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Rabi noise spectroscopy of individual two-level tunneling defects
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Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects
in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one
can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi
oscillations of single tunneling defects and measure their dephasing rates as a function of the defect’s asymmetry
energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain
and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model
of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by
interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the
relaxation rates of thermally excited defects interacting strongly with strain fields.
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Since the early 1970’s, various experiments over a
wide range of amorphous solids revealed a universality
in their thermal, acoustic, and dielectric properties below
1 K [1–3]. In an attempt to account for this universal behavior,
the existence of two-level tunneling systems (TLSs) as a
generic property in amorphous systems was postulated [4,5].
This phenomenological standard tunneling model (STM) is
capable of explaining many of the universal low-temperature
properties of the amorphous state of matter [6]. However,
despite extensive efforts, the exact nature of the TLSs is still
unknown.

With the recent progress in fabrication, manipulation,
and measurement of quantum devices, it became crucial to
understand the microscopic nature of the environment respon-
sible for decoherence. There exists abundant experimental
evidence that TLS-baths form a ubiquitous source of noise
in various devices such as superconducting microwave res-
onators [7], single-electron transistors [8], and nanomechan-
ical resonators [9]. In superconducting qubits, TLSs residing
in the amorphous tunnel barrier of Josephson junctions were
found to constitute a major source of decoherence [10,11].
Via their electric dipole moment, TLSs couple to the ac
microwave fields in the circuit [12]. Whereas this coupling
is deleterious from the point of view of qubit operation, it
opens up the possibility to use superconducting qubits as tools
for detection, manipulation, and characterization of individual
TLSs. The transfer of a quantum state from a superconducting
phase qubit to a resonant TLS was first demonstrated in
Ref. [13]. This method was used to probe the coherence times
of individual TLSs [13,14]. Furthermore, in Ref. [15], it was
shown that there exists an effective qubit-mediated coupling
between TLSs and an externally applied electromagnetic ac
field. This effective coupling was utilized to directly control
the quantum state of individual TLSs by coherent resonant
microwave driving [16].

Previously [17], we measured the Ramsey (free induction
decay) and spin-echo pure dephasing rates of individual TLSs

in a phase qubit as a function of their asymmetry energy, which
was tuned by an applied strain via a piezoactuator [18]. Since
the mutual longitudinal coupling between TLSs is proportional
to the product of their asymmetry energies, strain-tuning
allows one to gradually increase the longitudinal coupling of a
single probed TLS to other TLSs and study its dephasing rates
as a function of this coupling. This yields information about
the spectrum of the environment to which a TLS couples,
and provides a test to distinguish between different TLS
models [19]. The experimental data on Ramsey dephasing
indicate that the main low-frequency noise is quasistatic and
can be attributed to slow thermal TLSs (with energy splitting
smaller than the temperature), which flip between their energy
eigenstates with maximum rates �1,max ≈ 10 (ms)−1 [17,19],
much smaller than the dephasing rates of the probed TLS
which are of the order of �Ramsey ≈ 1 (μs)−1. For such an
environment, the echo protocol should be very efficient.
Surprisingly, the experiment shows that the echo dephasing
rates are not negligible, revealing the existence of an additional
noise source with a flat power spectral density. It was suggested
that this white noise may arise due to fast relaxing TLSs that
interact much more strongly with strain fields compared to
the weakly interacting TLSs of the STM [19,20], or due to
quasiparticle excitations [17,21,22].

Here we study experimentally and theoretically the deco-
herence of Rabi oscillations of individual TLSs as a function
of their strain-tuned asymmetry energy. At resonance with the
driving field, the Rabi decay rate consists of three contributions
from noise at different frequencies [24]. The first contribution
results from noise at frequency equal to the energy splitting
of the probed TLS (≈ 2π × 7 GHz), and arises from degrees
of freedom other than thermal TLSs, such as phonons or mi-
crowave photons. The other two contributions are due to noise
at the Rabi frequency of the probed TLS (several megahertz )
and low-frequency quasistatic noise similar to the one respon-
sible for the Ramsey dephasing discussed in Refs. [17,19].
The last two contributions result from a transverse noise in
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the rotating frame, the origin of which is suggested to be
thermal TLSs. Due to its transverse nature, this noise leads to
a quadratic strain dependence of the Rabi dephasing rate near
the symmetry point of the probed TLS, making the dephasing
rates smaller than those in a Ramsey experiment.

We begin with a model of a high-frequency (gigahertz)
single TLS driven by a microwave field at frequency ωd and
interacting with a thermal bath. In the basis of local states of
the TLS, the Hamiltonian of the system is [23]

Ĥ = 1
2 (ετ̂z + �τ̂x) − �0

R cos (ωdt)τ̂z + 1
2 τ̂zÔ + Ĥb . (1)

The first term describes the TLS, characterized by the asym-
metry and tunneling energies, ε and �, with τ̂x and τ̂z being
the Pauli matrices. The second term describes its coupling to
the driving field with �0

R = pEz being the maximum Rabi
frequency, where p is the electric dipole moment of the TLS
and Ez is the component of the electric field along its dipole
moment. The third term is the coupling of the TLS to the
bath observable Ô. Motivated by the experimental data below,
we write Ô = X̂ + Ŷ , separating the environmental degrees
of freedom which couple to the TLS into those fluctuating at
frequencies below ∼ megahertz (X̂) and those fluctuating at
frequencies of the order of the energy splitting of the TLS,
E = √

ε2 + �2 ≈ 2π × 7 GHz (Ŷ ).
In the eigenbasis of the TLS, Eq. (1) reads

Ĥ = E

2
σ̂z − �0

R cos (ωdt)(σ̂z cos θ − σ̂x sin θ )

+ 1

2
(σ̂z cos θ − σ̂x sin θ )(X̂ + Ŷ ) + Ĥb , (2)

where σ̂x and σ̂z are the Pauli matrices in the eigenbasis of
the TLS, cos θ = ε/E and sin θ = �/E. All these are strain-
dependent via ε(ε), where ε is the strain at the position of the
TLS. Taking into account the characteristic frequencies of X̂

and Ŷ , the relevant terms are [24]

Ĥ = E

2
σ̂z + �R cos (ωdt)σ̂x + 1

2
(cos θ σ̂zX̂ − sin θ σ̂xŶ )

+ Ĥb, (3)

where �R = �0
R sin θ is the Rabi frequency.

We are interested in the decay of Rabi oscillations, �D,
which is the equivalent of �2 in the rotating frame. At reso-
nance, ωd = E, the contribution of the high-frequency part Ŷ

to �D is known to be 3
4�1 [24], where �1 = 1

2 sin2 θ SY (ω = E)
is the relaxation rate in the laboratory frame, with SY (ω) being
the noise spectral density of Ŷ . We now discuss the contribution
of X̂ to �D. To this end, we consider the Hamiltonian

Ĥ = E

2
σ̂z + �R cos (ωdt)σ̂x + cos θ

2
σ̂zX̂ + Ĥb . (4)

We move to the rotating frame by applying the unitary transfor-
mation ÛR = eiωd tσ̂z/2. Using the rotating wave approximation
and assuming resonant driving (ωd = E), the transformed
Hamiltonian ĤR = ÛRĤÛ

†
R + i dÛR

dt
Û

†
R is

ĤR = �R

2
σ̂x + cos θ

2
σ̂zX̂ + Ĥb . (5)

We observe that in the rotating frame and at resonance, the
noise is purely transverse. This transverse noise gives rise to

relaxation in the rotating frame of reference [24], for which
the golden rule yields

�ν = 1
2 cos2 θ SX(ω = �R) , (6)

where SX(ω) is the noise spectral density of X̂. As usual, this
results in a contribution of �ν/2 to �D.

In an echo experiment, the same noise X̂ is longitudinal
and the dephasing rate is

�Echo = 1
2 cos2 θ SX(ω ≈ �Echo) . (7)

Equation (7) coincides with the golden rule result if SX(ω) is
flat on a scale of �Echo around zero frequency. Otherwise, it
provides self-consistently an order of magnitude estimate for
the dephasing time. Both Eqs. (6) and (7) are determined by
the spectral density SX(ω) at frequencies � 1 MHz (see the
experimental data below).

Based on the Ramsey dephasing observed and discussed
in Refs. [17,19], X̂ contains contributions from many slow
fluctuators (thermal TLSs). Using standard estimations within
the STM, one expects the relaxation rates �1 of thermal TLSs
(at T = 35 mK) to be smaller than 10 (ms)−1 [17,19]. Con-
sequently, these fluctuators are in the regime �1 � �R,�Echo

and thus give rise to quasistatic noise, for which X̂ is constant
during each run of the experiment but fluctuates between
different runs. These fluctuators will not contribute to �ν

and �Echo. However, their second-order contribution to pure
dephasing may be important.

The noise due to these fluctuators can be treated classically,
X̂ → X(t) = ∑

j vjαj (t), where each fluctuator is represented
by a random telegraph process (RTP) αj (t) which randomly
switches between the states αj = ±1 with flipping rate
γ1,j [25], and interacts with the probed TLS with a coupling
strength vj . As shown in Refs. [17,19], the interaction between
the probed TLS and its closest thermal TLS, vT , is of the
order of a few megahertz. Therefore close to the symmetry
point ε = 0 (thus cos θ � 1), one may assume X cos θ � �R.
We therefore expand

√
�2

R + X2 cos2 θ ≈ �R + X2 cos2 θ
2�R

=
�R + cos2 θ

2�R

∑
j v2

j + cos2 θ
2�R

∑
i �=j vivjαi(t)αj (t). The last term

shows that the second-order contribution to the Rabi dephasing
is due to products of RTPs. Since a product of two RTPs
with flipping rates γ1 and γ2 is also a RTP with flipping rate
γ1 + γ2, the second-order contribution to the Rabi dephasing
is essentially similar to the Ramsey dephasing [17,19]. The
decay law due to this low-frequency noise is fRabi(t) =
(1/2N )

∑
{ξk} exp[it cos2 θ

2�R

∑
i �=j vivj ξiξj ], where N is the num-

ber of thermal TLSs and the sum is over all the configurations
of the variables ξk = ±1. Similarly to the Ramsey dephasing,
it is expected to be dominated by the few closest fluctuators,
and the typical decay rate is [26]

�(2)
ϕ ≈ v2

T

�R
cos2 θ . (8)

The Rabi decay rate is the sum of the three contributions
discussed above,

�D = 3�1

4
+ �ν

2
+ �(2)

ϕ . (9)

We now discuss the experimental results for this decay rate.
The distinct strain dependence of the first and the other
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FIG. 1. Results obtained on four different TLSs. (Top) TLS swap spectroscopy, showing the resonance frequencies of TLSs by a reduction
δP of the qubit population probability (dark traces in color-coded data). Superimposed dots are obtained from microwave spectroscopy, with
the static TLS parameters resulting from hyperbolic fits. (Middle) Observed Rabi frequency fR = �R/2π for the probed TLSs driven at their
resonance frequencies at fixed microwave power. (Bottom) TLS relaxation and pure dephasing rates as indicated in the legend, with quadratic
fits to the Rabi oscillations and echo dephasing rates. The horizontal axes are calibrated to the asymmetry energy ε/h of the probed TLS.

two terms of Eq. (9) allows us to separate the effect of the
noise at the two spectral ranges discussed above (i.e., below
∼ megahertz and at gigahertz frequencies).

The TLSs studied here are contained in the amorphous AlOx

tunnel barrier of a 1 μm2-sized Josephson junction, embedded
in a superconducting loop, thus forming a SQUID whose
discrete energy levels are used as logical qubit states between
which transitions are driven via resonant microwave pulses.
The sample was fabricated in the group of J. M. Martinis and
is described in detail in Ref. [27]. We apply mechanical strain
to the qubit chip by means of a piezoactuator [18] to tune
the asymmetry energy ε of the TLSs while their resonance
frequencies are tracked with the qubit (top row of Fig. 1) [28].
At each strain value, standard microwave pulse sequences are
applied [17] to measure the energy relaxation rate �1 and
the dephasing rates of Rabi oscillations and echo signals,
�Rabi and �Echo, of the probed TLS (bottom row of Fig. 1).
Here, slightly negative rate values stem from uncertainties in
the independently measured energy relaxation rates which are
subtracted from the dephasing rates.

In the middle row of Fig. 1, we present the frequency
of Rabi oscillations for a fixed microwave driving power.
Peaks and dips, which appear symmetrically with respect to
ε = 0, mainly originate from the frequency dependence of the
transmitted microwave power due to cable resonances. When
these fluctuations are smoothened out, the Rabi frequency
tends to increase with ε. This is because the TLS is driven via a
transition that involves a virtual state of the qubit, such that the
effective driving strength depends on the detuning between the
TLS and the qubit [16], where the latter was tuned to the fixed

frequency of 8.8 GHz during all measurements. This increase
is partly compensated by the factor sin θ = �/E appearing in
the definition of the Rabi frequency.

The strain dependence of �1 and �Echo was discussed in
Ref. [17]. Here we focus on the Rabi dephasing rate. Due
to limitations in the applicable microwave power, the Rabi
frequency is at maximum of order 5 MHz, such that only a
few oscillations can be observed during the coherence time
of the TLS [see Fig. 2(a)]. Together with the measurement
uncertainties it therefore becomes practically impossible to
determine the exact functional form of the decay envelope.
We thus extract an effective decay rate �D from a fit to an
exponentially damped sinusoid.

At the symmetry point ε = 0 (cos θ = 0), one expects �D =
3
4�1, so that the Rabi decay rate is independent of the Rabi
frequency. The experimental observation is in good agreement
with this prediction, as shown in the inset of Fig. 2(b). To
analyze the effect of the noise at frequencies ω � �R, one
has to subtract this contribution of fluctuations at gigahertz
frequencies from �D. In the bottom row of Fig. 1, we show the
Rabi dephasing rate �Rabi ≡ �D − 3

4�1. For all investigated
TLSs, �Rabi vanishes at the symmetry point and increases
quadratically with ε. This quadratic strain dependence is
also predicted by the above model, which shows that both
�ν and �(2)

ϕ scale as cos2 θ = (ε/E)2 ≈ (ε/�)2 [Eqs. (6)
and (8)]. Table I summarizes the measured tunneling energies
�, the deformation potentials ∂ε/∂V where V is the applied
piezovoltage, and the relaxation times T1 measured at ε = 0.
The strength of Rabi and echo dephasing rates is obtained from
quadratic fits to �i = Ai(ε/E)2, where i = {Rabi,Echo}.
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FIG. 2. (a) Rabi oscillations observed in TLS 2 at ε/h =
−0.921 GHz and at different drive powers (individual curves offset
by 0.15 each for clarity). Rabi frequency fR = �R/2π and effective
decay time TD ≡ �−1

D quoted in the legend are extracted from fits
to exponentially damped sinusoids (solid lines). (b) Log-log plot
of the pure dephasing rate �Rabi ≡ �D − 3

4 �1 as a function of the
Rabi frequency. Solid lines are fits to �Rabi = A/�R. (Inset) At the
symmetry point of the TLS, ε = 0, the Rabi decay is only limited by
energy relaxation such that �D = 3

4 �1.

We now compare the values extracted for ARabi and AEcho

with the expressions derived from the above model,

ARabi = �Rabi

cos2 θ
= �ν/2 + �(2)

ϕ

cos2 θ
= SX(�R)

4
+ v2

T

�R
, (10)

AEcho = �Echo

cos2 θ
= SX(�Echo)

2
. (11)

Further information on ARabi comes from the inverse depen-
dence of the Rabi dephasing rate on the Rabi frequency,
�Rabi = A/�R, observed at fixed ε and displayed in Fig. 2(b)

TABLE I. Parameters of the four TLSs investigated here.

�/h (∂ε/∂V )/h T1 @ ε = 0 ARabi AEcho

TLS (GHZ) (MHz/V) (μs) (MHz) (MHz) ARabi
AEcho

1 7.075(3) 115.5(0.7) 0.44 5 13 0.38
2 7.335(7) 180.3(2) 0.99 10 4 2.5
3 6.947(5) 156.7(2) 2 8 2 4
4 6.217(3) 146.8(0.6) 3.2 3 <0.1 >30

for TLS 2, with fit parameters A listed in the legend.
Comparing this observation with Eq. (10), we identify two
possibilities: (I) the first term of Eq. (10) dominates, in
which case SX(�R) ∝ �−1

R (1/f noise), and (II) the second
contribution dominates. In the first case �Echo 
 �Rabi because
�Echo � �Rabi, which is inconsistent with the experimental
observations. Thus we adopt the second scenario. Indeed, with
vT estimated by several megahertz [17,19], the contribution
v2

T /�R due to thermal standard TLSs gives the correct order
of magnitude for ARabi, and therefore this scenario seems
plausible. Moreover, according to our previous results [17],
the strain dependence and the ratio between the Ramsey and
the echo dephasing rates are inconsistent with a 1/f spectrum
at frequencies around �Echo, but rather suggest a flat spectrum.
It is therefore improbable that SX(�R) ∝ �−1

R , leading to the
conclusion that SX(�R) � v2

T /�R.
What could then be learned from comparing ARabi with

AEcho? Based on our previous results in Ref. [17], we try to
associate the two contributions to �Rabi with the two types of
TLSs discussed in Refs. [19,20]. In Refs. [17,19], we attributed
the Ramsey dephasing to an ensemble of slow (quasi-static)
thermal TLSs (denoted as τ -TLSs), with parameters consistent
with the STM, for which the echo protocol should be more
efficient than observed. This discrepancy was explained by
the existence of a few fluctuators, with relaxation rates greater
than �Echo ∼ 1 μs−1 (denoted as S-TLSs). In contrast to the
standard fluctuators, these fast fluctuators contribute to SX(ω)
at megahertz frequencies. The existence of fast relaxing TLSs
interacting strongly with strain fields was recently suggested
as a generic property in disordered solids [20], and the
distribution of their asymmetry energies was analyzed [29,30].
However, the distribution of their tunneling energies, and
hence their relaxation rates, is unknown.

Let us assume the existence of a single fast fluctuator
with relaxation rate γ1 and coupling constant to the probed
TLS vSτ , for which SX(ω) = 2v2

Sτ γ1/(ω2 + γ 2
1 ). If the second

contribution to ARabi is dominant, the observation that ARabi

and AEcho are comparable (see Fig. 1 and Table I) implies
that SX(�Echo) 
 SX(�R). Since �R 
 �Echo, one obtains the
condition �R > γ1, which sets an upper bound of ∼ 10 μs−1

for γ1 of the fast relaxing fluctuator. We thus conclude that the
relaxation rates of the fast relaxing fluctuators are in the range
1 (μs)−1 � γ1 � 10 μs−1.

In summary, we have measured the decay of Rabi oscil-
lations as a function of the asymmetry energy of individual
TLSs, which is controlled by applying an external strain. We
employ a theoretical model based on interacting TLSs and find
agreement with the experimentally observed magnitude of the
Rabi dephasing rate and its dependence on the applied strain
and on the Rabi frequency. In conjunction with measurements
of energy relaxation, Ramsey and echo dephasing [17,19],
Rabi noise spectroscopy provides information about the
spectrum of the environment to which TLSs couple, within
three different spectral ranges. This allows one to distinguish
between contributions from distinct environmental degrees
of freedom. Such information is important for minimizing
noise due to TLSs in nanodevices, for exploiting TLSs as
useful degrees of freedom, and for a basic understanding
of amorphous systems at low temperatures. Particularly, our
analysis reveals that besides the usual environment of phonons
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and standard TLSs obeying the STM, the probed TLSs
also couple to fast relaxing fluctuators with relaxation rates
1 (μs)−1 � γ1 � 10 μs−1.
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