopy of MoS2 (see Fig. 2 of [13]).
The A peak at 1.9 eV and B peak at 2.1 eV come from the
optical transitions from spin-orbit split valence bands to the
exciton state. The experimentally obtained band gap is about
2.5 eV, so the photocurrent experiment implies a very large
exciton binding energy around 600 meV. A broad and much
stronger C peak at 2.9 eV above the band gap is attributed to
the excitons associated with the Van Hove singularity (band
nesting) near the � point, where the p orbitals of disulfide
also contribute [10,13]. However, this C peak also includes the
contribution from the direct band-to-band transition at the K

and K ′ points, which cannot be easily distinguished from the
exciton contributions near the � point [13]. In passing, we note
that the experiment of [13] has been performed in the presence
of source to drain bias voltage (greater than 3 V), which causes
tilting of the energy bands.

In order for the exciton states to contribute to the pho-
tocurrent, the bound electron-hole pairs must be unbound. In
Ref. [13], it is argued that the unbinding of electron-hole pairs
is made possible due to the strong electric field between MoS2

and metallic contacts. Now it is known that the exciton binding
energy can be affected by carrier scattering via screening [14].
Then it is plausible that the strong electric field which can
break up the tightly bound electron-hole pair will also modify
screening effects, which are regarded as being responsible
for very large binding energies. Evidently, the full theoretical
study of the roles of the above electric field on exciton states
would be rather complicated.

In this paper we focus on the direct band-to-band transition
contribution to the photocurrent leaving aside the complex
problem of the exciton contribution to the photocurrent above
the band gap. There are two reasons for this. First we know
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that the direct band-to-band transition does contribute to the
photocurrent above the band gap. Thus, before trying to
interpret the C peak in terms of excitons coming from the
Van Hove singularity, it is necessary to assess the direct
band-to-band transition contribution to the C peak. Second,
from a practical point of view, the C peak is much stronger
than the A and B peaks, so is more relevant for applications.

We compute the direct band-to-band transition contribution
to the photocurrent starting from the microscopic Hamiltonian,
and see how it compares with the experiment of [13]. It
turns out the nonvanishing contribution is possible only in
the presence of source to drain bias voltage. This bias voltage
is incorporated in the form of the band-tilting term into the
microscopic Hamiltonian, and we compute the photocurrent
explicitly for arbitrary incidence angle of photons and for both
linear and circular polarizations. The momentum relaxation
mechanism is also included explicitly via the random potential
scattering Hamiltonian rather than being introduced by hand.

The photocurrent should be of the (at least) second order
in the vector potential of incoming photon (see Secs. II A and
II C). In other words, it is beyond the linear response regime.
The photocurrent is determined by the change of charge
carrier densities due to photons and by the scattering of these
charge carriers. In the Keldysh-Schwinger (KS) formalism
[15–17], the distribution and the scattering of charge carriers
can be treated in a unified way, allowing us to compute the
photocurrent directly through the Feynman diagram method.
For the above two reasons, we adopt the KS formalism as a
calculational tool in this paper.

The main results of this paper are Eqs. (59), (60), (62),
and (63), which can be summarized as follows: (1) The direct
band-to-band transition contributes to the photocurrent only in
the presence of source to drain bias voltage. (2) The photon
energy dependence of the (normalized) photocurrent is given
by (ωp − �)/ωn

p (n = 6 or 8), where ωp is the incoming photon
energy and � is the band gap. This ωp dependence is consistent
with experimental data around the C peak for the experimental
value of the band gap. (3) For circular polarization, there exists
a helicity-dependent component of photocurrent perpendicular
to the band-tilting direction, which is in accordance with the
valley Hall effect. (4) The photocurrents have a distinctive
angle dependence which is determined by photon polarization
and photon incidence angle.

This paper is organized as follows: We set up the Hamilto-
nians and KS formalism for our problem in Sec. II along with
some remarks. The self-energy of the KS Green’s function and
the photocurrent is computed in Sec. III, and the results are
presented in Sec. IV with discussion. We conclude the paper
in Sec. V.

II. SETUP

A. Preliminary remarks

In this subsection a few remarks are made which aim at
justifying the approach taken in this paper. First we note
that the experiment of [13] has been performed under the
conditions of very low laser intensity (�30 pW/μm2) and low
temperature (77 K). These experimental conditions allow one
to exclude artifacts such as photo-thermoelectric effects [13].

We assume the case of intrinsic TMDCs, so that the electron
carrier density ne is the same as the hole carrier density nh.

In general, the rate of the change of charge carrier density is
determined by the generation rate Rg and recombination rate
Rr [18]:

dne

dt
= Rg − Rr. (1)

The charge carriers can be generated by photon excitation
(laser) and by thermal excitation; then the experimental
conditions of [13] imply very small charge carrier density.
The charge carrier density decreases by the recombination
of electron and hole charge carriers. There are three main
mechanisms of the recombination processes: band-to-band
recombination, the Shockley-Read-Hall trap mechanism, and
Auger processes [18]. The band-to-band recombination rate
for direct band gap material is proportional to the product of
electron and hole carrier densities, so that it will be much
smaller than the generation rate for our case. Shockley-Read-
Hall trap recombinations involve midgap impurity states and
trap states near the interface, and their rate is proportional
to carrier density. Since the experiment of [13] has been
performed for a sample in a suspended state, we can presume
that the trap mechanisms will be of minor effect. Finally, the
Auger process is known to be important only for very large
carrier density [18], which is not the case for the experiment
of [13].

In summary, at least for the experimental conditions
we are considering, we can neglect all the recombination
processes. By considering the zero-temperature limit, we can
also eliminate the carrier generation by thermal excitation;
then the photon excitation will be the only mechanism
for the carrier generation, which can be described by the
second-order process in the photon vector potential (transition
amplitude squared, the Born approximation). Of course, this
does not mean the charge carrier density will increase with
time indefinitely. Eventually, the charge carriers will reach
electrodes and recombine in the voltage source.

If the recombination processes were not negligible, we
would have to solve Eq. (1) self-consistently, which will in-
volve higher-order terms in photon vector potentials. However,
in our case the direct second-order perturbation in photon
vector potential will suffice.

B. Hamiltonians

In this subsection we set up four Hamiltonians: band,
band tilting, electron-photon interaction, and random potential
scattering.

The space group of monolayer MoS2 is D1
3h which is one

of the space groups of the hexagonal lattice [6]. The wave
vector group at K,K ′ = −K is C3h. The minimal two-band
Hamiltonian compatible with the symmetry group of the wave
vector in the k · p approximation is given by [6] (mostly the
h̄ = 1 convention will be used in this paper)

ĥ(0) = thopa(kxτ̂zσ̂x + kyσ̂y) + �

2
σ̂z − λŝzτ̂z

(
σ̂z − 1

2

)
, (2)

where ŝi ,τ̂i ,σ̂i (i = x,y,z) are Pauli matrices acting on the
spin, valley, and orbital space, respectively. The orbital space
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is spanned by linear combinations of d orbitals of transition-
metal element M. The values of the parameters for MoS2

obtained from the first-principles band structure calculations
are a = 3.193 Å (lattice spacing), thop = 1.10 eV (hopping
amplitude), � = 1.66 eV (band gap), and 2λ = 0.15 eV
(spin-orbit splitting of the valence band) [6]. The spin-orbit
splitting of the conduction band is neglected. We note that
the photocurrent spectroscopy experiment [13] gives the value
of gap � ∼ 2.4 eV. From now on, we will take MoS2 as a
prototype example of a TMDC to set various energy scales.

The product of Pauli matrices of different species in Eq. (2)
should be understood in the sense of a tensor product, namely
τ̂zσ̂x ≡ τ̂z ⊗ σ̂x . The tensor product symbol and the identity
matrices may not be displayed explicitly for the brevity of
notations.

Note that the specific choice of x and y axes is implied in
Eq. (2) by the placement of τ̂z along the x direction. From now
on, s,η = ±1 denote the eigenvalues of ŝz and τ̂z, respectively.
The energy eigenvalues of the Hamiltonian Eq. (2) are (+:
conduction band, −: valence band)

E
(0)
± (k) = ±

√
(�′

sη/2)2 + v2k2 + sηλ

2
, (3)

where k2 = k2
x + k2

y, v ≡ thopa, and

�′
sη = � − sηλ. (4)

Since the energy gap � is larger than the bandwidth (≈vkmax)
(which is, in turn, larger than the spin-orbit splitting), Eq. (3)
can be approximated by

E
(0)
+ (k) ≈ �

2
+ v2k2

�
, E

(0)
− (k) ≈ −�

2
− v2k2

�
+ sηλ. (5)

The band-tilting Hamiltonian coming from source-drain bias
voltage can be obtained in the following way. Clearly, the
source-drain bias voltage can be described by a constant
uniform electric field, which can be expressed by the scalar
potential, − �Etilt · �r . The detailed lattice structure is irrelevant
for representing a macroscopic uniform electric field, and this
implies that the representation of the band-tilting Hamiltonian
should be independent of valley and orbital degrees of freedom
(spin independence is, of course, obvious). Thus, the band-
tilting Hamiltonian should be proportional to the identity
matrix in spin, valley, and orbital space:

ĥtilt = (e �Etilt · �r) Is2 ⊗ Iτ2 ⊗ Iσ2 , (6)

where the 2 × 2 identity matrices acting on the spin, valley,
and orbital spaces have been indicated for clarity. Let �	t =
(cos φt , sin φt ) be the unit vector along �Etilt. The band tilting is
known to exist in Weyl semimetals due to reduced symmetry
[19], and it plays an important role in photocurrent [20]. We
also note that the band-tilting term originates from the scalar
potential, so it does not couple to the electric current. This
means that the band-tilting Hamiltonian does not contribute
to the electric current operator. The band-tilting Hamiltonian
[Eq. (6)] will be treated perturbatively. It will turn out that the
nonvanishing photocurrent will appear in the first (not zeroth)
order perturbation.

Next we consider the interaction of the TMDC with photons
(Zeeman coupling to the vector potential is ignored):

he−ph = −1

c

∑
q

�J (q) · �A(−q), (7)

where �A(−q) is the vector potential of the photon with
momentum −q, which is negligible in our case of optical
transition. �J (q) is the current density operator with momentum
q. Recalling that the band-tilting Hamiltonian does not
contribute to the current operator, we find (x̂, ŷ denote the
unit vector along the x and y axes, respectively)

�J (q = 0) = (−e)
∂h(0)(k)

∂k
= (−e)v(M̂x x̂ + M̂y ŷ), (8)

where M̂x,y are 8 × 8 matrices defined by

M̂x = Is2 ⊗ τ̂z ⊗ σ̂x, M̂y = Is2 ⊗ Iτ2 ⊗ σ̂y . (9)

For clarity all relevant matrices are displayed explicitly.
Now let us specify the polarizations of incoming photons.

We will consider the general case of an obliquely incident
photon. Furthermore, we should allow arbitrary azimuth angle
of the photon in the x-y plane since the specific choice of x̂,ŷ
axes has already been made by Eq. (2). The momentum of
incoming photon kp is taken to be

kp = |kp|(− sin θp sin φp̂x + sin θp cos φp̂y − cos θp̂z)

= |kp| k̂p. (10)

The θp is the usual polar angle for the photon momentum
coming from above, and φp is the azimuth angle of the photon
measured from the y axis counterclockwise.

S polarization is a linear polarization orthogonal to the k̂p-̂z
plane:

ê2 = cos φp x̂ + sin φp ŷ. (11)

The P polarization lies in the k̂p-̂z plane, and it is also
orthogonal to S polarization:

ê1 = −̂x cos θp sin φp + ŷ cos θp cos φp + ẑ sin θp. (12)

Then a general linear polarization state can be represented as

êkp = cos ϕ ê1 + sin ϕ ê2, (13)

and the corresponding vector potential (a certain profile
function characterizing laser beam size is implicitly assumed)
is given by

�Alinear(r,t) = A0 êkp cos(kp · r − ωpt), (14)

where ωp = |kp|c > 0, and A0 is real. A factor like e0+t is
implicitly assumed in Eq. (14) to ensure slow turning on of
interaction, and 0+ denotes an infinitesimally small positive
quantity.

The circular polarization is represented by

ê± = ê1 ± i ê2√
2

, (15)

where the plus (minus) sign corresponds to the left (right)
circularly polarized state with the helicity ζ = +1 (−1). The
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vector potential of the circularly polarized photon is given by
(A0 is real)

�A±(r,t) = A0[̂e1 cos(kp · r − ωpt) ∓ ê2 sin(kp · r − ωpt)].

(16)

Both Eq. (14) and Eq. (16) contain the positive and the
negative frequency component. In this paper, we will compute
the electron current in the conduction band excited by the
absorption of the photon, so only the negative frequency
component needs to be included. The positive frequency
component will contribute to the hole current, and in the
leading order approximation of small spin-orbit coupling,
the hole current contribution will be identical to that of
the electron current. For this reason, we consider only the
negative frequency component. Then the negative frequency
component of the circularly polarized photon with helicity
ζ = ±1 can be expressed as (after stripping off delta functions)

Ax,circular,ζ = A0

2
(− cos θp sin φp − ζ i cos φp),

(17)

Ay,circular,ζ = A0

2
(+ cos θp cos φp − ζ i sin φp).

Various scattering processes can contribute to the mo-
mentum relaxation of charge carriers. In this paper, just for
simplicity, we consider only the elastic scattering by random
potentials. The interaction of TMDCs with random potential
V (x) (in position space) in second quantization is given by (we
will suppress spin and orbital indices for a moment)

Hran =
∫

d2x V (x)̂c†(x) ĉ(x). (18)

Next decompose the electron operator into each valley:

ĉ(x) ≈ eiK·x̂c+(x) + ei(−K)·x̂c−(x). (19)

Then, Eq. (18) becomes

Hran =
∫

d2x
[
V (x)

∑
l=±

ĉ†l (x) ĉl(x)

+ V (x) e2iK·x̂c†−(x)̂c†+(x) + H.c.

]
. (20)

Thus the intervalley scattering potential [the second term of
Eq. (20)] becomes generically complex, while the intravalley
scattering potential [the first term of Eq. (20)] is real. These
potentials can be combined in the form of a 2 × 2 matrix in
valley space (and identity matrix in other spaces):

V̂ (x) =
(

va(x) vr (x)
v∗

r (x) va(x)

)
,

Hran =
∫

d2x
∑

l,m=±
ĉ†l (x)V̂lm(x)̂cm(x), (21)

where va(x) and vr (x) denote the intravalley scattering poten-
tial and the intervalley scattering potential, respectively.

The probability distribution of the random potential is
characterized by the first and the second cumulants of the

following form:

〈va(x)va(x′)〉 = Wa(|x − x′|), 〈vr (x)v∗
r (x′)〉 = Wr (|x − x′|),

〈va(x)v∗
r (x′)〉 = 〈va(x)vr (x′)〉 = 0, 〈va(x)〉 = 〈vr (x)〉 = 0,

(22)

and all other higher order moments of probability distribution
are assumed to vanish. In this paper we will consider the second
cumulant of white-noise type Wa,r (|x − x′|) = wa,rδ(|x − x′|),
for simplicity.

Now, the total Hamiltonian in the second quantized form is
given by (spin, valley, and orbital indices of electron operators
ĉ,̂c† are suppressed)

Htotal =
∑

k

ĉ†k [̂h(0) + ĥe−ph]̂ck + Htilt + Hran, (23)

where the second quantized band-tilting Hamiltonian Htilt is
given by

Htilt =
∫

d2x ĉ†(x)
(
e �Etilt · x

)̂
c(x). (24)

The second quantized current operator is [see Eq. (8)]

J = (−e)
∑

k

ĉ†k
∂ĥ(0)

∂k
ĉk. (25)

Our task is to compute the expectation value of the current
operator Eq. (25) in the second order of ĥe−ph (the nonlinear
response).

From the viewpoint of perturbation theory in quantum field
theory, the expectation value of current 〈J(t)〉 is the so-called
less Green’s function G< [21], which cannot be computed
directly in the standard zero-temperature perturbation theory
or the finite-temperature imaginary-time perturbation theory
[21]. This is because T = 0 perturbation theory and imaginary-
time perturbation theory are based on the time-ordered Green’s
function, while the “less” Green’s function is not time ordered.
We will employ the KS formalism which can incorporate the
“less” Green’s function (and other related Green’s functions)
in a systematic way.

C. Keldysh-Schwinger formalism

In this section we formulate the problem of the calculation
of photocurrent 〈J(t)〉 in KS functional integral framework.
The general Keldysh-Schwinger formalism is very well ex-
pounded in the literature [15–17], and in this section we will
only give a very brief summary of the formalism mainly
to establish notations. Also, the coherent state functional
integral quantization method will be used [15,22] for actual
computations.

The key element of KS formalism is the concept of the
closed time contour which consists of a forward and backward
branch. Quantum operators are to be ordered on this contour,
and the Green’s functions of these contour-ordered operators
can be computed using the method of the standard quantum
field theory, such as the Feynman diagram method [15,16].
For example, in the computation of the expectation value of
the current operator Eq. (25), the creation operator should be
placed on backward branches, while the destruction operator
is to be placed on the forward branch. This means that the

245102-4



THEORETICAL STUDY OF THE PHOTOCURRENT IN . . . PHYSICAL REVIEW B 95, 245102 (2017)

“less” Green’s function G<(t,t ′) is naturally incorporated in
the KS formalism.

The coherent state is an eigenstate of the destruction
operator, so that

ĉ|ψ±〉 = ψ±|ψ±〉, 〈ψ±|ĉ† = 〈ψ±|ψ∗
±, (26)

where + (−) designates the forward (backward) branch of the
KS contour. If ĉ is a fermion operator, its eigenvalue ψ± is the
anticommuting Grassmann number. Suppose Ĉ is a general
operator which is a function of (normal ordered) ĉ†,ĉ and
that it is to be placed on the forward branch. Then in the KS
functional integral formulation we have a map:

Ĉ(ĉ†,ĉ)|forward branch → C(ψ∗
+,ψ+). (27)

In an entirely similar way,

Ĉ(ĉ†,ĉ)|backward branch → C(ψ∗
−,ψ−). (28)

In practical calculations, the following combinations (for
fermions only) turn out to be more convenient [15,16]
(momentum labels are reinstated):

ψ1/2(k,t) = 1√
2

[ψ+(k,t) ± ψ−(k,t)],

(29)

ψ̄1/2(k,t) = 1√
2

[ψ∗
+(k,t) ∓ ψ∗

−(k,t)].

The new indices 1, 2 will be called Keldysh indices. Then KS
Green’s function takes the following form [15,16]:

(−i)〈ψa(t)ψ̄b(t ′)〉 =
(

GR(t,t ′) GK(t,t ′)
0 GA(t,t ′)

)
ab

, (30)

where a,b are Keldysh indices. GR(t,t ′),GA(t,t ′) is the
retarded Green’s function and the advanced Green’s function,
respectively. The advanced Green’s function is the Hermi-
tian conjugate of the retarded Green’s function. In energy-
momentum space,

GA(ε,k) = [GR(ε,k)]†. (31)

At thermal equilibrium the Keldysh component of the fermion
Green’s function GK is given by the fluctuation-dissipation
theorem:

GK(ε,k) = tanh
ε

2kBT
[GR(ε,k) − GA(ε,k)], (32)

where ε is the energy measured from the chemical potential.
Now we can map the operators in Sec. II B into KS

functional integral form. The electric current operator Eq. (25)
maps to

J(t) = (−e)
∑

k

�̄k(t) E< ⊗ ∂ĥ(0)

∂k
�k(t), (33)

where � is a multicomponent spinor in Keldysh (1,2) and
spin/valley/orbital space (collectively denoted by a),

� = (ψ1a,ψ2a)t, (34)

where “t” is a matrix transpose, and

E< = 1

2

(−1 −1
1 1

)
. (35)

The photon vector potential and the random potentials are
classical [15], meaning that they are identical in both the
forward and backward branches. For these classical potentials,
the Keldysh matrix (such as E< above) of the interaction
becomes a 2 × 2 identity matrix in Keldysh space [15].

The expectation value of the current operator in KS
functional integral formulation can be represented as

〈J(t)〉 =
∫

P [Vran]
∫

D[�̄,�] eiStotal J(t), (36)

where
∫

P [Vran] indicates the average over the probability
distribution of disorder which gives the cumulants Eq. (22).
Stotal is the action corresponding the Hamiltonian Eq. (23).
To obtain the photocurrent we need to expand Eq. (36) with
respect to the electron-photon interaction term to the second
order (as discussed in Sec. II A).

For perturbation theory, we need the bare (noninteracting)
retarded and advanced Green’s functions. These can be
obtained by the following the 8 × 8 matrix inversion (μ is
chemical potential, and I8 is the 8 × 8 identity matrix):

G
R/A
0 (ε,k) = [(ε + μ ± i0+)I8 − h(0)]

−1, (37)

where 0+ is an infinitesimally small positive quantity. Noting
that the matrices in Eq. (37) are diagonal in spin and valley
space, the full Green’s function can be written as a direct sum in
each s = ±1,η = ±1 block. The explicit form of the Green’s
function in the s,η block is given by

G
R/A,sη

0 (ε,k)= D̂
[ε + μ ± i0+ − Ec][ε + μ ± i0+ − Ev,sη]

,

D̂=
(

ε + μ + �
2 − sηλ vηkx − ivky

vηkx + ivky ε + μ − �
2

)
. (38)

Ec = Ec(k) and Ev,sη = Ev,sη(k) are the conduction band and
the valence band energies with the approximation taken in
Eq. (5).

The bare Keldysh component Green’s function can be
obtained from Eq. (32). The full bare KS Green’s function
is given by

Ĝ0(ε,k) =
(

GR
0 (ε,k) GK

0 (ε,k)

0 GA
0 (ε,k)

)
, (39)

which is a 16 × 16 matrix in Keldysh-spin-valley-orbital
space.

III. CALCULATION

We first compute the self-energy which incorporates elastic
random potential scattering, then construct the renormalized
Green’s functions via the Dyson equation. These renormalized
Green’s functions are used in the computation of the photocur-
rent, and the imaginary part of the self-energy plays the role
of momentum relaxation time.

A. Calculation of self-energy

The elastic scatterings by random potential provide the
momentum relaxation mechanism for the photocurrent. Such
momentum relaxation can be described in terms of the self-
energy �̂(ε,k) of Green’s functions, and the renormalized
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FIG. 1. The lowest order Feynman diagrams contributing to self-
energy. The solid line indicates the bare Green’s function Ĝ0(ε,k′,η)
with chirality η, and the dotted line indicates the random potential
average. W̃r,a(|k − k′|) are the Fourier transform of the second
cumulants.

Green’s function can be expressed as (Dyson equation)

Ĝ(ε,k) = [
Ĝ−1

0 (ε,k) − �̂(ε,k)
]−1

. (40)

Since the Keldysh matrix of classical random potential is
identity, the Keldysh matrix structure of self-energy is identical
with that of the bare Green’s function Eq. (39). Therefore, we
need to compute the self-energy only for the retarded Green’s
function since the advanced and the Keldysh component can
be obtained by Hermitian conjugation and by the fluctuation-
dissipation theorem [see Eqs. (31) and (32)]. The Feynman
diagrams for the self-energy �̂(ε,k) in the lowest order Born
approximation are depicted in Fig. 1.

From Feynman rules of the KS formalism, we obtain the
following retarded self-energy in the (s,η) block:

�R,sη(ε,k) =
∫

d2k′

(2π )2

[
Ĝ

R,sη

0 (ε,k′)W̃a(|k − k′|)

+ Ĝ
R,s(−η)
0 (ε,k′)W̃r (|k − k′|)], (41)

where Ĝ
R,sη

0 (ε,k′) is the bare Green’s function Eq. (38).
W̃a,r (|k − k′|) are the Fourier transform of the second cu-
mulants of the random potential Eq. (22). Note that in the
second term of Eq. (41) the Green’s function with the opposite
chirality −η appears due to the intervalley scattering.

The real part of the self-energy can be absorbed into the
chemical potential and renormalization of velocity v, while
the momentum relaxation process is captured by the imaginary
part of the self-energy. We will assume that the real part of the
self-energy has already been incorporated into the bare Green’s
function, and will focus on the imaginary part. Since we are
assuming the white-noise type random potential distribution,
W̃a,r (|k − k′|) are constants:

W̃a(|k − k′|) = wa, W̃r (|k − k′|) = wr. (42)

The angle integral of Eq. (41) is easily performed, and the
integral over |k| for the imaginary part can be done using
Im 1

x+i0+ = −πδ(x). The leading contribution to the imaginary
part turns out to be independent of spin, valley, and orbital
quantum number,

Im�R,sη(ε,k) ≈ −1

4

�(wa + wr )

v2
Iσ2 ≡ −τ−1Iσ2 , (43)

where τ is the momentum relaxation time scale. Recalling
the bare Green’s function Eq. (37), the renormalized Green’s
function incorporating the self-energy by random potential
scattering becomes

GR/A(ε,k) = [(ε + μ ± iτ−1)I8 − h(0)]
−1. (44)

FIG. 2. The Feynman diagram for photocurrent without band-
tilting perturbation. The solid lines are for the renormalized Green’s
function Eq. (40). The cross indicates the insertion of current density
operator at zero energy and momentum. The filled square denotes the
electron-photon interaction vertex.

In terms of the 2 × 2 matrix Green’s function GR/A,sη(ε,k)
in the s,η block [see Eq. (38)], the renormalized Green’s
function can be obtained from the bare Green’s function by
the substitution

ε ± i0+ → ε ± iτ−1. (45)

Now we are ready to compute the photocurrent.

B. Calculation of photocurrent

We are looking for a photocurrent uniform in space and
constant in time. Therefore, we must compute the expectation
value of the current operator Eq. (36) with zero energy and
momentum in the second order of electron-photon interaction.

Let us start with the case of the zeroth order in the band-
tilting perturbation. The corresponding Feynman diagram is
depicted in Fig. 2.

The straightforward application of Feynman rules in the
KS formalism yields the following result for the photocurrent;
recall that the current vertex matrix M̂μ is defined by Eq. (9)
and the Keldysh matrix E< is defined in Eq. (35); Ik

2 is the
2 × 2 identity matrix in Keldysh space, and i,μ,ν = x,y (here
μ is not to be confused with chemical potential):

〈J i(q = 0)〉 = (−i)(−e)3v3

c2

∑
μ,ν=x,y

∫
(dk)Aμ(kp)Aν(−kp)

× Tr[E< ⊗ M̂i Ĝ(k) Ik
2

⊗ M̂μĜ(k + kp)Ik
2 ⊗ M̂ν Ĝ(k)], (46)

where k,kp are the energy-momentum vectors of the electron
and photon, respectively:

k = (ε,k), kp = (ωp,kp), (dk) =
∫

d2kdε

(2π )3
. (47)

The trace Tr is over both Keldysh and spin/valley/orbital
indices. Ĝ(k) is the renormalized Keldysh Green’s function
(namely with momentum relaxation processes included):

Ĝ(ε,k) =
(

GR(ε,k) GK(ε,k)
0 GA(ε,k)

)
, (48)

where the renormalized retarded and advanced Green’s func-
tion are given by Eq. (44). As explained just below Eq. (16),
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the negative frequency component has been selected. After carrying out the partial trace over the Keldysh index, we arrive at
(now tr is the trace over spin/valley/orbital space)

〈J i(0)〉 = (−i)(−e)3v3

2c2

∫
(dk)ÃμÃν∗tr[−M̂iG

R(k)M̂μGR(k + kp)M̂νG
R(k) + M̂iG

A(k)M̂μGA(k + kp)M̂νG
A(k)

+ M̂iG
R(k)M̂μGR(k + kp)M̂νG

K(k) + M̂iG
R(k)M̂μGK(k + kp)M̂νG

A(k) + M̂iG
K(k)M̂μGA(k + kp)M̂νG

A(k)]. (49)

The first two terms in the brackets of Eq. (49) involving only the retarded and the advanced Green’s functions vanish upon
the ε integral due to analytic properties originating from causality (e.g., a retarded Green’s function is analytic in the upper half
plane of complex ε plane). Then the remaining three terms in the brackets of Eq. (49) can be reorganized in the following way,
employing the fluctuation-dissipation theorem relation Eq. (32):

〈J i〉 = (−i)(−e)3v3

2c2

∫
(dk) ÃμÃν∗

[
tanh

ε

2kBT

{
tr[M̂iG

R(k)M̂μGR(k + kp)M̂νG
R(k)]

− tr[M̂iG
A(k)M̂μGA(k + kp)M̂νG

A(k)]
} +

(
tanh

ε

2kBT
− tanh

ε + ωp

2kBT

)
× {tr[M̂iG

R(k)M̂μGA(k + kp)M̂νG
A(k)] − tr[M̂iG

R(k)M̂μGR(k + kp)M̂νG
A(k)]}

]
. (50)

Using the conjugation relation Eq. (31) it is easily seen the
photocurrent 〈J i〉 is explicitly real (as it should be).

Now it is easily found that the angle integration gives a
vanishing result for the photocurrent. This is because only the
odd number of products of electron momentum components
k survives after Pauli matrix algebra tr(σ̂i σ̂j ) = 2δij , σ̂i σ̂j =
Iσ2 δij + iεijkσ̂k and the summation over the valley quantum
number η = ±1. Another way of understanding this result is
as follows: after the angle integral, the quantities in brackets
must be invariant tensors with three indices i,μ,ν, for there
is no vectorial quantity in the brackets (note that the photon
momentum kp is neglected). Then, the only possible invariant
tensor is εiμν , and it gives a vanishing result because the
indices i,μ,ν can take only two possible values x and y. This
vanishing result is very similar to that of the photocurrent of
the surface states of a 3-dimensional topological insulator:
in the absence of external field or symmetry breaking, the
photocurrent vanishes even for arbitrary photon incidence
angle just like our case [23,24]. To obtain a nonvanishing
photocurrent in the case of a topological insulator, additional
perturbations are necessary such as external magnetic field,
trigonal distortion, Zeeman coupling to photon vector potential
[23,24], or photon-drag effect [25,26]. For reviews on the
photogalvanic effect and photon drag effect of quantum wells
and graphene, see Refs. [27,28].

Therefore we can see that the perturbation by the band-
tilting Hamiltonian Eq. (24) is absolutely essential in obtaining
nonvanishing photocurrent. Let us include its effect in the first
order. It will turn out that the first-order contribution yields a
nonvanishing photocurrent. From the form of Eq. (24) we can
see the band-tilting term will insert the interaction vertex (in
Hamiltonian form and in momentum space)

i

2
e �Etilt ·

←→
∂

∂k
, (51)

where
←→
∂ indicates that the derivative acts on two operators

of Eq. (24). The band-tilting interaction vertex can be inserted
in three ways as shown in Fig. 3.

The application of Feynman rules shows that the insertion of
the band-tilting interaction vertex is equivalent to the following
replacement of the fermion Green’s function:

GR/A → 1

2
e �Etilt ·

(
GR/A ∂GR/A

∂k
+ ∂GR/A

∂k
GR/A

)
. (52)

Explicit calculation shows that the right-hand side of Eq. (52)
(in s,η subspace and recall �	t is the unit vector along �Etilt)
becomes

δGR/A,sη(ε,k) = (e| �Etilt|v2h̄2k · �	t )

[ε + μ ± iτ−1 − Ec(k)]2

× 1

[ε + μ ± iτ−1 − Ev,sη(k)]2
Iσ2 . (53)

From now on μ is set to 0, and we will neglect the spin-
orbit splitting term λ of valence band energy which gives a
subleading contribution to the photocurrent.

Let us go back to Eq. (50). We observe that the terms
proportional to tanh ε

2kBT
give a smaller contribution than

the ones proportional to (tanh ε
2kBT

− tanh ε+ωp

2kBT
). This is

because the leading contribution from the terms proportional
to tanh ε

2kBT
, after k integrals, is independent of ε, so that it

FIG. 3. The Feynman diagrams for photocurrent with band-tilting
interaction vertex inserted. The band-tilting interaction vertex is
depicted by filled circles in the figure. Other notations are identical
with those of Fig. 2. The leading contributions to the helicity-
independent photocurrent come from diagrams (a) and (b), while
the helicity-dependent photocurrent stems from diagram (c).
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vanishes upon the ε integral since tanh ε
2kBT

is an odd function
of ε.

Next consider the zero-temperature limit (see Sec. II A)
of the second term of Eq. (50). In this limit, the factor
(tanh ε

2kBT
− tanh ε+ωp

2kBT
) becomes a bump function: −2 in

the interval −ωp < ε < 0 and zero, otherwise. This limit
simplifies the integral over ε considerably. Note that the
dependence on the chemical potential essentially stems from
these distribution functions tanh ε

2kBT
and tanh ε+ωp

2kBT
because

the energy ε is measured from the chemical potential.
The essential part of diagram (a) of Fig. 3 is given by

tr[M̂iδG
R(k)M̂μGA(k + kp)M̂νG

A(k)], (54)

along with the similar expressions for diagrams (b) and (c).
Now we have to calculate the momentum and the energy
integral of Eq. (54). Rather than displaying the full details
of calculations, we just point out the key steps (assuming the
zero chemical potential of the intrinsic case).

(1) Carry out traces over spin/valley/orbital spaces. The
traces will decompose into s = ±1,η = ±1 blocks. Then do
the angle integral. Now the angle integral does not vanish
owing to the additional angle factor coming from k · �	t [see
Eq. (53)].

(2) Due the the occupation number factor (tanh ε
2kBT

−
tanh ε+ωp

2kBT
) the energy takes a negative value in the range

[−ωp,0]. In this energy range, the valence band components
of Eqs. (38) and (53), namely [ε ± iτ−1 − Ev(k)]−1, become
singular at k2

∗ = (�/v2)(−�/2 − ε). Then, carry out the
integral over k2 using the Laplace method of the asymptotic
integral, and neglect the subleading terms in accordance with
the relative energy scales.

(3) Then the resulting integral [for diagrams (a) and (b);
diagram (c) can be computed similarly] is proportional to(

−�

2
− ε

)
�2τ

v4

[
1

(2ε)3

1

2ε + ωp − i/τ

1

ωp

]
. (55)

The factor (2ε + ωp − i/τ )−1 is, effectively, the electron
propagator in the conduction band. Since this factor is peaked
at 2ε∗ = −ωp, the remaining ε integrals can be done again by
using the Laplace method.

(4) After the ε integral, we obtain the leading contribution
to the integral:

(−e)4v2| �Etilt|τ
c2

(ωp − �)�2

ω4
p

, (56)

apart from the polarization factors coming from Ãμ,Ã∗
ν of

Eq. (50). We have neglected spin-orbit splitting λ compared to
photon energy ωp.

(5) Multiplying the appropriate polarization factors, we can
obtain the final results, which are presented in the next section.

IV. RESULTS AND DISCUSSION

The experimental data of [13] have been presented in the
form of the normalized photocurrent:

Jnormalized = J

(| �SPoynting| × Sample Area)
, (57)

FIG. 4. The photon energy (in units of the band gap) dependence
of the normalized photocurrent Jnormalized (in arbitrary units). The thick
line and dashed line is for the helicity-independent and the helicity-
dependent photocurrent, respectively. The helicity-dependent pho-
tocurrent has been magnified for visibility.

where | �SPoynting| is the laser intensity (the magnitude of
Poynting vector). In terms of the amplitude A0 of the photon
vector potential, the laser intensity is given by

| �SPoynting| = 1

8π

ω2
pA

2
0

c
. (58)

We recall that the polarization factors for linear polarization
are given by Eqs. (11), (12), and (14). The calculations show
that the leading contributions to the photocurrent in the S,P

polarization states come from diagrams (a) and (b) of Fig. 3.
Diagram (c) gives the subleading contribution.

The normalized photocurrent for the S linearly polarized
photon is given by (here, of course, ωp > �)

JS,normalized = d̃S

e4v2τ

c
| �Etilt|�

2(ωp − �)

ω6
p

× [x̂ cos(2φp − φt ) + ŷ sin(2φp − φt )], (59)

where d̃S is a numerical constant of order 1 whose precise
value does not concern us here. Recall that φt is the tilt angle
defined just below Eq. (6).

The first notable feature of Eq. (59) is the photon energy
dependence ωp−�

ω6
p

, which has a broad maximum at ω∗ = 6
5�.

Taking the experimental value of the band gap 2.4 eV the peak
is predicted at 2.9 eV, which agrees well with the experimental
result. This photon energy dependence of the photocurrent of
Fig. 4 is clearly consistent with experimental data (compare
with panel (a) in Fig. 2 of Ref. [13]).

Second, we note that there is no polar angle (θp) dependence
in Eq. (59), which is due to the specific S-polarization
geometry Eq. (11). Third, the factor of 2 in the argument
2φp − φt indicates that this photocurrent is of the second order
in the vector potential of photons.
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Next, the photocurrent for the P linearly polarized photon
is given by

JP,normalized = d̃P

e4v2τ

c
| �Etilt|�

2(ωp − �)

ω6
p

cos2 θp

× [x̂ cos(2φp − φt ) + ŷ sin(2φp − φt )], (60)

where d̃P is again a numerical constant of order 1. The crucial
difference between the S and P polarization cases is the polar
angle dependence of cos2 θp of JP , and other features are
identical. We see that the photocurrent becomes maximized
for normal incidence θp = 0.

Recall that the polarization factors for circular polarization
are given by Eq. (17). The photocurrent for the circularly
polarized photon with the helicity ζ = ±1 consists of the
helicity-independent part and the helicity-dependent part:

Jcircular = Jind + Jdep, (61)

where (d̃c,d̃h are numerical constants of order 1)

Jind,normalized = d̃c

e4v2τ

c
| �Etilt|�

2(ωp − �)

ω6
p

sin2 θp

× [x̂ cos(2φp − φt ) + ŷ sin(2φp − φt )], (62)

Jdep,normalized = ζ d̃h

e4v2

c
| �Etilt|τ−1 �2(ωp − �)

ω8
p

cos θp

× [x̂ sin φt + ŷ(− cos φt )]. (63)

All features of the helicity-independent part of photocurrent
Jind are identical with those of linearly polarized light except
for the polar angle dependence sin2 θp. As for the helicity-
dependent part Jdep, it reverses its direction for the opposite
helicity, and is perpendicular to the tilt direction (the direction
of source to drain bias electric field). This is exactly what is
expected for the transverse current in the valley Hall effect,
namely the charge carriers from different valleys move in
the opposite direction perpendicular to the applied electric
field [7].

In the case of optical transition of TMDCs for the circularly
polarized light, the helicity of the photon is closely tied to
the valley quantum number via the optical selection rule (see
below), so that the role of the valley quantum number η is
reflected in the form of helicity ζ in Eq. (63). We also note
the higher power of photon frequency in the denominator ω−8

p ,
so that its magnitude is considerably smaller than that of the
helicity-independent one by a factor of 1/(τωp)2. Note that we
have neglected the spin-orbit interaction in the computation of
the photocurrent. If the spin-orbit interaction is not neglected,
the valley Hall effect will induce the spin Hall effect, and the
spin Hall effect will contribute to the transverse current. In fact,
if we compute the expectation value of spin current operator
c†�sc directly, the spin-orbit interaction is expected to give a
leading contribution.

Many features of the photocurrent for the circularized
polarized photon with helicity ζ = ±1 can be understood
in terms of the interband optical transition (with normally
incident photon) matrix element near the K and K ′ points (see

Eq. (7) of [6]):

|Pζ (k)|2 ∝
⎛⎝1 + ζ η

�′
sη√

�′2
sη + 4v2k2

⎞⎠2

. (64)

Recall that v = thopa and �′
sη = � − sηλ ∼ �. When vk �

�, we have an optical valley selection rule of ζη = 1, which
leads to the helicity-dependent photocurrent as discussed
above. Evidently, the effect of this optical selection rule will
be maximized for normal incidence (θp = 0), and this explains
the cos θp dependence of Eq. (63).

Nevertheless, the interband optical transition is not limited
to the close neighborhood of the K and K ′ points. The
examination of the band structure by first-principles calcu-
lations (see Fig. 1 of Ref. [10]) shows that there exists some
room in momentum space where the optical valley selection
rule ζη = 1 can be relaxed. The contribution from this
portion of momentum space results in the helicity-independent
contribution to the photocurrent. Clearly, this contribution will
become larger when the optical valley selection rule weakens
away from the normal incidence (namely large θp), and this
explains the sin2 θp dependence of Eq. (62). However, we
would like to mention that the accurate measurement of angle
dependence may not be so easy due to the laser focusing in
actual experiments. It appears that the angle and polarization
dependence of the photocurrent have been unspecified in
Ref. [13].

The experimental value of the normalized photocurrent is
of the order 10 A/W. By assuming the value of relaxation time
τ ∼ 10−8 to 10−9 s and with the sample size of 1 μm of the
experiment [13], our expression for the helicity-independent
photocurrent gives the same order of magnitude as that of the
experimentally observed photocurrent.

In our calculation, we have neglected the carrier distribution
relaxation by inelastic scattering. This can be justified as
follows. In the experimental condition (low laser intensity)
in which we are interested, the carrier density is so low
that the inelastic scattering between charge carriers (electron-
electron interaction) can be neglected. Another source of
inelastic scattering is the electron-phonon scattering. Again
for the case of our interest temperature is very low, so that
inelastic scattering by electron-phonon interaction becomes
ineffective. Also, technically the full-fledged treatment of
inelastic scattering requires many-body interaction and the
Boltzmann equation, which is certainly beyond the scope of
this paper.

Our computation shows that the nonvanishing photocurrent
requires the band-tilting electric field. However, in fact, the
C3h trigonal symmetry of the space group at K can allow non-
vanishing photocurrent even for normally incident light [29].
The Hamiltonian of Eq. (2) was derived in the first-order k · p

perturbation theory, so that the trigonal distortion terms which
appear in the third order of momentum have been neglected.
This is why our treatment requires a band-tilting term for
a nonvanishing photocurrent. The contribution from trigonal
distortion will be too small to have practical significance since
all important optical processes occur in the vicinity of the K

point.

245102-9



HYUN C. LEE PHYSICAL REVIEW B 95, 245102 (2017)

We note another important mechanism for the polarization-
dependent photocurrent of the TMDC coming from the electric
dipoles (normal to layer) which are induced when the TMDC is
placed on a substrate or heterogeneous stack [30]. This dipole
dz couples to the vector potential of the photon dzȦzσz/c (see
Eq. (7) of Ref. [30]), and this coupling being combined with
the Berry curvature effect can give rise to a nonvanishing
photocurrent proportional to the electric dipole moment.
Recall that in our case the photocurrent is nonvanishing due
to the band tilting by the source to drain voltage. So we can
say that our band-tilting effect is the counterpart of the electric
dipole coupling of Ref. [30]. The experiment of Ref. [13] has
been done for the sample in the suspended state to reduce
effects coming from the substrate, and this implies that the
electric dipole mechanism of Ref. [30] is not directly relevant
to Ref. [13]. The polarization dependence of Ref. [30] is very
different from ours since this dipole-generated photocurrent
is based on different photon coupling [for example compare
Eq. (1) of Ref. [30] with our Eqs. (59) and (63)]. However,
interestingly, the photon energy dependence (see Eq. (11a) of
Ref. [30]) turns out to be similar to ours.

Finally we mention that the photocurrent does not depend
on the chemical potential apart from overall numerical con-
stants as long as it stays inside the energy gap. In connection
with this we note that, in actual experiment, the gate voltage is
adjusted, so that the Fermi level does not reach the conduction
or valence band [13].

V. CONCLUSIONS

Photocurrent spectroscopy is a very versatile tool with
direct relevance to optoelectronics applications in diverse

materials. We also note a recent theoretical work on a
new kind of photocurrent, the shift charge and the spin
photocurrent, of topological insulators [31]. In view of this,
a thorough theoretical understanding of the photocurrent of
TMDC material is highly desirable.

The exciton contribution to the photocurrent is clearly
important, while the precise theoretical understanding of it is
hampered by its apparently strong dependence on the source
to drain voltage and/or gate voltage [13] (in other words the
unbinding of the electron-hole pair by strong electric field).

In this paper, we instead focused on the direct band-to-
band contribution to the photocurrent (obviously, this will be
a significant part of the C peak structure of the experiment
of [13]). We have computed the photocurrent for arbitrary
photon incidence angles and for general photon polarizations
based on the microscopic Hamiltonian which incorporates the
source to drain bias voltage giving the band tilting. The band-
tilting effect turns out to be essential for the nonvanishing
photocurrent. Our results are consistent with the experimental
data, and furthermore we predict other features such as specific
angle dependence and the helicity-dependent component of the
photocurrent compatible with the valley Hall effect, which can
be readily verified by experiments.
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