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Self-learning Monte Carlo method and cumulative update in fermion systems
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We develop the self-learning Monte Carlo (SLMC) method, a general-purpose numerical method recently
introduced to simulate many-body systems, for studying interacting fermion systems. Our method uses a
highly efficient update algorithm, which we design and dub “cumulative update”, to generate new candidate
configurations in the Markov chain based on a self-learned bosonic effective model. From a general analysis and
a numerical study of the double exchange model as an example, we find that the SLMC with cumulative update
drastically reduces the computational cost of the simulation, while remaining statistically exact. Remarkably, its
computational complexity is far less than the conventional algorithm with local updates.
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Monte Carlo (MC) method is an unbiased numerical tool
that obtains statistically exact results by sampling configura-
tions according to a probability distribution [1–7]. Configu-
rations may be generated sequentially through the reversible
Markov process obeying the detailed balance principle (DBP).
In order for an MC simulation to be efficient, the process of
generating a new configuration from the current one should be
fast, and consecutive configurations should be uncorrelated.
The performance of conventional MC method is severely
impeded when either of the two conditions fails.

Recently, we introduced a new method dubbed “self-
learning Monte Carlo” (SLMC), to speed up configuration
updates in MC simulations [8]. SLMC consists of two stages:
learning and simulating. First, we perform trial simulations
with the conventional local update method to generate a large
set of configurations along with their weights, which serve
as the training data. By fitting the configuration distribution,
we learn an effective Hamiltonian Heff for the system, which
can be simulated faster than the original Hamiltonian H .
Next, in performing the actual simulation, we use Heff to
propose smart moves in configuration space. The acceptance of
proposed moves is set properly to satisfy the detailed balance
condition of the original Hamiltonian, ensuring the simulation
is statistically exact.

SLMC is a general-purpose method rooted in the phi-
losophy “first learn, then earn”. In our previous work [8],
SLMC is implemented for classical statistical models near
second-order phase transitions. In such systems, conventional
MC simulation suffers from critical slowing down because
successive configurations are highly correlated [9,10]. We
showed that SLMC method can significantly reduce the
autocorrelation time. As an example, SLMC simulation on
a generalized Ising model is found to be 10–20 times faster.

In this work, we develop a generic SLMC method for
simulating interacting fermions as well as mixed Bose-
Fermi systems, and demonstrate its enormous power. By
theoretical analysis and numerical simulation, we show that
SLMC method generally reduces the complexity of simulating
fermion systems, thus achieving a tremendous speedup that
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grows with system size. The central component of our method
is a highly efficient “cumulative update” algorithm, which we
introduce for updating field configurations to which fermions
couple.

Below we first present SLMC method with cumulative
update in full generality and theoretically analyze its complex-
ity, i.e., determine the scaling of the computational cost with
system size. Next, we apply our method to the double exchange
model, which describes itinerant electrons interacting with
localized spins. Our method achieves a speedup of at least
O(Ld ), where L is the system size and d is the spatial
dimension. For the double exchange model on 8 × 8 × 8 cubic
lattice, SLMC simulation is numerically shown to be over 103

times faster than conventional method.
In quantum MC simulations of interacting fermion systems,

we may employ the Hubbard-Stratonovich transformation
[11,12] to write the partition function in the form of fermions
coupled to fluctuating fields [13–16]

Z =
∑
φ(τ )

det

[
I +

∏
τ

e−�τHf [φ(τ )]

]
≡

∑
φ(τ )

W [φ(τ )], (1)

where φ is a space- and time-dependent field, Hf [φ] is
the single-particle Hamiltonian of fermions moving in the
background of the field φ, �τ = β/N is the duration of
time slice in Trotter decomposition [17,18] and τ = n�τ with
n = 1, . . . ,N . In the MC simulation, we sample configurations
of φ with weights W [φ], which is determined by integrating
out fermion degrees of freedom. Partition functions of the form
Eq. (1) also appear in systems of fermions interacting with
dynamical boson fields such as spins or phonons [19–24].

The partition function Eq. (1) can also describe systems of
fermions coupled to classical spins or other classical degrees of
freedom. A well-known example is the double exchange model
[25–27] describing itinerant electrons coupled to a lattice of
localized spins, which are represented by classical vectors of
unit length. In such cases, the field φ in Eq. (1) is space-
dependent but time-independent. The partition function (1)
then simplifies to

Z =
∑

φ

det[I + e−βHf [φ]] ≡
∑

φ

W [φ]. (2)
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Computing the weight W in both Eqs. (1) and (2) involves
calculating the fermion determinant. This task is very time
consuming and its computational cost grows polynomially
with system size, which is a major bottleneck of MC
simulations in fermion systems.

In this work, we focus on models of fermions coupled to
classical fields, where φ is time-independent. Our treatment
here can be straightforwardly applied to models with time-
dependent fields, which we leave to a forthcoming work
[28]. For the partition function in Eq. (2), the weight W

can be calculated as
∏

n(1 + e−βEn(φ)), where {En(φ)} is
the single-particle energy spectrum obtained by the exact
diagonalization (ED) of the fermion Hamiltonian Hf [φ] for a
given φ configuration. Performing this ED has the complexity
of O(L3d ). (Algorithms that compute W [φ] approximately can
be faster [29–34].) In the conventional MC simulation using
the Metropolis algorithm, the ED needs to be performed every
time φ is updated on a single site. Therefore the computational
cost for each full sweep of the lattice in the simulation grows
as O(L4d ). Assuming the configurations become uncorrelated
after τ0 iterations of such sweeps, the total cost of gener-
ating two successive, statistically independent configurations
is O(τ0L

4d ).
In contrast, in SLMC simulation, we first generate a set

of configurations using the local update, and fit their weights
using an effective model Heff[φ] for the field φ such that

W [φ] � e−βHeff [φ]. (3)

Typically, we take Heff[φ] to have the form of a power series
of φ, and determine the coefficients from multilinear fitting.
Heff[φ] is to be viewed as an approximation to the exact
Hamiltonian for the φ field after integrating out the fermions
H [φ] ≡ − 1

β
ln W [φ], because by construction the Boltzmann

distribution of Heff[φ] approximately reproduces the desired
distribution W [φ] for dominant φ-field configurations. Im-
portantly, for a given φ, evaluating Heff[φ] whose explicit
expression has been learned from the fitting is much faster
than numerically computing W [φ] exactly.

Next, in performing the actual simulation, we design a
“cumulative update” algorithm to update the φ-field config-
urations efficiently by the guidance of the effective model
Heff[φ]. Starting from the last configuration reached in the
Markov chain of H [φ], denoted by φA, we propose a global
move by performing a sequence of local updates as one would
do in simulating the effective model Heff[φ]: each local move
attempts to change the value of φ on a random site, and its
acceptance probability is determined by the detailed balance
condition of Heff[φ]. A sequence of such local updates is
performed to generate a new field configuration φB that is
sufficiently uncorrelated with φA. Then we propose φB as
the candidate configuration for the next state in the Markov
chain of H [φ]. As we will describe below, the probability of
accepting this move φA → φB should be designed properly to
ensure that SLMC method is statistically exact.

The advantage of the cumulative update algorithm comes
from replacing many iterations of “expensive” local updates
according to the exact weight W [φ], which is necessary
to obtain two statistically independent configurations in the
conventional MC simulation, with cumulative local updates

according to the approximate weight e−βHeff [φ], which is
numerically much faster.

We now derive the desired probability of accepting the
proposed move φA → φB in a single step of the cumulative
update. As in the general Metropolis-Hastings algorithms [2],
our update scheme consists of two stages: first, a candidate
configuration φB is generated from φA through a sequence
of local updates; second, the update φA → φB is accepted
with a probability p(A → B). The Markov-chain transition
probability P (A → B) is the product of the probability of
generating the particular configuration φB among all the
possibilities in the first stage, denoted by S(A → B), and the
probability of accepting φB , p(A → B). The detailed balance
condition for P (A → B) requires

P (A → B)

P (B → A)
= S(A → B)

S(B → A)

p(A → B)

p(B → A)
= W (B)

W (A)
, (4)

where W (A) ≡ W [φA] is the exact weight of the
configuration φA. Moreover, by construction, the ratio
S(A → B)/S(B → A) is set by the detailed balance condition
of the effective model

S(A → B)

S(B → A)
=

lc−1∏
i=0

P̃ (Ci → Ci+1)

P̃ (Ci+1 → Ci)

=
lc−1∏
i=0

e−β(Ẽi+1−Ẽi ) = e−β(ẼB−ẼA), (5)

where φC0 ≡ φA and φCn
≡ φB . P̃ (Ci → Ci+1) is the tran-

sition probability for i-th local update of the effective
Hamiltonian Heff[φ], and Ẽi ≡ Heff(φCi

) is the energy of the
configuration φCi

in the effective model. Combining Eqs. (4)
and (5), we find the desired probability of accepting the
candidate configuration found through cumulative update,

p(A → B) = min{1,e−β(EB−ẼB )−(EA−ẼA)}, (6)

where E is the energy of the exact Hamiltonian H [φ]. In the
ideal case when Heff[φ] = H [φ], p = 1.

The computational cost of one complete cumulative update
step contains two parts: (1) the cost of local updates based
on Heff , which generally has the complexity O(lc), where lc
denotes the number of local updates; and (2) the cost of ED to
compute the acceptance probability in Eq. (6), which has the
complexity O(L3d ). Hence the total cost is O(lc) + O(L3d ).
In order to obtain two uncorrelated configurations in a single
cumulative update step, we take lc to be of the order of τ0L

d ,
with τ0 to be the autocorrelation time (a unit τ0 corresponds
to a single full sweep of Ld sites). For systems away from
critical points, τ0 is taken as a constant, and close to critical
points τ0 scales as Lz with z empirically found to be around
2 [9,10]. Thus the cost of the ED operation almost always
dominates in the cumulative update process. Assuming that
the effective model is accurate enough such that the proposed
global move φA → φB is accepted with a probability of the
order of 100%, a cumulative update generates a statistically
independent configuration with a computational cost of a
single ED step, i.e., O(L3d ). Compared to the complexity
of O(τ0L

4d ) for the conventional local update, this gives a
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speedup of O(τ0L
d ) = O(Ld+η) where η = 0 for noncritical

systems and η = z for critical systems.
We notice that there are faster methods that evaluate the

weight in Eq. (2) approximately without performing an ED
[29–34]. These methods are not exclusive from the SLMC
methods, and by incorporating these approximations, we can
further reduce the complexity of SLMC.

In the rest of this work, we numerically demonstrate the
power of SLMC by simulating the double exchange model
[25–27]:

Ĥ = −t
∑
〈ij〉,α

(ĉ†iαĉjα + h.c.) − J

2

∑
i,α,β

�Si · ĉ
†
iα �σαβ ĉiβ, (7)

where 〈ij 〉 is the summation over the nearest-neighbor pairs
of sites. ĉiσ is the fermion annihilation operator of spin σ

at site i, and �σ are the Pauli matrices for the fermion spin
operator. �Si is a classical vector of unit length on site i,
representing the localized spin that couples to the fermion on
the same site. Despite the absence of direct interactions in this
model between localized spins on different sites, the presence
of itinerant fermions effectively generates a RKKY-type
[35–37] interaction gij

�Si · �Sj , where gij decays with the
distance between site i and j .

Below we simulate the double exchange model on the three-
dimensional (3D) cubic lattice. Previous numerics have shown
that for J/t = 16 and at filling ν = 1/4, this model exhibits a
phase transition from paramagnet to ferromagnet at a critical
temperature Tc/t ∼ 0.12 [31]. We focus on simulations around
Tc, where the speedup of SLMC is expected to be maximum.

Following the general procedure of the SLMC, we first
perform trial simulations to train an effective model that
includes all two-body interactions between two localized
spins, preserving translational and spin-rotational symmetries

Heff = E0 − J1

∑
〈ij〉1

�Si · �Sj − J2

∑
〈ij〉2

�Si · �Sj − · · · , (8)

where 〈ij 〉n is the summation over nth nearest-neighbor
pairs of localized spins. Denoting Cα

n = ∑
〈ij〉n �Si · �Sj , we

train E0 and Jn through a multi-linear regression with Eα =
E0 + ∑

n JnC
α
n . To speed up and improve the fitting, we have

exploited the reinforcement learning strategy here, i.e., we
use the SLMC method on the trained model to generate more
uncorrelated spin configurations efficiently, and then further
optimize parameters in the effective model using these new
training data. This reinforced learning process can be iterated
a few times until the desired parameters converge.

The fitting result for L = 4 is shown in the Fig. 1. We see
a clear RKKY profile of the spin-spin interaction mediated
by itinerant fermions: the coupling strength Jn decays and
oscillates with the distance between two localized spins.
To demonstrate how good the fitting is, we sample 105

independent configurations on the Markov chain according
to the Boltzmann distribution of the original model and of the
effective model. As shown in the insets of Fig. 2, these two
Boltzmann distributions look nearly identical.

To quantify the accuracy of the effective model Eq. (8),
we measure the differences in the energies of Heff (denoted
by Ẽ) and of H (denoted by E) for sample configurations
(denoted by S) of localized spins drawn from the Boltzmann

1 2 3 4 5 6 7 8
-0.02

0

0.02

0.04

0.06

0.08

FIG. 1. The trained parameters Jn for the effective model in
Eq. (8) for L = 4.

distribution e−βH , known as residuals in statistical analysis:
ES ≡ ẼS − ES. As shown in Fig. 2, the distribution of E is
Gaussian, with a peak centered at E = 0. The narrow width
of the peak demonstrates the high accuracy of our effective
model. In the ideal case where Heff = H , the distribution of E
becomes a delta function.

We further use the statistical measure R2, also called the
coefficient of determination, as a figure of merit (“score”)
characterizing how well the effective model replicates the
Boltzmann distribution of the original model. This score is
defined through the sum of squares of residuals:

R2 = 1 −
∑

S E2
S∑

S(ES − 〈E〉)2
, (9)

FIG. 2. For 105 independent spin configurations on the Markov
chain of H , the blue histogram is the distribution of the energy
difference E(S) of these configurations between the original model
H (S) and the effective model Heff (S). The red curve is the fitted
Gaussian distribution with σ = 0.012. The upper-left and upper-right
insets are distributions of E(S) and Eeff (S), respectively.
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FIG. 3. The autocorrelation function C(τ̃ ) = 〈M(τ̃ )M(τ̃ +
�τ̃ )〉 − 〈M(τ̃ )〉2 of the magnetization with τ̃ (number of EDs) as
the time unit for both the SLMC and the conventional method on
the system with L = 4. Here, for SLMC we choose lc = 16 × 43.
The dotted curves are the fitted τ̃0 based on the equation C(τ̃ ) =
C(0) exp(−τ̃ /τ̃0).

and ranges from 0 to 100%. A perfect effective model Heff =
H has R2 = 100%. The scores of our effective model for
the double exchange Hamiltonian with L = 4,6,8 are R2 =
99.5%, 99.8%, and 99.9% respectively.

Finally, we show the actual speedup of our SLMC simula-
tion. We use the autocorrelation time of SLMC and conven-
tional method to gauge their performance. As well known, the
statistical error of a MC simulation is proportional to 1/

√
NMC,

where NMC is the number of statistically independent samples.
Hence, to achieve a given level of statistical error, the total
number of MC steps needed in the simulation is proportional to
the autocorrelation time, which measures the average number
of MC steps needed to obtain another independent sample.
Here, since ED calculations dominate the computational cost
in both the conventional and the SLMC method, we use
the number of EDs denoted by τ̃ , instead of the number of
sweeps τ , as the unit to measure the autocorrelation time.
Figure 3 shows the decay of autocorrelation functions with
τ̃ as the time unit for both methods. From these we extract
the autocorrelation time τ̃0, which precisely characterizes the
actual computational cost to obtain two uncorrelated spin
configurations. For L = 4, τ̃0 is over 150 times shorter in
SLMC than in the conventional method.

In Fig. 4, we demonstrate the remarkable efficiency of the
SLMC method as the system size increases. As discussed
previously, in the conventional MC method τ̃0 ∼ O(Ld+z)
scales extremely fast with system size L due to the cost of
EDs, as confirmed by our expensive numerics for L = 4 and 6.
In contrast, in SLMC method with an accurate effective

864
0

500

1000

1500

2000

2500

3000

3500

4000
SLMC
Conventional

FIG. 4. The autocorrelation time τ̃0 for both the SLMC and the
conventional method on systems with L = 4, 6, and 8. The red
dashed curve, obtained through extrapolating the two data points
with the well-known dynamical exponent z � 2, shows the scaling
behavior of the conventional method [38].

model, we expect τ̃0 ∼ O(1). Indeed, our SLMC simulation
shows τ̃0 hardly scales with the system size. For L = 8, τ̃0

in the conventional method is estimated to be ∼104 from
extrapolation based on the scaling, whereas in SLMC it is
numerically found to be ∼6, leading to an enormous speedup
by ∼103 times.

To conclude, we developed a general-purpose, statistically
exact SLMC method with a cumulative update algorithm for
simulating fermion systems, whose computational complexity
is significantly reduced compared to the conventional MC
method. We believe our method holds great promise for
solving a wide class of challenging many-body problems of
fundamental interest.
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