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Quantum valley Hall effect and perfect valley filter based on photonic
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We consider theoretically staggered honeycomb lattices for photons which can be viewed as photonic analogs
of transitional metal dichalcogenide (TMD) monolayers. We propose a simple realization of a photonic quantum
valley Hall effect (QVHE) at the interface between two inverted lattices. This results in the formation of
valley-polarized propagating modes whose existence relies on the difference between the valley Chern numbers,
an analog of theZ2 topological invariant. We show that the magnitude of the photonic spin-orbit coupling based on
the energy splitting between TE and TM photonic modes allows to control the number and propagation direction
of these interface modes. Finally, we consider the interface between a staggered and a regular honeycomb lattice
subject to a nonzero Zeeman field, therefore showing quantum anomalous Hall effect (QAHE). In such a case,
the topologically protected one-way modes of the QAHE become valley-polarized and the system behaves as a
perfect valley filter.
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I. INTRODUCTION

The band structure of a honeycomb lattice has been
described in 1946 by Wallace within the tight-binding ap-
proximation [1]. The bands result from the coupling between
the orbitals of the A and B atoms, and the Hamiltonian
can be represented as an effective magnetic field acting on
a pseudospin defined by the two sublattices (A and B). As
widely advertised since the isolation of monolayer graphene,
its dispersion contains two inequivalent Dirac points K and K ′,
located at the corners of the Brillouin zone. The effective field
cancels at these points, where A and B orbitals are uncoupled.
Around these points, the effective field is monopolar at K

and Dresselhaus at K ′: HK,K ′ = h̄vf (τzqxσx + qyσy), where
τz = ±1 at K and K ′, respectively, and vf = 3aJ

2h̄
(a is the

lattice parameter and J is the tunneling coefficient between
the nearest neighbours). The two fields have opposite winding
numbers (±1, respectively). A consequence is the π and −π

Berry phase acquired by an electron on a closed loop around
the K and K ′ points, respectively [2].

In a staggered honeycomb lattice, A and B sites have an
energy difference 2� [3]. In such a case, the effective field
gains a Z component similar at both K and K ′ and the
Hamiltonian becomes HK,K ′ = h̄vf (τzqxσx + qyσy) + �σz.
A gap opens between the bands, with the presence of a
nonzero Berry curvature of opposite sign near K and K ′.
As a result, the total Chern number of the bands is zero and
they are topologically trivial. This Hamiltonian is realized by
several real crystalline structures, such as the TMD monolayers
[4,5]. A large part of the unique properties of this class of
2D materials is due to the local Berry curvature of their
bands near the K and K ′ points and to the related orbital
moment. For instance, it imposes specific optical selection
rules. Only circularly polarized σ+ light can be absorbed by the
K valley transition, while only σ− light is absorbed by the K ′
valley transition [6,7]. The valley dependent Berry curvature
is also at the origin of the valley Hall effect [4,8,9] recently
observed experimentally in MoS2 [10]. Electrons, accelerated
by an electric field, experience a valley-dependent Berry

curvature provoking a valley-dependent drift perpendicular to
the acceleration direction, which leads to spatial separation of
valley electrons.

The valley degree of freedom allows to define a valley pseu-
dospin. Moreover, the Berry curvature is typically strongly
concentrated around K and K ′, which allows to define a
valley Chern number CK,K ′ [3] by analogy with the spin
Chern number, which is linked to the Z2 topological invariant
characterizing the quantum spin Hall effect (QSHE) [11].
One might think that similarly with the QSHE effect, the
presence of this nonzero topological invariant should lead to
the existence of surface states (at the edges of the sample)
with valley dependent chirality. This is not the case, because
the Bloch wave functions associated with the valleys are not the
stationary eigenstates in the vacuum, contrary to the spin states,
and are therefore mixed at such boundaries. In other words,
the bulk-edge correspondence is not well defined for valley
eigenstates since the two valleys do not exist in the vacuum.
However, at an interface (domain wall) between two TMD
analogs inverted the one with respect to the other, zero-line
modes are known to be present [12]. These states can become
valley-dependent and chiral with a proper choice of the lattice
parameters [13] leading to the so-called quantum valley Hall
effect (QVHE).

While it is possible to invert a real TMD lattice simply by
turning the 2D sheet upside down, the interfaces between two
inverted lattices cannot be formed, because they would corre-
spond to metal-metal or chalcogenide-chalcogenide chemical
bonds. It seems therefore very difficult to obtain and study
chiral states at such interfaces. Several theorical works have
proposed to use bilayer graphene systems, where a tunable gap
can be opened by applying a bias voltage [14,15] to organize
these interface states [16–18]. Chiral valley-polarized edge
states are also predicted in these systems due to the coupling
between the two layers with a potential difference [19]. The
signature of the existence of the interface modes has been
reported experimentally in the bilayer system [20] and the
study of valley polarized edge states or QVHE is nowadays a
research field in several condensed matter systems [21–24].
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TMD analogs can also be realized using cold atoms in
optical lattices, or by coupling optical resonators. In the latter
case, Berry curvature can be probed by resonant excitation of
the Dirac point in momentum space and measurement of a
drift of the wave packet, which, however, is predicted to be
relatively small [25]. Recently, photonic quantum valley Hall
effect in photonic crystal slabs [26–29] has been theoretically
described. In these works, chiral valley polarized interface
states are organized, but are not protected against disorder
induced intervalley scattering.

In this work, we first propose to implement quantum
valley Hall effect in a photonic system using a honeycomb
lattice of coupled micropillars [30], with a tunable energy
detuning between A and B pillars. The gap size can be entirely
controlled by tuning the pillar diameter. In the second section,
we consider the impact of the splitting between TE and TM
optical modes, which is specific to photonic systems, which
was not considered before. We show that the magnitude of
the splitting allows to tune the direction of propagation and
number of interface modes. In the last section, we propose
an original scheme to build a perfect valley filter by using
a domain wall between QAH and QVH phases using mixed
light-matter exciton-polariton quasiparticles. The QAH phase
for polaritons has been predicted to occur in different kind of
polariton lattices under Zeeman field and is of current interest
[31–34]. Obviously, the model used in this work is based on the
honeycomb lattice. The dispersion of the interface modes as
well as their real space propagation can be directly measured
by optical spectroscopy techniques. The valley structure of a
wave packet can be analyzed and controlled as well.

II. PHOTONIC QUANTUM VALLEY HALL EFFECT

An interesting aspect of using lattices of coupled photonic
micropillars, like the one shown in Fig. 1(a), is that the
tight-binding description is a very good approximation. The
insertion of the quantum well in the optical cavity allows to
achieve strong light matter coupling and to obtain exciton-
polariton (polariton) eigenstates [35]. Thanks to their excitonic
part, polaritons show a sizable Zeeman splitting between the
two circular-polarized components under applied magnetic
field in the growth direction or in the high density regime
via spin-anisotropic interactions [36].

FIG. 1. (a) Cavity micropillar (artificial atom) scheme. (b) Zigzag
interface between two TMD analog lattices with opposite A-B
organization giving rise to zero lines modes and quantum valley Hall
effect with a proper choice of parameters.

However, we will at first neglect the polarization degree of
freedom. In this case, the tight-binding Hamiltonian describing
the photonic states in the lattice of pillar cavities can be written
as

Hk =
(

�AB −Jfk

−Jf ∗
k −�AB

)
, fk =

3∑
j=1

exp
( − ikdφj

)
, (1)

where 2�AB is the energy difference between the ground states
of A and B pillars and J is the nearest neighbours tunneling
coefficient. A nonzero �AB leads to the opening of a band
gap and induces opposite Berry curvatures around K and K ′
points, which for the “valence band” reads

B(q) = τz

9a2J 2�AB(
4�2

AB + 9a2J 2q2
)3/2 . (2)

Here, τz = ±1 is the valley index. If �AB is small, the Berry
curvature is strongly localized around K points allowing
to define the valley Chern numbers as CK,K ′ = ±0.5. The
total Chern number of the band C = CK + CK ′ is zero. The
flexibility of photonic systems allows to realize staggered
graphene lattices with any sign of �AB. The scheme proposed
here is therefore to build an interface between two TMD
analogs with opposite energy band gaps (�AB < 0 for x <

0 and �AB > 0 for x > 0) as first proposed theoretically
in Ref. [12]. We stress that this kind of interface is not
experimentally realistic for real electronic TMD monolayers.
On the contrary, for the photonic analog that we propose and
consider here, the gap sign is controlled by the sizes of the A
and B micropillars. Such lattices and interfaces are very well
within the current experimental possibilities [30,37].

We compute the dispersion of a ribbon with such interface
(which can be considered as a domain wall) along the
zigzag direction [see scheme Fig. 1(b)] using the tight-binding
approach. The ribbon of size L is constructed with 128 coupled
infinite zigzag chains, the interface is located in the middle
of the ribbon. The dispersion of the full ribbon is plotted
in Fig. 2(a), where the interface states are shown with red
and the real boundary modes are shown with blue (both
for left and right edges, which are degenerate). The latter
are nondispersive, connecting the extrema at the top of the

FIG. 2. (a) Ribbon dispersion [colors represent localization on
the interface (red) and on the edges of the structure (blue)]. (b) Cor-
responding in-gap interface wave-function absolute values projection
on the transverse (x) direction for K (solid black) and K ′ (dashed
red) valleys. [Staggered potential: �AB(r) = −�AB(l) = 0.1J .]
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valence band. On the other hand, the interface modes (red)
are dispersive. They connect the valence and the conduction
band in each valley, with group velocities opposite in the two
valleys. Hence, this “zero-line mode,” as commonly called in
the literature [12,16,38], is associated with a QVH current on
the interface.

The presence of the QVH current can be understood
with a topological argument based on the difference of the
valley Chern numbers across the interface NK,K ′ = CK,K ′ (l) −
CK,K ′ (r) = ±1 (where l and r stand for the left and right
domains) [16,39]. One should note that the valley Chern
number is different from the Chern number of a full band.
The topological charge N is used to characterize zero-line
modes between two 2D Dirac vacua with inverted mass gaps
[40]. In honeycomb lattices, there are two inequivalent valleys
with Dirac dispersions, leading to two zero-line modes (one
for each valley) at the interface.

The overlap of the wave functions of the interface states
(corresponding to the wave vectors K and K ′) in real space in
the direction perpendicular to the interface is perfect, as shown
in Fig. 2(b). This implies that these states are not topologically
protected against scattering on a defect between the K and K ′
valleys. In electronic systems, the practical argument which is
put forward is that in sufficiently clean systems this kind of
backscattering tends to be negligible because of the relatively
large distance between the two valleys in momentum space.
This arguments fails in photonics, since the valleys are, on
the opposite, relatively close in reciprocal space. Only some
specific defect shapes, suppressing the scattering in particular
directions and thus suppressing the coupling between the
valleys, would keep the valley current unperturbed. On the
other hand, a random disorder, such as the variation of
the pillar diameter in micropillar lattices, or the variation of
the hole size in photonic crystal slabs certainly induces an
important scattering between the valleys. In the last section
of the manuscript, we demonstrate the absence of topological
protection for the valley current in the QVHE by simulating
the scattering on a localized defect.

III. QUANTUM VALLEY HALL EFFECT WITH PHOTONIC
SPIN-ORBIT COUPLING

We now include the light polarization degree of freedom
and the so-called TE-TM spin-orbit coupling [41] (present in

any photonic system) in our model. The Hamiltonian becomes
a 4 × 4 matrix [42] written here in the (�+

A ,�−
A ,�+

B ,�−
B ) basis:

Hqvh =
(

�ABI Fk

F
†
k −�ABI

)
, Fk = −

(
fkJ f +

k δJ

f −
k δJ fkJ

)
,

(3)

where δJ is the spin orbit coupling strength and f ±
k coeffi-

cients are defined by f ±
k = ∑3

j=1 exp (−i[kdφj
∓ 2φj ]). The

definition of valley Chern number when spin-orbit coupling
is present is not strict because the SOC brings an additional
contribution to the Berry curvature of each band [43] which
can lead to noninteger CK . However, if the valleys are still
energetically defined (which means that they are clearly visible
in the dispersion), and the two lattices on each side of the
interface are perfectly inverted, the difference between valley
Chern numbers NK,K ′ is a well defined integer.

A. Valley topological charges: analytical results

To demonstrate that the difference between the valley
Chern numbers remains integer, we compute analytically the
topological charges of the valleys in a staggered honeycomb
lattice with TE-TM SOC. For this purpose, we derive an
effective low-energy Hamiltonian to describe the low-energy
bands (closest to the central gap) in a given valley. Indeed, a
2 × 2 Hamiltonian with particle-hole symmetry can be written
as a superposition of Pauli matrices: Heff = 	.σ where 	

is an effective magnetic field. Using this notation, the Berry
curvature can be written as

B = 1

2|	|3 	.
(
∂qx

	 × ∂qy
	

)
(4)

whose integral 1
2π

∫
Bdq corresponds to the winding number

of the pseudospin on the Bloch sphere which is equivalent to
the Chern topological invariant for 2 × 2 Hamiltonians.

In order to use the above picture, we need to reduce the
number of states in the basis of our system. First, we linearize
the 4 × 4 Hamiltonian defined above around the K point
(0, 4π

3
√

3a
). Using the new coordinate q = (k − K), we rewrite

it in the basis (�+
A ,�−

B ,�−
A ,�+

B ) where A/B and ± are the
sublattice and spin indices, respectively,

Hqvh,K =

⎛
⎜⎜⎜⎜⎝

�AB − 3aδJ
2 (qy − iqx) 0 3aJ

2 (qy + iqx)

− 3aδJ
2 (qy + iqx) −�AB

3aJ
2 (qy − iqx) 0

0 3aJ
2 (qy + iqx) �AB −3δJ

3aJ
2 (qy − iqx) 0 −3δJ −�AB

⎞
⎟⎟⎟⎟⎠ =

(
H1 T

T H2

)
. (5)

We are interested in the two branches closest to the gap (the inner branches of the dispersion). The perturbation theory is
applicable if the high-energy branches are sufficiently far away, which means δJ��AB. Using the perturbation theory, one can
derive an effective 2 × 2 Hamiltonian: Heff = H1 − T H−1

2 T . In the following, we are interested in two different limits: when
δJ�J and when δJ ∼ J .

In the first limit, one can neglect the term ∼δJq (corresponding to neglect the trigonal warping [42]). The effective Hamiltonian
can then be written as

H
(1)
K,eff =

(
�AB 0

0 −�AB

)
+ 1

�2
AB + 9δJ 2

(
9a2J 2�AB

4 q2 27a2J 2δJ
4 (qy + iqx)2

27a2J 2δJ
4 (qy − iqx)2 − 9a2J 2�AB

4 q2

)
. (6)
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Due to the absence of the terms ∼δJq, when �AB = 0 the
energies are two inverted parabola degenerate at q = 0. A
similar development around K ′ (0, − 4π

3
√

3a
) allows to obtain

HK ′,eff. Using Eq. (4), we compute the Berry curvature in this
limit:

B(1) = τz144a4�ABJ 4δJ 4q2(
9a4δJ 2J 4q4 + �2

AB(4δJ 2 + a2J 2q2)2
)3/2 ez, (7)

where τz = ±1 for K/K ′ valleys. The corresponding valley
Chern number is

C
(1)
K,K ′ = 1

2π

∫
Bdq = τzsgn(�AB)

⎛
⎝1 − τz�AB√

�2
AB + 9δJ 2

⎞
⎠.

(8)

The valley Chern numbers tend to C
(1)
K,K ′ = τzsgn(�AB) if

the high-energy bands are far away from the low-energy
ones (�AB�δJ ). As a consequence, the topological invariant
characterizing the domain wall between two inverted TMD is

N
(1)
K,K ′ = CK,K ′ (l) − CK,K ′ (r) = ±2sgn(�AB), (9)

which means that there are two co-propagating interface states
in a given valley. One can see from Eq. (8), that if the
high-energy bands are too close, the valley Chern number
of a given low-energy band is not an integer. This means
that the topological charge is shared between the high and
low-energy bands. In this case, perturbation theory becomes
inapplicable and one needs to compute the valley Chern
numbers numerically.

In the second limit, where δJ ∼ J , the linear terms (δJq)
have to be conserved and we can neglect the quadratic terms
q2. The resulting effective 2 × 2 Hamiltonian around K and
K ′ can be written in the (�+

A ,�−
B ) and (�−

A ,�+
B ) basis:

H
(2)
K,eff =

(
�AB

3aδJ
2 (qy − iqx)

3aδJ
2 (qy + iqx) −�AB

)
, (10)

H
(2)
K ′,eff =

(
�AB − 3aδJ

2 (qy + iqx)

− 3aδJ
2 (qy − iqx) −�AB

)
. (11)

By looking at these two effective Hamiltonians, we can directly
see that the signs of the diagonal elements are the same,
whereas the windings of the effective in-plane fields are
opposite, exactly as in staggered honeycomb lattices without
SOC. Hence the Berry curvatures are opposite in each valley.
They can be calculated as

B(2) = − τz9a2�ABδJ 2(
4�2

AB + 9a2δJ 2q2
)3/2 ez, (12)

where τz = ±1 for K/K ′ valleys. The corresponding valley
Chern numbers are C

(2)
K,K ′ = − τz

2 sgn(�AB). The domain wall

invariant between two inverted QVH phases is then N
(2)
K,K ′ =

∓sgn(�AB), which implies the presence of one interface mode
in each valley. The group velocities of these modes in the two
valleys are of course opposite.

This low-energy study has allowed us to determine analyti-
cally the valley topological charge in these two limits and hence
to compute the number of valley-polarized interface states.

FIG. 3. (a) and (b) Ribbon dispersions with TE-TM SOC: (a)
δJ = 0.2J and (b) 0.8J . Colors represent localization on the
interface (red) and on the edges of the structure (blue). (c) and (d)
Corresponding absolute values of the interface wave functions in K

(solid black and solid blue) and K ′ (dashed red and dashed yellow)
valleys. [Staggered potential: �AB(r) = −�AB(l) = 0.1J .]

One should note that the topological charge of a given valley
changes sign between the two limits. The group velocities of
the interface states are inverted as well. In the appendix, we
show the effective Hamiltonian derived in the general case
between the two limits considered here.

B. Spectrum and discussion

In the previous section, we have derived an effective low-
energy two-band Hamiltonian in order to compute analytically
the valley topological charges. We have shown that it is
possible to distinguish between two configurations. In the
weak SOC limit, NK,K ′ = ±2sgn(�AB), whereas when δJ ∼
J , NK,K ′ = ∓sgn(�AB). Here, we compute the corresponding
tight-binding dispersions of the ribbon which are shown in
Figs. 3(a) and 3(b), respectively. In Fig. 3(a), there are two
interface states in each valley, that are visible within the
band gap. The ribbon dispersion in the second limit is shown
in Fig. 3(b), this time there is only one interface state in
each valley, as predicted from the topological invariant. The
corresponding spatial overlap of the interface wave functions
in K and −K valleys is shown in Figs. 3(c) and 3(d). In
Fig. 3(c), we plot the two wave functions present in each valley
for zero energy states (at the center of the gap). We can see
a slight difference in their localization profiles, whereas they
show a perfect overlap with their counterpart in the opposite
valley. As in the case without SOC, the backscattering from
one valley to the other is not forbidden. However, it should be
noted that the presence of TE-TM SOC induces a polarization
mismatch between the two valleys (not visible on these figures,
showing only the absolute value of the wave function), which
reduces the exact overlap of the two wave functions.
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IV. PERFECT OPTICAL VALLEY FILTER

Exciton-polaritons, mixed exciton-photon quasiparticles
appearing in microcavities in the strong coupling regime, are
sensitive to an external magnetic field due to their excitonic
part. Optical quantum anomalous Hall (QAH) effect has
been predicted to occur in honeycomb lattice of polariton
micropillars with TE-TM SOC under a Zeeman field [31,44].
In this section, we propose to organize an interface between
this QAH phase and the QVH phase presented above, in order
to obtain a perfect valley filter as sketched in Fig. 4(a), where
the colored arrows represent the propagating edge states on
the boundaries of the QAH phase. A similar scheme has been
recently theoretically proposed for electrons in graphene with
Rashba SOC [45]. However, we stress that the QAH effect
has not been observed yet in graphene and that the creation of
such interface in electronic systems seems quite challenging
experimentally.

A. QAH phase: analytical results

The tight-binding Hamiltonian describing the photonic
QAH phase is the following [31]:

Hqah =
(

�zσz Fk

F
†
k �zσz

)
, (13)

where �z is the Zeeman splitting. We propose to create a
topological domain wall between QAH and QVH phases. In
this subsection we derive an effective low-energy theory for

FIG. 4. (a) Scheme of the structure, (b) ribbon dispersion [colors
represent localization on the interface (red) and on the left edge
of the structure (blue)]. (c) and (d) Wave-function projections on
the transverse (x) direction for the states highlighted by the circles
in (b): (c) edge (d) interface. [Parameters: �z(l) = �AB(r) = 0.1J ,
δJ = 0.2J , �z(r) = �AB(l) = 0.]

the QAH phase. The Hamiltonian around the K point can be
written in the (�+

A ,�−
B ,�−

A ,�+
B ) basis:

Hqah,K =

⎛
⎜⎜⎜⎜⎝

�z − 3aδJ
2 (qy − iqx) 0 3aJ

2 (qy + iqx)

− 3aδJ
2 (qy + iqx) −�z

3aJ
2 (qy − iqx) 0

0 3aJ
2 (qy + iqx) −�z −3δJ

3aJ
2 (qy − iqx) 0 −3δJ �z

⎞
⎟⎟⎟⎟⎠ =

(
H1 T

T H2

)
. (14)

The difference between this linearized Hamiltonian and the one of QVH phase is that the signs of the diagonal elements of H2

are inverted. In the configuration, where a two-band effective theory can be applied (δJ��z), we study the same limits as in the
previous section: δJ�J and δJ ∼ J . In the first limit, one has

H
(1)
eff =

(
�z 0
0 −�z

)
+ 1

�2
z + 9δJ 2

(
− 9a2J 2�z

4 q2 27a2J 2δJ
4 (qy + iqx)2

27a2J 2δJ
4 (qy − iqx)2 9a2J 2�z

4 q2

)
, (15)

which implies the following Berry curvature when δJ��z:

B(1) = 144a4�zJ
4δJ 4q2(

9a4δJ 2J 4q4 + �2
z(a2J 2q2 − 4δJ 2)2

)3/2 ez. (16)

A similar development at K ′ point giving the same result, one
can deduce the two valleys Chern numbers:

C
(1)
K,K ′ = sgn(�z)

(
1 + �z√

�2
z + 9δJ 2

)
≈ sgn(�z). (17)

When δJ ∼ J , the low-energy 2 × 2 Hamiltonians around K

and K ′ can be written in (�+
A ,�−

B ) and (�+
B ,�−

A ) effective
basis, respectively, as

H
(2)
K,eff =

(
�z

3aδJ
2 (qy − iqx)

3aδJ
2 (qy + iqx) −�z

)
. (18)

H
(2)
K ′,eff =

(
�z − 3aδJ

2 (qy − iqx)

− 3aδJ
2 (qy + iqx) −�z

)
. (19)

We can see that both the Zeeman field and the winding of
the in-plane field have the same sign which results in equal
Berry curvatures,

B(2) = − 9a2�zδJ
2(

4�2
z + 9a2δJ 2q2

)3/2 ez, (20)
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leading to valley topological charges C
(2)
K,K ′ = − 1

2 sgn(�z).
These analytical results are useful to understand the behavior
of the topologically protected edge states of a quantum
anomalous Hall phase at the interface with a QVH phase,
where the two valleys are not equivalent. Using the domain
wall topological invariant NK,K ′ allows to predict the number
of topologically protected interface states in a given valley.
Of course, this topological argument is valid only when the
valleys are energetically well defined.

B. Spectrum and discussion

As above, we use a tight-binding approach in order to find
the edge states. The two domains are described by Hqah and
Hqvh, respectively. We consider a realistic configuration for
a lattice of micropillars where the TE-TM SOC is relatively
weak (δJ < J/2).

In the left phase, the total Chern number is equal to C(l) =
2 × sgn(�z) whereas in the right one C(r) = 0, as explained
above. From the bulk-boundary correspondence, the interface
supports two modes propagating in the same direction, given
by the sign of �z. When the valleys are energetically well
defined, one can compute the valley Chern numbers at each
side analytically (previous subsection) or numerically. In the
weak δJ limit, CK (l) = CK ′(l) = sgn(�z) in the left domain,
whereas CK (r) = −CK ′(r) = sgn(�AB) in the right domain.
The resulting domain wall invariants for each valley are

NK,K ′ = sgn(�z) ∓ sgn(�AB). (21)

We stress here that even if the valley Chern numbers are
not well defined integers for all range of parameters, their
difference NK,K ′ defined above is always an integer. Therefore
the domain wall invariant always cancels for one valley, and
is nonzero for the other valley. The two one-way modes are
therefore always valley polarized.

To confirm this analysis based on topological argument,
we compute the dispersion of a semi-infinite ribbon as we
did in the previous sections. The results are shown in Fig. 4.
In panel (b), we can see that the interface states (red) are
localized in one of the two valleys in momentum space. The
nondispersive edge states of the QVH phase are shown in
green. The one-way dispersive edge states of the QAH phase
(blue) cross the gap and connect the two valleys. Contrary to
the interface between two QVH phases, there is no interface
state crossing the gap in the second valley. This means that
the valley polarized interface states are really topologically
protected against backscattering in the presence of defects. As
sketched in Fig. 4(a), the topologically protected edge states
are purely valley polarized due to the domain wall topological
invariant N . To clarify the difference between this scheme
and the interface between two QVH phases described in the
previous section, we plot in Figs. 4(c) and 4(d) the edge and
interface state wave function (absolute values) projections
in the x direction. We can see that the blue state is clearly
localized on the left edge of the structure and only the red ones
are localized on the interface. This visual argument allows to
understand the topological protection due to the absence of
spatial overlap between the two wave functions contrary to the
case presented in the previous sections [Figs. 3(c) and 3(d)].

V. NUMERICAL SIMULATIONS

In this part, we present the full numerical simulations using
the Schrödinger equation that we have performed in order
to confirm the different results obtained in the tight-binding
approach. We describe the evolution of polaritons in the
honeycomb lattice potential by solving the spinor Schrödinger
equation for polaritons (in the parabolic approximation close
to the bottom of the LPB),

ih̄
∂ψ±
∂t

= − h̄2

2m
�ψ± − ih̄

2τ
ψ± ± �zψ±

+β

(
∂

∂x
∓ i

∂

∂y

)2

ψ∓ + Uψ± + P̂ , (22)

where ψ+(r,t),ψ−(r,t) are the two circular components, m =
5 × 10−5mel is the polariton mass, τ = 30 ps the lifetime,
β is the TE-TM coupling constant (corresponding to a 5%
difference in the longitudinal and transverse masses). �z is
the magnetic field [applied only in the “Z” (applied only in
the QAH region) region], U is the lattice potential (radius of
the pillars r = 1.5 μm, lattice parameter a = 2.5 μm), which
for some simulations includes an additional defect potential (a
Gaussian potential of 1 meV and σdef = 1 μm) centered on a
certain pillar at the interface, and P̂ is the pump operator.
We have generated 2 lattice potentials: one for staggered
honeycomb lattice and one for unperturbed honeycomb lattice.
In the staggered lattice, the deviation of the pillar radius from
the average value was chosen to be 15%. Depending on the
configuration (QVH/QVH phases or QVH/QAH phases), we
either excite a large spot with a well-defined superposition of
wave vectors corresponding to a single valley of the TMD
lattice (QVH phase), or a single pillar of the Z insulator (QAH
phase), but always with the frequency within the bulk gap.

Figure 5(a) shows the dispersion of the bulk TMD analog
lattice. The dispersion is obtained by solving the Schrödinger
equation (22) over time, which gives the time-dependent
wave function ψ±(r,t), which is then Fourier-transformed to
give the intensity as a function of energy and wave vector
n(k,E) = |ψ(k,E)|2, plotted in Fig. 5. In experiments, such
dispersion is usually obtained under nonresonant pumping,
which can be described by choosing the pump operator
P̂ as a random uncorrelated Gaussian noise. In numerical

(a) (b)

FIG. 5. Dispersion of the bulk TMD (a) and the TMD/TMD
interface states in its gap (b). The boundaries of allowed and forbidden
bands (the gap) are marked by dashed white lines.
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experiments, on can also consider a short narrow Gaussian
pulse P̂ = A0e

−(r−r0)2/σ 2−(t−t0)2/τ 2
0 , where A0 is the amplitude,

r0 is the position of the center of the pump, σ = 0.7 μm is
its spatial extension, and τ0 = 1 ps is its duration. This allows
highlighting only a part of the whole dispersion (for example,
only the interface states). The image in Fig. 5 is a cut of a 2D
dispersion in the KMK ′ direction. Such representation allows
to better visualize the edge of the Brillouin zone and the gap
(shown by dashed white line). Panel (b) shows the dispersion
of the states localized on the interface between two mutually
inverted TMD analog lattices. To obtain it, the pump was cen-
tered on one of the interface pillars. The main intensity comes
from the valley-polarized gap states (in the middle). However,
the junction of two large pillars at the interface represents a
potential trap even without taking into account the staggering
inversion, and the localized states of this trap are also visible
in panel (b) below the bulk band of panel (a). These states are
not valley-polarized, because they are centered at the  point.
Most interesting are the states in the central gap, which clearly
exhibit opposite group velocities for the K and K ′ valleys.
To excite these interface states, the laser spot was localized at
the interface. This also suppresses the excitation of the bulk,
whose dispersion therefore does not appear on panel (b).

While the TE-TM splitting was neglected for the calculation
of the dispersion in Fig. 5 in order to obtain a clear image
with a higher resolution, we have then included the TE-TM
splitting in all numerical calculations presented below, both
for QVH/QVH and QVH/QAH interfaces. All spatial images
shown below are snapshots taken from the corresponding
video files available in Ref. [46]. These spatial images show
the total intensity of emission, given by |ψ+|2 + |ψ−|2, as
a function of spatial coordinates x and y. The color map
is renormalized for each frame, so the overall decay is
not visible. Since the duration of the simulations is several
hundred picoseconds, observation of the propagation over the
whole structure could be experimentally possible only in the
most recent highest-quality microcavities, where the polariton
lifetime reaches 270 ps [47]. However, propagation around one
corner or through a single defect should be well observable in
the structures of previous generation with τ = 30 ps. In these
simulations, the pulse duration has to be much longer than
for the calculation of the dispersion: the energy width of the
pulse has to be smaller than the gap. We have used a value
of τ0 = 36 ps, as in previous similar works [31]. The spatial
configuration of the pump operator is different for the QVH and
QAH cases. For QVH, the choice of the valley is determined
by the shape of the pump, which is therefore a large Gaussian
spot σ = 15 μm, centered on a given valley in the reciprocal
space by introducing spatial modulation exp(iKr), which in
experiments is obtained by the incidence angle of the pumping
laser. For QAH, only one propagation direction is available and
the shape of the spot does not play any role; we therefore excite
a single pillar using σ = 1 μm.

Figure 6(a) demonstrates the behavior of interface states
at the 120◦ corners (meaning that the propagation direction
changes by 120◦) of a polygonal interface between two
mutually inverted TMD analog lattices. Such angle allows to
have two interfaces of the same type (A-A and A-A or B-B and
B-B). As can be seen from the figure and from the associated
movie (see Ref. [46], video file 1), there is no backscattering

-50 0 50x (µm)
-50 0 50x (µm)

-50

0

50

y 
(µ

m
)

(a) (b)

FIG. 6. Behavior at the 120◦ corners of polygonal interface (a)
QVH/QVH and (b) QVH/QAH. Red arrows show the propagation
direction.

on such interface and the wave packet, initially created at
the interface states, continues its propagation without being
perturbed by such corner. Qualitatively, such corner acts like a
mirror (formed by the periodic lattice), which redirects the
wave packet from the input interface state into the output
interface state. Both propagation directions along the triangle
are available by the choice of the initial valley excitation.
Panel (b) shows the same configuration, but for an interface
between the QVH/QAH phases. Here, no backscattering is
possible for any type of corner, as we shall see below, because
of the topological protection. The propagation direction is
not defined by the excitation conditions (a single pillar of
the interface is excited), but by the sign of the Zeeman
splitting. However, a large gap is more difficult to obtain in
the QAH phase [44], and therefore one can expect to have
a larger excitation of the bulk in this case. As can be seen
from the movie (see Ref. [46], video file 3), it is impossible
to distinguish the topologically protected QVH/QAH phase
from the QVH/QVH interface which does not provide any
topological protection. The absence of backscattering in one
particular experiment does not mean that the system is
protected completely, as we shall see below.

Figure 7 shows a zoomed image of a more interesting
configuration, corresponding to a 60◦ turn of the interface.
Panel (a) shows the interface between the two QVH phases.
For such angle, the interface changes type (from A-A to B-B
or vice versa), which leads to several visible effects. First of
all, the change of the interface type, similar to the change
of dimerization order in the Su-Schrieffer-Heeger model [48],

0-15 15
x (µm)

0-15 15
x (µm)

0

-20

20

y 
(µ

m
)

(b)(a)

FIG. 7. Conversion of the interface states at the 60◦ corners of
polygonal interface (a) QVH/QVH and (b) QVH/QAH. Red arrows
show the propagation direction.
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FIG. 8. Sensitivity of the QVH interface states to the perturba-
tions: backscattering (a) on a localized defect (b) at the boundary with
the “vacuum.” Red arrows show the propagation direction.

leads to the creation of a defect state (domain wall) between the
two regions. This domain wall creates a strong backscattering
for the wave packet on the interface states, contrary to the
120◦ turn, where the backscattering was completely absent.
Moreover, since the interface changes type, the nature of the
state changes as well: from the “antibonding” state of the first
interface (made of two pillars with a larger radius and therefore
a lower energy), the state changes into the “bonding” state
of the second interface (where there are two smaller pillars).
The two red arrows mark the propagation direction for the
backscattered part and the main part of the wave packet. The
propagation direction for both of them is clearly visible in the
movie (see [46], video file 2).

In the QVH/QAH interface case, shown in Fig. 7(b),
no backscattering is possible because of the topological
protection, provided by the QAH phase, but the interface state
also changes its nature at the 60◦ turn. However, because of
the complicated mutual action of the TE-TM SOC and of
the Zeeman splitting, it is more difficult to analyze from the
spatial pattern of the total intensity. The study of such interface
junctions in the perfect valley filter may be a subject for future
works. While it is not so clear from the snapshot, the associated
movie (see Ref. [46], video file 4) clearly shows the absence
of backscattering at the junction.

Finally, we have designed a special numerical experiment
to show that the QVH states indeed do not provide topological
protection from backscattering. Figure 8 shows two distinct
situations. Panel (a) demonstrates that a localized defect

(created on a single pillar on the interface) leads to the
backscattering of an important fraction of the wavepacket (red
arrows), while at the same experiment the corners have shown
no backscattering, and one might have concluded that the states
are protected (see Ref. [46], video file 1). Panel (b) (which
corresponds to the calculation of Fig. 7(a) at later times, see
[46], video file 2) shows that the interface states can only exist
on the interface between two inverted TMD analog lattices,
and they cannot propagate at the boundary between the TMD
analog and the “vacuum” (absence of pillars). Such boundary
leads to complete reflection of the propagating wave packet.

VI. CONCLUSION

In this work, we highlight the analogy between electronic
TMD materials and a honeycomb array of photonic pillar
cavities. The control of the size of the pillars allows to control
the gap in the dispersion. Valley-polarized modes are predicted
at the interface between two mutually inverted TMD lattices.
We study these states, taking into account the TE-TM SOC,
typical for cavity systems. We show that the control of the
TE-TM SOC allows to control the number and group velocity
of the interfaces modes. The observation of QVHE with light
should be achievable in sufficiently regular structures.

In the second part, we propose a scheme to engineer a
perfect valley filter using the interface between a QVH phase
and a QAH phase predicted for polariton systems. In this
configuration, the interface valley-polarized states are topo-
logically protected against back-scattering and bulk diffusion.
Our results are supported by analytics (the computation of
topological charges), tight-binding numerical dispersions, and
full numerical simulations. As in several previous works
[44,49], the effective Zeeman fields can be controlled by
optical pumping thanks to the spin-anisotropic interactions.
This opens the perspective to realize all-optically controlled,
reconfigurable valley filters. Another interesting perspective is
the study of the physics of interacting bosonic quantum fluids
[50] in topological systems [51–56], such as, for instance,
chiral nonlinear gap states [57].
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APPENDIX: EFFECTIVE 2 BY 2 HAMILTONIAN WITH TRIGONAL WARPING

Between the two limits considered in the text to compute analytically valley topological charges, it is still possible to write an
effective 2 × 2 Hamiltonian:

HK,eff =
(

�AB
3aδJ

2 (qy − iqx)
3aδJ

2 (qy + iqx) −�AB

)
+ 1

�2
AB + 9δJ 2

(
9a2J 2�AB

4 q2 27a2J 2δJ
4 (qy + iqx)2

27a2J 2δJ
4 (qy − iqx)2 − 9a2J 2�AB

4 q2

)
. (A1)

This effective Hamiltonian allows to compute the energy dispersion taking into account the trigonal warping. Moreover, one
can also compute the Berry curvature of the low-energy bands, which can be written as follows in polar coordinates (q,φ):

B = − τz18a2�ABδJ 4(4δJ 4 − a2J 2(δJ 2 + 4J 2)q2 + a3J 4q3sin(3φ)(
�2

AB(4δJ 2 + a2J 2q2)2 + 9a2δJ 2q2(4δJ 4 + a2J 4q2) + 36a3δJ 4J 2q3sin(3φ)
)3/2 . (A2)
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FIG. 9. Berry curvature around K point with trigonal warping
contribution [Eq. (A2)]. [Parameters: �AB(r) = 0.1J , δJ = 0.2J .]

The form of the resulting Berry curvature describes well
the additional bands extrema contributions (see Fig. 9).
This quantity is not integrable analytically but converge
numerically to 2π when δJ��AB. Each additional Dirac
points, located at �t1 = (0, 2δJ 2

aJ 2 ), �t2 = (
√

3δJ 2

aJ 2 , − δJ 2

aJ 2 ), �t3 =
(− δJ 2

aJ 2 , −
√

3δJ 2

aJ 2 ), carrying π , whereas the central one carries
−π . However, this low-energy effective theory does not carry
information about the second valley. When δJ increases,
the additional Dirac points of the K and K ′ carrying op-
posite topological charges move in opposite directions on
the same line KK ′ and cancel each other for some critical
parameters due to the finite size of the Brillouin zone. Then,
the second limit, with C

(2)
K,K ′ = −τz

1
2 sgn(�AB), discussed in

the main text is achieved when the concept of valley is
again well defined, that is, when δJ becomes sufficiently
large.
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