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Coherent transport of levitons through the Kondo resonance
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We study coherent transport of levitons through a single-level quantum dot system driven by Lorentzian-shaped
voltage pulses. We demonstrate the repeated emergence of the Kondo resonance in the dynamical regimes where
the Fermi sea is driven by optimal pulses free of particle-hole excitations. The formation of the Kondo resonance
significantly enhances the dc transport of levitons.
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The Kondo effect has been one of the central subjects of
condensed matter physics over the past 50 years [1,2]. It is
an archetypal example of coherent many-body phenomena
in interacting electronic systems, and essential low-energy
behaviors of Kondo systems are described by the local
Fermi liquid theory. The development of nanotechnology has
extended the Kondo physics to nonequilibrium regimes [3–6].
Transport through a quantum dot (QD) enables us to study
the nonequilibrium Kondo effect with experimentally tuned
parameters. The interplay between the coherent many-body
resonance and the nonequilibrium field has posed nontrivial
problems. In particular, determining the fundamental excita-
tion of the Kondo systems driven out of equilibrium remains
a challenging topic [6–8]. Recently, new insights on the
nonequilibrium Kondo physics have been gained in tandem
with rapid advances in engineering time-dependent fields.
Electrons dressed with photons acquire novel features which
equilibrium electrons do not possess. Periodic driving fields
have been frequently utilized to probe low energy excitations
of the QD systems [9–19] and to invent new types of Kondo
systems [20,21]. In sinusoidally driven QD systems, satellites
of the Kondo peak develop at low temperatures due to the
absorption and the emission of photons [11,12]. On the other
hand, the spin-flip cotunneling processes [14] as well as the
ionization of the local site [15] induce decoherence which
hinders the Kondo resonance.

The richness and the complexity of driven electronic
systems come from the collective response of electrons under
the entire Fermi sea. In spite of the difficulty originating from
the many-body effects, Levitov and coauthors proposed an
elegant way to engineer minimal excitation states out of the
Fermi sea [22–24]. They found that, among possible pulse
profiles, the repeated Lorentzian pulses excite the Fermi sea
without creating particle-hole pairs. The single-particle nature
of the excitation was clarified at the same time in terms of
the full counting statistics. The elementary excitations created
above the undisturbed Fermi sea are termed levitons and have
been experimentally exploited as ideal fermionic excitations
in electron quantum optics [25,26]. There have already been a
number of works on levitons injected in quantum Hall systems
[24,27–32]. It is also theoretically proposed that a Fermi sea
driven by designed Lorentzian pulses hosts an exotic excitation
with a fractional effective charge [33].
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In this paper, we demonstrate the coherent transport of
levitons through the Kondo resonance in a QD system driven
by Lorentzian-shaped periodic pulses. The Lorentzian driving
protocol is distinct from the others because the optimal pulses
can excite a fermionic quasiparticle while preserving the
structure of the Fermi sea. This enables the formation of
the Kondo resonance under the strong driving field. We use
a many-body approach combined with Floquet’s formalism
[34,35] to provide a conceptually transparent and numerically
efficient way to describe the dynamics of the interacting
levitons.

We consider a single-level QD coupled to left and right leads
with a periodically oscillating bias voltage. The Hamiltonian
reads

H =
∑

σ

εd d̂
†
σ d̂σ +

∑
α,k,σ

(εαk + eVα(t))ĉ†αkσ ĉαkσ

+
∑
α,k,σ

(tαd̂†
σ ĉαkσ + H.c.) + Ud̂

†
↑d̂↑d̂

†
↓d̂↓, (1)

where d̂†
σ creates an electron in the QD with spin σ and ĉ

†
αkσ

creates a conduction electron in the lead α (=L,R) with spin
σ and momentum k. The coupling tα between the QD and the
lead α causes the level broadening �α ≡ 2π |tα|2ρα , where ρα

is the density of states (DOS) of the conduction electrons at
the Fermi energy εF . We consider that the left lead is irradiated
with Lorentzian pulses

VL(t) =
∞∑

m=−∞

VAC

π

Tpτw

(t − mTp)2 + τ 2
w

, (2)

with the period Tp, the width τw, and the AC amplitude VAC.
The right lead is in equilibrium, i.e., VR(t) = 0.

The periodically driven QD system can be well described in
the Floquet-Green’s function formalism [34,35]. In the follow-
ing, we drop the spin index σ for simplicity. The propagators
of the photon-dressed interacting electrons are given by the
retarded and the lesser Green’s functions Gr (t,t ′) = −iθ (t −
t ′)〈d(t)d†(t ′)〉 and G<(t,t ′) ≡ i〈d†(t ′)d(t)〉, respectively. Their
Floquet representations are introduced as Gr(<)

mn (ω) ≡∫ ∞
−∞ dt

∫ Tp/2
−Tp/2

dT
Tp

ei(ω+mh̄�)t−i(ω+nh̄�)t ′Gr(<)(t,t ′) with the driv-
ing frequency � = 2π/TP. Hereafter, we use bold letters to
denote Floquet-represented functions.

The equilibrium distribution in the right lead is written
in the Floquet representation as f R = f eq, where f eq

mn(ω) =
δmn/(eβ(ω+mh̄�−εF ) + 1) with the inverse temperature β and
the Kronecker delta δmn. In contrast, the time-dependent phase
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ϕ(t) = e
h̄

∫ t

−∞ VL(t ′)dt ′ acquired by electrons tunneling from
the left lead to the QD significantly modifies the distribution
function as f L(ω) = U f eq(ω − eVAC)U†. Here, the dc offset
of the periodic Lorentzian pulses is included as a shift
of the chemical potential, and absorption and emission of
photons are described via the unitary matrix Umn = um−n with
ul ≡ ∫ TP /2

−Tp/2
dt
Tp

ei(lh̄�+eVAC)t e−iϕ(t).
For the repeated Lorentzian pulses (2), the matrix elements

are computed as

ul =
∞∑

k=max{0,−l}

�(k + l + q)�(k − q)e−2πτ (2k+l)

�(q)�(k + l + 1)�(−q)�(k + 1)
, (3)

with q ≡ eVAC/h̄�, τ ≡ τw/Tp, and the Gamma function
�(x). The probability to excite lth Fourier harmonics is expo-
nentially suppressed in terms of l due to the factor e−2πτ l . In
the delta-pulse limit τ → 0, the system is in equilibrium, i.e.,
f L = f eq, at q ∈ Z because the phase shift 2πq introduced by
each pulse is exactly absorbed in the gauge degrees of freedom
of electrons. One of the important properties of the quantized
Lorentzian pulses is that they generate purely electronic
excitations even for finite τ with minimal disturbance of the
Fermi sea [22–24]. It is in contrast to nonquantized pulses
which inevitably excite a number of particle-hole pairs as is
the case with the Anderson orthogonality catastrophe problem
[22,36]. These peculiar properties of the quantized Lorentzian
pulses result in the quasiparticle nature of levitons created
above the undisturbed Fermi sea [36,37].

Since diagrammatic structures of photon-dressed propaga-
tors are the same as those in equilibrium, transport properties
of interacting electrons are inherited by levitons. In particular,
the Kondo resonance may provide a transport channel of
levitons at low temperatures. However, it is important to note
that photon-assisted processes cause two major decoherence
mechanisms of the Kondo resonance in driven systems: (i)
reduction of the conduction electrons under the Fermi sea
and (ii) heating effect. These are crucially dependent on
driving pulses via the transition rate ul . Lorentzian pulses are
distinct from other driving protocols in that spectral weight
is concentrated near the Fermi energy and hole excitations
are prohibited at q ∈ Z. These favorable natures of the
Lorentzian pulses lead to the formation of the Kondo resonance
even in nonequilibrium regimes as well as its characteristic
dependence on the AC amplitude. This is the central idea of
this paper.

One of the hallmarks of the Kondo effect is the appearance
of the resonant peak in the time-averaged DOS

ρ̄(ω) ≡ − 1

π
Im

∫ Tp

2

− Tp

2

dT

Tp

∫ ∞

−∞
dtre

iωtr Gr (t,t ′), (4)

with tr ≡ t − t ′ and T ≡ (t + t ′)/2. In this paper, we eval-
uate the self-energy up to the second order [38] in U

to illustrate qualitative behaviors of the Kondo resonance
under periodic Lorentzian pulses. The second order perturba-
tion theory captures low-temperature Fermi-liquid behaviors,
which are of fundamental importance in the leviton transport
[39]. Moreover, it allows us to deal with a large number
of (∼1/τ ) Floquet sidebands required to describe photon-
assisted processes accompanying a sharp Lorentzian pulse

FIG. 1. Time-averaged DOS with �L,R = 1, εd = −4, U = 8,
β = 100, τ = 0.02, and h̄� = 3 for various values of q.

of width τ . The retarded Green’s function can be efficiently
calculated in the Floquet representation [34,35] because it
has a simple matrix form Gr = [1 − gr�r

U ]−1 gr . Here, the
exact propagators are constructed from the unperturbed one
gr

mn(ω) = δmn/(ω + mh̄� − Ed + i�) with the energy level
Ed = εd + Und and the linewidth � = (�L + �R)/2. The
charge nd is determined within the Hartree approximation as
nd = − 1

π
Im

∑
m

∫
dωg<

mm(ω), where the unperturbed lesser
Green’s function is given by g< = gr�<

0 ga with �<
0 =

i(�L f L + �R f R). The U 2 term of the self-energy is given
as �U (z,z′) = U 2g(z,z′)g(z′,z)g(z,z′) on the Keldysh contour
[40]. The retarded and lesser components of the self-energy
are obtained by projecting the Keldysh arguments z and z′ onto
the real-time axis.

Figure 1 shows the time-averaged DOS for various values of
q. We consider a particle-hole symmetric case with �L,R = 1,
εd = −4, and U = 8. The temperature 1/β = 0.01 is lower
than the Kondo temperature kBTK � 0.086 estimated with
an expression [41] kBTK = √

U�/2 exp [πεd (εd + U )/2U�].
The Lorentzian-shaped bias voltage with τ = 0.02 and h̄� =
3 excites conduction electrons in the left lead, dressing them
with photons. We use Floquet matrices of size 201 to describe
electrons absorbing or emitting 100 photons at most. While
the Kondo peak observed at q = 0 is immediately reduced
by the irradiation, the resonant peak reappears at q = 1.
The reduction and the formation of the Kondo peak are
repeated around the integer values of q. The emergence of
the Kondo peak in the dynamical regimes originates from
the aforementioned recovery of the Fermi sea around q ∈ Z:
Electrons in the minimally disturbed Fermi sea form the
many-body resonance state with the dot electron. Away from
the optimal points, the driving field produces particle-hole
pairs, which inevitably inhibits the Kondo resonance. The
peaks are smeared for q � 1/4πτ because the weight of
conduction electrons at the Fermi energy decays as |u−n|2 =
e−4πnτ at integer values of q = n. The remaining portion of the
conduction electrons are distributed above the Fermi energy
due to the photon-absorption processes.
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FIG. 2. Density plots of the Wigner function for various values of q. The QD system with �L,R = 1, εd = −3, U = 6, and β = 100 is
under the periodic Lorentzian pulses with the width τ = 0.01 and the driving frequency h̄� = 2.

The repeated emergence of the Kondo resonance is un-
feasible in a sinusoidally driven QD, where the irradiation
completely suppresses the fragile many-body resonance in
nonequilibrium regimes [14–16]. For the sine-wave case, the
weight of the conduction electrons at εF decays as |J0(q)|2
with the Bessel function Jn(q). Moreover, disturbance of the
Fermi sea by electron-hole excitations causes severe heating
effect, which manifests itself as significant enhancement of
the current noise [35]. These decoherence mechanisms impose
severe restrictions on the realization of the Kondo resonance
under the sinusoidal driving field.

The dynamical formation of the Kondo resonance can be
further analyzed with the electronic Wigner function [29]

W (ω,T ) ≡ �L�R

�L + �R

Im
∫ ∞

−∞
dtre

iωtr G<(t,t ′). (5)

Here, the lesser Green’s function is calculated in the Floquet
representation as G< = Gr [�<

0 + �<
U ]Ga . While it is propor-

tional to a product of the spectral function and the nonequilib-
rium distribution in stationary cases, photon-assisted processes
in driven systems make it difficult to completely separate their
contributions. Nevertheless, the Wigner function is useful to
characterize time-resolved excitations because it visualizes
the real-time dynamics of the quasiparticles which are well
represented in the energy domain.

The five panels in Fig. 2 show the electronic Wigner
function of the photon-dressed electrons for various values
of q. The characteristic structures extending above the Fermi
energy are fingerprints of levitons [29]. The sharp Lorentzian
pulses with τ = 0.01 and h̄� = 2 create time-resolved ex-
citations centered at t/Tp ∈ Z. The singularities observed
at ω − εF = nh̄�/2 (n ∈ Z) result from the photon-assisted
Fermi edges formed by the driven electrons. The important
difference between the quantum dot system and the previously
studied 1D conductors [26,29] is the frequency dependence
of the spectral function. At q = 0.6 [Fig. 2(a)], the bare QD
level with εd = −3 and �L,R = 1 is strongly perturbed by the
Lorentzian pulses, resulting in the decoherence of the Kondo
resonance with characteristic energy scale kBTK/� � 0.16.
The spectral weight is gradually concentrated at the Fermi
energy at a larger pulse amplitude [Fig. 2(b)] and eventually
becomes a stationary sharp peak at q = 1 [Fig. 2(c)]. In
addition to this counterintuitive emergence of the Kondo
resonance under the strong driving field, the coherent ripple
patterns reported in Ref. [29] concurrently become clear at

q = 1. The quantum interference effects which appear as
negative parts of the Wigner function may be probed by
interferometry and noise measurements [26,29]. When the
amplitude becomes larger [Figs. 2(d) and 2(e)], the Kondo
peak is smeared again because of both the dc offset of the

FIG. 3. (a) Three-dimensional plot of the differential conductance
∂I/∂VAC with h̄� = 2 for various values of q and τ . (b) Cut of
the differential conductance at τ = 0.02 for various values of �.
The dot parameters are taken as �L,R = 1, εd = −3, and U = 6 with
the inverse temperature β = 100.
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pulses and the particle-hole excitations. The quantum ripples
also become obscure away from the optimal situation.

The coexistence of the leviton and the Kondo resonance
results in enhancement of the dc current

I = e

h̄

∫
dωTr

[(−1

π
ImGr (ω)

)
( f L(ω) − f R(ω))

]
, (6)

where the trace is taken over the Floquet indices. The
dependence of the differential conductance ∂I/∂VAC on q

is shown in Fig. 3(a) for various values of τ . At τ =
0.01, the conductance is repeatedly enhanced around q ∈ Z,
indicating the reformation of the many-body resonance state
through which the leviton flows. The peak height around
positive integer values of q = n is crucially dependent on
the width τ of the Lorentzian pulses because of the weight
factor |u−n|2 = e−4πnτ . The unitarity limit is reached in the
delta-pulse limit τ → 0, where the system is essentially in
equilibrium due to the gauge structure of the many-electron
system. Hence, the characteristic q dependence of the leviton
transport results from the recovery of the equilibrium Kondo
resonance under the sharp Lorentzian pulses. The opposite
large τ limit corresponds to a stationary voltage-biased QD
because the Lorentzian-shaped periodic pulses are reduced to
the dc voltage with amplitude VAC. In the dc limit, the Kondo
resonance vanishes for q > kBTK/h̄� � 0.082 in contrast to
the corresponding sharp-pulse cases.

The cut of the differential conductance ∂I/∂VAC at τ =
0.02 is shown in Fig. 3(b) for various values of �. The peaks
around q ∈ Z become clear for large � cases, where the
transport channel through the Kondo peak is isolated from
the other Floquet sidebands located at intervals of h̄�. The
differential conductance shows rich transport properties away
from the optimal points as well. The peak around q � 0.5

for h̄� = 1 results from the photon-assisted processes where
electrons tunnel through the energy level at εd + Und by
absorbing photons. The peak is suppressed and becomes
negative for large values of � due to the hole contributions
generated by the nonquantized Lorentzian pulses. The large dc
offset of the Lorentzian pulses with h̄� = 5 cause additional
peaks around q � 1.4 and 2.4. The various peak structures of
different origin can be distinguished by their characteristic �

dependence. In particular, the enhancement of the conductance
around q ∈ Z may provide a future experimental evidence of
the leviton tunneling through the Kondo resonance. Recent
experiments on levitons [25,26] have succeeded in producing
Lorentzian-shaped pulse of � = 6 GHz with τ = 0.09 at elec-
tron temperature Te � 35 mK. It seems necessary to generate
sharper and higher-frequency Lorentzian pulses to observe the
repeated emergence of the Kondo resonance of the typical en-
ergy scale TK � 0.7 K ∼ 15 GHz in a Kondo QD system [5].

In conclusion, we have demonstrated the coherent transport
of levitons through the Kondo resonance realized in a QD
system. The dynamical formation of the Kondo resonance
and its coexistence with the levitons can be identified as the
enhancement of the dc transport under quantized Lorentzian
pulses. Since the leviton carries rich information on the many-
body resonance state, we can probe the dynamical properties of
the interacting system by measuring the quantum interference
and the noise spectroscopy of the leviton. The present study
also opens new possibilities for designing a quasiparticle
excitation in interacting electron systems by engineering a
time-dependent field.
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