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Global band topology of simple and double Dirac-point semimetals
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We combine space group representation theory together with the scanning of closed subdomains of the Brillouin
zone with Wilson loops to algebraically determine the global band-structure topology. Considering space group
No. 19 as a case study, we show that the energy ordering of the irreducible representations at the high-symmetry
points {�,S,T ,U} fully determines the global band topology, with all topological classes characterized through
their simple and double Dirac points.
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Topological semimetals with their protected band-crossing
Dirac (or Weyl) points have recently attracted a lot of interest.
As many other topological phases of matter, symmetries
play an important role in the understanding, classification,
and prediction of topological semimetals [1]. While much
work have focused on the local characterization of symmetry-
protected Dirac points [2–7] and also on specific global
features [8–17], a systematic treatment of the global band
topology enforced by the crystal space group is still missing.

Space group representation theory fully determines
the symmetry-protected band crossings occurring at high-
symmetry points or lines of the Brillouin zone (BZ), each
being treated separately [18]. It was also realized early on
that nonsymmorphic space groups can realize connected
elementary energy bands [19–22], i.e., a minimum number
of bands that are connected through enough contact points
such that one can travel continuously through these bands
over the BZ. This leads to an additional global type of
symmetry-protected Dirac points that can be moved in some
determined regions of the BZ but are globally unavoidable.
A consequence for such space groups is the tightening of
the necessary electron filling condition for realizing a band
insulator. While the filling number must usually only be
even for a insulating state, it typically needs to be within a
proper subset of this for a nonsymmorphic space group [23].
Conversely, it is sufficient (but not necessary) to violate this
tighter filling condition to achieve a semimetallic phase.

Still, one main question has remained open so far: For a
given space group G, what is the global topology of the band
structure including all Dirac points, which in turn also provides
the filling condition for a topological semimetallic state? In this
Rapid Communication we show that combining space group
representation theory together with Wilson loop techniques to
calculate the Berry phase leads to a definitive answer to the
question, using space group No. 19 (SG19) as a case study [24].
In fact, we show that the global band topology, including all
symmetry-protected Dirac points, is fully determined simply
by the energy ordering of the irreducible representations
(IRREPs) at the high-symmetry points {�,S,T ,U}.

4N -band structures in sg19. The nonsymmorphic
SG19 (P 212121) is composed of a primitive orthorhombic
Bravais lattice and three screw axes {g|τ g} with the point
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group elements g ∈ D2 = {E,C2z,C2y,C2x} and the
fractional translations τ x = (a1 + a2)/2, τ y = (a2 + a3)/2,
τ z = (a1 + a3)/2, where {ai}i=1,2,3 are the primitive lattice
vectors. Since SG19 has a single Wyckoff position with no
symmetry, the set of all [one-dimensional (1D)] IRREPs
at � must split into N copies of the four IRREPs of D2,
{�0

1,�
0
2,�

0
3,�

0
4} defined by the character table in Fig. 1(b)

[25]. Likewise, the set of all two-dimensional (2D) IRREPs
at the points Ui ∈ {S,T ,U} splits into N copies of the two
projective IRREPs {�Ui

5 ,�
Ui

6 }, also given in Fig. 1(b) [18,26].
It is convenient to split the high-symmetry lines into three
distinct BZ subspaces: B� = ⋃

Xi=X,Y,Z �Xi (high-symmetry

lines crossing �), BR = ⋃
Ui

RUi (high-symmetry lines

crossing R), and B�-R = ⋃
Xi,Ui

XiUi (high-symmetry lines
connecting B� and BR) [see Fig. 1(a)]. Only a unique 2D
IRREP is allowed on B�-R [18,26]. This leads to B� and
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FIG. 1. (a) BZ with high-symmetry points and lines of SG19. (b)
Character tables of the IRREPs for the point groups D2 and C2 with
λk∗

i = e−ik∗·τ i , where k∗ belongs to one line of B� for {�a,�b} and BR

for {�5,�6}. (c) Electronic band structure of a four-band tight-binding
model in SG19. Unavoidable globally protected simple Dirac points
(|C1| = 1) in red and double Dirac point (|C1| = 2) in green.
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TABLE I. Band permutation rules in B� and BR . Bands are
labeled according to their IRREPs at � for B� and Ui for BR .

P�b1
P�b2

P�b3
PSb3

,PT b1
,PU b2

(12)(34)
(13)(24)

(13)(24)
(14)(23)

(12)(34)
(14)(23)

(56)

BR being symmetry independent since their IRREPs are not
constrained by their compatibility relation into B�-R .

With this background we directly state our first main result:
Any 4N -band structure of SG19 can be reconstructed by hand
from the list of energy-ordered IRREPs at the high-symmetry
points {�,S,T ,U} by applying rules 1–4 below. To show
this, we start with the B� subspace. Labeling all the energy
eigenvalues at � according to their band index (n = 1, . . . ,N )
and IRREP (j = 1,2,3,4) as En

j (0), we can follow smoothly
each eigenvalue branch over B� [we define this as the smooth
gauge; see Supplemental Material (SM) [27]]. We write
P�bi

= (j1j2)(j3j4) for the two-by-two permutation in energy
of the four bands {En1

j1
,E

n2
j2

,E
n3
j3

,E
n4
j4

} under a shift by a

primitive reciprocal lattice vector bi (bi ‖ �Xi). We then get
(see SM [27]) rule 1: All bands are permuted along each line
of B� according to Table I.

Permutations only happen between bands belonging to
different IRREPs along each line �Xi , i.e., with different

compatibility relations �0
j → �

k∗∈�Xi

k , k = a,b [see Fig. 1(b)].
Hence, any two permuted bands have a symmetry-protected
crossing. In fact, these crossing points are at the middle points
{X,Y,Z} because of their D2 symmetry [18,26,28]. In addition,
we have rule 2: For any two bands E

n1
j1

and E
n2
j2

at � with the

same compatibility relation into �Xi , we have

E
n1
j1

(0) ≷ E
n2
j2

(0) ⇔ E
n1
j1

(k∗) ≷ E
n2
j2

(k∗), ∀k∗ ∈ �Xi.

This rule is a straightforward consequence of (i) the smooth-
ness of the eigenvalues as functions of k and (ii) two states
with the same compatibility relation into a given k∗ being
able to hybridize, hence forbidding symmetry-protected band
crossings. Applying rules 1 and 2, we readily conclude that
any isolated four-band subspace (i.e., separated by an energy
gap) realizes two distinct permutations of Table I over B� , no
more, no less. This leads to two new Dirac points (apart from
the crossings at Xi) somewhere along one of the lines {�Xi},
with i determined only by the order in energy of the IRREPs
at �. These two Dirac points are protected by the global band
topology. In Fig. 1(c) we provide a four-band tight-binding
example with these two Dirac points (red) on �Z.

Next, we consider the BR subspace. Labeling the bands at
Ui as En

l (Ui), with l = 5,6, and again assuming the smooth
gauge, we write as PUi bj

= (l1l2) the two-by-two permutation
in energy of the two bands {En1

l1
,E

n2
l2

} under a shift from Ui by
bj ‖ RUi . We then get rule 3: All the bands are permuted along
each line of BR according to PSb3

= PT b1
= PU b2

= (56).
These band permutations enforces one symmetry-protected
Dirac point along each line RUi , since the two bands {5,6}
correspond to distinct IRREPs on these lines [see Fig. 1(b)].
Because of the D2 symmetry of the midpoint R, these crossings
will always be at R, leading to a fourfold degeneracy, as
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FIG. 2. (a) Closed surface S separating subspaces B� and BR

with the oriented boundary ∂S = L1 + L2. (b) Oriented boundary
∂Sa of a subset Sa with S = ∪g∈D2gSa . (c) Oriented boundary ∂Sb

of the closed surfaceS ′ = Sb + C2zSb surrounding h�Z. (d) Oriented
boundary ∂Sc of the closed surface S ′′ = ∪g∈D2gSc surrounding the
plane X. In (c) and (d), S(b,c) is obtained from the green plane through
a smooth inflation out of plane with the oriented boundary ∂S(b,c)

constrained by the symmetry requirement that S(b,c) + C2(z,x)S(b,c) is
closed.

indicated in green in Fig. 1(c). Similarly to rule 2, we finally
have rule 4: For any two bands E

n1
l1

and E
n2
l2

at Ui with the
same IRREPs, i.e., l1 = l2, we have

E
n1
l1

(Ui) ≷ E
n2
l1

(Ui) ⇔ E
n1
l1

(k∗) ≷ E
n2
l1

(k∗), ∀k∗ ∈ RUi.

Together, rules 3 and 4 fully determine the global band
structure in the BR subspace.

Left to consider is the B�-R subspace, but here only one
2D IRREP is allowed, which excludes any extra symmetry-
protected Dirac points. The whole 4N -band structure can
thus be determined by knowing the energy ordering of the
IRREPs at the high-symmetry points {�,S,T ,U}. Figure 3
gives two eight-band examples where these rules give the full
band structure.

Four-band topology. Having demonstrated the existence of
Dirac band-crossing points, we turn to fully characterizing
their topology. We start with the simplest four-band case.
For this we derive the Chern number of each Dirac point
algebraically, i.e., with no other assumption than that the
system satisfies SG19. In the following, we arbitrarily split
the four bands into two valence bands (occupied) and two
conduction bands (unoccupied) over the whole BZ [29].

Let us first separate the two subspaces B� and BR by
the green box S shown in Fig. 2(a). S is chosen such that
it is closed (the oriented boundaries ∂S = L1 + L2

∼= 0 due
to periodicity), symmetric under D2, and supporting a fully
gapped spectrum. Effectively, S surrounds B� . Any smooth
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deformation of S satisfying these conditions and conserving
the vertices also works. By Stokes’ theorem the Chern number
over the closed manifold S is simply given by the Berry phase
over its boundary ∂S, i.e., 2πC1[S] = γ [∂S]. Notice that we
here have to assume a smooth gauge, such that the Berry
phase γ varies smoothly as we sweep the loop L over S [31].
Next, we rewrite S as the orbit of a subset Sa under the point
group D2, i.e., S = ⋃

g∈D2
gSa . Using the symmetry of the

Berry curvature under D2[30], we then have the simplification
2πC1[S] = 4γ [∂Sa], with ∂Sa the red oriented loop shown in
Fig. 2(b). We are thus left with the task of evaluating the Berry
phase γ [∂Sa].

The total Abelian Berry phase of the valence
(occupied) subspace of a closed loop L is given by
e−iγ [L] = detW[L], where W[L] is the matrix (non-Abelian)
Wilson loop computed in the valence band basis |uocc,k〉 =
(|uv1 ,k〉,|uv2 ,k〉)T [27]. We can then decompose the loop ∂Sa

into segments with high-symmetry end points: W[∂Sa] =
WX1←Y1WY1←T1WT1←U1WU1←T2WT2←Y2WY2←X1 [see Fig.
2(b)]. A symmetry reduction based on C2x , assuming that the
half Sa + C2xSa of S is closed, using techniques developed in
Refs. [32–35], then gives [27]

detW[∂Sa] = det
[
S̆X

x · (
S̆Y

x

)−1 · S̆T
x · (

S̆U
x

)−1]

=
∏

n=1,2

λX
x,nλ

T
x,n

λY
x,nλ

U
x,n

. (1)

Here, S̆k∗
x = 〈uocc,C2x k∗|{C2x |τ x}|uocc,k∗〉 gives a represen-

tation of the symmetry operator {C2x |τ x} in the occupied
band basis at the high-symmetry point C2x k∗ = k∗ − K [C2x]
(K [C2x] is a reciprocal lattice vector, possibly zero) with λk∗

x,n

being its nth eigenvalue. Since the eigenvalues are invariant
under (unitary) basis changes we can readily use tabulated
IRREPs [18,26] and we find e−iγ [∂Sa ] = detW[∂Sa] = −1
and thus the Chern number C1[S] = 4γ [∂Sa]/(2π ) = 2
mod 4 [36]. We thus conclude that there is a symmetry-
protected obstruction to the realization of a trivial insulating
band structure over S, leading to the existence of topologically
stable Dirac points in B� . Choosing the smallest Berry phase,
we get C1[B�] = ±2. By the cancellation of the global charge
(Nielsen-Ninomiya theorem [37–39]), the Chern number of
BR ⊂ BZ\B� must then be C1[BR] = ∓2 and hence the R

point is necessarily a double Dirac point.
We now establish that the above result can be refined by

choosing tighter “boxes.” First, we consider a closed surface
S ′ that surrounds half of a line of B� (written h�Xi) and is
symmetric under a C2i rotation around that axis [see, e.g.,
Fig. 2(c) for S ′ = Sb + C2zSb surrounding h�Z]. Following a
similar line of thought as above, the Chern number is given by
the Berry phase of the surface boundary. Further proceeding
with a symmetry reduction of the Wilson loop based on C2i ,
we find [27]

e−iπC1[h�Xi ] = −χ
v1
i χ

v2
i , (2)

where χ
vn

i (=λ0
i,vn

) is the character of the 1D IRREP
�0

vn
({C2i |τ i}) of the valence band vn at �, given in Fig. 1(b).

Therefore, depending on the valence IRREPs at �, we either
have C1[h�Xi] = 0 mod 2 such that no Dirac point is

TABLE II. The three inequivalent band topologies of B� given
by the Chern numbers of its half lines (h�Xi) and planes (Xi) for
eight bands with four valence bands.

�I: {�1,�2,�3,�4} C1[h�Xi] = C1[Xi ]
2 = 0 mod 2

�II: {�j ,�j ,�k,�l}j �=k �=l
e−iπC1[h�Xi ] = e−iπ

C1[Xi ]
2 = χk

i χ l
i

�III: {�j ,�j ,�k,�k}j �=k

e−iπ
C1[h�Xi ]

2 = −χ
j

i χk
i

e−iπ
C1[Xi ]

4 = +χ
j

i χk
i

present, or C1[h�Xi] = 1 mod 2, which gives the existence
of a simple Dirac point (|C1| = 1) on the half line h�Xi .

Next, we instead choose a closed surface S ′′ = ⋃
g∈D2

gSc

that surrounds the plane containing � and perpendicular to
the line �Xi (written Xi). The Chern number is then given by
2πC1[Xi] = 4γ [∂Sc], as illustrated for X in Fig. 2(d). Finally,
the symmetry reduction of the Wilson loop based on C2i ,
assuming that the half Sc + C2iSc of S ′′ is closed, gives [27]

e−i
πC1[Xi ]

2 = +χ
v1
i χ

v2
i . (3)

Thus, depending on the valence IRREPs at �, we either
have C1[Xi] = 0 mod 4, i.e., no Dirac points on Xi , or
C1[Xi] = 2 mod 4, demonstrating that the two simple Dirac
points on the plane Xi have the same charge. This result also
directly implies that the R Dirac point has charge ∓2. This
fully characterizes the global band topology of any four-band
subspace with SG19 [40].

Eight-band topology. We next consider the topology of
eight bands. Similarly to before, we arbitrarily split the bands
into four valence and four conduction bands over the whole
BZ. We then find the Chern numbers corresponding to Eqs.
(2) and (3) as

e−iπC1[h�Xi ] = (−1)2χ
v1
i χ

v2
i χ

v3
i χ

v4
i , (4)

e−iπ
C1[Xi ]

2 = (+1)2χ
v1
i χ

v2
i χ

v3
i χ

v4
i . (5)

Both are thus still determined by the valence IRREPs at
�. From Eqs. (4) and (5) we identify three topologically
inequivalent classes of band structures over B� . This leads to
Table II [41]. �I excludes simple Dirac points within B� . �II

enforces two pairs of same-charge simple Dirac points within
B� with a total charge of 0 or |4|. �III has one quadruple of
(same-charge) simple Dirac points on a single line in B� .

We also have to characterize the topology of BR . We find
for the three half lines in BR (written {hRUi}) [27]

e−iπC1[hRUi ] = (−1)2 det
[
�Ui

v1
(C2i)�

Ui

v2
(C2i)

]
. (6)

Thus two inequivalent situations can be realized according
to if �Ui

v1
= �Ui

v2
or �Ui

v1
�= �Ui

v2
. From this we derive Table III

[42]. In both cases the Chern numbers of the planes containing
R and perpendicular to the axes {RUi} (written Ui) are [27]

TABLE III. The two inequivalent band topologies of BR given by
the Chern numbers of its half-lines (hRUi) and planes (Ui) for eight
bands with four valence bands.

Ui,I: {�5,�6} C1[hRUi] = C1[Ui ]
2 = 0 mod 2

Ui,II: {�j ,�j } C1[hRUi] = C1[Ui ]
2 = 2 mod 4
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TABLE IV. The eight nonequivalent band topological classes for
eight bands with four valence bands. [(·)] means the equivalence class
obtained by cyclic permutations of S,T ,U .

�I �II �III

(SI,TI,UI) (SI,TI,UI) [(SII,TI,UI)]
[(SII,TII,UI)] [(SII,TI,UI)] (SII,TII,UII)

[(SII,TII,UI)]
(SII,TII,UII)

C1[Ui] = 0 mod 4. Thus, the class Ui,I corresponds to a band
structure with no double Dirac point on the half line hRUi ,
while the class Ui,II has a pair of (same-charge) double Dirac
points on the line RUi .

The band structure of any eight bands is fully char-
acterized in terms of the classes {�I,�II,�III} for B� and
{SI,SII,TI,TII,UI,UII} for BR . The classes are in turn deter-
mined by the energy-ordered IRREPs at the high-symmetry
points {�,S,T ,U}. While we argued that the two subspaces
B� and BR are symmetry independent, they are actually
constrained by a global charge cancellation over the whole BZ.
Enumerating all the combinatorial possibilities up to the charge
cancellation requirement results in the eight inequivalent band
topological classes presented in Table IV.

A band-structure example from class (�II ,SI ,TI ,UI ) is
shown in Fig. 3(a). It realizes two pairs of simple Dirac
points (blue): one pair on �Y (both with charge ±1) and
one on �Z (both with charge ∓1). These new Dirac points
are in addition to those found above within the four band
subspaces (red and green). Density functional theory (DFT)
band structures of three-dimensional (3D) organic materials
with SG19 belonging to the same class have also recently
been found [43]. Another example from class (�III,SII,TI,UI)
is shown in Fig. 3(b). It realizes a quadruple of simple Dirac
points (blue) on �Z (all of charge ∓1) and a pair of double
Dirac points (purple) on RS (both of charge ±2).

The technique illustrated above can be straightforwardly
extended to arbitrary 4N -band structures. Simply, from the list
of energy-ordered IRREPs at {�,S,T ,U} we can thus deduce
the global band topology and predict all simple and double
Dirac points protected by symmetry. In addition, at integer
filling the number of valence bands must be a multiple of 2 and
the IRREP ordering determines if the material is an insulator
(the filling number is then a multiple of 4) or a topological
semimetal, where the Fermi level necessarily crosses the bands
forming Dirac points. In fact, due to global charge cancellation,
distinct sets of Dirac points, not connected by point symmetry,
are necessarily realized, such that the Fermi level generally
does not cross at the point nodes [see, e.g., Fig. 1(c)]. This leads
to “Dirac-point metals” (the point-nodal analog to Ref. [14]).
A true semimetallic state is only achieved through fine tuning
of the band structure. The generality of the technique also
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FIG. 3. Electronic band structure of eight-band tight-binding
models in SG19, corresponding to (a) class (�II,SI,TI,UI) and (b) class
(�III,SII,TI,UI). Symmetry-protected single Dirac points (|C1| = 1)
globally unavoidable in red (as obtained in the four-band subspace)
and class dependent in blue for an eight-band subspace, as well as
double Dirac points (|C1| = 2) globally unavoidable in green (as in
the four-band subspace) and class dependent in purple (eight-band
subspace).

means that it is not restricted to SG19 and it can also easily
be generalized to include spin degrees of freedom. The strong
explicative and predictive power in combining symmetry and
topology makes this algebraic approach highly complementary
to current data mining searches for topological semimetals
[44,45] and can place it at the core of future intelligent DFT-
based data mining schemes.

Note added. Recently, we became aware of Refs. [46,47],
which consider global topological classification. While some
conclusions are similar to ours (especially the former that also
considers a 3D example), their derivations are more formal
(making use of K theory) and they both exclude time-reversal
symmetry. Our approach is more heuristic and importantly
includes time-reversal symmetry, which is usually present in
the normal state.
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