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Emergence of Bloch oscillations in one-dimensional systems
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Electrons in periodic potentials exhibit oscillatory motion in the presence of an electric field. Such oscillations
are known as Bloch oscillations. In this article we theoretically investigate the emergence of Bloch oscillations
for systems where the electric field is confined to a finite region, like in typical electronic devices. We use a
one-dimensional tight-binding model within the single-band approximation to numerically study the dynamics of
electrons after a sudden switching-on of the electric field. We find a transition from a regime with direct current
to Bloch oscillations when increasing the system size or decreasing the field strength. We propose a pump-probe
scheme to observe the oscillations by measuring the accumulated charge as a function of the pulse length.
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I. INTRODUCTION

Since the seminal works of Bloch [1] and Zener [2] it is
well established that electrons in a periodic potential exhibit
oscillatory motion after a static electric field is switched on (for
a review see Ref. [3]). The periodic motion of the electrons
in this context is also known as Bloch oscillations (BOs). The
period of the oscillations is given by TB = h/F0a, where h is
Planck’s constant, a is the lattice spacing, and F0 is the electric
field strength. In practice the BOs are typically suppressed by
loss of coherence due to collisions, which makes it challenging
to observe BOs in experiments. Over the last decades BOs have
been found and characterized in various systems, for instance
in semiconductor superlattices [4–8], ultracold atomic gases
[9–11], or photonic waveguide arrays [12–14].

Also on the theoretical side there has been considerable
interest in studying BOs. For instance, their interplay with
disorder [15,16], light [17,18], interactions [19–21], or other
degrees of freedom [22] has been investigated. In many cases,
the essential physics can already be captured using a single-
band approximation and considering a one-dimensional (1D)
tight-binding (TB) chain [23].

In most theoretical studies, BOs have been considered in
infinite systems. Here we investigate the emergence of BOs
in a system where the electric field is confined to a finite-size
region. This scenario corresponds to the typical setup of a
device coupled to electronic leads. If the device is sufficiently
small, one expects to find a direct current (dc) in the steady
state. On the other hand, if the system is infinitely large, one
will get BOs as discussed above. In this article we study the
transition between the two regimes by increasing the device
size and by changing the magnitude of the applied electric
field. An important issue is the detection of BOs in such
devices. We propose a pump-probe scheme, which uses the
rising and falling flanks of a nearly rectangular pulse, to obtain
information about the internal dynamics and BOs.
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As in Ref. [23] we consider a 1D TB system and neglect
the influence of electron-electron interactions. To account for
the time dependence of the electric field, we use a recently
developed numerical method [24], which is based on the
time-dependent nonequilibrium Green’s function (TDNEGF)
formalism [25,26] in combination with an auxiliary-mode
expansion [27]. This approach has already been successfully
applied to study time-dependent nanoelectronics [28–34]
and it allows us to obtain the time-dependent currents and
occupations during and after the pulse has been applied. This
information is then used to characterize the spatiotemporal
evolution of the electrons in the device.

The article is organized as follows: Section II gives details
on the specific setup and introduces the numerical scheme
used in our study. Section III elaborates on the main results,
whereas Sec. IV concludes the present work.

II. TRANSPORT SETUP AND METHOD

The setup consists of a generic one-dimensional (1D)
system which is described as a tight-binding chain. The system
as well as reservoirs sites are coupled to their nearest neighbors
(see Fig. 1). Thus, the Hamiltonian in second quantization is
expressed as

H (t) =
∞∑

n=−∞
εn(t)c†ncn − γ

∞∑
n=−∞

(c†ncn+1 + c
†
n+1cn),

(1)

with εn(t) =
⎧⎨
⎩

εL(t), if n � 0 (left lead),
εDn(t), if 1 � n � N (device),
εR(t), if n > N (right lead).

Here εn(t) denotes the time-dependent site energies for device
and leads, γ is the intersite hopping parameter, whereas c

†
n (cn)

creates (annihilates) an electron at site n. The device region
consists of sites 1, . . . ,N , while the left (right) lead is defined
by sites n < 1 (n > N).

To study the time evolution of the device, we employ a
numerical method based on the TDNEGF formalism, which
was recently put forward in Ref. [24]. The time evolution of
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FIG. 1. (a) Sketch of the field-induced site energies (constant in
the leads, linearly decreasing in the system). (b) Sketch of the TB
chain: the system sites (orbitals) depicted in black (indexed from
1 to N ) are connected to left and right leads depicted in red.

the reduced density operator (RDO) σ is given by

ih̄
d

dt
σ (t) = [HD(t),σ (t)] + i

∑
α∈{L,R}

[�α(t) + �†
α(t)]. (2)

Here HD(t) denotes the device part of the Hamiltonian,
whereas the current matrices �α(t) are given by another set of
equations (for details see Appendix B and Refs. [24,27]). These
allow it to compute the time-resolved current from reservoir
α = L,R into the device via

Jα(t) = 2e

h̄
ReTr{�α(t)}. (3)

Note that this propagation scheme solves Eq. (2) in time
domain. Hence one has access to time-resolved quantities like
the instantaneous occupations given by σ ii(t), i = 1, . . . ,N .
Moreover, the partial current between next neighboring system
sites is given in terms of matrix elements of the RDO by

Ji+1,i(t) = i
eγ

h
[σ i+1,i(t) − σ i,i+1(t)]. (4)

In the following we use the intersite hopping parameter γ as
the unit of energy. In semiconductor superlattices [5–8], which
are made of alternating layers of semiconductor materials
with small and large band gaps, one finds γ ≈ 20 meV and
the typical lattice parameter is a ≈ 100 Å. The magnitude
of the electric field is then given in units of γ /ea ≈
20 keV/cm. The unit of time is h/γ ≈ 0.2 ps.

III. RESULTS AND DISCUSSION

A. Steady-state dynamics

In this section we analyze the occurrence of Bloch
oscillations in response to the sudden switching-on of an
external electric field. Initially, the system is in equilibrium
with the reservoirs at μ = μL = μR = −γ and kBT = 10−2γ .
An electric field (or equivalently a bias voltage) is suddenly
switched on at t = t0 and it is assumed that the voltage drop
is linear across the device. Hence, the time dependence of
the site energies is given by εi(t) = aF (t)[(N + 1)/2 − i] and
εL = −εR = aF (t)(N − 1)/2, where F (t) = F0{1 + erf[(t −
t0)/tr ]}/2 is the instantaneous force due to an electric field
F (t)/e and erf is the error function. The rise time of the electric
field is given by tr (in all present simulations tr = 10h̄/γ ).

First, in Fig. 2 we explore the steady-state behavior. To this
end we calculate the time average of the current through the
center of the system 〈Jcent.(t)〉, where Jcent.(t) ≡ JN/2+1,N/2(t).
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FIG. 2. (a) Time average of the electronic current in the center
of the system Jcent. and (b) half range of mean absolute deviation for
Jcent., both computed as function of system size (N ) for several values
of field magnitude (F0). (c) and (d) The same data as (a) and (b) but
with the system size being scaled by the Bloch length LB . Dashed
lines are guides to the eye. The solid black lines indicate the current
amplitude according to Eq. (A4).

As one can see in Fig. 2(a), for small system sizes N there
is a linear increase of the average current with system size,
which eventually saturates to a maximal value. For larger N ,
there is a transition regime, where 〈Jcent.(t)〉 monotonously
decreases. For even larger N the average current becomes
identically zero. This behavior can readily be understood by
noting that the bandwidth of the leads is 4γ and the bias volt-
age becomes eV = εL − εR = F0a(N − 1) for t − t0 � tr .
The current increases as J = (e/h)V up to the point where
the lower band edge of the left lead raises over the chemical
potential in the right lead, i.e., for eV = 2γ + μ. Now, all
occupied states in the left lead have corresponding empty states
in the right lead. This changes when the chemical potential
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in the left lead raises above the upper band edge in the right
lead, i.e., for eV = 2γ − μ. The current drops linearly to zero,
J = (e/h)(4γ − eV ), since at eV = 4γ the bands of the leads
do not overlap any longer.

In addition, in Fig. 2(b) we show the half range of the mean
absolute deviation for Jcent.. This quantity is defined as

�Jcent. = {max[Jcent.(t) − 〈Jcent.(t)〉]
−min[Jcent.(t) − 〈Jcent.(t)〉]}/2. (5)

In the range where the average current is nonvanishing, we
find that �Jcent. is zero. This implies that a dc is flowing in the
steady state as long as F0a(N − 1) � 4γ . From Fig. 2(b) one
sees that �Jcent. > 0 if the system size is further increased and
the average current vanishes. This behavior is consistent with
an oscillating current.

The transition from dc towards an oscillatory regime can be
qualitatively explained by the emergence of BOs. Specifically,
there is a typical length scale of BOs, which is given by the
Bloch length [23]

LB = 4γ

F0
, (6)

where 4γ is the bandwidth of a 1D-TB chain. This means that
the system size needs be greater than the Bloch length, in order
to observe oscillatory behavior. This argument is supported by
Figs. 2(c) and 2(d), where the scaling of the data by the Bloch
length is shown.

B. Time-resolved dynamics

To explore the effect in more detail, we fix the system
size to N = 50 and examine the time-dependent response
for different external field magnitudes. Specifically, the time
dependence of the site occupation numbers and the currents
obtained by our method are shown in Fig. 3. Each triple-block
plot shows the dynamics computed for a value of F0, namely
F0 = 0.05γ /a, 0.1γ /a and 0.2γ /a. Note that in each block
displayed are from top to bottom: the site occupation number
σii(t) (given by the diagonal elements of the RDO), the partial
currents between neighboring sites Ji,i+1(t), as well as the
current through the center of the system Jcent.(t).

In the range of small F0 values, the electron transport
through the device is characterized by transient regime towards
a steady state with a dc and constant occupations as explained
above. This is shown in Figs. 3(aa)–3(ac). For intermediate
field strengths the onset of oscillations can be observed in
both, the population dynamics, i.e., Fig. 3(ba), as well as
in the time dependence of the partial currents, displayed in
Figs. 3(bb) and 3(bc). Lastly, the lowermost triple block depicts
data obtained for F0 = 0.2γ /a. Here the oscillatory behavior
acquires perfect sinusoidal form, as can be seen in Figs. 3(cb)
and 3(cc). Comparing with the expression for the current
obtained by a semiclassical analysis (see Appendix A), we
find an excellent agreement.

The transition from dc to BOs regime can also be seen in
the net current through the device Jnet ≡ (JL − JR)/2. The
latter is shown in Fig. 4, computed for each of the above field
magnitudes. Namely, the upper plot in Fig. 4(a) captures the
dc regime characterized by a nonvanishing Jnet. In contrast,
Figs. 4(b) and 4(c) show the emergence of BOs. Here, after
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FIG. 3. Conceptually different transport regimes obtained by
changing F0. (aa)–(ac) F0 = 0.05γ /a: Typical transient relaxation
to dc behavior. (ba)–(bc) F0 = 0.1γ /a: Intermediate regime with
onset of BOs. (ca)–(cc) F0 = 0.2γ /a: Regime of BOs. For each of
the triple blocks, the upper plot shows the occupation number, the
middle one depicts the current between neighboring sites, and the
lower plot displays the current in the center of the system Jcent.(t).
The system size is N = 50 in each case. The (red) dashed lines show
the current according to Eq. (A4).
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FIG. 4. Net current through the system (N = 50) for the three
field magnitudes used for Fig. 3. (a) The transient transition towards
a stationary state with nonvanishing dc current, while (b) and (c)
correspond to the regime of BOs. In the latter regime, the net current
vanishes.

the transient response to the switching of the field, the net
current vanishes eventually. This situation corresponds to the
occurrence of BOs seen in Fig. 3(cc).

C. Transferred charge

In an experimental setting the internal currents or the
instantaneous occupation number are typically not directly
measurable. While the data shown in the previous section
clearly indicate the presence of two distinct transport regimes
within the quantum system, it is desirable to visualize the
pattern of BOs also in experimentally accessible observables.
As we show in the following, a pump-probe scenario, where
the rising flank of the pulse is used as a pump and the falling
flank as a probe, can be utilized to investigate the internal
dynamics. This approach has been, for example, successfully
used for studying the dynamics of charge qubits in double
quantum dots [35,36]. Accordingly, the time dependence of
the electric field is explicitly given by F (t) = F0{erf[(t −
t0)/tr ] − erf[(t − t0 − τ )/tr ]}/2, where τ is the pulse length.
We calculate the charge injected into the right electrode, which
is given by Q(τ ) = − ∫ ∞

−∞ dt ′JR(t ′), as a function of the pulse
length [37].

In the dc regime, one expects Q(τ ) to increase linearly with
τ . This is confirmed by Fig. 5(a), which shows Q(τ ) for the
field-strength F0 = 0.03γ /a. The transient response seen in
Fig. 4(a) is only relevant for small τ < ttrans ≈ 60h̄/γ , which
is not shown here. On the other hand, in the BOs regime Q(τ ) is
entirely determined by the transient responses at the instants of
switching on and off of the field. The switching-on contribution
is the same for all τ > ttrans and leads to a constant offset. The
switching-off contribution depends on the state of the system
[36] and will thus be modulated by the BOs. This can be seen in
Figs. 5(b) and 5(c) which show the pulse-length dependence
of Q for F0 = 0.2γ /a and F0 = 0.4γ /a. The accumulated
charge can be well fitted by a sine function which has the period
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FIG. 5. Accumulated charge Q detected at the right electrode
as function of pulse-length τ for three values of field strength F0

corresponding to (a) direct current behavior and (b) and (c) BOs. For
(b) and (c) the data points are fitted by a sine function (red curve).
The vertical dashed lines mark the period of BOs.

TB of the BOs. The amplitude of the oscillations depends on
the state of the system around the instant of switching-off the
pulse.

D. Effect of scattering

It is important to assess the effect of scattering from impuri-
ties on the overall formation of BOs, since impurity scattering
is the main obstacle in directly detecting BOs in the current
oscillations [38]. For this purpose, we phenomenologically
introduce scattering by adding static disorder to the on-site
energies εi . Specifically, we add to every on-site energy εi

a random part �εi generated from a uniform distribution in
the interval [−w/2,w/2]. We choose w/2 = 0.15 eV such
that the localisation length remains larger than the system
size (weak disorder limit [39]). Moreover, each calculation
is performed with a fixed configuration. In Fig. 6 we show
the current Jcent.(t) averaged over 50 of such configurations.
The simulation parameters are chosen as in Figs. 3(ca)–3(cc),
which guarantees the emergence of BOs. We find the formed
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FIG. 6. Blue curve: current in the center of the system versus time
for the parameters used in Figs. 3(ca)–3(cc). Scattering is accounted
for by adding static disorder to the on-site energies. Data obtained
as the average of 50 statistically independent configurations with
disorder strength w = 0.3γ . The (red) dashed curve shows the current
in the center of the system in the absence of scattering.
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BOs to decay after a few periods (see Fig. 6). This result is
in agreement with similar findings in the literature [8,38] and
shows that our previous findings of Sec. III C remain valid also
in the presence of scattering if, for instance, the pulse length
used in Fig. 5 is shorter than the decay constant.

IV. CONCLUSIONS

In summary, we studied the emergence of BOs in paradig-
matic 1D systems after switching on an external electric field.
For small system sizes N 
 LB/a, no BOs are observed
and the stationary current is directed as expected. Increasing
the system size beyond the Bloch-length LB leads to the
emergence of BOs, which are characterized by oscillating
internal currents and a vanishing net current through the
device. We find that the system size aN has to be larger
than 2LB to obtain BOs corresponding to the ones found in
a homogeneous field. By employing a pump-probe scheme,
which uses the rising and falling flanks of a nearly rectangular
pulse, we showed that the BOs can be identified in the
accumulated charge obtained as a function of pulse length.
This offers a route to study dynamics of BOs and their interplay
with noise and/or other degrees of freedom in nanoscale
devices.

APPENDIX A: SEMICLASSICAL DESCRIPTION OF BOS

For an infinite system one can describe the electron
dynamics using a semiclassical approach [23,40]. An electron
is characterized by its position x(t) and wave vector k(t), which
obey the equations of motion

∂

∂t
x(t) = 1

h̄

∂ε[k(t)]

∂k
,

∂

∂t
k(t) = − 1

h̄
F (t). (A1)

The band structure for the 1D tight-binding chain is
ε(k) = −2γ cos(ka). Before the electric field is switched on,
the state |k0〉 is occupied with probability f [ε(k0)], where f

is the Fermi function. After an instantaneous switching of the
(homogeneous) electric field at time t0 = 0 from zero to F0,
one finds for the time dependence of x and k,

x(t) = x0 − 2γ

F0
cos(k0a) + 2γ

F0
cos[k0a − ωBt], (A2)

k(t) = k0 − ωB

a
t, (A3)

where ωB = 2π/TB is the Bloch frequency. Consequently, the
current is given by

J (t) = e

∫ π/a

−π/a

dk0

2π
f [ε(k0)]

∂

∂t
x(t)

∣∣∣∣
k(t)=k0−ωBt/a

= − 4eγ

2πh̄
sin(kFa) sin(ωBt). (A4)

In the last step above zero temperature was assumed and
the Fermi wave vector kF is related to the Fermi energy
via εF = ε(kF).

APPENDIX B: SHORT SURVEY ON TDNEGF
METHOD OF REF. [24]

The general time-dependent evolution of an open quantum
system can be formulated in terms of the device Green’s
functions, which for the noninteracting case are given by

Gr (t,t ′) = gr (t,t ′) +
∫

dt1

∫
dt2gr (t,t1)�r (t1,t2)Gr (t2,t

′),

(B1)

G≷(t,t ′) =
∫

dt1

∫
dt2Gr (t,t1)�≷(t1,t2)Ga(t2,t

′), (B2)

where G and � are the standard two-time Green’s functions
and self-energies, respectively, with the superscripts ≷ and
r,a standing for greater/lesser and retarded/advanced. Note
that the self-energies above contain contributions from all
reservoirs. Moreover, gr designates the Green’s function of
the uncoupled device and satisfies

[
ih̄

∂

∂t
− HD(t)

]
gr (t,t ′) = δ(t − t ′)1. (B3)

Our approach [24,27] for dealing with Eqs. (B1)–(B3) uses the
auxiliary quantities �α(t), termed as current matrices, which
are defined by

�α(t) =
∫ t

t0

dt2[G>(t,t2)�<
α (t2,t) − G<(t,t2)�>

α (t2,t)].

(B4)

They serve at deriving [41] a compact equation for the RDO of
the system [σ (t) ≡ Im{G<(t,t)}], namely Eq. (2). Moreover,
according to Eq. (3), the �α matrices allow it to compute the
current from lead α into the system.

In essence, the key ingredient of our approach [24,27] is the
use of a parametrization for the level-width function �α(ε) ≡
−2Im�r (ε) which allows it to express the greater/lesser two-
time self-energies as a summation over weighted exponentials
in time domain. This fact is then employed in deriving a set of
closed ordinary differential equations (ODEs) for the current
matrices �α and also for the remanent term in their equations
of motion. Moreover, in Ref. [24], in contrast to the original
scheme of Ref. [27], we mapped the problem in terms of
vectors instead of full matrices, to profit from the intrinsic
sparseness of the latter for noninteracting systems. This leads
to a significant reduction of computational effort, which then
permits the full time-dependent treatment of larger systems.
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