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Topological crystalline materials: General formulation, module structure, and wallpaper groups
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We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas
of the twisted equivariant K theory are explained with application to topological phases protected by crystalline
symmetries in mind, and systematic methods of topological classification for crystalline materials are presented.
Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless
boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and
nodal superconductors. As an application of our formulation, we present a complete classification of topological
crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface
states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and
two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or
the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under
the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk
gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected
by inversion symmetry.
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I. INTRODUCTION

Since the discovery of topological insulators and topologi-
cal superconductors, much effort has been devoted to exploring
new topological phases of matters [1–6]. Whereas only fully
gapped systems had been regarded as topological phases in
the early stage of the study, recent developments have clarified
that bulk gapless materials such as Weyl semimetals also
exhibit nontrivial topological phenomena. The existence of
surface Fermi arcs and related anomalous transports are typical
topological phenomena in the latter case.

In the exploration of such topological materials, symmetry
plays an important role: In the absence of symmetry, a
fully gapped noninteracting system may realize only an
integer quantum Hall state in up to three dimensions [7].
Indeed, for realization of topological insulators and topolog-
ical superconductors, time reversal and charge conjugation
[i.e., particle-hole symmetry (PHS)] are essential [8–10].
Furthermore, systems often have other symmetries specific to
their structures. In particular, materials in condensed matter
physics support crystalline symmetries of space groups or
magnetic space groups. Such crystalline symmetries also
stabilize distinct topological structures in gapful materials as
well as gapless ones [11–30,30–41].

In this paper, we formulate such topological crystalline
materials on the basis of the K theory. The K-theory
approach has successfully revealed all possible topological
phases protected by general symmetries of time reversal and
charge conjugation [42–44]. Depending on the presence or
absence of the general symmetries, systems are classified into
Altland-Zirnbauer (AZ) tenfold symmetry classes [10,45]. All
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possible topological numbers in the AZ classes are identified
in any dimensions [43,44,46–48]. One of the main purposes
of this paper is to generalize the K-theory approach in the
presence of crystalline symmetries.

Partial generalization of the K-theory approach has been
attempted previously: Motivated by the discovery of topo-
logical mirror insulator SnTe [14,49–51], mirror-reflection
symmetric insulators and superconductors have been classified
topologically [18–21]. Furthermore, a complete topological
classification of crystalline insulators/superconductors with
order-two space groups has been accomplished by means of
the K theory [25–27]. The order-two space groups include
reflection, twofold rotation, inversion, and their magnetic
versions, and many proposed topological crystalline insulators
and superconductors have been understood systematically in
the latter classification. The order-two space-group classifica-
tion also has revealed that nonsymmorphic glide symmetry
provides novel Z2 [26,28] and Z4 phases [27] with Möbius
twisted surface states. Material realization of such a glide
protected topological phase has been proposed theoretically
[52] and confirmed experimentally [53]. There is also a
different proposal for material realization of the Möbius
twisted surface states in heavy-fermion systems [54].

Our present formulation is applicable to any bulk
gapful topological crystalline insulators/superconductors
(TCIs/TCSCs) and their gapless boundary and defect states, as
well as bulk gapless topological crystalline materials. On the
basis of the twisted equivariant K theory [55,56], we illustrate
how space groups and magnetic space groups are incorporated
into topological classification in a unified manner: Based on
the idea by Freed and Moore [55], the space-group action
on Hamiltonians is introduced as a “twist” (τ,c) of that on
the base space, and antiunitary symmetries are specified by
a Z2-valued function φ for group elements. Then, the K

group φK
(τ,c)−n

G (X) on the base space X is introduced in
terms of the Karoubi’s formulation of the K theory [57].
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The K group φK
(τ,c)−n

G (T d ) for the Brillouin zone (BZ)
torus T d provides topological classification of d-dimensional
crystalline insulators and superconductors subject to symmetry
G.

Bearing in mind applications in condensed matter physics,
we clarify connections between the K theory and the tra-
ditional band theory. We also explain practical methods to
compute K groups. In particular, we show the following:

(i) The crystal data of Wyckoff positions are naturally
taken into account in our formulation. The K group for space
group G has elements corresponding to Wyckoff positions
for G.

(ii) Not only crystal structures determine properties of
materials. Atomic orbital characters of band electrons also
strongly affect their properties. For instance, if we change
the physical degrees of freedom from s-orbital electrons to
p-orbital ones, the topological nature of the material may
change. This remarkable aspect of crystalline materials is
involved in our formulation as the R(P )-module structure of
the K group, where R(P ) is the representation ring of a point
group P . An element V ∈ R(P ) acts on the K group as the
tensor product for the symmetry operator, which induces the
change of the representations of physical degrees of freedom.

(iii) TCIs and TCSCs support stable gapless boundary
excitations associated with bulk topological numbers if the
boundary is compatible with symmetry responsible for the
topological numbers. This so-called bulk-boundary correspon-
dence is explained by using dimension-raising maps, of which
the existence is ensured by the Gysin exact sequence in the K

theory.
(iv) Defect gapless modes in TCIs and TCSCs are under-

stood as boundary gapless states in lower-dimensional TCIs
and TCSCs.

(v) Bulk gapless topological crystalline materials are for-
mulated in terms of the K theory. This formulation provides
a systematic method to explore gapless topological crystalline
materials.

(vi) We present the topological table for topological
crystalline surface states protected by wallpaper groups, in
the absence of time-reversal symmetry (TRS). The additive
structures of the relevant K groups were previously calculated
in the literature for the spinless case with and without chiral
symmetry [58,59] and for the spinful case without chiral
symmetry [60]. We complete the topological classification by
determining their R(P )-module structures and considering the
spinful case with chiral symmetry.

(vii) The Mayer-Vietoris exact sequence and the Gysin
exact sequence play central roles in computing K groups. We
illustrate the calculation of K groups in various examples.

The organization of the paper is as follows. In Sec. II, we
explain how space-group symmetries are incorporated in the
Hamiltonian formalism. Nonsymmorphic space groups can be
thought of as unavoidable U(1) phase factors in the projective
representations of point groups. Section III is devoted to
introducing the twisted equivariant K theory. Two alternative
but equivalent constructions of K groups are explained. It
is shown that K groups are not just additive groups, but
have module structures induced by the tensor product of
representations of point groups. The treatment of antiunitary

symmetries in the twisted equivariant K theory is explained in
Sec. IV. Not only TRS and PHS, but also magnetic space-group
symmetries are taken into account in a unified manner. Using
chiral symmetries, we also introduce the integer grading of
the K groups. In Sec. V, we formulate TCIs and TCSCs on
the basis of the twisted equivariant K theory. Characteristic
physical properties of TCIs and TCSCs are discussed here.
In Sec. VI, we propose a systematic method to classify
bulk gapless topological crystalline materials. Weyl and Dirac
semimetals and nodal superconductors are treated in a unified
manner. As an application of the twisted equivariant K theory,
in Sec. VII, we summarize the topological classification of
crystalline insulators with wallpaper groups in the absence
of TRS. We illustrate computations of K groups in various
examples in Sec. VIII. Finally, we conclude the paper in
Sec. IX. We explain some useful mathematical details of the
twisted equivariant K theories in the Appendixes.

II. HAMILTONIAN AND SPACE GROUP

A. Periodic Bloch Hamiltonian

In this paper, we consider one-particle Hamiltonians Ĥ

with lattice translational symmetry. Take a proper localized
basis, say Löwdin orbitals |R,α,i〉, where R is a vector of the
Bravais lattice � ∼= Zd for a given crystal structure in d-space
dimensions, α is a label for the αth atom in the unit cell, and
i represents internal degrees of freedom such as orbital and
spin (see Fig. 1). Then, the system is well described by the
tight-binding Hamiltonian

H =
∑

R,R′∈�

ψ
†
αi(R)Hαi,βj (R − R′)ψβj (R′), (2.1)

with

Hαi,βj (R − R′) = 〈R,α,i|Ĥ |R′,β,j 〉. (2.2)

Because the topological phase of the one-particle Hamiltonian
is examined in the momentum space, we perform the Fourier
transformation of |R,α,i〉 by taking a Bloch basis. The
standard Bloch basis is given by

|k,α,i〉′ := 1√
N

∑
R∈�

|R,α,i〉eik·(R+xα), (2.3)

where xα is the localized position of the αth atom measured
from the center of the unit cell specified by R, and N is
the number of unit cells in the crystal. This basis, however, is
somewhat inconvenient in topological classification: The basis
|k,α,i〉′ is not periodic in the Brillouin zone (BZ) torus T d ,
obeying the twisted periodic boundary condition

|k + G,α,i〉′ = |k,α,i〉′eiG·xα (2.4)

with G a reciprocal vector, so is not the resultant Bloch
Hamiltonian

H ′
αi,βj (k) = 〈k,α,i|′Ĥ |k,β,j 〉′. (2.5)

The nonperiodicity of the Hamiltonian gives an undesirable
complication in topological classification. To avoid this prob-
lem, we take here an alternative Bloch basis which makes the
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(a) (b) (c)

FIG. 1. A crystal structure (a). The Bravais lattice (b). The unit cell (c).

Hamiltonian H (k) periodic:

|k,α,i〉 := 1√
N

∑
R∈�

|R,α,i〉eik·R. (2.6)

Obviously, the Bloch basis (2.6) is periodic in the BZ torus,

|k + G,α,i〉 = |k,α,i〉, (2.7)

and so is the Bloch Hamiltonian Hαi,βj (k),

Hαi,βj (k) = 〈k,α,i|Ĥ |k,β,j 〉. (2.8)

We call this basis (2.6) the periodic Bloch basis. Here, we
note that the periodic Bloch basis (2.6) loses the information
on the localized position xα of the αth atom in the unit cell,
so it may cause complication in relations between the Berry
connections and observables. Bearing this remark in mind,
we employ the periodic basis (2.6) throughout this paper. For
simplicity, we often omit the matrix indices (α,i) below, and
we simply denote the Bloch Hamiltonian Hαi,βj (k) as H (k).

B. Space group and unavoidable U(1) factor

The Bloch Hamiltonian H (k) has space-group symmetry
G for a given crystal structure. An element of G is denoted as
{p|a} ∈ G, under which x transforms as x → px + a. Here,
p ∈ P is an element of the point group P . In this notation,
the lattice translation is denoted as {1|t} with a lattice vector
t ∈ �. (� is the Bravais lattice.) The multiplication in G is
given as

{p|a} · {p′|a′} = {pp′|pa′ + a}, (2.9)

and the inverse is

{p|a}−1 = {p−1| − p−1a}. (2.10)

For each p ∈ P , one can choose a representative {p|ap} ∈ G,
so that any element {p|a} ∈ G can be written as a product
of {p|ap} and a lattice translation {1|t}. Since the lattice
translation trivially acts on the Bloch Hamiltonian, it is enough
to consider a set of representatives {{p|ap} ∈ G : p ∈ P } in
the topological classification of the Bloch Hamiltonian.

For {p|ap} ∈ G, the Bloch Hamiltonian H (k) obeys

Up(k)H (k)Up(k)−1 = H (pk), (2.11)

with a unitary matrix Up(k), which is periodic in the BZ,
Up(k + G) = Up(k). The multiplication in G implies

Up(p′k)Up′(k) = eiτp,p′ (pp′k)Upp′(k), (2.12)

where Up(k), Up′ (k), and Upp′ (k) are the unitary matrices for
{p|ap}, {p′|ap′ }, and {pp′|app′ }, respectively. The U(1) factor
eiτp,p′ (k) above arises because {p|ap} · {p′|ap′ } is not equal to
{pp′|app′ }, in general. Actually, it holds that

{p|ap} · {p′|ap′ } = {1|νp,p′ } · {pp′|app′ } (2.13)

with a lattice vector νp,p′ ≡ pap′ + ap − app′ ∈ �. Due to the
Bloch factor eik·R of |k,α,i〉 in Eq. (2.6), the lattice translation
{1|νp,p′ } gives the U(1) factor

eiτp,p′ (k) = e−ik·νp,p′ . (2.14)

Here, note that if a for any element of G is given by a
lattice vector t , then the U(1) factor in Eq. (2.14) can be 1 by
choosing ap = 0 for any p ∈ P . Such a space group is called
symmorphic. On the other hand, if G contains an element
{p|a} with a nonlattice vector a, such as glide or screw, a
nontrivial U(1) factor is unavoidable. The latter space group is
called nonsymmorphic.

For spinful fermions, there exists a different source of the
U(1) factor eiτp.p′ (k) in Eq. (2.12). This is because rotation in
the spin space is not given as an original O(3) rotation, but
given as its projective U(2) rotation. Different from the U(1)
factor in Eq. (2.14), the resultant U(1) factor is k independent.

As illustrated in Fig. 2, these nontrivial U(1) factors in
Eq. (2.12) provide a twist in a vector (or Hilbert) space on
which the Bloch Hamiltonian is defined. In the following, we
denote the twist τ caused by nonsymmorphic space group G

(the projective representation of rotation) as τ = τG (τ = ω),
and if both twists coexist, we denote it as τ = τG + ω.

FIG. 2. A U(1) factor associated with group action on a vector
bundle on which the Hamiltonian is defined.
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1. More on space group: Group cohomology perspective

More general treatment of the twist is as follows. (The
reader can skip this section on a first reading.) Mathemat-
ically, space groups and their projective representations are
characterized by inequivalent U(1) phases {eiτp,p′ (k)}, which
are classified by the group cohomology. The U(1) phases
{eiτp,p′ (k)} can be considered as an obstruction of the group
structure of the group action on the (trivial) vector bundle
on which the Hamiltonian H (k) is defined. See Fig. 2. To
apply the group cohomology classification, we introduce the
Abelian group C(T d,U (1)) of the U(1)-valued functions on
the BZ torus T d . The Abelian structure of C(T d,U (1)) is
given by the usual product of U(1) phases: eiα1(k) · eiα2(k) =
ei[α1(k)+α2(k)]. The point group P acts on C(T d,U (1)) by
ei(p·α)(k) = eiα(p−1 k), where we have denoted the point-group
action on the BZ by pk for p ∈ P . We also introduce the
group cochain C∗(P,C(T d,U(1))). The U(1) factor in (2.12)
is a two-cochain {eiτp,p′ (k)}p,p′∈P ∈ C2(P,C(T d,U(1))). The
associativity (Ûp1Ûp2 )Ûp3 = Ûp1 (Ûp2Ûp3 ) implies the two-
cocycle condition

δτ = 0 ⇔ τp2,p3

(
p−1

1 k
) − τp1p2,p3 (k)

+ τp1,p2p3 (k) − τp1,p2 (k) ≡ 0 mod 2π, (2.15)

and the redefinition of the U(1) factor Up(k) �→ eiθp(k)Up(k)
induces the equivalence relation from the two-coboundary

τ ∼ τ + δθ ⇔ τp1,p2 (k) ∼ τp1,p2 (k) + θp2

(
p−1

1 k
)

− θp1p2 (k) + θp1 (k) mod 2π. (2.16)

(See Appendix B for the definition of δ and the group
cohomology.) Then, we can conclude the following: For
a given Bravais lattice � and point group P , the set of
inequivalent U(1) phase factors {eiτp,p′ (k)} is given by the group
cohomology H 2(P,C(T d,U(1))). The group cohomology can
be divided into two parts [61]

H 2(P,C(T d,U(1))) ∼= H 2(P,H 1(T d,Z)) ⊕ H 2(P,U(1)),

(2.17)

[τ ] = [τG] + [ω]. (2.18)

The latter part H 2(P,U(1)) represents the classification of the
projective representations of the point group P . Moreover, it
holds that H 1(T d,Z) ∼= Hom(T d,U(1)) ∼= �. [Notice that the
BZ torus T d is the Pontryagin dual �̂ = Hom(�,U(1)) of the
Bravais lattice �.] Therefore, the former part coincides with
the group cohomology H 2(P,�), which is known to provide
the classification of space groups for a given Bravais lattice
� and a point group P [62]. The two-cocycle {νp,p′ ∈ �}
introduced in the previous subsection represents an element of
the group cohomology H 2(P,�).

2. Anti-space group

In addition to ordinary space-group operations, one may
consider a space-group operation Up(k) that changes the sign
of the Bloch Hamiltonian,

Up(k)H (k)Up(k)−1 = −H (pk). (2.19)

Such an operation is called antisymmetry.1 The anti-space-
group symmetry also affects topological nature of the system.
To treat ordinary symmetries and antisymmetries in a unified
manner, we introduce a function c(p) = ±1 that specifies the
symmetry or antisymmetry relations

Up(k)H (k)Up(k)−1 = c(p)H (pk). (2.20)

It is found that c(p) is a homomorphism on G, i.e., c(pp′) =
c(p)c(p′).

C. Chiral symmetry

For topological classification based on the K theory, so-
called chiral symmetry plays a special role: As we shall show
later, one can change the dimension of the system keeping the
topological structure by imposing or breaking chiral symmetry.
Chiral symmetry is defined as

{H (k),�} = 0, �2 = 1, (2.21)

where � is a unitary operator. In the presence of space-group
symmetry,

Up(k)H (k)U−1
p (k) = c(p)H (pk),

(2.22)
Up(p′k)Up(k) = eiτp,p′ (pp′k)Upp′(k),

we introduce a compatible chiral symmetry as

{H (k),�} = 0, Up(k)�U−1
p (k) = c(p)�, �2 = 1. (2.23)

III. TWISTED EQUIVARIANT K THEORY

A. Occupied states and K group

Suppose that a Bloch Hamiltonian H (k) is gapped on a
compact momentum space X. We consider the vector bundle
E that is spanned by the occupied states on X: In other words,
E is spanned by the states |φ(k)〉, k ∈ X in the form of

|φ(k)〉 =
∑

En(k)<EF

cn(k)|un(k)〉, (3.1)

where |un(k)〉 is an eigenstate of H (k):

H (k)|un(k)〉 = En(k)|un(k)〉,
〈un(k)|um(k)〉 = δn,m. (3.2)

Here, EF is the Fermi energy, and cn(k) is an arbitrary complex
function with the normalization condition

∑
n |cn(k)|2 = 1.

We use the notation [E] to represent the set of vector bundles
that are deformable to E. Vector bundles [E] and [F ] can
be added as their direct sum [E] + [F ] := [E ⊕ F ]. Namely,
|φi(k)〉 ∈ [Ei] (i = 1,2) can be added as(|φ1(k)〉

|φ2(k)〉
)

∈ [E1] + [E2]. (3.3)

The zero element 0 in this summation can be introduced as the
vector bundle of rank zero. Physically, such a rank zero vector
is obtained when H (k) does not have an occupied state that
satisfies En(k) < EF.

1The antisymmetry is equivalent to the antiunitary PHS in the many-
body Hilbert space.
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To compare vector bundles [E1] and [E2], we consider the
pair ([E1],[E2]), where the addition is given by

([E1],[E2]) + ([E′
1],[E′

2]) = ([E1] + [E′
1],[E2] + [E′

2]).

(3.4)

Since the “difference” between [E1] and [E2] does not change
even when a common vector bundle [F ] is added to both [E1]
and [E2], the pair ([E1],[E2]) can be identified with ([E1] +
[F ],[E2] + [F ]). This motivates us to introduce the following
equivalence relation ∼:

([E1],[E2]) ∼ ([E′
1],[E′

2])

def⇐⇒ ∃[F ],∃[G] such that ([E1],[E2]) + ([F ],[F ])

= ([E′
1],[E′

2]) + ([G],[G]). (3.5)

The following properties follow in the equivalence class.
(i) The elements of the form ([E],[E]) represent the zero

for the addition in Eq. (3.4).
∵ From Eq. (3.4), we have ([E1],[E2]) + ([E],[E]) =

([E1] + [E],[E2] + [E]), which implies that ([E1],[E2]) ∼
([E1] + [E],[E2] + [E]). So, in the equivalence class, the
same equation gives ([E1],[E2]) + ([E],[E]) = ([E1],[E2]),
which leads to ([E],[E]) = 0.

(ii) The additive inverse of ([E1],[E2]) is ([E2],[E1]).
∵ From (i), one can show that ([E1],[E2]) + ([E2],[E1]) =

([E1] + [E2],[E1] + [E2]) = 0 since E1 ⊕ E2 is continuously
deformed into E2 ⊕ E1, so [E1] + [E2] = [E2] + [E1].

The equivalence classes define an Abelian group, which is
known as the K group or the K theory K(X). The above prop-
erties (i) and (ii) also justify the “formal difference” notation
[E1] − [E2] ∈ K(X) for the pair ([E1],[E2]). Accordingly, we
often mean by [E] ∈ K(X) the element [E] − 0 ∈ K(X) or
equivalently ([E],0) ∈ K(X).

The formal difference [E1] − [E2] naturally measures the
topological difference between E1 and E2: Indeed, from
(i), one finds that if E1 and E2 are smoothly deformable to
each other, then [E1] − [E2] = 0 ∈ K(X). Therefore, we use
it to define topological phase on X: When [E1] − [E2] = 0,
we say that E1 and E2 belong to the same topological phase
on X. To the contrary, when [E1] − [E2] �= 0, we say that
E1 and E2 belong to different topological phases on X. In
this definition of topological phases, [E] − 0 ∈ K(X) gives
a topological number of E through the calculation of K(X)
since a state with no occupied state and the corresponding
vector bundle 0 should be topologically trivial.

It should be noted here that [E1] − [E2] [namely,
([E1],[E2]) in the equivalence relation (3.5)] can be zero
even when [E1] �= [E2]: Actually, even if E1 and E2 are
not smoothly deformable to each other, E1 ⊕ E and E2 ⊕ E

could be by choosing a proper vector bundle E. If this hap-
pens, we have [E1] + [E] = [E2] + [E], and thus the above
(i) and (ii) lead to ([E1],[E2]) = ([E1],[E2]) + ([E],[E]) =
([E1] + [E],[E2] + [E]) = 0. Physically, this result means
that a common occupied state can be added without changing
topological difference between E1 and E2. See Appendix A
for a simple example of a mismatch between the K theory and
the monoid of isomorphism classes of vector bundles.

In topological (crystalline) insulators and superconductors,
the vector bundles [E] of occupied states are subject to

constraints from symmetries. The original K theory presented
here is not convenient in order for the symmetry constraints
to be taken into account. In the next section, we introduce a
different formulation of K theory, which is much more suitable
for the application in topological (crystalline) insulators and
superconductors.

B. Flattened Hamiltonian and Karoubi’s formulation
of K theory

Since Ei (i = 1,2) is defined as a vector bundle that is
spanned by occupied states of Hi(k) (i = 1,2), one may use
the triple (E,H1,H2) with E the vector bundle on which
Hi(k) acts, instead of the pair ([E1],[E2]). In the triple,
we impose the additional constraint H 2

i (k) = 1. Indeed, any
gapped Hamiltonian can satisfy this constraint by a smooth
deformation without gap closing: Any Bloch Hamiltonian
H (k) is diagonalized as

H (k) = U (k)

⎛⎜⎜⎝
E1(k)

. . .
En(k)

⎞⎟⎟⎠U †(k), (3.6)

with a unitary matrix U (k), and if H (k) is gapped, then there
is a clear distinction between the empty levels Ei�p(k) and the
occupied ones Ei�p+1(k),

Ei�p(k) > EF > Ei�p+1(k). (3.7)

Therefore, one may adiabatically deform these levels so that
Ei�p(k) → 1, Ei�p+1(k) → −1 without gap closing. After this
deformation, one obtains

H (k) = U (k)

(
1p×p

−1(n−p)×(n−p)

)
U †(k), (3.8)

which satisfies H 2(k) = 1. The flattened Hamiltonian retains
the same topological property as the original one because
the vector bundle spanned by the occupied states remains the
same. We also regard Hi in the triple as a set of Hamiltonians
that are deformable to Hi(k) keeping the flattened condition
H 2

i (k) = 1.
In a manner similar to Eq. (3.4), the addition for the triples

is given by

(E,H1,H2) + (E′,H ′
1,H

′
2) = (E ⊕ E′,H1 ⊕ H ′

1,H2 ⊕ H ′
2).

(3.9)

We can also impose the equivalence relation ∼
(E,H1,H2) ∼ (E′,H ′

1,H
′
2)

def⇐⇒∃(E′′,H ′′,H ′′), ∃(E′′′,H ′′′,H ′′′) such that (E,H1,H2)

+ (E′′,H ′′,H ′′) = (E′,H ′
1,H

′
2) + (E′′′,H ′′′,H ′′′).

(3.10)

We denote the equivalence class for the triple (E,H1,H2) as
[E,H1,H2]. Then, correspondingly to (i) and (ii) in Sec. III A,
the following properties are obtained:

(i′) The elements of the form [E,H,H ] represent zero in
the addition.

(ii′) The additive inverse of [E,H1,H2] is [E,H2,H1],
i.e.,−[E,H1,H2] = [E,H2,H1].
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The equivalence classes provide an alternative definition
of the K group K(X), which is known as the Karoubi’s
formulation of the K theory. [Karoubi calls the Hamiltonians
Hi (i = 1,2) as gradations [57].]

In the presence of chiral symmetry �

{�,H (k)} = 0, �2 = 1, (3.11)

we use the quadruple (E,�,H1,H2) with E the vector bundle on
which � and Hi(k) act. Here, Hi(k) is flattened, and Hi in the
quadruple represents a set of Hamiltonians that are deformable
to Hi(k). We can generalize the notion of equivalence to that
on the quadruples (E,�,H1,H2), and the equivalence classes
constitute an Abelian group K−1(X).

C. Space group and twisted equivariant K theory

The Karoubi’s formulation can be generalized to insulators
subject to space groups. In a crystalline insulator, H (k) is
subject to a constraint from the (anti-)space group G. As
mentioned in Sec. II B, the space group G acts on H (k)
through the point group P with twist τ = τG,ω,τG + ω. The
symmetries can be expressed as the following constraint on
the Hamiltonian:

Up(k)H (k)Up(k)−1 = c(p)H (pk),
(3.12)

Up(p′k)Up(k) = eiτp,p′ (pp′k)Upp′(k),

where p ∈ P is the point-group part of an element {p|ap}
of G, and Up(k) is a unitary representation matrix of p.
The index c(p) = ±1 specifies symmetry or antisymmetry.
In a manner similar to Sec. III B, a triple (E,H1,H2) with
flattened Hamiltonian Hi (i = 1,2) subject to the constraint
(3.12) defines a twisted K class [E,H1,H2] ∈ K

(τ,c)−0
P (X),

in the twisted equivariant K theory. It should be noted here
that the direct sum H (k) ⊕ H ′(k) satisfies the same constraint
(3.12) with the same c(p) and twist eiτp,p′ (k) if we consider the
corresponding direct sum for Up(k). Furthermore, when there
exists a compatible chiral symmetry �,

Up(k)H (k)Up(k)−1 = c(p)H (pk),

Up(p′k)Up(k) = eiτp,p′ (pp′k)Upp′(k),
(3.13)

Up(k)�Up(k)−1 = c(p)�,

{H (k),�} =0, �2 = 1,

a quadruple (E,�,H1,H2) subject to this constraint defines
another twisted K class [E,�,H1,H2] ∈ K

(τ,c)−1
P (X).

D. Module structure

We note that the twisted equivariant K group is not simply
an additive group, but has a more complicated structure.
Indeed, we can multiply an element of the K group by
a representation R(P ) of the point group P . To see this,
consider a unitary matrix R(p) for an element p ∈ P in the
representation R(P ). Then, we can multiply Up(k) by R(P )
taking the tensor product of R(p) and Up(k), i.e.,

R(P ) · Up(k) := R(p) ⊗ Up(k). (3.14)

From the multiplication law in R(P ), R(p)R(p′) = R(pp′),
we find that the obtained unitary matrix has the same twist as

Up(k):

[R(P ) · Up(p′k)][R(P ) · Up′(k)]

= eiτp,p′ (pp′k)R(P ) · Upp′ (k) (3.15)

which defines an action of the point group P on the
representation space of the tensor product. Furthermore, the
multiplication of the Hamiltonian H by R(P ) can be defined
as

R(P ) · H (k) := 1 ⊗ H (k), (3.16)

with the identity matrix 1 in the representation space of
R(P ). Equation (3.16) gives a Hamiltonian the space-group
symmetry G:

[R(P ) · Up(k)][R(P ) · H (k)][R(P ) · Up(k)]−1

= [R(P ) · H (pk)], (3.17)

where [R(P ) · Up(k)]−1 = [R(p)−1 ⊗ Up(k)−1]. Correspond-
ingly, for the vector space E on which H is defined, R(P ) · E

is defined as the tensor product of the representation space
of R(P ) and E. Using these definitions, we can eventually
introduce the multiplication of the triple (E,H1,H2) by R as

R(P ) · (E,H1,H2) := (R(P ) · E,R(P ) · H1,R(P ) · H2),

(3.18)

which defines the multiplication of the element [E,H1,H2] ∈
K

(τ,c)−0
P (X) by R(P ). The multiplication by R(P ) is compati-

ble with the Abelian group structure of the K group,

R(P ) · (E,H1,H2) + R(P ) · (E′,H ′
1,H

′
2)

= R(P ) · (E ⊕ E′,H1 ⊕ H ′
1,H2 ⊕ H ′

2), (3.19)

and thus the K group is an R(P ) module. In a similar manner,
we can show that K

(τ,c)−1
P (X) is also an R(P ) module.

Remembering that [E] is the space spanned by occupied
states of H , one finds that R · H naturally gives the tensor
product of the representation space of R(P ) and [E], which
we denote as R(P ) · [E]. Therefore, from the correspondence
between (E,H1,H2) and ([E1],[E2]), we can equivalently
define the product of R(P ) and the element ([E1],[E2]) in
the K group as

R(P ) · ([E1],[E2]) := (R(P ) · [E1],R(P ) · [E2]). (3.20)

This definition is also useful to identify the R(P )-module
structure of the K group.

IV. COEXISTENCE OF ANTIUNITARY SYMMETRY

So far, we have considered only unitary symmetries. In
this section, we describe how to take into account antiunitary
symmetries such as TRS, PHS, and magnetic space groups
[55]. Hamiltonians considered here include Bogoliubov–de
Gennes Hamiltonians as well as Bloch Hamiltonians. We take
a suitable basis in which the Hamiltonians are periodic in the
BZ torus, H (k + G) = H (k).

Suppose that the Hamiltonian H (k) is subject to a symmetry
group G. The symmetry group G may include any symmetry
operations including antiunitary ones. For g ∈ G, we have

Ug(k)H (k)Ug(k)−1 = c(g)H (gk), (4.1)
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TABLE I. Symmetry operators and twist for each grading.

Grade Symmetry operators Twist (φ(g),φ(g′))

n CS φ(g) = 1 φ(g) = −1 c (1,1) (1,−1) (−1,1) (−1,−1)

n = 0 0 Ug(k) Ug(k) c(g) eiτg,g′ (k) eiτg,g′ (k) eiτg,g′ (k) eiτg,g′ (k)

n = 1 �1

n = 2 0 Ug(k) �1Ug(k) φ(g)c(g) eiτg,g′ (k) c(g)eiτg,g′ (k) eiτg,g′ (k) c(g)eiτg,g′ (k)

n = 3 �3

n = 4 0 Ug(k) �3�1Ug(k) c(g) eiτg,g′ (k) eiτg,g′ (k) eiτg,g′ (k) −eiτg,g′ (k)

n = 5 �5

n = 6 0 Ug(k) �5�3�1Ug(k) c(g)φ(g) eiτg,g′ (k) c(g)eiτg,g′ (k) eiτg,g′ (k) −c(g)eiτg,g′ (k)

n = 7 �7

where gk denotes the group action on the momentum space
for g ∈ G. Here, c(g) = ±1 is a function on G which specifies
symmetry [c(g) = 1] or antisymmetry [c(g) = −1]. It is
a homomorphism on G, i.e., c(gg′) = c(g)c(g′). We also
introduce a function φ(g) = ±1,

Ug(k)i = φ(g)iUg(k), (4.2)

with the imaginary unit i, in order to specify unitarity
[φ(g) = 1] or antiunitarity [φ(g) = −1] of Ug(k). Again,
it is a homomorphism on G, i.e., φ(gg′) = φ(g)φ(g′). The
multiplication in G implies that

Ug(g′k)Ug′(k) = eiτg,g′ (gg′k)Ugg′(k), (4.3)

with a U(1) factor eiτg,g′ (k). From the associativity

[Ug1 (g2g3k)Ug2 (g3k)]Ug3 (k) = Ug1 (g2g3k)[Ug2 (g3k)Ug3 (k)],

g1,g2,g3 ∈ G (4.4)

the U(1) factor obeys

δτ = 0 ⇔ φ(g1)τg2,g3

(
g−1

1 k
) − τg1g2,g3 (k)

+ τg1,g2g3 (k) − τg1,g2 (k) ≡ 0 mod 2π. (4.5)

The U(1) gauge ambiguity of Up(k),

Ug(k) → eiθg (k)Ug(k), (4.6)

also induces the equivalence relation

τ ∼ τ + δθ ⇔ τg1,g2 (k) ∼ τg1,g2 (k) + φ(g1)θg2

(
g−1

1 k
)

− θg1g2 (k) + θg1 (k) mod 2π. (4.7)

Equations (4.4) and (4.5) imply that a set of inequivalent U(1)
phase factors {eiτg,g′ (k)}g,g′∈G gives an element of the group
cohomology H 2(G,C(T d,U(1)φ)). Here, C(T d,U(1)φ) is the
set of U(1)-valued functions on the BZ torus T d , where the
Abelian group structure is given by the usual product of U(1)
phases, eiα1(k) · eiα2(k) = ei(α1(k)+α2(k)),eiαi (k) ∈ C(T d,U(1)φ),
and the group G acts on C(T d,U(1)φ) by ei(g·α)(k) =
eiφ(g)α(g−1 k) from the left. As explained in Appendix B, Eq. (4.4)
gives the two-cocycle condition, and Eq. (4.5) is the equiva-
lence relation from the two-coboundary in the cohomology.
The above three data (c,φ,τ ) in Eqs. (4.1)–(4.3) specify the
exact action of G on H (k) and the momentum space.

In a manner similar to Sec. III B, we can introduce a
K group by using the Karoubi’s formulation. For flattened
Hamiltonians Hi(k) (i = 1,2) subject to the symmetry group
G, we consider a triple (E,H1,H2), where E is a vector bundle

on a compact momentum space X, and the Hamiltonians Hi

(i = 1,2) act on the common vector bundle E. The addition is
defined by Eq. (3.9), and the equivalence relation is imposed
by Eq. (3.10). As a result, we obtain the twisted equivariant K

group consisting of sets of the equivalence classes [E,H1,H2],
which we denote by φK

(τ,c)
G (X).

We introduce the integer grading of the K group,
φK

(τ,c)−n

G (X) (n = 1,2,3, . . . ), by imposing n additional chiral
symmetries which are compatible with G,

�iH (k)�−1
i = −H (k), {�i,�j } = 2δij , i = 1, . . . ,n

(4.8)
Ug(k)�iU

−1
g (k) = c(g)�i, (4.9)

together with Eq. (4.1). For n � 2, we also impose the sub-
sector condition i�2i−1�2i = 1(i = 1, . . . ,[n/2]): By dressing
antiunitary operators with chiral operators as shown in Table I,
the operator i�2i−1�2i commutes with all symmetry operators
in G as well as with Hamiltonians in the triple. Thus, we have
consistently imposed the above condition. It is also found
that for an odd n, there remains a chiral symmetry � that
is compatible with the subsector condition. See Table I. In
general, the twist (τ,c) for the dressed antiunitary operators
is different from the original one. However, as summarized in
Table I, the twist in each grading is uniquely determined by the
original twist, so we use the same notation (τ,c) to denote the
twist in each grading. It is also noted that the chiral operator
� for an odd n obeys the same symmetry constraints as the
Hamiltonian: when Ug(k) acts on the Hamiltonian as symme-
try (antisymmetry), Ug(k) commutes (anticommutes) with �.

The graded twist (τ,c) has a modulo 8 periodicity (Bott
periodicity) for the grading integer n. For instance, the dressed
antiunitary operator �7�5�3�1Ug(k) for n = 8 has the same
eiτg,g′ (k) and c(g) as Ug(k). Therefore, the same modulo
8 periodicity appears in the K groups, φK

(τ,c)−n−8
G (X) =

φK
(τ,c)−n

G (X). One can introduce φK
(τ,c)+n

G (X) so as to

keep the modulo 8 periodicity. Namely, φK
(τ,c)+n

G (X) ≡
φK

(τ,c)−(8m−n)
G (X) with 8m − n � 0 (m,n ∈ Z).2

An important class of symmetries in this category are
unitary space groups with real AZ symmetries (TRS and/or
PHS). They can be treated in a unified way by considering

2In the absence of antiunitary symmetry, the Bott periodicity
becomes 2. Thus, it holds that K

(τ,c)+n

G (X) = K
(τ,c)−n

G (X).
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TABLE II. The relation between the integer grading n (mod 8), AZ classes, and additional symmetries.

n AZ class TRS PHS τT,g τC,g

n = 0 AI T = T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T

n = 1 BDI T = T C = �1T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

n = 2 D C = �1T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

n = 3 DIII T = �3�1T C = �1T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

n = 4 AII T = �3�1T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T

n = 5 CII T = �3�1T C = �5�3�1T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

n = 6 C C = �5�3�1T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

n = 7 CI T = �7�5�3�1T C = �5�3�1T T Ug(k) = eiτ−1,g (−gk)Ug(−k)T CUg(k) = c(g)eiτ−1,g (−gk)Ug(−k)C

symmetry group Z2 × G with integer grading. Here, G is
a unitary space group, and Z2 = {1,−1} is an order-two
cyclic group that commutes with all elements of G, i.e.,
(−1) · g = g · (−1), g ∈ G. To include real AZ symmetries,
we take the operators for Z2 as U−1(k) = T and U1(k) = 1,
where T is the time-reversal operator with T 2 = 1. We also
define U(−1)·g(k) as U(−1)·g(k) = Ug(−k)T . The presence of
such TRS is referred as class AI in the AZ symmetry classes.
The data (φ,c,τ ) are summarized as

φ(−1) = −1, c(−1) = 1, T 2 = 1,

φ(g) = 1, c(g) = ±1,

Ug(g′k)Ug′(k) = eiτg,g′ (gg′k)Ugg′(k),

T Ug(k) = eiτ−1,g(−gk)Ug(−k)T . (4.10)

Imposing the chiral symmetries �i (i = 1, . . . ,n), one can shift
AZ classes [27]. The AZ class for the nth grading K group
φK

(τ,c)−n

Z2×G
(X) is summarized in Table II.

V. TOPOLOGICAL CRYSTALLINE INSULATORS
AND SUPERCONDUCTORS

In this section, we consider insulators or superconductors
that are gapped in the whole BZ T d . Deforming Hamiltonians
of the systems, one can obtain flattened Hamiltonians in
the whole BZ without gap closing. By using the Karoubi’s
formulation, these flattened Hamiltonians define K groups on
T d . Under the constraint of a symmetry group G with the data
(c,τ,φ), the obtained K group is the twisted equivariant K

group φK
(τ,c)−n

G (T d ). We formulate below TCIs and TCSCs in

terms of the K group φK
(τ,c)−n

G (T d ).

A. K -theory classification

First, we define TCIs and TCSCs on the basis of the
K theory: For this purpose, consider two different flattened
Hamiltonians, H1 and H2, which are defined on the same
vector bundle E and are subject to the same symme-
try constraints for φK

(τ,c)−n

G (T d ). As shown in Sec. III,

[E,H1,H2] ∈ φK
(τ,c)−n

G (T d ) measures a topological difference
between H1 and H2, so we can define that H1 and H2 are
the same (different) TCIs or TCSCs if [E,H1,H2] = 0 ∈
φK

(τ,c)−n

G (T d ) ([E,H1,H2] �= 0 ∈ φK
(τ,c)−n

G (T d )). Some re-
marks are in order.

(1) We call H1 and H2 stably equivalent to each other when
[E,H1,H2] = 0. H1 and H2 are stably equivalent, if they are
continuously deformable to each other, but the inverse is not
true: Indeed, as mentioned in Sec. III A, [E,H1,H2] = 0 does
not necessarily mean that H1 and H2 are smoothly deformable
to each other. Even when they are not deformable to each
other, H1 ⊕ H ′ and H2 ⊕ H ′ could be by choosing a proper
flattened Hamiltonian H ′ on E′, and if this happens, one finds
[E,H1,H2] = 0. This means that even if H1 and H2 are not
smoothly deformable to each other, they could represent the
same TCI or TCSC. In this sense, the K-theory approach
presents a loose classification of TCIs and TCSCs.

(2) When G does not include any antisymmetry, the
identity operator 1 on E is regarded as a flattened Hamiltonian
H0 = 1 which satisfies all the constraints from G. Since
H0 = 1 does not have an occupied state, the vector bundle
spanned by its occupied state is of rank zero (i.e., empty), and
so H0 = 1 obviously describes a topologically trivial state.
Therefore, for this particular class ofG, one can use the identity
Hamiltonian as a reference, by which the topological index of
H is defined as [E,H,1]. When [E,H,1] is nonzero, one can
say that H is a TCI.

(3) Each triple [E,H1,H2] has its own symmetry operators
Ug(k) for g ∈ G defined on E. For H1 and H2 in the same triple,
the symmetry operators commonly act on these Hamiltonians.
On the other hand, explicit forms of symmetry operators can be
different for different triples, as long as the symmetry operators
have the same data (φ,τ,c).

B. Symmetry-protected topologically distinct atomic insulators

1. Wyckoff position

In the presence of symmetry, short-range entangled states
can be topologically distinct due to symmetry constraints.
TCIs and TCSCs may illustrate such symmetry-protected
topological phases in an extreme manner: atomic insulators
can be topologically different to each other due to space
group symmetry. An atomic insulator is an insulator where
all electrons are tightly bound to atoms, so its electric
properties are local and insensitive to the boundary condition.
In particular, it does not support topological gapless boundary
states. Nevertheless, in the presence of crystalline space-group
symmetry, there arises topological distinction between atomic
insulators. This is because crystalline symmetry restricts
possible positions of atoms in the unit cell. Each space group
(or magnetic space group) has a finite number of different
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Wyckoff positions, according to which atoms are placed in the unit cell, and the different Wyckoff positions remain different
under any adiabatic deformation keeping the space-group symmetry. This means that atomic insulators with different Wyckoff
positions should be topologically different.

For example, let us consider atomic insulators with the spatial reflection symmetry m, x → −x in one dimension. Spatial
reflection in one dimension has three different Wyckoff positions: (a) 0, (b) 1

2 , (c) x, −x, which are invariant under reflection up
to the lattice translation x → x + 1. We illustrate below atomic insulators with Wyckoff positions (a) 0 and (b) 1

2 , respectively:

, (5.1)

. (5.2)

Here, “©” represents an atom, and the dashed line is the center of the reflection. Although the difference between (a) and (b) is
just a difference in choice of the unit cell, the crystal (a) cannot adiabatically deform into (b) keeping the reflection symmetry.
Therefore, they are topologically distinguished from each other.

In the Karoubi’s formulation of the K theory, the difference
between Wyckoff positions is manifest in the reflection
operator. Consider the one-dimensional reflection symmetric
insulators (a) and (b) again. The reflection operator U (a)

m (kx) for
the atomic insulator (a) does not coincide with the reflection
operator U (b)

m (kx) for (b), even when atoms in both crystals are
identical: in the crystal (b), after reflection, an additional lattice
translation is needed for an atom in the unit cell to go back
to the original position. As a result, an additional Bloch factor
e−ikx appears in U (b)

m (kx) as U (b)
m (kx) = U (a)

m (kx)e−ikx . Here, it
should be noted that the twist in U (b)

m (kx) is the same as that
in U (a)

m (kx) because U (b)
m (−kx)U (b)

m (kx) = U (a)
m (−kx)U (a)

m (kx).
Thus, both U (a)

m (kx) and U (b)
m (kx) are allowed in the same

twisted equivariant K theory.

2. Representation dependence and R(P)-module structure

Let us consider a set of all unitary symmetry oper-
ations g ∈ G, which are characterized by c(g) = φ(g) =
1. The set forms a subgroup of G because of the rela-
tions c(gg′) = c(g)c(g′) and φ(gg′) = φ(g)φ(g′). This unitary

symmetry subgroup is given by a space group G. The space
group G also provides topologically nontrivial structures.

To see this, consider the symmetry constraint in Eq. (4.1).
From Eq. (4.1), H (k) at k = 0 commutes with any unitary
operator in the above-mentioned space group G. Since the
space group G reduces to the point group P at k = 0, the
constraint implies that any energy eigenstate of H (k) at k = 0
should belong to a representation of P . In particular, occupied
states of H (k) at k = 0 constitute a set of representations of
P . It is evident that if occupied states of H1(k) and those
of H2(k) constitute different sets of representations of P at
k = 0, H1(k) and H2(k) are not deformable to each other as
long as they keep symmetry P and gaps of the systems. In this
sense, the representation of P provides topological differences
in insulators and superconductors.

The above arguments also work for atomic insulators.
For illustration, consider again reflection symmetric atomic
insulators in one dimension. Below, we show atomic insulators
(a1) and (a2) which share the same Wyckoff position:

, (5.3)

. (5.4)

In the atomic insulator (a1), electrons in s orbitals are tightly
bound to atoms, while in (a2), electrons in p orbitals are bound
to atoms. Correspondingly, an occupied state in (a1) is even

under reflection,

U (a1)
m (kx)|kx〉(a1) = |−kx〉(a1), (5.5)
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but that in (a2) is odd under reflection,

U (a2)
m (kx)|kx〉(a2) = −|−kx〉(a2). (5.6)

U (a1)
m (kx) and U (a2)

m (kx) have the same twist since we have

U (a1)
m (−kx)U (a1)

m (kx)|kx〉(a1)

= U (a1)
m (−kx)| − kx〉(a1) = |kx〉(a1),

U (a2)
m (−kx)U (a2)

m (kx)|kx〉(a2)

= −U (a2)
m (−kx)| − kx〉(a2) = |kx〉(a2). (5.7)

Thus, these two insulators can be compared in the same twisted
equivariant K theory. Obviously, these two insulators are
not topologically the same in the presence of the reflection
symmetry.

In the K theory, the representation dependence is properly
treated as the R(P )-module structure in Sec. III D. In terms of
the Karoubi’s formulation, the atomic insulators (a1) and (a2)
are described as the triples with the same form

[E,−1,1], (5.8)

where E is given by |kx〉(a1) and |kx〉(a2), respectively. In-
deed, since E is the occupied state for H = −1 and no
occupied state exists for H = 1, the triple corresponds to
([E],0) = [E] − 0, which is naturally identified with |kx〉(a1)

and |kx〉(a2), respectively. Since |kx〉(a1) and |kx〉(a2) belong to
different representations under the reflection, they correspond
to different elements of the R(P ) module in the K theory.

C. Dimensional hierarchy

A remarkable feature of TCIs and TCSCs is that those
in different dimensions can be related to each other. Such a
hierarchy in spatial dimension has been useful for a systematic
classification of topological insulators and superconductors
[43,44,46,63]: Furthermore, from this property, topological
classification of a class of crystalline insulators and super-
conductors protected by order-two point groups (order-two

nonsymmorphic space groups) in any dimensions reduces
to that in zero dimension (one dimension), which makes it
possible to complete topological classification of those classes
of systems in any dimensions [25,27]. In this section, we
discuss dimensional hierarchy for generic TCIs and TCSCs.

1. Dimension-raising maps

The dimensional hierarchy is given by dimension-raising
maps in the Karoubi’s formulation: Consider a triple
[E,H1(k),H0(k)] ∈ φK

(τ,c)−n

G (X) for an even n, or a quadru-

ple [E,�,H1(k),H0(k)] ∈ φK
(τ,c)−n

G (X) for an odd n, which
describes a relative topological difference of crystalline in-
sulators or superconductors in d dimensions. We assume
that [E,H1(k),H0(k)] �= 0 or [E,�,H1(k),H0(k)] �= 0, which
implies that H1(k) has a “nonzero topological charge” relative
to H0(k) on X.

To construct dimension-raising maps, we consider a one-
parameter Hamiltonian H10(k,m), where m ∈ [−1,1] is a
parameter connecting H10(k,−1) = H0(k) and H10(k,1) =
H1(k), and H10(k,m) keeps the same symmetry constraint as
H1(k) and H0(k). For example, the following one-parameter
Hamiltonian satisfies this requirement:

H10(k,m) =
{
mH0(k), for m ∈ [−1,0]

mH1(k), for m ∈ (0,1].
(5.9)

Note that H10(k,m) should have a gap-closing topological
phase transition point in the middle region of m ∈ [−1,1]
since H1(k) and H0(k) have different topological charges. See
Fig. 3(a). In H10(k,m) of Eq. (5.9), the gap-closing point is
given at m = 0. Depending on the absence (for an even n) or
presence (for an odd n) of chiral symmetry, we have a map
from the Hamiltonians on X to a new Hamiltonian H (k,n̂) on
X × Sd , which has the same topological charge as H1(k), in
the following manner.

γ matrices.—For preparation, we introduce the following
γ matrices:

γ
(k)
1 = σy ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

k−1

, γ
(k)
2 = −σx ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

k−1

,

γ
(k)
3 = σ0 ⊗ σy ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

k−2

, γ
(k)
4 = σ0 ⊗ (−σx) ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

k−2

,

(5.10)
...

...

γ
(k)
2k−1 = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

k−1

⊗σy, γ
(k)
2k = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

k−1

⊗(−σx),

and γ
(k)
2k+1 = σz ⊗ · · · ⊗ σz, which obey {γ (k)

i ,γ
(k)
j } = 2δi,j .

They also satisfy

γ
(k)
i ⊗ γ

(l)
2l+1 = γ

(k+l)
i ,

σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
k

⊗γ
(l)
j = γ

(k+l)
2k+j , (5.11)

γ
(k)
2k+1 ⊗ γ

(l)
2l+1 = γ

(k+l)
2(k+l)+1,

for i = 1, . . . ,2k and j = 1, . . . ,2l. We also define γ
(0)
1 as

γ
(0)
1 = 1. The γ matrices are useful to construct dimension-

raising maps.
Map from nonchiral class.—For an even n, H10(k,m) does

not have chiral symmetry. Here, we construct the dimension-
raising map that changes the base space X into X × S2r−1 or
X × S2r (r = 1,2, . . . ) in this nonchiral case. For this purpose,
we first formally increase the rank of the Hamiltonian

H10(k,m) = H10(k,m) ⊗ γ
(r)
2r+1, (5.12)

235425-10



TOPOLOGICAL CRYSTALLINE MATERIALS: GENERAL . . . PHYSICAL REVIEW B 95, 235425 (2017)

(a) (b)

FIG. 3. (a) A parameter m connecting two different topological phases. (b) The dimensional raising map from X to X × S1.

and that of symmetry operators Ug(k),

Ug(k) =
⎧⎨⎩

Ug(k) ⊗ σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
r

, for c(g) = 1

Ug(k) ⊗ γ
(r)
2r+1, for c(g) = −1

(5.13)

by using the γ matrices. H10(k,m) and Ug(k) keep the same
symmetry relations as H10(k,m) and Ug(k),

Ug(k)H10(k,m)U−1
g (k) = c(g)H10(gk),

Ug(g′k)Ug′(k) = eiτg,g′ (gg′k)Ugg′(k), (5.14)

Ug(k)i = φ(g)iUg(k),

but there appear additional chiral symmetries

{H10(k,m),`(±)
i } = 0 (i = 1, . . . ,r) (5.15)

with

Ug(k)`(±)
i U−1

g (k) = c(g)`(±)
i , {`(+)

i ,`(+)
j } = 2δi,j ,

(5.16)
{`(−)

i ,`(−)
j } = −2δi,j , {`(+)

i ,`(−)
j } = 0,

where the chiral operators `(±)
i (i = 1, . . . ,r) are defined as

`(+)
i = 1 ⊗ γ

(r)
2i , `(−)

i = 1 ⊗ iγ
(r)
2i−1. (5.17)

Note that `(+)
i `(−)

i (i = 1, . . . ,r) commute with H10(k,m),
Ug(k), and each other. Since H10(k,m) and Ug(k) reduce to
H10(k,m) and Ug(k) in the diagonal basis of `(+)

i `(−)
i = ±1,

H10(k,m) retains the same topological properties as H10(k,m).
The following equation defines the dimension-raising map

from H (k,m) on X to the Hamiltonian H (k,n̂) on X × S2r−1:

H (k,n̂) =H10(k,n0) + in1`
(−)
1 + · · · + inr`

(−)
r + nr+1`

(+)
1

+ · · · + n2r−1`
(+)
r−1, (5.18)

where we have introduced the spherical coordinate n̂ =
(n0,n) = (n0,n1, . . . ,n2r−1) with n2

0 + n2 = 1. The obtained
Hamiltonian is fully gapped and can be flattened because
H (k,n̂)2 = H10(k,n0)2 + n2 is positive definite. In particular,
for H10(k,m) in Eq. (5.9), one can show directly that
H (k,n̂)2 = 1.

We can also extend symmetry G on X into that on X ×
S2r−1: The simplest extension is that g ∈ G acts on S2r−1

trivially. For antiunitary operators, however, the momentum
and the coordinate behave in a different manner under the
trivial action. While the momentum changes the sign under the
trivial action of antiunitary operators, the coordinate does not.
Correspondingly, there exist two different trivial extensions:

For the momentum sphere S2r−1, the trivial extension is given
by

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(+)
r−1 . . .`(+)

1 Ug(k), for φ(g) = −1
(5.19)

which yields

Ug(k,n̂)H (k,n̂)U−1
g (k,n̂) = c(g)[φ(g)]r−1H (k,n0,φ(g)n),

(5.20)

and for S2r−1 in the coordinate space,

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(−)
r . . .`(−)

1 Ug(k), for φ(g) = −1
(5.21)

which leads to

Ug(k,n̂)H (k,n̂)U−1
g (k,n̂) = c(g)[φ(g)]rH (k,n0,n).

(5.22)

Here, note that n changes the sign under the action of antiuni-
tary operators in the former extension. (See also Sec. V C 2.)
The mapped Hamiltonian also has chiral symmetry

{H (k,n̂),�} = 0, � = `(+)
r . (5.23)

From Eqs. (5.19) and (5.21), one can calculate directly how the
twist (τ,c) changes for the momentum sphere extension and
the coordinate sphere extension, respectively. In these cases,
the change of the twist results in the change of the grading.
The grading integer n is increased (decreased) by 2r − 1 for
the momentum (coordinate) sphere case.

Figure 3(b) illustrates the map in the r = 1 case:

H (k,θ ) = H10(k, cos θ ) + i sin θ`(−)
1

= H10(k, cos θ ) ⊗ σz − sin θ ⊗ σy. (5.24)

When θ = 0 and π , the mapped Hamiltonian H (k,θ ) is
essentially the same as H1(k) and H0(k), respectively. Then,
with keeping the gap, H1(k) and H0(k) are extended in the θ

direction and they are glued together. In the above construction,
the nonzero topological charge of H1(k), which is illustrated
as a “vortex” in Fig. 3(b), becomes a “monopole” inside
X × S1. Therefore, H (k,θ ) has the same topological charge as
H1(k). The same argument works for any r . Thus, the mapped
Hamiltonian H (k,n̂) also has the same topological charge as
the original Hamiltonian H1(k).
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For the dimension-raising map from X to X × S2r , we
consider the following Hamiltonian:

H (k,n̂) =H10(k,n0) + in1`
(−)
1 + · · · + inr`

(−)
r + nr+1`

(+)
1

+ · · · + n2r`
(+)
r , (5.25)

which is also gapped and has the same topological charge as
H1(k). We also has the trivial extension of G,

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(+)
r . . .`(+)

1 Ug(k), for φ(g) = −1
(5.26)

for the momentum sphere S2r , and

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(−)
r . . .`(−)

1 Ug(k), for φ(g) = −1
(5.27)

for the coordinate sphere S2r . The mapped Hamiltonian does
not have chiral symmetry. The above extension increases
(decreases) the grading integer n by 2r for the momentum
(coordinate) extension.

Map from chiral class.—For an odd n, where H10(k,m)
has chiral symmetry �, and the dimension-raising map is
constructed in a manner parallel to the even n case, with a
minor modification. Using �, we first introduce ` by

` = � ⊗ γ
(r)
2r+1, (5.28)

as well as H10(k,m), Ug(k), and `(±)
i (i = 1, . . . ,r) defined

in Eqs. (5.12), (5.13), and (5.17), respectively. Since � obeys
Ug(k)�Ug(k)−1 = c(g)�, we have

Ug(k)`U−1
g (k) = c(g)`. (5.29)

For the dimension-raising map from X to X × S2r+1(r =
0,1, . . . ), we consider

H (k,n̂) =H(k,n0) + in1`
(−)
1 + · · · + inr`

(−)
r + nr+1`

(+)
1

+ · · · + n2r`
(+)
r + n2r+1`, (5.30)

where the extension of G is given by

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(+)
r . . .`(+)

1 `Ug(k), for φ(g) = −1
(5.31)

for the momentum sphere S2r+1, and

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(−)
r . . .`(−)

1 Ug(k), for φ(g) = −1
(5.32)

for the coordinate sphere S2r+1. The mapped Hamiltonian
H (k,n̂) does not have chiral symmetry. On the other hand,
for the map from X to X × S2r (r = 1,2, . . . ), we have

H (k,n̂) =H(k,n0) + in1`
(−)
1 + · · · + inr`

(−)
r

+ nr+1`
(+)
1 + · · · + n2r−1`

(+)
r−1 + n2r`, (5.33)

where the extension of G is given by

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(+)
r−1 . . .`(+)

1 `Ug(k), for φ(g) = −1
(5.34)

for the momentum sphere S2r , and

Ug(k,n̂) =
{
Ug(k), for φ(g) = 1

`(−)
r . . .`(−)

1 Ug(k), for φ(g) = −1
(5.35)

for the coordinate sphere S2r+1. The Hamiltonian H (k,n̂) has
chiral symmetry

{H (k,n̂),�′} = 0, �′ = `(+)
r . (5.36)

The maps in Eqs. (5.30) and (5.33) increase (decrease) the
grading integer n by 2r + 1 and 2r , respectively, for the
momentum (coordinate) sphere extension. For the same reason
as the even n case, the mapped Hamiltonians in Eqs. (5.30)
and (5.33) keep the same topological charge as the starting
Hamiltonian H1(k).

Isomorphism.—The dimension-raising maps keep the topo-
logical charge, with shifting the grading of the Hamiltonian and
the dimension of the base manifold. In terms of the K theory,
these results are summarized as the isomorphism

φK
π∗(τ,c)−n

G (X × SD)

∼= φK
(τ,c)−(n−D)
G (X)︸ ︷︷ ︸

SD−dependent contribution

⊕ φK
(τ,c)−n

G (X)︸ ︷︷ ︸
SD−independent contribution

(5.37)

for the momentum sphere SD , and

φK
π∗(τ,c)−n

G (X × SD)

∼= φK
(τ,c)−(n+D)
G (X)︸ ︷︷ ︸

SD−dependent contribution

⊕ φK
(τ,c)−n

G (X)︸ ︷︷ ︸
SD−independent contribution

(5.38)

for the coordinate space sphere SD . Here, G acts on SD

trivially, and π∗ is the pullback of the obvious projection
π : X × S2r−1 → X. Strictly speaking, the twist for Ug(k,n̂)
is defined on X × S2r−1, not on X, so to make it clear,
we denote the twist of Ug(k,n̂) as π∗(τ,c). The mapped
Hamiltonian H (k,n̂) gives an element of φK

π∗(τ,c)−n

G (X × SD)
corresponding to the first term of the right-hand side in
Eq. (5.37) or (5.38). The second terms in Eqs. (5.37) and (5.38)
are trivial contributions from Hamiltonians independent of SD .

The exact relation between a mapped Hamiltonian H (k,n̂)
and an element of the K group is obtained as follows: Starting
from the zero element [E,H0,H0] = 0 or [E,�,H0,H0] = 0
in φK

(τ,c)−(n∓D)
G (X), we first construct a topologically trivial

Hamiltonian H0(k,n̂) using the dimension-raising map. Then,
the element of φK

π∗(τ,c)−n

G (X × SD) is given by the triple
[E,H,H0] on X × SD or the quadruple [E,�,H,H0] on
X × SD .

In Appendix F, we outline the proof of the isomorphisms by
using the Gysin sequence. As discussed below, the first terms
in the isomorphisms ensure the existence of gapless boundary
and defect states of TCIs and TCSCs.

2. Momentum sphere SD

In the previous section, we have introduced the momentum
sphere SD parametrized by n̂ = (n0,n) with n2

0 + n2 = 1.
Here, we explain its relation to the actual momentum space. For
the simplest case S1, the momentum sphere can be naturally
identified with the one-dimensional BZ, where n̂ is given in
the form of (n0,n1) = (cos k, sin k) with momentum k. Under
the action of antiunitary operators, k goes to −k, so only n1
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changes the sign. This behavior is consistent with Eq. (5.20).
Moreover, a general SD can be regarded as a compactified
D-dimensional momentum space. Using the following map

k = n
1 + n0

, (5.39)

one can obtain the original decompactified D-dimensional
momentum space. Thus, the sign change of k is induced
by the transformation (n0,n) → (n0, − n). This behavior is
also consistent with Eq. (5.20). We also note that O(D + 1)
rotations of SD that fix the north (n0 = 1) and south pole
(n0 = −1) induce O(D) rotations around the origin in the
decompactified momentum space. This property will be used
in Sec. V C 4.

3. Examples

d = 0 class A → d = 1 class AIII.—Let us consider class A
insulators in 0-space dimension. The K theory is K0(pt) = Z
and generator of K0(pt) is represented by the triple [C,1,−1].
Then, the mapped Hamiltonian (5.18) reads as

H (kx) = cos kxσz − sin kxσy, � = −σx, (5.40)

which leads to the K-theory isomorphism

K−1(S1) ∼= K0(pt) ⊕ K−1(pt) = K0(pt) = Z. (5.41)

d = 1 class AIII → d = 2 class A.—Let us consider the
K-theory isomorphism

K0(T 2) ∼= K1(S1) ⊕ K0(S1) = K−1(S1)

⊕ K0(S1) = Z ⊕ Z. (5.42)

The second term is a weak index. The first term is given by
the dimensional-raising map. From Eq. (5.40), a Hamiltonian
H (kx,m) connecting the topological phase (1 ∈ Z) and the
trivial phase (0 ∈ Z) is given by

H10(kx,m) = (m − 1 + cos kx)σz − sin kxσy,

� = − σx, m ∈ [−1,1]. (5.43)

Then, the mapped Hamiltonian (5.30) becomes

H (kx,ky) = (−1 + cos kx + cos ky)σz − sin kxσy − sin kyσx.

(5.44)

4. More on dimension-raising maps

To construct the dimension-raising maps in Sec. V C 1, we
have considered the trivial extension of symmetry G from
X to X × SD . Here, we present different dimension-raising
maps by using a nontrivial extension of G. For simplicity,
we only present here maps from nonchiral systems, but the
generalization to the chiral case is straightforward. As shown
in Sec. V C 1, we have the following set of equations before
increasing the dimension of the base manifold:

Ug(k)H10(k)U−1
g (k) = c(g)H(gk),

Ug(k)`(±)
i U−1

g (k) = c(g)`(±)
i ,

Ug(g′k)Ug′(k) = eiτg,g′ (gg′k)Ugg′(k), {`(+)
i ,`(+)

j } = 2δij ,

{`(−)
i ,`(−)

j } = −2δij , {`(−)
i ,`(−)

j } = 0. (5.45)

For the nontrivial extension, we take into account SO(D)
generators

M(++)
ij = [`(+)

i ,`(+)
j ]

2i
, M(−−)

ij = [`(−)
i ,`(−)

j ]

2i
,

M(+−)
ij = [`(+)

i ,`(−)
j ]

2i
. (5.46)

By using them, a map from g ∈ G to Vg ∈ Pin(D) [projective
group of O(D)] can be expressed as

Vg =
{

exp
[
i
∑

ijσσ ′ M
(σσ ′)
ij θ

ij

σσ ′(g)
]
, for pV (g) = 0

`(+)
1 exp

[
i
∑

ijσσ ′ M
(σσ ′)
ij θ

ij

σσ ′(g)
]
, for pV (g) = 1

(5.47)

where pV (g) is the index distinguishing two different forms of
Vg . The index pV (g) satisfies

pV (gg′) = pV (g) + pV (g′) (mod 2). (5.48)

If the map keeps the group structure of G as

VgVg′ = eiτV (g,g′)Vgg′ , (5.49)

where the twist eiτV (g,g′) = ±1 ∈ ω is allowed from the
projective nature of Pin(D), we can use UV

g (k) defined by

UV
g (k) = VgUg(k), (5.50)

instead of Ug(k), to construct the symmetry operator on
X × SD in Eqs. (5.19) and (5.21) [or Eqs. (5.26) and (5.27)].
The presence of Vg induces an O(D + 1) rotation of SD that
fixes the north pole (n0 = 1) and the south pole (n0 = −1) of
SD . Since UV

g (k) obeys

UV
g (k)H(k)(UV

g )−1(k)

= (−)pV (g)c(g)H(gk),

UV
g (g′k)UV

g′(k)

= [c(g)]pV (g′)ei[τg,g′ (gg′k)+τV (g,g′)]UV
gg′(k), (5.51)

the dimension-raising map in the above presents an extra twist,
in addition to that given by the change of the grading integer.

The above dimension-raising map is summarized as the
following isomorphism in the K theory:

φK
π∗(τ,c)−n

G (X × SD)

∼= φK
(τ,c)+(τV ,cV )−(n∓D)
G (X) ⊕ φK

(τ,c)−n

G (X), (5.52)

whereG acts on SD throughG → O(D + 1) with the north and
south poles fixed, and − (+) in the double sign corresponds
to the momentum (coordinate) SD . Here, (τV ,cV ) denotes the
extra twist due to Eq. (5.51).

D. Building block

As shown in the previous subsection, using the dimension-
raising maps, one can construct a sequence of mapped
Hamiltonians on the manifolds

X → X × Sr1 → X × Sr1 × Sr2

→ X × Sr1 × Sr2 × Sr3 → · · · . (5.53)
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TABLE III. Building blocks.

Building block
Symmetry Brillouin zone Related Refs.
No symmetry {pt}
TRS and/or PHS {pt} [10,43,44]
Onsite symmetry {pt}
Order-two point-group symmetry (reflection, π rotation, inversion,
reflection × reflection, . . . )

{pt} [19,21,25]

Order-two nonsymmorphic space-group symmetry (half-lattice
translation, glide, twofold screw, glide × reflection, . . . )

S1 [27]

General wallpaper group T 2 [24,58–60,64]
General space group T 3

For Hamiltonians fitting in any of the mapped Hamiltonians,
their topological classification reduces to that of the start-
ing lower-dimensional Hamiltonians on X. Therefore, X is
regarded as a “building block” of the classification. Some
examples of building blocks with relevant symmetries are
summarized in Table III.

E. Boundary gapless states

The isomorphism in Eq. (5.37) predicts one of the most
important characteristics of TCIs and TCSCs, the existence
of gapless boundary states: consider a crystalline insulator or
superconductor in d dimensions with the boundary normal
to the xd direction as illustrated in Fig. 4. Symmetry of the
system compatible with the boundary should act trivially on the
xd direction, so it is identical to that for φK

π∗(τ,c)−n

G (X × S1)
in Eq. (5.37), where S1 is the momentum sphere conjugate
to xd , X is surface BZ conjugate to x1, . . . ,xd−1, and the
data of symmetry, (φ,τ,c), n, and G, are properly chosen.
The K group φK

π∗(τ,c)−n

G (X × S1) determines topological
properties of the system with the boundary. In particular, if
the system has a nonzero topological number corresponding
to the first term φK

(τ,c)−(n−1)
G (X) of the right-hand side in

Eq. (5.37), the TCI or TCSC hosts topologically protected
gapless states on the boundary. This is a manifestation of the
bulk-boundary correspondence: a nontrivial element of the first
term implies the existence of a topologically twisted structure
of the bulk gapped system in the kd direction, which manifests
the existence of gapless boundary states in the presence of
a boundary normal to the xd direction. On the other hand,
the second term of the right-hand side in Eq. (5.37) merely
provides a “weak topological index” that can be supported by
(d − 1)-dimensional gapped systems trivially stacked in the
xd dimension. Since the stacked system is kd independent, the

Bulk

Boundary gapless states

FIG. 4. Bulk-boundary correspondence.

second term does not provide any gapless state on the boundary
normal to the xd direction.

These important properties of TCIs and TCSCs are sum-
marized as follows:

Gapless states for crystalline insulators and superconductors
in d dimensions are topologically classified by the K group
φK

(τ,c)−(n−1)
G (X), where X is the (d − 1)-dimensional surface

BZ and symmetry of the system is given by (φ,τ,c), n, and
G. Note that the grading of the K group is shifted by −1 in
comparison with that of symmetry of the system: the grading
of K group is n − 1, while that of symmetry is n.

The dimensional-raising maps (5.18) and (5.30) present rep-
resentative Hamiltonians with nonzero topological numbers
of the K group φK

(τ,c)−n

G (X), by which one can confirm the
existence of gapless states on the boundary.

The gapless states on the surface BZ X have their own
effective Hamiltonians given by self-adjoint Fredholm
operators acting on the infinite-dimensional Hilbert space.
These Fredholm operators also represent elements of the K

group, which also classifies all possible stable gapless states.
In this paper, we do not describe the detail of this formulation
of the K theory since it requires an additional mathematical
preparation. For the outline, see Ref. [65] for example. It
should be noted that in contrast to the classification of bulk
gapped insulators and superconductors, where a pair of Hamil-
tonians [E,H1,H2] are needed in the K theory, the alternative
formulation requires only a single effective Hamiltonian for
gapless states to represent an element of the K group.

F. Defect gapless modes

1. Semiclassical Hamiltonian

Here, we consider topological defects of band insulators
and superconductors. Away from the topological defects,
the systems are gapped, and they are described by spatially
modulated Bloch and BdG Hamiltonians [46,66]

H (k,r), (5.54)

where the base space of the Hamiltonian is composed of
momentum k, defined in the d-dimensional BZ T d , and
real-space coordinates r of a D-dimensional sphere S̃D

surrounding a defect. We treat k and r in the Hamiltonian as
classical variables, i.e., momentum operators k and coordinate
operators r commute with each other. This semiclassical
approach is justified if the characteristic length of the spatial
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inhomogeneity is sufficiently longer than that of the quantum
coherence. A realistic Hamiltonian would not satisfy this
semiclassical condition, but if there is no bulk gapless mode,
then the Hamiltonian can be adiabatically deformed so as to
satisfy the condition. Because the adiabatic deformation does
not close the bulk energy gap, it retains the topological nature
of the system.

The defect defines a (d − D − 1)-dimensional submani-
fold. We assume that the defect keeps the lattice translation
symmetry along the submanifold. Whereas the exact mo-
mentum space is T d , we retain the torus structure only in
the directions of the defect submanifold, and thus consider a
simpler space T d−D−1 × S1 × SD , where SD is conjugate to
S̃D , in the following: this simplification keeps any symmetry
compatible with the defect configuration, so it does not affect
the classification of symmetry-protected topological defect
gapless modes.

2. Topological classification

Consider a defect described by the semiclassical Hamilto-
nian H (k,r) on T d−D−1 × S1 × SD × S̃D . We impose sym-
metry G compatible with the defect configuration on H (k,r),
with the grading integer n. The topological classification of
the above system is given by the K group φK

π∗(τ,c)−n

G (T d−D−1

× S1 × SD × S̃D). Since SD and S̃D are conjugate to each
other, G acts on them in the same manner. The compatibility
with the defect configuration implies that the action of G on
SD and S̃D should be O(D + 1) rotations with a point fixed.
Thus, one can apply the isomorphism in Eq. (5.52) to evaluate
φK

π∗(τ,c)−n

G (T d−D−1 × S1 × SD × S̃D):

φK
π∗(τ,c)−n

G (T d−D−1 × S1 × SD × S̃D)

∼= φK
(τ,c)+(τV ,cV )−(n+D)
G (T d−D−1 × S1 × SD)

⊕ φK
(τ,c)−n

G (T d−D−1 × S1 × SD)︸ ︷︷ ︸
S̃D independent

∼= φK
(τ,c)−n

G (T d−D−1 × S1)

⊕ φK
(τ,c)+(τV ,cV )−(n+D)
G (T d−D−1 × S1)︸ ︷︷ ︸

SD independent

⊕ φK
(τ,c)−n

G (T d−D−1 × S1 × SD)︸ ︷︷ ︸
S̃D independent

. (5.55)

Here, no extra twist (τV ,cV ) appears in the first term of the
right-hand side: the extra twist (τV ,cV ) from the O(D + 1)
rotation on S̃D is canceled by that on SD . The second and the
third terms on the final line in the right-hand side are given
by the Hamiltonian H (k,r) that are independent of either k
or r , so they merely provide a weak topological index and a
bulk topological number irrelevant to the defect, respectively.
Therefore, only the first term gives a strong topological index
for the defect. We note here that the first term coincides with
the K group for TCIs and TCSCs in (d − D) dimensions,
where the boundary can be identified with the (d − D − 1)-
dimensional defect submanifold, as illustrated in Fig. 5. Thus,
we obtain the following result:

(a) (b)

FIG. 5. (a) A topological defect with δ dimensions in a d-
dimensional insulator. The blue circle represents a sphere Sd−δ−1

surrounding the topological defect. (b) A boundary gapless state in
(δ + 1)-dimensional topological insulators.

A defect can be considered as a boundary of a lower-
dimensional TCI or TCSC. Defect gapless modes are topo-
logically classified as boundary gapless states of the TCI or
TCSC.

VI. TOPOLOGICAL NODAL SEMIMETALS
AND SUPERCONDUCTORS

A. Formulation by K theory

Weyl and Dirac semimetals or nodal superconductors host
bulk gapless excitations as band touching points and/or lines
in the BZ. The gapless excitations have their own topological
numbers which ensure stability under small perturbations.
There have been a lot of efforts to classify such bulk gapless
topological phases [30,35,36,67].

Whereas the bulk gapless phases resemble to gapless
boundary and defect modes in TCIs and TCSCs, their
theoretical treatment is different from that of the latter: While
the topological structure of the latter can be examined by a
bulk Hamiltonian flattened in the entire BZ, that of the former
cannot be since the information on the band touching structure
is obviously lost by the flattening. Therefore, one needs a
different approach to characterize gapless topological phases
in the K-theory formulation.

A simple way to characterize topological semimetals and
nodal superconductors is to consider subspaces of the BZ,
together with the entire one.3 Let Y ⊂ T d be a closed subspace
in the BZ torus T d . The subspace Y may not retain the full
symmetryG of the system, and we denote it asGY , the subgroup
of G keeping Y invariant. (Namely, for g ∈ GY and k ∈ Y , it
holds that gk ∈ Y .) Then, the trivial inclusion iY : Y → T d

induces the following homomorphism i∗Y from the K group on
T d to a K group on Y :

i∗Y : φK
(τ,c)−n

G (T d ) → i∗Y φK
i∗Y (τ,c)−n

GY
(Y ). (6.1)

Actually, from a triple [E,H1,H2] ∈ φK
(τ,c)−n

G (T d ) for an even

n or a quadruple [E,�,H1,H2] ∈ φK
(τ,c)−n

G (T d ) for an odd

n, one can have a unique element of i∗Y φK
i∗Y (τ,c)−n

GY
(Y ), just

by restricting the vector bundle E and the Hamiltonians Hi

3We illustrate this viewpoint in terms of the K theory, but the same
discussion is possible for isomorphism classes of vector bundles.
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(i = 1,2) to the subspace Y , and by relaxing the symmetry
constraint from G to GY . Here, we have represented the twist
(τ,c) and φ for GY as i∗Y (τ,c) and i∗Y φ, respectively, since
they are determined by those data of G. Noting that any fully
gapped insulator or superconductor subject to the symmetry
G with the grading integer n is identified with an element of
φK

(τ,c)−n

G (T d ), we have the following statement:

If one restricts a full gapped crystalline insulator or su-
perconductor to a subspace Y , the resultant system on Y

gives a K-group element that lies inside the image of the
homomorphism i∗

Y .

Now consider a system which is fully gapped on Y but
not necessarily so on the whole BZ T d . The restriction on
Y also gives an element of i∗Y φK

i∗Y (τ,c)−n

GY
(Y ). Interestingly, the

contraposition of the above statement leads to the following
nontrivial statement:

If the above K-group element on Y lies outside the image of
the homomorphism i∗

Y , the original system should support a
gapless region outside Y .

Since elements outside the image of i∗Y are nothing but the
cokernel of i∗Y in mathematics, the second statement can be
rephrased as follows.

Nonzero elements of coker(i∗
Y )=i∗

Y
φK

i∗
Y

(τ,c)−n

GY
(Y )/Im(i∗

Y ) pro-
vide bulk topological gapless phases. In other words, the
coker(i∗

Y ) defines bulk topological gapless phases in the K-
theory formulation.

Not all elements of i∗Y φK
i∗Y (τ,c)−n

GY
(Y ) can be obtained from

elements of φK
(τ,c)−n

G (T d ), so the cokernel of i∗Y is not empty in
general. Below, we illustrate this viewpoint in some examples.

B. Examples

1. Weyl semimetals

The first example is Weyl semimetals that support bulk band
touching points in the BZ [68–71]. As originally discussed
by Nielsen and Ninomiya [72], the band touching points
have local monopole charges defined by the Chern number.
The Weyl semimetals are characterized as the cokernel of a
homomorphism between K groups.

Let Y
(i)
1 (i = 1,2) be planes with kx = ai (i = 1,2) in

Fig. 6(a), and consider the disjoint union Y1 = Y
(1)
1 � Y

(2)
1 . The

most general K theory on Y1 is K(Y1) = K(Y (1)
1 ) ⊕ K(Y (2)

1 ),
which does not require any symmetry. Since the topological
index of K(Y (i)

1 ) is the Chern number ch(ai) on Y
(i)
1 , an element

of K(Y1) is given by (ch(a1),ch(a2)).
Now, consider the trivial inclusion iY1 : Y1 → T 3, which

induces the homomorphism i∗Y1
from ∗K∗

∗ (T 3) to K(Y1), where
∗K∗

∗ (T 3) can be any K group for fully gapped insulators in
three dimensions. For any fully gapped insulators in three
dimensions, the Chern number ch1(kx) at the plane with a
constant kx does not depend on kx , so the image of i∗Y1

satisfies
ch(a1) = ch(a2). Therefore, if the Chern numbers ch(ai)
(i = 1,2) of the two planes Y

(i)
1 (i = 1,2) do not match, there

should be a stable gapless point in the region outside the
subspace Y1. This means that the cokernel of i∗Y1

, which is
given by ch(a1) − ch(a2), corresponds to gapless points.

This argument also works for any closed surface Y

deformable to a point and its trivial inclusion iY : Y → T 3.
The cokernel of the induced homomorphism i∗Y is nothing
but the Chern number on Y in this case, which defines the
monopole charge of Weyl nodes.

2. Nonsymmorphic gapless materials

As the second example, consider the filling constraint from
nonsymmorphic space groups. In general, a nonsymmorphic
space group gives rise to a constraint on possible filling
numbers of band insulators, as classified by Watanabe et al.
[30]. For example, let us consider the glide symmetry (x,y) �→
(x + 1/2,−y) in two dimensions. The glide operator G(kx)
has the 2π periodicity G(kx + 2π ) = G(kx) and it also obeys
G2(kx) = e−ikx since two consecutive glide operations amount
to just a lattice translation, which results in the Bloch factor
e−ikx . The latter equation implies that eigenvalues of G(kx)
are ±e−ikx/2. From these equations, it is found that every band
forms a pair on the glide symmetric line ky = 0: for ky = 0, the
Bloch Hamiltonian commutes with G(kx), so any band is an
eigenstate of G(kx). Since each eigenvalue of G(kx) does not
have the 2π periodicity in kx , bands with opposite eigenvalues
appear in a pair to keep the 2π periodicity. In particular, any
fully gapped glide symmetric insulator should have an even
number of occupied states.

Let Y0 = {(a,0)} be a point on the glide symmetric line
ky = 0. At the point Y0, the glide symmetry reduces to a simple
Z2 symmetry, which defines GY=Y0 in Eq. (6.1). Since the Z2

symmetry only has one-dimensional representations, the K

(a) (b) (c) (d-1) (d-2)

FIG. 6. Subspaces in the BZ torus. (a) Two planes Y1 and Y2 compose the subspace Y . (b) The subspace is a single point Y0. (c) The
one-dimensional subspace X1 in the BZ torus T 2 and a symmetric point Y0. (d-1) The real projective plane arising from the inversion symmetry
acting on the sub sphere S2, (d-2) the Klein bottle from the inversion symmetry acting on the subtorus T 2.
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group on Y0 is different from that obtained by the restriction
of the K group for fully gapped two-dimensional glide
symmetric insulator into Y0. In particular, the former K group
allows an odd number of occupied states at Y0, while the latter
does not as mentioned above. In other words, the cokernel of
i∗Y0

in the present case includes states with an odd number of
occupied states at Y0. This gives a criterion for glide symmetric
gapless materials: if the filling number of the occupied states
at the point Y0 is odd, then there should be a gapless point at
the glide plane ky = 0, as illustrated in Fig. 6(b).

3. A gapless phase protected by representation at symmetric
point for wallpaper group p4g

Sometimes a representation of occupied states at a high-
symmetric point enforces a gapless phase. An example is a
two-dimensional spinful system with the wallpaper group p4g.
We will discuss the detail in Sec. VIII G 10, and here we only
highlight the consequence. The point group for p4g is the D4

group, which is generated by a C4 rotation and a reflection.
In such system, the K group is characterized by the one-
dimensional subspace X1 in Fig. 6(c).

Let us focus on a high-symmetric point Y0 = (π,0). Since
the little group at Y0 is D2 = Z2 × Z2, a state at Y0 obeys
a linear representation of D2. The linear representation is
given by a direct sum of irreducible representations of D2,
i.e., A1,A2,B1,B2 in the Mulliken notation. As shown in
Sec. VIII G 10, for fully gapped systems, the occupied states
at Y0 should be a direct sum of (A1 ⊕ A2) and (B1 ⊕ B2)
representations. The contraposition of this result implies that,
if an occupied state at Y0 obeys the other representations,
say (A1 ⊕ B1), the system should have a gapless point on the
one-dimensional subspace X1. In this case, the other represen-
tations correspond to elements of the cokernel obtained from
the trivial inclusion iY0 : Y0 → X1.

4. A Z2 topological charge induced only by inversion symmetry

The final example is a bulk three-dimensional Z2 gapless
phase protected by inversion symmetry, which has not been
discussed before. The detailed discussion will be presented
in Sec. VIII H. As a subspace, we consider a sphere Y2 =
S2 of which the center is an inversion symmetric point. See
Fig. 6(d-1). The inversion acts on S2 as the antipodal map, so S2

subject to inversion is regarded as the quotient S2/Z2 = RP 2.
The K group on Y2 is K(RP 2) = Z2 ⊕ Z, where the Z2 index
ν (mod 2) is associated with the torsion part of the first Chern
class on RP 2. The Z part is irrelevant to the gapless phase,
and thus we focus on the Z2 part here. (The Z part is a trivial
contribution counting the number of occupied states.)

When the system is fully gapped, the Z2 invariant ν should
be trivial since S2 can shrink to a point preserving inversion
symmetry. This means the following criterion for inversion
symmetric gapless phases: if the Z2 invariant ν is nontrivial
on an inversion symmetric subsphere S2, then there should be a
gapless region inside S2. In this case, the cokernel of the trivial
inclusion iY2 : Y2 → T 3 is the Z2 part of K(RP 2). We present
the model Hamiltonian of the gapless phase in Sec. VIII H.

A similar Z2 invariant can be defined also for a torus with
inversion symmetry. See Fig. 6(d-2). In Sec. VIII H, we also
show that the interplay between inversion symmetry and TRS

defines a Z2 invariant associated with the Stiefel-Whitney
classes on RP 2.

VII. CLASSIFICATION OF TOPOLOGICAL INSULATORS
WITH WALLPAPER GROUP SYMMETRY

In this section, we summarize the K theories over the BZ
torus T 2 in the presence of 17 wallpaper groups with and
without the chiral symmetry. Our results do not include TRS
or PHS, which is a future problem. We present these K groups
as R(P ) modules, where P is the point group associated with
each wallpaper group, which can contrast with previous works
[58–60,64]. The detail of calculations of the K groups will
appear in the near future [73]. In Sec. VIII, we pick up a few
examples of wallpaper groups in order to show how to compute
the K group and apply to the bulk insulators and surface states.

As explained in Sec. V A, the K group Kτ−n
P (T 2) (n = 0,1)

on T 2 means the stable classification of 2D bulk insulators in
class A (n = 0) and class AIII (n = 1). At the same time, as
explained in Sec. V E, the K group Kτ−n

P (T 2) expresses the
classification of 2D surface gapless states in class A (n = 1)
and class AIII (n = 0). It is worth summarizing these relations
to avoid confusion:

Stable classification Surface
K group of bulk insulators gapless states

Kτ−0
P (T 2) Class A Class AIII

Kτ−1
P (T 2) Class AIII Class A

There are five Bravais lattices in 2D crystals, which are
listed in Table IV with point groups and wallpaper groups. In
addition to the 17 different wallpaper groups, the nontrivial
projective representations of the point group are the other
sources of symmetry classes. Such contributions can be mea-
sured by the group cohomology of the point group as explained
in Sec. II B. For the rotational point group Cn, the group
cohomology is trivial H 2[Zn; U(1)] = 0. For the dihedral
group Dn, there is an even/odd effect: H 2[D2n; U(1)] = Z2,
H 2[D2n−1; U(1)] = 0. Eventually, there are 24 inequivalent
symmetry classes.

Tables V and VI summarize the K groups for all wallpaper
groups. We used notations of R(P ) modules. To connect our
notations to crystallography, we provide the character tables of
2D point groups in Tables VII–X, where our notations of irreps.
and Mulliken’s notations are displayed. The representation
rings of 2D point groups and the module structures of the
nontrivial projective representations are listed in Table XI,
which are obtained by the tensor product representations (see
Sec. VIII G 3 for the case of D4).

VIII. EXAMPLE OF K -THEORY CLASSIFICATION

In this section, we illustrate the K-theory calculations in
various examples. Through concrete problems, we introduce
basics of the K-theory calculations such as the module
structure, the Mayer-Vietoris sequence, the exact sequence
for the pair (X,Y ), and the dimensional-raising map. We
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TABLE IV. 2D Bravais lattices, unit cells, point groups, and wallpaper groups.

Bravais lattice Unit cell Point group Wallpaper group

Oblique

ax̂

bx̂ + cŷ
C1

C2

p1
p2

Rectangular

ax̂

bŷ
D1

D2

pm, pg

pmm,pmg, pgg

Rhombic
ax̂ + bŷ−ax̂ + bŷ

D1

D2

cm

cmm

Square

ax̂

aŷ
C4

D4

p4
p4m, p4g

Hexagonal

ax̂

a 1
2
x̂ +

√
3

2
ŷ C3

C6

D3

D3

D6

p3
p6

p31m

p3m1
p6m

also explain the vector bundle representation and Hamiltonian
representation of the K groups.

A. K theory on point: Representations of symmetry group

We start with K theories Kω−n
P (pt) of a point with

symmetry group P . ω ∈ Z2(P ;R/2πZ) fixes U(1) phase
factors associated with projective representations

UpUp′ = eiωp,p′ Upp′ . (8.1)

For class A (n = 0), the K theory is nothing but the Abelian
group generated by the ω-projective representations. We
denote it by Rω(P ):

Rω(P ) := Kω−0
P (pt). (8.2)

The tensor product of ω- and ω′-projective representations
has the twist ω + ω′ ∈ Z2(P ;R/2πZ). Especially, R(P ), the
K group generated by linear representations which have the
trivial twist ωp,p′ ≡ 0, becomes a ring.

For class AIII (n = 1), the K group is trivial

Kω−1
P (pt) = 0 (8.3)

because of the chiral symmetry.

1. Cyclic group Z3

For example, consider the cyclic group C3 = Z3 =
{1,σ,σ 2}. There are three one-dimensional irreps. C0,C1,C2

characterized by eigenvalues of Uσ = 1,ζ,ζ 2 with ζ = e2πi/3,
respectively. So, we have

R(Z3) = K0
Z3

(pt) = Z ⊕ Z ⊕ Z as an Abelian group.

(8.4)

On the vector bundle representation, an element (n0,n1,n2) ∈
R(Z3) is represented by the following direct sum:

[V ] ∈ R(Z3), V = [C0]⊕n0 ⊕ [C1]⊕n1 ⊕ [C2]⊕n2 . (8.5)

In the Karoubi’s representation, the same element is repre-
sented by two Hamiltonians acting on V as follows:

[V,H0,H1], H0 = 1n0×n0 ⊕ 1n1×n1 ⊕ 1n2×n2 ,

H1 = −1n0×n0 ⊕ −1n1×n1 ⊕ −1n2×n2 . (8.6)

The tensor representation V ⊗ V ′ induces the ring structure
in R(Z3). The irreps. Ci (i = 0,1,2) acts on the element
(n0,n1,n2) as

Ci ⊗ ([C0]⊕n0 ⊕ [C1]⊕n1 ⊕ [C2]⊕n2 )

= [Ci]
⊕n0 ⊕ [Ci+1]⊕n1 ⊕ [Ci+2]⊕n2 , (8.7)

where subscripts i, i + 1, i + 2 are defined modulo 3. In short,
R(Z3) is isomorphic to the quotient of the polynomial ring

R(Z3) = Z[t]/(1 − t3) = {n0 + n1t + n2t
2|n0,n1,n2 ∈ Z}.

(8.8)

2. Dihedral group D2

Consider the dihedral group D2 = {1,mx,my,mxmy}.
There are four one-dimensional linear irreps. shown in Ta-
ble VII. Tensor products of these irreps. lead to the quotient of
the polynomial ring:

R(D2) = K0
D2

(pt) = Z[tx,ty]
/(

1 − t2
x ,1 − t2

y

)
. (8.9)

Because of H 2(D2;R/2πZ) = Z2, there is a nontrivial
twist [ω] ∈ H 2(D2;R/2πZ). An example of a nontrivial
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TABLE V. The stable classification of 2D class A topological insulators with wallpaper groups/the classification of 2D class AIII surface
gapless states with wallpaper groups. In the fifth column, the overbraces represent K groups as Abelian groups. The underlines mean that these
direct summands are generated by vector bundles with the first Chern number.

Wallpaper group Spinless/spinful Twist R(P ) Kτ−0
P (T 2)

p1 Spinless/spinful 0 Z Z ⊕ Z

p2 Spinless/spinful 0 R(Z2)

Z2︷ ︸︸ ︷
R(Z2) ⊕

Z2︷ ︸︸ ︷
R(Z2) ⊕

Z︷ ︸︸ ︷
(1 − t) ⊕

Z︷ ︸︸ ︷
(1 − t)

p3 Spinless/spinful 0 R(Z3)

Z3︷ ︸︸ ︷
R(Z3) ⊕

Z3︷ ︸︸ ︷
R(Z3) ⊕

Z2︷ ︸︸ ︷
(1 − t)

p4 Spinless/spinful 0 R(Z4)

Z4︷ ︸︸ ︷
R(Z4) ⊕

Z4︷ ︸︸ ︷
R(Z4) ⊕

Z︷ ︸︸ ︷
(1 − t + t2 − t3)

p6 Spinless/spinful 0 R(Z6)

Z4︷ ︸︸ ︷
(1 − t + t2) ⊕

Z6︷ ︸︸ ︷
R(Z6)

pm Spinless/spinful 0 R(Z2)

Z2︷ ︸︸ ︷
R(Z2) ⊕

Z︷ ︸︸ ︷
(1 − t)

cm Spinless/spinful 0 R(Z2)

Z2︷ ︸︸ ︷
R(Z2)

pmm Spinless 0 R(D2)

Z4︷ ︸︸ ︷
R(D2) ⊕

Z2︷ ︸︸ ︷
(1 − t1) ⊕

Z2︷ ︸︸ ︷
(1 − t2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

pmm Spinful ω R(D2)

Z︷ ︸︸ ︷
Rω(D2)

cmm Spinless 0 R(D2)

Z4︷ ︸︸ ︷
R(D2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2)) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

cmm Spinful ω R(D2)

Z︷ ︸︸ ︷
Rω(D2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

p31m Spinless/spinful 0 R(D3)

Z3︷ ︸︸ ︷
R(D3) ⊕

Z︷ ︸︸ ︷
(1 + A − E) ⊕

Z︷ ︸︸ ︷
(1 + A − E)

p3m1 Spinless/spinful 0 R(D3)

Z3︷ ︸︸ ︷
R(D3) ⊕

Z︷ ︸︸ ︷
R(D3)/(E) ⊕

Z︷ ︸︸ ︷
R(D3)/(E)

p4m Spinless 0 R(D4)

Z5︷ ︸︸ ︷
R(D4) ⊕

Z2︷ ︸︸ ︷
(1 + A − E) ⊕

Z2︷ ︸︸ ︷
(1 + B − E)

p4m Spinful ω R(D4)

Z2︷ ︸︸ ︷
Rω(D4) ⊕

Z︷ ︸︸ ︷
((1 + A)(1 − B))

p6m Spinless 0 R(D6)

Z6︷ ︸︸ ︷
R(D6) ⊕

Z︷ ︸︸ ︷
((1 + A)(1 − B)(1 − E)) ⊕

Z︷ ︸︸ ︷
((1 + B)(1 + A − E))

p6m Spinful ω R(D6)

Z3︷ ︸︸ ︷
Rω(D6) ⊕

Z︷ ︸︸ ︷
((1 + B)(1 + A − E))

pg Spinless/spinful τpg R(Z2)

Z︷ ︸︸ ︷
(1 + t)

pmg Spinless τpmg R(D2)

Z3︷ ︸︸ ︷
(1 + t1,1 − t2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

pmg Spinful τpmg + ω R(D2)

Z3︷ ︸︸ ︷
(1 + t1,1 − t2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

pgg Spinless τpgg R(D2)

Z2︷ ︸︸ ︷
(1 + t1t2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

pgg Spinful τpgg + ω R(D2)

Z2︷ ︸︸ ︷
(1 + t1t2) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 − t2))

p4g Spinless τp4g R(D4)

Z3︷ ︸︸ ︷
(1 + A − E,1 − B) ⊕

Z2︷ ︸︸ ︷
(1 + A − E) ⊕

Z︷ ︸︸ ︷
(1 + A + B + AB + 2E)

p4g Spinful τp4g + ω R(D4)

Z2︷ ︸︸ ︷
(1 + A + E) ⊕

Z︷ ︸︸ ︷
((1 + A)(1 − B)) ⊕

Z︷ ︸︸ ︷
(1 + A + B + AB − 2E)
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TABLE VI. The stable classification of 2D class AIII topological insulators with wallpaper groups/the classification of 2D class A surface
gapless states with wallpaper groups. In the fifth column, the overbraces mean K groups as Abelian groups.

Wallpaper group Spinless/spinful Twist R(P ) Kτ−1
P (T 2)

p1 Spinless/spinful 0 Z Z ⊕ Z
p2 Spinless/spinful 0 R(Z2) 0
p3 Spinless/spinful 0 R(Z3) 0
p4 Spinless/spinful 0 R(Z4) 0
p6 Spinless/spinful 0 R(Z6) 0

pm Spinless/spinful 0 R(Z2)

Z2︷ ︸︸ ︷
R(Z2) ⊕

Z︷ ︸︸ ︷
(1 − t)

cm Spinless/spinful 0 R(Z2)

Z︷ ︸︸ ︷
(1 + t) ⊕

Z︷ ︸︸ ︷
(1 − t)

pmm Spinless 0 R(D2) 0

pmm Spinful ω R(D2)

Z2︷ ︸︸ ︷
(1 − t1t2) ⊕

Z︷ ︸︸ ︷
((1 + t1)(1 − t2)) ⊕

Z︷ ︸︸ ︷
((1 − t1)(1 + t2))

cmm Spinless 0 R(D2) 0

cmm Spinful ω R(D2)

Z2︷ ︸︸ ︷
(1 − t1t2)

p31m Spinless/spinful 0 R(D3)

Z︷ ︸︸ ︷
(1 − A)

p3m1 Spinless/spinful 0 R(D3)

Z︷ ︸︸ ︷
(1 − A)

p4m Spinless 0 R(D4) 0

p4m Spinful ω R(D4)

Z2︷ ︸︸ ︷
(1 − A) ⊕

Z︷ ︸︸ ︷
((1 − A)(1 + B))

p6m Spinless 0 R(D6) 0

p6m Spinful ω R(D6)

Z2︷ ︸︸ ︷
(1 − A)

pg Spinless/spinful τpg R(Z2)

Z︷ ︸︸ ︷
(1 + t) ⊕

Z2︷︸︸︷
I

pmg Spinless τpmg R(D2)

Z︷ ︸︸ ︷
((1 − t1)(1 + t2))

pmg Spinful τpmg + ω R(D2)

Z︷ ︸︸ ︷
((1 − t1)(1 + t2))

pgg Spinless τpgg R(D2)

Z2︷︸︸︷
I

pgg Spinful τpgg + ω R(D2)

Z2︷︸︸︷
I

p4g Spinless τp4g R(D4) 0

p4g Spinful τp4g + ω R(D4)

Z︷ ︸︸ ︷
((1 − A)(1 − B))

two-cocycle ω is given by

eiωp,p′ =

p\p′ 1 mx my mxmy

1 1 1 1 1
mx 1 1 i −i

my 1 −i 1 i

mxmy 1 i −i 1

. (8.10)

TABLE VII. Character table of D2.

Irrep. Mulliken 1 mx my mxmy

1 A1 1 1 1 1
tx B2 1 −1 1 −1
ty B1 1 1 −1 −1
tx ty A2 1 −1 −1 1

There is one two-dimensional ω-projective irrep. We denote it
by W that is represented by the Pauli matrices

U1 =
(

1 0
0 1

)
, Umx

=
(

0 1
1 0

)
,

Umy
=
(

0 −i

i 0

)
, Umxmy

=
(

1 0
0 −1

)
. (8.11)

TABLE VIII. Character table of D3.

Irrep. Mulliken 1
{
C3,C

−1
3

} {
σ,σC3,σC2

3

}
1 A1 1 1 1
A A2 1 1 −1
E E 2 −1 0
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TABLE IX. Character table of D4.

Irrep. Mulliken 1
{
C4,C

−1
4

}
C2 {σ,σC2}

{
σC4,σC3

4

}
1 A1 1 1 1 1 1
A A2 1 1 1 −1 −1
B B1 1 −1 1 1 −1
AB B2 1 −1 1 −1 1
E E 2 0 −2 0 0

The K group is

Rω(D2) = Kω−0
D2

(pt) = Z (8.12)

as an Abelian group. The tensor product V ⊗ W by a linear
representation V ∈ R(D2) is just the multiplication V ⊗ W ∼=
W⊕dimV by the rank of V , which leads to the R(D2)-module
structure

Rω(D2) = (1 + tx + ty + tx ty)

={(1 + tx + ty + tx ty)f (tx,ty)|f (tx,ty) ∈ R(D2)}.
(8.13)

B. Onsite symmetry

Let us consider the K theory associated with the onsite
unitary symmetry G:

UgH (k)U−1
g = H (k), g ∈ G (8.14)

UgUh = eiωg,hUgh, ωg,h ∈ Z2(G,R/2πZ). (8.15)

For class AIII (n = 1), we assume the onsite symmetry
commutes with the chiral symmetry

�H (k)�−1 = −H (k), Ug� = �Ug. (8.16)

In such cases, the Hamiltonian H (k) is decomposed as a direct
sum

H (k) =
⊕

ρ

Hρ(k) (8.17)

of irreducible ω-projective representations. In each sector,
the Hamiltonian behaves as a class A or AIII insulator. The
topological classification is recast as

Kω−n
G (X) ∼= Rω(G) ⊗Z Kn(X). (8.18)

For example, we can immediately have the topological
classification of 2D class A insulators with onsite unitary Zn

symmetry:

K0
Zn

(T 2) ∼= R(Zn) ⊗ K(T 2) = R(Zn) ⊗Z (Z ⊕ Z)

= R(Zn) ⊕ R(Zn). (8.19)

The first direct summand represents atomic insulators with
representations ofZn. The second direct summand is generated
by the Chern insulators with irreducible representations of Zn.

C. Reflection symmetry

Let us consider reflection symmetric 1D class A/AIII
crystalline insulators. The Z2 = {1,m} group acts on the BZ
circle S1 as a reflection:

. (8.20)

We denoted the circle S1 with the reflection action by S̃1. There
are two fixed points at kx = 0,π .

There is no nontrivial twist: H 2(Z2; C(S̃1,U(1))) = 0. One
can fix the U(1) phases associated with the square of Z2 action
to 1:

Um(−kx)Um(kx) = 1, (8.21)

where 1 is the identity matrix.
In the Karoubi’s representation, each K group Kn

Z2
(S̃1)

means the topological classification of the Hamiltonians with
the following symmetry:

Class A (n = 0): Um(kx)H (kx)Um(kx)−1 = H (−kx),
(8.22)

Class AIII (n = 1):

⎧⎪⎨⎪⎩
�H (kx)�−1 = −H (kx),

Um(kx)H (kx)Um(kx)−1 = H (−kx),

�Um(kx) = Um(kx)�.

(8.23)

1. Calculation of K group by the Mayer-Vietoris sequence

One way to calculate the K group K−n
Z2

(S̃1) is to use the
Mayer-Vietoris sequence [74]. See Appendix D for the details
of the Mayer-Vietoris sequence. We divide S̃1 = U ∪ V into
two subspaces

U = {eik ∈ S̃1|k ∈ [−π/2,π/2]},
(8.24)

V = {eik ∈ S̃1|k ∈ [π/2,3π/2]},

TABLE X. Character table of D6.

Irrep. Mulliken 1
{
C6,C

−1
6

} {
C3,C

−1
3

} {C2}
{
σ,σC3,σC2

3

} {
σC6,σC2,σC5

6

}
1 A1 1 1 1 1 1 1
A A2 1 1 1 1 −1 −1
B B1 1 −1 1 −1 1 −1
AB B2 1 −1 1 −1 −1 1
E E1 2 1 −1 −2 0 0
BE E2 2 −1 −1 2 0 0
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TABLE XI. The representation rings of the 2D point groups and the module structure of the nontrivial projective representations of D2, D4,
and D6.

Point group P Representation ring R(P ) Abelian group

Cn R(Zn) = Z[t]/(1 − tn) Zn

D2 R(D2) = Z[t1,t2]/(1 − t2
1 ,1 − t2

2 ) Z4

D3 R(D3) = Z[A,E]/(1 − A2,E − AE,E2 − 1 − A − E) Z3

D4 R(D4) = Z[A,B,E]/(1 − A2,1 − B2,E − AE,E − BE,E2 − 1 − A − B − AB) Z5

D6 R(D6) = Z[A,B,E]/(1 − A2,1 − B2,E − AE,E2 − 1 − A − BE) Z6

Point group P R(P ) module of nontrivial projective representations Abelian group

D2 Rω(D2) = (1 + t1 + t2 + t1t2) Z

D4 Rω(D4) = (1 + A + E) Z2

D6 Rω(D6) = (1 + A + E,E + BE) Z3

as shown below:

.

Each of the lines U and V is homotopic to a point preserving
the reflection symmetry as

.

The intersection U ∩ V is homotopic to two points Z2 × pt

that are exchanged by the Z2 action:

.

The Mayer-Vietoris sequence associated to the sequence of
the inclusions

(S̃1 =)U ∪ V ← U � V ← U ∩ V (8.25)

is the six-term exact sequence of the K theory

(8.26)
In this sequence, we have

Kn
Z2

(U ) ∼= Kn
Z2

({0}) ∼=
{
R(Z2) (n = 0),

0 (n = 1),
(8.27)

Kn
Z2

(V ) ∼= Kn
Z2

({π}) ∼=
{
R(Z2) (n = 0),

0 (n = 1),

and

Kn
Z2

(U ∩ V ) ∼= Kn
Z2

({π

2
, − π

2

})
∼= Kn

({π

2

}) ∼=
{
Z (n = 0),
0 (n = 1). (8.28)

Thus, the sequence (8.26) is recast into

(8.29)
Here, the homomorphism � is given by

� : R(Z2) ⊕ R(Z2) → Z, �(f (t),g(t)) = f (1) − g(1),

(8.30)

under the presentation R(Z2) = Z[t]/(1 − t2). We have

K0
Z2

(S̃1) ∼= ker(�), K1
Z2

(S̃1) ∼= coker(�). (8.31)

ker(�) is spanned by {(1,1),(t,t),(0,1 − t)} ⊂ R(Z2) ⊕
R(Z2), so we have ker(�) = Z3 as an Abelian group. The
base elements (1,1) and (t,t) span the R(Z2) module R(Z2),
and (0,1 − t) the ideal (1 − t) = {(1 − t)f (t)|f (t) ∈ R(Z2)}
in R(Z2). As a result, we get the following R(Z2) modules as
K groups:

Class A : K0
Z2

(S̃1) ∼=
Z2︷ ︸︸ ︷

R(Z2) ⊕
Z︷ ︸︸ ︷

(1 − t) ,

Class AIII : K1
Z2

(S̃1) ∼= 0. (8.32)

2. Characterization of K group by fixed points

Notice the injection in (8.29),

0 −→ K0
Z2

(S̃1) −→ R(Z2)︸ ︷︷ ︸
kx=0

⊕ R(Z2)︸ ︷︷ ︸
kx=π

,
(8.33)

means that the K group K0
Z2

(S̃1) can be characterized
by the representations at the two fixed points. In general,
representations of the little group at fixed points provide
topological invariants which enable us to distinguish different
elements in a K group.
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Let {e1,e2,e3} be a basis of the K group K0
Z2

(S̃1) charac-
terized by the following fixed-point representations:

Base R(Z2)︸ ︷︷ ︸
kx=0

R(Z2)︸ ︷︷ ︸
kx=π

e1 1 1
e2 t t

e3 1 t

Because of the R(Z2)-module structures e2 = t · e1 and t ·
(e1 − e3) = −(e1 − e3), two base elements e1,e2 compose
R(Z2) and e1 − e3 generates (1 − t).

3. Vector bundle representation

We give Z2 equivariant vector bundle representations for
the basis {e1,e2,e3}. We will construct Z2 equivariant vector
bundles {E1,E2,E3} with the following fixed-point data:

Vector bundle E|kx=0 E|kx=π

E1 C0 C0

E2 C1 C1

E3 C0 C1

Here, C0 and C1 are representations with Um = 1, − 1,
respectively.

e1 is represented by aZ2-equivariant complex vector bundle
E1 of rank 1 with Z2 action ρm : E1 → E1 as

e1 = [E1 = S1 × C, ρm(kx,v) = (−kx,v)]. (8.34)

By using the Bloch states, E1 is equivalent to a Bloch state
|kx〉1 which satisfies the reflection symmetry as

e1 = [|kx〉1, Ûm|kx〉1 = |−kx〉1]. (8.35)

[Recall that the (local) Bloch states �(k) = {|k,n〉}n=1,...N

correspond to (local) sections of the frame bundle F (E)
associated with a vector bundle E.] The Bloch state |kx〉1 is
translated to the real-space base |Rx〉1 = ∑

kx∈S1 |kx〉1e
−ikxRx

with the reflection symmetry

e1 = [|Rx〉1, Ûm|Rx〉1 = |−Rx〉1]. (8.36)

The base |Rx〉1 corresponds to s orbitals localized at the center
of unit cells

, (8.37)

where the reflection axis is placed at the center of the unit cell.
The base e2 = t · e1 is represented by the Z2-equivariant vector bundle E2 = C1 ⊗ E1 as follows:

e2 = [(E2 = S1 × C, ρm(kx,v) = (−kx,−v))]. (8.38)

The Bloch state and localized orbitals representation read as

e2 = [|kx〉2, Ûm|kx〉2 = −|−kx〉2], (8.39)

e2 = [|Rx〉2, Ûm|Rx〉2 = −|−Rx〉2]. (8.40)

|Rx〉2 corresponds to p orbitals localized at the center of unit cells:

. (8.41)

The last base e3 is represented by the following Z2-equivariant vector bundle E3:

e3 = [E3 = S1 × C, ρm(kx,v) = (−kx,e
−ikx v)]. (8.42)

If one uses the Bloch state |kx〉3, then

e3 = [|kx〉3, Ûm|kx〉3 = e−ikx |−kx〉3]. (8.43)
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If one instead uses the localized orbital |Rx〉3, then

e3 = [|Rx〉3, Ûm|Rx〉3 = |−Rx − 1〉3], (8.44)

where |Rx〉3 corresponds to the localized s orbitals at the boundary of unit cells:

. (8.45)

Here, we assumed that the s orbital belonging to the unit cell
Rx is localized at Rx + 1

2 . An alternative choice, for example,
Rx − 1

2 , leads to the Z2-equivariant vector bundle

[E′
3 = S1 × C, ρm(kx,v) = (−kx,e

ikx v)]. (8.46)

E′
3 is isomorphic to E3 as aZ2-equivariant vector bundle, thus,

E3 and E′
3 give the same K class e3.

As explained in Sec. V B, even if the localized s orbitals
described by (8.37) and (8.45) are physically the same, the
corresponding K classes are different. The K classes depend
on the choice of the unit-cell center.

4. Karoubi’s triple representation

Here, we give an alternative representation of K groups, that
is, the Karoubi’s triple representation. First, from the vector
bundle representation, we can get Karoubi’s triple representa-
tions ei = [(Ei1,−1)] (i = 1,2,3) for the base elements of the
K group with the following fixed-point data:

Triple kx = 0 kx = π

(E1,1,−1) (C0,1,−1) (C0,1,−1)
(E2,1,−1) (C1,1,−1) (C1,1,−1)
(E3,1,−1) (C0,1,−1) (C1,1,−1)

A benefit of using the Karoubi’s triple is that we can
construct representatives of e3 as a Hamiltonian acting on the
vector bundles E1 and E2. E1 ⊕ E2 is written by using the
Bloch basis as

E1 ⊕ E2 = (�E1⊕E2 (kx) = (|kx〉1,|kx〉2),

Ûm�E1⊕E2 (kx) = �E1⊕E2 (−kx)Uσ (kx), (8.47)

Uσ (kx) = σz),

where σz = (1 0
0 −1) is the z component of the Pauli matrices

σi (i = x,y,z). A Hamiltonian on the E1 ⊕ E2 should satisfy
the reflection symmetry

σzH (kx)σz = H (−kx). (8.48)

We can show that the following triple represents the base e3:

e3 = [E1 ⊕ E2,H0 = cos(kx)σz + sin(kx)σy,H1 = −σ0].

(8.49)

Actually, the empty and occupied states |φ±(kx)〉 of the
Hamiltonian H0, H0|φ±(kx)〉 = ±|φ±(kx)〉 are given by the
following Bloch states:

|φ+(kx)〉 = 1
2 (1 + e−ikx )|kx〉1 + 1

2 (1 − e−ikx )|kx〉2, (8.50)

|φ−(kx)〉 = 1
2 (1 − e−ikx )|kx〉1 + 1

2 (1 + e−ikx )|kx〉2 (8.51)

with reflection symmetry

Ûm|φ+(kx)〉 = e−ikx |φ+(kx)〉,
(8.52)

Ûm|φ−(kx)〉 = −e−ikx |φ−(kx)〉,

which means the empty state |φ+(kx)〉 is the Z2-equivariant
bundle E3, and |φ−(kx)〉 is E4 = C1 ⊗ E3, i.e., E1 ⊕ E2 is
isomorphic to E3 ⊕ E4. Then, by using the stable equivalence,
we have

[E1 ⊕ E2,H0 = cos(kx)σz + sin(kx)σy,H1 = −σ0]

∼ [E3 ⊕ E4,H0 = 1 ⊕ (−1),H1 = (−1) ⊕ (−1)]

∼ [E3,H0 = 1,H1 = −1]. (8.53)

Note that if we construct the Wannier orbital |W+(Rx)〉
from the energy eigenstate |φ+(kx)〉 by |W+(Rx)〉 :=∑

kx∈S1 |φ+(kx)〉e−ikxRx , we recover the real-space orbital
picture (8.44).

5. Real-space picture of the isomorphism E1 ⊕ E2
∼= E3 ⊕ E4

The above equivalence relation (8.53) is based on the
isomorphism E1 ⊕ E2

∼= E3 ⊕ E4. This can be understood
by the continuum deformation of the real-space orbitals.
The Z2-equivariant vector bundle E1 ⊕ E2 is represented
by the real-space orbitals in which s and p orbitals are placed at
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the center of unit cell:

. (8.54)

To deform the orbital positions, first, we mix the s and p orbitals as |s ± p〉 := |s〉±|p〉√
2

. Then, we can continuously translate the
localized orbital |s + p〉 to right and |s − p〉 to left preserving the reflection symmetry as shown below:

. (8.55)

Note that Ûm|s ± p〉 = |s ∓ p〉. After the half-translation, and the inverse transformation (|s + p〉,|s − p〉) �→ (|s〉,|p〉), we get
the Z2-equivariant vector bundle E3 ⊕ E4:

. (8.56)

The isomorphism E1 ⊕ E2
∼= E3 ⊕ E4 is written as the kx-dependent unitary transformation in the Bloch basis

�E1⊕E2 (kx) = (|kx〉1,|kx〉2) �→ �E3⊕E4 (kx) = �E1⊕E2 (kx) V (kx), �E3⊕E4 (kx) = (|φ+(kx)〉,|φ−(kx)〉), (8.57)

where V (kx) consists of W · T1/2(kx) · W−1 with W =
(

1√
2

1√
2

1√
2

− 1√
2

) the change of the basis as (|s〉,|p〉) �→
(|s + p〉,|s − p〉) and T1/2(kx) = (e

−ikx /2 0
0 eikx /2) the half-lattice

translation for |s + p〉,|s − p〉. This unitary transformation
connects Hamiltonians on E1 ⊕ E2 and E3 ⊕ E4. For example,
the Hamiltonian Ĥ represented on the basis �E3⊕E4 as
Ĥ�E3⊕E4 (kx) = �E3⊕E4 (kx) σz is represented on the basis
�E1⊕E2 (kx) as

Ĥ�E1⊕E2 (kx) = �E1⊕E2 (kx)HE1⊕E2 (kx),

HE1⊕E2 (kx) = V (kx)σzV (kx)† = cos kxσz + sin kxσy.

(8.58)

This is nothing but the equivalence relation (8.53).

D. Half-lattice translation symmetry

1. Preliminary

The most simple nonsymmorphic symmetry is half-lattice
translation symmetry in 1D. The symmetry group is Z2 =
{1,σ } and the nontrivial Z2 action is the half-lattice translation
σ : x �→ x + 1

2 . The twist τp,p′ (kx) ∈ Z2(Z2; C(S1;R/2πZ))

is fixed as

. (8.59)

On the Hamiltonian, the half-translational symmetry is written
as

Uσ (kx)H (kx)U−1
σ (kx) = H (kx), [Uσ (kx)]2 = e−ikx .

(8.60)

A characteristic property of the half-lattice translation is
the crossing of the pair of eigenstates of Uσ (kx). Because of
[Uσ (kx)]2 = e−ikx , eigenvalues of Uσ (kx) can not be globally
defined on the BZ S1. We have eigenvalues u(kx) = ±e−ikx/2 in
local region of S1. Globally, two eigenstates with eigenvalues
u(kx) = ±e−ikx/2 are connected since the continuum change
of the eigenvalue by kx �→ kx + 2π leads to the interchange
of the eigenvalues

(e−ikx/2,−e−ikx/2) �→
kx �→kx+2π

(−e−ikx/2,e−ikx/2). (8.61)

See Fig. 7. Especially, the pair of eigenstates with u = ±e−ikx/2

should cross somewhere.
From the interchange of eigenvalues (8.61), we expect that

when we use the Mayer-Vietoris sequence the gluing of two
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FIG. 7. Structure of the energy eigenstates with the half-lattice
translation symmetry.

lines at kx = π/2 and −π/2 should have relative twisting of
the eigenstates of Uσ (kx). If we take the gluing condition for
kx = π/2 in a proper way, then that for kx = −π/2 is twisted,
as shown in (8.76) below.

2. Topological classification

We want to calculate the twisted equivariant K theory
Kτ+n

Z2
(S1), where Z2 trivially acts on S1 as σ : kx �→ kx , and

the twist τ is given by (8.59). To apply the Mayer-Vietoris
sequence to S1 = U ∪ V , we divide S1 into two intervals

U = {eikx ∈ S̃1|kx ∈ [−π/2,π/2]},
V = {eikx ∈ S̃1|kx ∈ [π/2,3π/2]}. (8.62)

The intersection is

U ∩ V =
{π

2

}
�
{
−π

2

}
. (8.63)

The sequence of the inclusions

(8.64)
induces the six-term exact sequence of the twisted equivariant
K theory

(8.65)

Here, the twists on U,V,U ∩ V are given by the restrictions of the twist τσ,σ (kx) = e−ikx to them, and these twists are trivial. In
fact, the twists τ |U ,τ |V ,τ |U∩V are exact

τ |U = δβU , βU
1 (kx) = 1, βU

σ (kx) = e−ikx/2, kx ∈
[
−π

2
,
π

2

]
, (8.66)

τ |V = δβV , βV
1 (kx) = 1, βV

σ (kx) = e−ikx/2, kx ∈
[
π

2
,
3π

2

]
, (8.67)

τU∩V = δβU∩V , βU∩V
1

(
±π

2

)
= 1, βU∩V

σ

(
±π

2

)
= e∓iπ/4. (8.68)

Note that βU
σ (kx) and βV

σ (kx) correspond to local eigenvalues of Uσ (kx). In these trivializations, two eigenstates are connected at
{i} and twisted at {−i}. By using these trivializations, we have

K
τ |U +n

Z2
(U )

βU

∼= Kn
Z2

(U ) ∼= Kn
Z2

(pt) ∼=
{
R(Z2) (n = 0),

0 (n = 1),
(8.69)

K
τ |U +n

Z2
(V )

βV

∼= Kn
Z2

(V ) ∼= Kn
Z2

(pt) ∼=
{
R(Z2) (n = 0),

0 (n = 1),
(8.70)

K
τ |U∪V +n

Z2
(U ∩ V )

βU∩V

∼= Kn
Z2

(U ∩ V ) ∼= Kn
Z2

({i} � {−i}) ∼=
{
R(Z2) ⊕ R(Z2) (n = 0),

0 (n = 1).
(8.71)

Then, one may expect that the homomorphism � : K
τ |U +0
Z2

(U ) ⊕ K
τ |V +0
Z2

(V ) → K
τ |U∩V +0
Z2

(U ∩ V ) is given by

j ∗
U − j ∗

V : Kn
Z2

(pt) ⊕ Kn
Z2

(pt) → Kn
Z2

({π

2

}
∩
{
−π

2

})
, (f (t),g(t)) �→ ( f (t) − g(t)︸ ︷︷ ︸

{π/2}

, f (t) − g(t)︸ ︷︷ ︸
{−π/2}

) (wrong!). (8.72)

This is really wrong because of not respecting the global structure of the twist. The correct one is

� = αUj ∗
U − αV j ∗

V : Kn
Z2

(pt) ⊕ Kn
Z2

(pt) → Kn
Z2

({π

2

}
∩
{
−π

2

})
(8.73)
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with αU,αV : Kn
Z2

(U ∩ V ) → Kn
Z2

(U ∩ V ) defined by

αU := βU∩V (βU )−1, αU
1

(
±π

2

)
= 1, αU

σ

(
±π

2

)
= 1,

(8.74)

αV := βU∩V (βV )−1, αV
1

(
±π

2

)
= 1, αV

σ

(
±π

2

)
= ±1.

(8.75)

Here, αV
σ = −1 corresponds to the change of the eigenvalues

as (1,−1) �→ (−1) · (1,−1) = (−1,1), which is equivalent to
the action of t ∈ R(Z2). Thus, we have

� : (f (t),g(t)) �→ ( f (t) − g(t)︸ ︷︷ ︸
{π/2}

, f (t) − tg(t)︸ ︷︷ ︸
{−π/2}

). (8.76)

From the the Mayer-Vietoris sequence (8.65), we have

Kτ+0
Z2

(S1) ∼= ker(�), Kτ+1
Z2

(S1) ∼= coker(�). (8.77)

From (8.76), we find ker(�) = Z as an Abelian group, and the
generator of Z is characterized by (1 + t,1 + t) ∈ R(Z2)⊕

R(Z2). Thus, we have

Kτ+0
Z2

(S1) ∼=
Z︷ ︸︸ ︷

(1 + t) (class A). (8.78)

Here, (1 + t) is the R(Z2) ideal (1 + t) = {(1 + t)f (t)|f (t) ∈
R(Z2)}.

Since Im(�) ⊂ R(Z2) ⊕ R(Z2) is spanned by
{(1,1),(t,t),(1,t)}, we have

coker(�) = [R(Z2) ⊕ R(Z2)]/Im(�) = Z (8.79)

as an Abelian group. The generator of coker(�) = Z is
represented by [(1,0)] with (1,0) ∈ R(Z2) ⊕ R(Z2), in which
the R(Z2) action is given by t · (1,0) = (t,0) ∼ (1,0), lead-
ing to coker(�) ∼= (1 + t) as an R(Z2) module. Thus, we
have

Kτ+1
Z2

(S1) ∼=
Z︷ ︸︸ ︷

(1 + t) (class AIII). (8.80)

3. Vector bundle representation for K τ+0
Z2

(S1)

Here, we give the vector bundle representation and the
corresponding real-space orbital picture. The generator of
the K group e ∈ Kτ+0

Z2
(S1) = (1 + t) is represented by the

following Z2 twisted equivariant bundle E:

e =
[
E = S1 × C2, ρσ (kx,v) = (kx,Uσ (kx)v), Uσ (kx) =

(
0 e−ikx

1 0

)]
. (8.81)

By using the Bloch states, e is written as

e = [�(kx) = (|kx,A〉,|kx,B〉), Ûσ�(kx) = �(kx)Uσ (kx)]. (8.82)

By using the real-space basis |Rx,α〉 = ∑
kx∈S1 |kx,α〉e−ikxRx (α = A,B), we can write e as

e = [�(Rx) = (|Rx,A〉,|Rx,B〉), Ûσ�(Rx) = (|Rx,B〉,|Rx + 1,A〉)]. (8.83)

Thus, e just describes the two atoms |Rx,A〉 and |Rx,B〉 exchanged under the half-translation Ûσ , which is figured as

(8.84)

4. Vector bundle representation for K τ+1
Z2

(S1)

Here, we give a representation of the generator 1q ∈
Kτ+1

Z2
(S1) = (1 + t) by an automorphism q : E → E, where

E is the Z2 twisted equivariant bundle introduced in (8.81).
Because E = S1 × C2 is trivial as a complex vector bundle of
rank 2, q : E → E amounts to a function with values in 2 × 2
unitary matrices q : S1 → U (2), and q(kx) commutes with the
half-lattice translation symmetry

Uσ (kx)q(kx)U−1
σ (kx) = q(kx). (8.85)

We can define the topological invariant W characterizing q(kx)
as

W := 1

2πi

∮
S1

tr[q†dq]. (8.86)

The generator model q(kx) is characterized by W = 1. The
simplest model is given by

q(kx) =
(

0 1

eikx 0

)
. (8.87)

Thus, we have a representation of the generator 1q ∈ Kτ+1
Z2

(S1)
as

1q =
[
q : E → E, q(kx) =

(
0 1

eikx 0

)]
. (8.88)
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By using the Bloch state representation for E in (8.82), q : E → E is written in the second quantized form

1q =
⎡⎣q̂ =

∑
kx∈S1

(ψ†
f,A(kx),ψ†

f,B (kx))q(kx)

(
ψi,A(kx)
ψi,B(kx)

)⎤⎦, (8.89)

where {i,f } are auxiliary indices which distinguish between initial and final states. In the real-space basis, 1q can be written as
the following hopping model:

1q =
[
q̂ =

∑
Rx∈Z

(ψ†
f,A(Rx)ψi,B(Rx) + ψ

†
f,B (Rx)ψi,A(Rx + 1))

]
, (8.90)

which is figured out as

(8.91)

5. Hamiltonian representation for K τ+1
Z2

(S1)

We give the Hamiltonian representation for Kτ+1
Z2

(S1). If
an automorphism representation q : E → E is obtained, the
Hamiltonian Hq with the chiral symmetry �Hq + Hq� = 0 is
given by

Hq =
(

0 q†

q 0

)
with � =

(
1 0
0 −1

)
. (8.92)

In the second quantized form, this means Ĥq = q̂ + q̂†.

E. Glide symmetry

Let us consider the glide symmetry which is a nonsymmor-
phic wallpaper group generated by σ : (x,y) �→ (x + 1

2 ,−y).
The point group is Z2 = {1,σ } which acts on the BZ torus as

σ : (kx,ky) �→ (kx,−ky). (8.93)

The twist (τpg)p,p′ (kx,ky) ∈ Z2(Z2; C(T 2,R/2πZ)) of the
glide symmetry is given by

. (8.94)

Hamiltonians with the glide symmetry are written as

Uσ (kx,ky)H (kx,ky)U−1
σ (kx,ky) = H (kx,−ky),

Uσ (kx,−ky)Uσ (kx,ky) = e−ikx . (8.95)

1. Topological classification

To apply the Mayer-Vietoris sequence to the BZ torus T 2,
we divide T 2 into two cylinders U and V so that

U =
{

(eikx ,eiky ) ∈ T 2| − π

2
� kx � π

2

}
,

V =
{

(eikx ,eiky ) ∈ T 2|π
2

� kx � 3π

2

}
. (8.96)

The intersection consists of two circles

U ∩ V = {π/2} × S̃1 � {−π/2} × S̃1. (8.97)

U and V are Z2 equivariantly homotopic to S1:

U ∼ {0} × S̃1, V ∼ {π} × S̃1. (8.98)

Here, we denote the Z2 space S1 with the reflection symmetry
by S̃1 as introduced previously in (8.20). In the same way as
(8.66)–(8.68), the twist on U,V,U ∩ V can be trivialized as

(τpg)|U = δβU , βU
1 (kx,ky) = 1,

(8.99)
βU

σ (kx,ky) = e−ikx/2, kx ∈
[
−π

2
,
π

2

]
,

(τpg)|V = δβV , βV
1 (kx,ky) = 1,

(8.100)

βV
σ (kx,ky) = e−ikx/2, kx ∈

[
π

2
,
3π

2

]
,

(τpg)|U∩V = δβU∩V , βU∩V
1

(
±π

2
,ky

)
= 1,

βU∩V
σ

(
±π

2
,ky

)
= e∓iπ/4. (8.101)

By using these trivializations and the K group of S̃1 (8.32),
we have

K
(τpg)|U +n

Z2
(U )

βU

∼= Kn
Z2

(U ) ∼= Kn
Z2

({0} × S̃1)

∼=
{
R(Z2) ⊕ (1 − t) (n = 0),
0 (n = 1), (8.102)

K
(τpg)|U +n

Z2
(V )

βV

∼= Kn
Z2

(V ) ∼= Kn
Z2

({π} × S̃1)

∼=
{
R(Z2) ⊕ (1 − t) (n = 0),
0 (n = 1), (8.103)

K
(τpg)|U∪V +n

Z2
(U ∩ V )

βU∩V

∼= Kn
Z2

(U ∩ V ) ∼= Kn
Z2

({π/2} × S̃1 � {−π/2} × S̃1)

∼=
{

[R(Z2) ⊕ (1 − t)] ⊕ [R(Z2) ⊕ (1 − t)] (n = 0),

0 (n = 1).
(8.104)
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Thus, the Mayer-Vietoris sequence reads as

(8.105)

Then, in the same way as (8.73)–(8.77), the K group K
τpg+n

Z2
(T 2) is given by

K
τpg+0
Z2

(T 2) ∼= ker(�), K
τpg+1
Z2

(T 2) ∼= coker(�), (8.106)

with

� : R(Z2) ⊕ (1 − t)︸ ︷︷ ︸
{0}×S̃1

⊕ R(Z2) ⊕ (1 − t)︸ ︷︷ ︸
{π}×S̃1

→ R(Z2) ⊕ (1 − t)︸ ︷︷ ︸
{π/2}×S̃1

⊕ R(Z2) ⊕ (1 − t)︸ ︷︷ ︸
{−π/2}×S̃1

, (x,y) �→ (x − y,x − ty), (8.107)

where � is � = αUj ∗
U − αV j ∗

V with αU := βU∩V (βU )−1 and αV := βU∩V (βV )−1. Note that x,y ∈ R(Z2) ⊕ (1 − t) are glued
with the twist by t ∈ R(Z2) on the circle {−π/2} × S̃1. On the direct summands R(Z2) ⊕ R(Z2) and (1 − t) ⊕ (1 − t), the
homomorphism � takes the following forms:

�|R(Z2)⊕R(Z2) : R(Z2) ⊕ R(Z2) → R(Z2) ⊕ R(Z2), (f (t),g(t)) �→ (f (t) − g(t),f (t) − tg(t)), (8.108)

�|(1−t)⊕(1−t) : (1 − t) ⊕ (1 − t) → (1 − t) ⊕ (1 − t), (n(1 − t),m(1 − t)) �→ ((n − m)(1 − t),(n + m)(1 − t)). (8.109)

Note that t(1 − t) = −(1 − t). As a result, we get

K
τpg+0
Z2

(T 2) ∼=
Z︷ ︸︸ ︷

(1 + t) (class A),

K
τpg+1
Z2

(T 2) ∼=
Z︷ ︸︸ ︷

(1 + t) ⊕
Z2︷︸︸︷
I (class AIII). (8.110)

We denoted Abelian groups in the overbraces. A generator
of I = Z2 is represented by a = ((1 − t),0) ∈ (1 − t) ⊕ (1 −
t). The R(Z2) action on I is trivial because t · ((1 − t),0) =
(−(1 − t),0) ∼ ((1 − t),0).

2. Alternative derivation: Gysin sequence

In the last subsection, we computed the K group on the two-
dimensional torus directly. There is an alternative derivation of
(8.110) by using the Gysin sequence as discussed in Ref. [26].
Here, we will briefly describe this method. Let π : S1 × S̃1 →
S1 be the projection onto the kx direction. The twisting τpg

defined in (8.94) arises only from the kx direction, which means
the twisting τpg of the glide symmetry is realized as the pull
back τpg = π∗τ of the twisting of the half-lattice translation
defined in (8.59). Applying the Gysin sequence associated
with the reflection [that is explained in Appendix F and the
relevant isomorphism is (F2)] to T 2 = S1 × S̃1, we have the
isomorphism of R(Z2) modules

K
τpg+n

Z2
(S1 × S̃1) = K

(τ,0)+n

Z2
(S1) ⊕ K

(τ,w)+n+1
Z2

(S1). (8.111)

The first direct summand represents just a “weak” index, say,
the contribution from the ky-independent Hamiltonians, which
is already given in (8.78) and (8.80) as

K
(τ,0)+n

Z2
(S1) =

{
(1 + t) (n = 0),
(1 + t) (n = 1). (8.112)

So, the second direct summand K
(τ,w)+n+1
Z2

(S1) is a contribu-
tion specific to 2D. The problem is recast into the 1D problem
K (τ,w)+n+1(S1).

In the exponent of the K group K (τ,w)+n(S1), c = w means
the “antisymmetry class” c(σ ) = −1 introduced in Sec. II B 2
which is defined for Hamiltonians by

Class A (n = 0) :

{
Uσ (kx)H (kx)U−1

σ (kx) = −H (kx),

[Uσ (kx)]2 = e−ikx ,

(8.113)

Class AIII (n = 1) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�H (kx)�−1 = −H (kx),

Uσ (kx)H (kx)U−1
σ (kx) = −H (kx),

[Uσ (kx)]2 = e−ikx ,

�Uσ (kx) = −Uσ (kx)�.

(8.114)

By the same decomposition S1 = U ∪ V as (8.62) and
the same trivialization of the twist τ on U,V,U ∩ V as
(8.66)–(8.68), we can show the following:

K
(τ |U ,w)+n

Z2
(U )

βU

∼= K
(0,w)+n

Z2
(U ) ∼= K

(0,w)+n

Z2
(pt)

∼=
{

0 (n = 0),
(1 − t) (n = 1), (8.115)

K
(τ |U ,w)+n

Z2
(V )

βV

∼= K
(0,w)+n

Z2
(V ) ∼= K

(0,w)+n

Z2
(pt)

∼=
{

0 (n = 0),
(1 − t) (n = 1), (8.116)

K
(τ |U∪V ,w)+n

Z2
(U ∩ V )

βU∩V

∼= K
(0,w)+n

Z2
(U ∩ V )

∼= K
(0,w)+n

Z2
({π/2} � {−π/2})

∼=
{

0 (n = 0),
(1 − t) ⊕ (1 − t) (n = 1).

(8.117)
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Here, the K group of the point K (0,w)+n

Z2
(pt) is given as follows.

For n = 0, the symmetry restricted to the point is the same
as the chiral symmetry Uσ (pt)H (pt)U−1

σ (pt) = −H (pt),
leading to K

(0,w)+0
Z2

(pt) = 0. For n = 1, from the double
chiral symmetries by Uσ (pt) and � which anticommute with
each other, a symmetry-preserving Hamiltonian takes a form
H (pt) = H̃ (pt) ⊗ [iUσ (pt)�] with no symmetry for H̃ (pt).
[Here, we assume �2 = U 2

σ (pt) = 1.] Thus, the symmetry
class is the same as class A and we find K

(0,w)+1
Z2

(pt) = Z

as an Abelian group. The R(Z2)-module structure is given
by the Karoubi’s quadruplet representation. A generator of
K

(0,w)+1
Z2

(pt) = Z is represented by

e = [C0 ⊕ C1,� = σx,H0(pt) = σy,H1(pt) = −σy],

(8.118)

where σi (i = x,y,z) is the Pauli matrix, and C0 and C1 are
one-dimensional irreps. with eigenvalues Uσ (pt) = 1 and −1,
respectively. The t ∈ R(Z2) action is

t · e = [C1 ⊕ C0,� = σx,H0(pt) = σy,H1(pt) = −σy]

= [C0 ⊕ C1,� = σx,H0(pt) = −σy,H1(pt) = σy] = −e, (8.119)

which leads to K
(0,w)+1
Z2

(pt) ∼= (1 − t).
The Mayer-Vietoris sequence for S1 = U ∪ V is given by

(8.120)

We have

K
(τ,w)+1
Z2

(S1) ∼= ker(�′), K
(τ,w)+0
Z2

(S1) ∼= coker(�′), (8.121)

where �′ = αUj ∗
U − αV j ∗

V : K
(0,w)+1
Z2

(U ) ⊕ K
(0,w)+1
Z2

(V ) → K
(0,w)+1
Z2

(U ∩ V ) is

�′ : (1 − t) ⊕ (1 − t) → (1 − t) ⊕ (1 − t), (n(1 − t),m(1 − t)) �→ ((n − m)(1 − t),(n + m)(1 − t)). (8.122)

As a result, we get

K
(τ,w)+1
Z2

(S1) = 0, K
(τ,w)+0
Z2

(S1) ∼=
Z2︷︸︸︷
I , (8.123)

where R(Z2) trivially acts on I = Z2.
Combining (8.111) with (8.112) and (8.123) we reprovide the K group (8.110) for 2D TCI with the glide symmetry

K
τpg+0
Z2

(S1 × S̃1) ∼= K
(τ,0)+0
Z2

(S1) ⊕ K
(τ,w)+1
Z2

(S1) ∼=
Z︷ ︸︸ ︷

(1 + t) , (8.124)

K
τpg+1
Z2

(S1 × S̃1) ∼= K
(τ,0)+1
Z2

(S1) ⊕ K
(τ,w)+0
Z2

(S1) ∼=
Z︷ ︸︸ ︷

(1 + t) ⊕
Z2︷︸︸︷
I . (8.125)

3. Model and topological invariant

Model vector bundles/Hamiltonians representing K
τpg+n

Z2
(T 2) are as follows. Equations (8.124) and (8.125) imply that the free

parts (1 + t) of K groups K
τpg+n

Z2
(T 2) (n = 0,1) arise from 1D models which were already introduced in (8.84) and (8.91).

The generating Hamiltonian ofZ2 part I in K
τpg+1
Z2

(T 2) is given by the dimensional-raising map from the K group K (τ,w)+0(S1).
As shown in Ref. [26], the Karoubi’s triple for the generator of K (τ,w)+0(S1) is given as[

E = S1 × C2,U (kx) =
(

0 e−ikx

1 0

)
μ

,H1 =
(

1 0
0 −1

)
μ

,H0 =
(−1 0

0 1

)
μ

]
, (8.126)

where E is the Z2 twisted equivariant bundle defined in (8.81) and the subscript μ represents the two localized positions inside
the unit cell. Then, the dimensional-raising map (5.18) leads us to the Hamiltonian in class AIII with glide symmetry

H̃ (kx,ky) = cos kyμz ⊗ σz + sin kyμ0 ⊗ σx, �̃ = μ0 ⊗ σy, Ũ (kx) = U (kx) ⊗ σy. (8.127)
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Here, we introduced the Pauli matrices μa (a = 0,x,y,z) for
the μ space. Notice that the Ũ (kx) acts on the Hamiltonian
H̃ (kx,ky) as a glide symmetry which commutes with the chiral
symmetry

Ũ (kx)H̃ (kx,ky)Ũ (kx)−1 = H (kx,−ky),

Ũ (kx)2 = e−ikx , [�̃,Ũ (kx)] = 0. (8.128)

TheZ2 invariant is defined as follows. This is the 2D analog
of Z2 invariant in 3D class A insulator with glide symmetry
[26,28]. Due to the chiral symmetry, the flattened Hamiltonian
takes the form of sign[H (kx,ky)] = ( 0 q(kx ,ky )

q†(kx ,ky ) 0 ), where
q(kx,ky) is a unitary matrix in the basis producing the

expression � = (1 0
0 −1). On the glide lines ky = �y,�y = 0

and π , the Hamiltonian is divided by the glide sectors U (kx) =
±e−ikx/2. Let q±(kx,�) be the Hamiltonian of the glide sectors
with U (kx) = ±e−ikx/2. Since the two glide sectors are glued
at the boundary, these Hamiltonians are connected at the BZ
boundary q±(π,�y) = q∓(−π,�y). We define the Z2 invariant
ν ∈ {0,1/2} by

ν := 1

2πi

[
ln det q+(−π,0) + 1

2

∫ π

−π

dkx
ln det q+(kx,0)

]
− 1

2πi

[
ln det q+(−π,π ) + 1

2

∫ π

−π

dkx
ln det q+(kx,π )

]
+ 1

2

1

2πi

∫ π

0
dky

ln det q(−π,ky) (mod 1). (8.129)

By the use of the Stokes’ theorem, it is easy to show
that 2ν = 0(mod 1), i.e., ν is quantized to Z2 values.
One can check that the Hamiltonian (8.127) has ν = 1

2 .

4. 3D TCIs with glide symmetry

Applying the dimensional isomorphism (5.37) to 2D K

groups (8.110) leads to the topological classification of 3D
class A and AIII insulators with glide symmetry

3D class A bulk: K
τpg+0
Z2

(T 3) ∼=
Z︷ ︸︸ ︷

(1+ t)︸ ︷︷ ︸
kx

⊕
Z︷ ︸︸ ︷

(1+ t)︸ ︷︷ ︸
(kx ,kz)

⊕
Z2︷︸︸︷
I︸︷︷︸

(kx ,ky ,kz)

,

(8.130)

3D class AIII bulk: K
τpg+1
Z2

(T 3) ∼=
Z︷ ︸︸ ︷

(1+ t)︸ ︷︷ ︸
kx

⊕
Z2︷︸︸︷
I︸︷︷︸

(kx ,ky )

⊕
Z︷ ︸︸ ︷

(1+ t)︸ ︷︷ ︸
(kx ,kz)

.

(8.131)

Here, the underbraces indicate the minimum dimensions
required for realizing generators. For example, (kx,kz) means
that a generator model is adiabatically connected to a stacking
model along the x and z directions. It is clear that the so-called
“strong index” appears only in the last Z2 group in (8.130).
This Z2 phase in 3D class A insulators with glide symmetry
was already described in Refs. [26,28], so we do not repeat it
here.

5. 2D surface states with glide symmetry

As explained in Sec. V E, the topological classification of
boundary gapless states is given by the K group with the shift
of the integer grading −n �→ −(n − 1). Hence, the results
(8.110) imply the classification of surface states:

2D class A surface gapless states: K
τpg+1
Z2

(T 2) ∼=
Z︷ ︸︸ ︷

(1 + t)︸ ︷︷ ︸
kx

⊕
Z2︷︸︸︷
I︸︷︷︸

(kx ,ky )

, (8.132)

2D class AIII surface gapless states: K
τpg+0
Z2

(T 2) ∼=
Z︷ ︸︸ ︷

(1 + t)︸ ︷︷ ︸
kx

. (8.133)

The meaning of the underbraces is similar to (8.130) and
(8.131), indicating the momentum dependence of the spec-
trum. Comparing (8.132) [(8.133)] with (8.130) [(8.131)], one
can see that the bulk-boundary correspondence holds.

F. C4 rotation symmetry

In this section, we present a K-theory computation of the
TCIs with C4 symmetry in two dimensions for classes A
and AIII. The BZ is a square. The point group C4 = Z4 =
{1,c4,c2 = c2

4,c
3
4} acts on T 2 by c4 : (kx,ky) �→ (−ky,kx).

There are two fixed points: � = (0,0) and M = (π,π ). X =
(π,0) is a fixed point of the subgroup C2 = Z2 = {1,c2} ⊂ Z4.
We present the representation rings of Z4 and Z2 groups as
follows:

R(Z4) = Z[t]/(1 − t4), R(Z2) = Z[s]/(1 − s2). (8.134)

R(Z4) acts on R(Z2) by the restriction of representations
of Z4: t |Z2 = s, which means R(Z2) is (1 + t2) = {f (t)(1 +
t2)|f (t) ∈ R(Z4)} as an R(Z4) module.

1. Topological classification

To compute the K group Kn
Z4

(T 2), we introduce a subspace
Y ⊂ T 2 as follows:

.
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Let us compute the K group on Y . We can decompose Y =
U ∪ V to two parts which are Z4-equivariantly homotopic to
points

U ∼ (Z4/Z4) × pt = {�},
V ∼ (Z4/Z2) × pt = {X,c4X}. (8.135)

The intersection is

U ∩ V ∼ Z4 × pt. (8.136)

The Mayer-Vietoris sequence for Y = U ∪ V is

(8.137)
where � is given by

� : (f (t),g(s)) �→ f (1) − g(1). (8.138)

A basis of ker(�) can be chosen as

{(1,1),(t,s),(t2,1),(t3,s)︸ ︷︷ ︸
R(Z4)

, (0,1 − s)︸ ︷︷ ︸
(1−t+t2−t3)

} ⊂ R(Z4) ⊕ R(Z2).

(8.139)

The former four base elements compose R(Z4) and the last
base element generates the R(Z4) module (1 − t + t2 − t3) =
{f (t)(1 − t + t2 − t3)|f (t) ∈ R(Z4)}. We have

K0
Z4

(Y ) ∼= ker(�) ∼=
Z4︷ ︸︸ ︷

R(Z4) ⊕
Z︷ ︸︸ ︷

(1 − t + t2 − t3) ,

K1
Z4

(Y ) ∼= 0. (8.140)

Next, we “fill in” the BZ torus T 2 with wave functions from
Y . To this end, we use the exact sequence for the pair (T 2,Y ):

(8.141)
The K group of the pair (T 2,Y ) is given as follows: The
quotient T 2/Y can be identified with the sphere D(C1)/S(C1)
obtained by shrinking the boundary circle S(C1) of the disk
D(C1). Here, C1 is the one-dimensional complex representa-
tion ofZ4, say, the generator C4 ∈ Z4 acts onC by C4 · z = iz,
and Z4 naturally acts on D(C1), S(C1), and D(C1)/S(C1).
Then, the Thom isomorphism for the Z4-equivariant complex
vector bundle C1 → pt states (see Appendix E)

Kn
Z4

(T 2,Y ) ∼= K̃n
Z4

(T 2/Y ) ∼= K̃n
Z4

[D(C1)/S(C1)]

∼= Kn
Z4

(D(C1),S(C1)) ∼= Kn
Z4

(pt). (8.142)

Then, the sequence (8.141) is recast into

.

(8.143)

Since the contribution K0
Z4

(Z) = R(Z4) ⊂ K0
Z4

(T 2) =
K0

Z4
(Z) ⊕ K̃0

Z4
(T 2) from the fixed point � is identically

mapped by i∗, we get the exact sequence for the reduced K

theory:

0 → R(Z4) → K̃0
Z4

(T 2) → (1− t + t2 − t3) → 0. (8.144)

One can show that the extension of (1 − t + t2 − t3) by R(Z4)
is unique. (See Appendix G for details.) We thus get the
reduced K group

K̃0
Z4

(T 2) ∼= R(Z4) ⊕ (1 − t + t2 − t3) (8.145)

and the K group

K0
Z4

(T 2) ∼=
Z4︷ ︸︸ ︷

R(Z4) ⊕
Z4︷ ︸︸ ︷

R(Z4) ⊕
Z︷ ︸︸ ︷

(1 − t + t2 − t3) ,

K1
Z4

(T 2) = 0. (8.146)

2. Models of K 0
Z4

(T 2)

In this section, we give generating models of the K

group K0
Z4

(T 2), the 2D TCIs with C4 symmetry. Through
the “lens” of topological invariants, one can reconstruct the
R(Z4)-module structure (8.146). As mentioned, the BZ is
a square. � = (0,0) and M = (π,π ) are the fixed points of
the C4 group, and X = (π,0) is fixed under the subgroup
C2 = Z2:

. (8.147)

In general, parts of the K group of class A can be represented
by vector bundles realized as atomic insulators. Put a repre-
sentation of site symmetry at the Wyckoff positions inside a
unit cell. There are two Wyckoff positions (a) and (b) of which
the filling number is one:

,

(8.148)

.

(8.149)
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In the above, the corresponding Z4-equivariant line bundles
are denoted by Ea and Eb. The solid squares in the figures
represent the unit cells. The C4 action on Eb is determined
by the C4 action on the real-space basis Ûc4 |(Rx,Ry),s〉 =
|(−Ry − 1,Rx),s〉. Here, we put the s orbitals at the Wyckoff
positions. Other representations of Z4 are obtained by tensor
products of elements of R(Z4). We have another generator Ec

of rank 2 that is realized by putting s orbitals at the centers of
edges of the square:

.

(8.150)

All other atomic line bundles can be direct sums of Ea,Eb,Ec

and tensor products by representations of Z4.
The K group K0

Z4
(T 2) includes line bundles with finite

Chern number. To construct a line bundle with a nonzero Chern
number, we gap out a trivial atomic insulator by introducing
(one-body) interaction. Let E be the atomic Z4-equivariant
bundle consisting of s and px+iy orbitals localized at the center
of the unit cell:

.

(8.151)

We define four Z4-equivariant line bundles as the occupied
state of the following C4 symmetric Hamiltonians on the
bundle E:

F�,± : H (k) = sin kxσx + sin kyσy ± (m − cos kx − cos ky)σz, 0 < m < 2 (8.152)

FM,± : H (k) = sin kxσx + sin kyσy ± (m − cos kx − cos ky)σz, − 2 < m < 0 (8.153)

where σi (i = x,y,z) are the Pauli matrices, and the subscript �/M represents the location of the band inversion.
There are four topological invariants: the Chern number ch1 and representations at �, M , and X. These topological invariants

have R(Z4)-module structures. The above models have the following data of topological invariants:

ch1([E]) [E|�] [E|M ] [E|X]
Bundle (1 + t + t2 + t3) R(Z4) R(Z4) R(Z2 = {1,c2})
Ea 0 1 1 1
Eb 0 1 t2 s

Ec 0 1 + t2 t + t3 1 + s

F�,+ 1 1 t s

F�,− −1 t 1 1
FM,+ −1 1 t 1
FM,− 1 t 1 s

From this table, we can read off three generators e1,e2,e3 of the K group K0
Z2

(T 2):

R(Z4)-module ch1([E]) [E|�] [E|M ] [E|X]
structure Generator (1 + t + t2 + t3) R(Z4) R(Z4) R(Z2 = {1,c2})
R(Z4) e1 = [Ea] 0 1 1 1

te1 0 t t s

t2e1 0 t2 t2 1
t3e1 0 t3 t3 s

R(Z4) e2 = [FM,+] − [Ea] −1 0 t − 1 0
te2 −1 0 t2 − t 0
t2e2 −1 0 t3 − t2 0
t3e2 −1 0 1 − t3 0

(1 − t + t2 − t3) e3 = [Ec] − (1 + t2) · [Ea] 0 0 −1 + t − t2 + t3 s − 1

(8.154)

An arbitrary formal difference [E1] − [E2] of two Z4-equivariant bundles can be a linear combination of these generators. For
example,

[Eb] = e1 + (t − t2)e2 + e3, [Ec] = (1 + t2)e1 − e3, [F�,+] = e1 − t2e2 + e3, (8.155)

[F�,−] = te1 + t2e2 + e3, [FM,−] = te1 − e2. (8.156)

The R(Z4)-module structure is consistent with the algebraic derivation of the K group (8.146).
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3. Constraint on topological invariants

There is a constraint on the data of topological invariants

(ch1([E]),[E|�],[E|M ],[E|X]) ∈ (1 + t + t2 + t3)

⊕ R(Z4)︸ ︷︷ ︸
K0

Z4
({�})

⊕ R(Z4)︸ ︷︷ ︸
K0

Z4
({M})

⊕ R(Z2)︸ ︷︷ ︸
K0

Z4
({X})

(8.157)

that arises from the fully gapped condition on the whole
BZ torus. Let us denote the right-hand side of (8.157) by
Top0

Z4
(T 2). The constraint can be considered as the condition

that the topological invariant lies in the image of an injective
homomorphism from the K group K0

Z4
(T 2) to the set of

topological invariants

ftop : K0
Z4

(T 2) → Top0
Z4

(T 2). (8.158)

This homomorphism ftop is not surjective in general, hence
the condition

x ≡ 0 mod Im (ftop), x ∈ Top0
Z4

(T 2) (8.159)

makes sense. From the data (8.154), Im (ftop) is spanned by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,1,1,1)
(0,t,t,s)
(0,t,t,1)
(0,t,t,s)
(−1,0,t − 1,0)
(−1,0,t2 − t,0)
(−1,0,t3 − t2,0)
(−1,0,1 − t3,0)
(0,0,−1 + t − t2 + t3,s − 1)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,1,1,1)
(0,t,t,s)
(0,t,t,1)
(0,t,t,s)
(−1,0,t − 1,0)
(−2,0,t2 − 1,0)
(−3,0,t3 − 1,0)
(2,0,0,s − 1)
(4,0,0,0)

(8.160)

as an Abelian group. Let us denote a general element of
Top0

Z4
(T 2) by [ch1,�(t),M(t),X(s)]. Solving the equation

[ch1,�(t),M(t),X(s)] = 0 mod Im (ftop) leads us to the

constraints

Constraint 1: �(1) = M(1) = X(1), (8.161)

Constraint 2: ch1 = �′(1) − M ′(1) + 2X′(1) mod 4,

(8.162)

where �′(1) is the derivative �′(1) := d
dt

�(t)|t→1 and so are
M ′(1) and X′(1). The first constraint means that the number of
occupied states should be uniform around the whole BZ torus.
The breaking of the first condition implies the existence of the
Fermi surface. The latter constraint serves as a criterion for
nontrivial Chern number [15].

G. Wallpaper group p4g with projective representation of D4

In this section, we calculate the K group of T 2 with the
wallpaper group p4g and a nontrivial projective representation
of its point group D4, which corresponds to that the degree of
freedom at a site is spin half-integer.

1. Space group p4g

The space group p4g is generated by the following two
elements:

{c4|ŷ/2} : (x,y) → (−y,x + 1/2),

{σ |x̂/2} : (x,y) → (x + 1/2,−y), (8.163)

and the primitive lattice translations. This corresponds to the
choice of nonprimitive lattice translations ac4 = (0,1/2) and
aσ = (1/2,0). We define other nonprimitive translations by

ac2 := ac4 + c4ac4 , ac3
4

:= ac4 + c4ac2 , (8.164)

aσc4 := aσ + σ ac4 , aσc2 := aσ + σ ac2 ,
(8.165)

aσc3
4

:= aσ + σ ac3
4
,

which are summarized as follows:

p ∈ D4 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

ap (0,0) (0,1/2) (1/2,1/2) (1/2,0) (1/2,0) (1/2,1/2) (0,1/2) (0,0)

Under this choice, the two-cocycle νp1,p2 = ap1 + p1ap2 − ap1p2 ∈ � is given by the following table:

νp1,p2 ,p1\p2 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
c4 (0,0) (−1,0) (−1,1) (0,1) (0,1) (−1,1) (−1,0) (0,0)
c2 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
c3

4 (0,0) (1,0) (1,−1) (0,−1) (0,−1) (1,−1) (1,0) (0,0)
σ (0,0) (0,−1) (1,−1) (1,0) (1,0) (1,−1) (0,−1) (0,0)
σc4 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
σc2 (0,0) (0,1) (−1,1) (−1,0) (−1,0) (−1,1) (0,1) (0,0)

σc3
4 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
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Next, we move on to the momentum space. The point group D4 acts on the square BZ torus by c4 · (kx,ky) = (−ky,kx) and
σ · (kx,ky) = (kx,−ky). All the D4 actions are summarized in the following figure:

. (8.166)

� and M are fixed points of D4 and X is fixed by the subgroup D
(v)
2 = {1,c2,σ,σc2}. The choices (8.164) and (8.165) correspond

to

U1(k) := 1, Uc2 (k) := Uc4 (c4k)Uc4 (k), Uc3
4
(k) := Uc4 (c2k)Uc2 (k), (8.167)

Uσc4 (k) := Uσ (c4k)Uc4 (k), Uσc2 (k) := Uσ (c2k)Uc2 (k), Uσc3
4
(k) := Uσ

(
c3

4 k
)
Uc4 (k) (8.168)

for fixed Uc4 (k) and Uσ (k). The two-cocycle (τp4g)p,p′ (k) = −k · νp,p′ on the momentum space is summarized as

ei(τp4g)p,p′ (pp′k) =

p\p′ 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 1 1 1 1 1 1 1 1
c4 1 1 1 1 e−ikx eiky eikx e−iky

c2 1 1 1 1 e−i(kx+ky ) e−i(kx−ky ) ei(kx+ky ) ei(kx+ky )

c3
4 1 1 1 1 e−iky e−ikx eiky eikx

σ 1 1 1 1 e−ikx eiky eikx e−iky

σ c4 1 1 1 1 e−i(kx+ky ) e−i(kx−ky ) ei(kx+ky ) ei(kx+ky )

σc2 1 1 1 1 e−iky e−ikx eiky eikx

σ c3
4 1 1 1 1 1 1 1 1

.

The two-cocycle at symmetric points can be read off as follows. At � point, the two-cocycle is trivial

(τp4g|�)p,p′ = 1, p,p′ ∈ D4. (8.169)

The restriction to the M point is summarized as

ei(τp4g |M )p,p′ =

p\p′ 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 1 1 1 1 1 1 1 1
c4 1 1 1 1 −1 −1 −1 −1
c2 1 1 1 1 1 1 1 1

c3
4 1 1 1 1 −1 −1 −1 −1

σ 1 1 1 1 −1 −1 −1 −1
σc4 1 1 1 1 1 1 1 1
σc2 1 1 1 1 −1 −1 −1 −1

σc3
4 1 1 1 1 1 1 1 1

This can be trivialized by the one-cochain β ∈ C1(D4,U (1)) defined by the following table:

βp 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

p ∈ D4 1 i −1 −i −i 1 i −1
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We can see (τp4g|M + δβ)p,p′ = 0 for all p,p′ ∈ D4. [Note
that (δβ)p,p′ = βpβp′β−1

pp′ .] On the other hand, the restriction
to the X point is summarized in the table

ei(τp4g |X)p,p′ =

p\p′ 1 c2 σ σc2

1 1 1 1 1
c2 1 1 −1 −1
σ 1 1 −1 −1
σc2 1 1 1 1

.

This two-cocycle τp4g|X cannot be trivialized, which im-
plies that τp4g|X generates the nontrivial group cohomology
H 2(D2,U (1)) = Z2.

2. Projective representation of D4

In this section, we will consider the spin half integer systems
with nonsymmorphic p4g symmetry. In addition to the twist
from the nonprimitive lattice translations {ap}p∈D4 , the point
group D4 obeys a projective representation of which the factor
group represents the nontrivial element of H 2(D4,U (1)) = Z2.

A simple way to fix the two-cocycle ω ∈ Z2(D4,R/2πZ)
is to consider an explicit form of a projective representation
of D4. Let us consider the following projective representation
of D4:

Uc4 = e−i π
4 σz , Uσ = e−i π

2 σy = −iσy, (8.170)

where σμ (μ = x,y,z) are the Pauli matrices. Under the same
choice of representation matrices as (8.167) and (8.168), the
two-cocycle ω ∈ Z2(D4,R/2πZ) is fixed as in the following
table:

eiωp,p′ =

p\p′ 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 1 1 1 1 1 1 1 1
c4 1 1 1 −1 −1 1 1 1
c2 1 1 −1 −1 −1 −1 1 1
c3

4 1 −1 −1 −1 −1 −1 −1 1
σ 1 1 1 1 −1 −1 −1 −1
σc4 1 1 1 −1 1 −1 −1 −1
σc2 1 1 −1 −1 1 1 −1 −1
σc3

4 1 −1 −1 −1 1 1 1 −1

. (8.171)

Then, the total two-cocycle τ for the spin half integer degrees
of freedom with p4g symmetry is given by τ = τp4g + ω.

The spin half integer p4g symmetry is summarized in terms
of Hamiltonians by

Up(k)H (k)Up(k)−1 = H (pk),

Up1 (p2k)Up2 (k) = ei(τp4g)p1 ,p2 (p1p2 k) · eiωp1 ,p2 Up1,p2 (k).

(8.172)

The two-cocycle τ = τp4g + ω ∈ Z2(D4,C(T 2,R/2πZ)) is
summarized in the following table:

ei(τp4g)p,p′ (pp′k)+iωp,p′ =

p\p′ 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 1 1 1 1 1 1 1 1
c4 1 1 1 −1 −e−ikx eiky eikx e−iky

c2 1 1 −1 −1 −e−i(kx+ky ) −e−i(kx−ky ) ei(kx+ky ) ei(kx+ky )

c3
4 1 −1 −1 −1 −e−iky −e−ikx −eiky eikx

σ 1 1 1 1 −e−ikx −eiky −eikx −e−iky

σ c4 1 1 1 −1 e−i(kx+ky ) −e−i(kx−ky ) −ei(kx+ky ) −ei(kx+ky )

σc2 1 1 −1 −1 e−iky e−ikx −eiky −eikx

σ c3
4 1 −1 −1 −1 1 1 1 −1

. (8.173)

The fixed points � and M obey nontrivial projective represen-
tations of D4 with two-cocycles τp4g|� + ω and τp4g|M + ω,
respectively. The X point obeys a trivial projective represen-
tation of D

(v)
2 = {1,c2,σ,σc2} with two-cocycle τp4g|X + ω.

3. A little bit about representations of D4

To compute the K group K
τp4g+ω+n

D4
(T 2), we need to know

the representations at high-symmetric points and their restric-
tions to subgroups of D4 realized at low-symmetric lines in BZ.
The dihedral group D4 has four one-dimensional linear irreps.
{1,A,B,AB}, two two-dimensional linear irreps. {E}, and two
two-dimensional nontrivial projective irreps. {W,BW }. It is
useful to introduce the character of a representation, which is
defined as the trace of representation matrices. The character
table of linear representations of the dihedral group D4 is

summarized as the following table:

Irrep. Mulliken {1} {c4,c
3
4} {c2} {σ,σc2} {σc4,σc3

4}
1 A1 1 1 1 1 1
A A2 1 1 1 −1 −1
B B1 1 −1 1 1 −1
AB B2 1 −1 1 −1 1
E E 2 0 −2 0 0

(8.174)

For projective representations, we need to specify a two-
cocycle ωp,p′ ∈ Z2(D4,R/2πZ) which appears in

U (p)U (p′) = eiωp,p′ U (pp′), p,p′ ∈ D4. (8.175)

Once we fix a two-cocycle ω, projective representations with
two-cocycle ω, dubbed ω-projective representations, make
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TABLE XII. Examples of projective representations of D4. ζ means ζ = e−πi/4.

Two-cocycle Uρ(p) 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

1 1 1 1 1 1 1 1 1
A 1 1 1 1 −1 −1 −1 −1

Triv. B 1 −1 1 −1 1 −1 1 −1
(linear reps.) AB 1 −1 1 −1 −1 1 −1 1

E
(1 0

0 1

) (0 −1
1 0

) (−1 0
0 −1

) ( 0 1
−1 0

) (1 0
0 −1

) ( 0 −1
−1 0

) (−1 0
0 1

) (0 1
1 0

)
ω W

(1 0
0 1

) (ζ 0
0 ζ−1

) (−i 0
0 i

) (−iζ 0
0 iζ−1

) (0 −1
1 0

) (0 −ζ−1

ζ 0

) ( 0 −i

−i 0

) ( 0 −iζ−1

−iζ 0

)
BW

(1 0
0 1

) (−ζ 0
0 −ζ−1

) (−i 0
0 i

) (iζ 0
0 −iζ−1

) (0 −1
1 0

) ( 0 ζ−1

−ζ 0

) ( 0 −i

−i 0

) ( 0 iζ−1

iζ 0

)

sense. Note that fixing of a two-cocycle is needed for a
projective representation with the trivial group cohomology
[ω] = 0 ∈ H 2(D4,U (1)). In the same way, the ω-projective
character is defined as the trace of the representation matrices

χ (p) := tr [U (P )]. (8.176)

Clearly, χ (p) is invariant under the unitary transforma-
tion U (p) �→ V U (p)V †. Different choices of two-cocycles
with the same cohomology class may change the projec-
tive character. For example, the following table shows the
projective characters at the symmetric points �, M , and
X:

Symmetric point Two-cocycle Irrep. 1 c4 c2 c3
4 σ σc4 σc2 σc3

4

� ω W 2
√

2 0 −√
2 0 0 0 0

[defined in (8.171)] BW 2 −√
2 0

√
2 0 0 0 0

M τp4g|M + ω W 2 −√
2i 0

√
2i 0 0 0 0

BW 2
√

2i 0 −√
2i 0 0 0 0

X τp4g|X + ω 1 1 −i 1 −i

tσc2 1 i 1 i

tσ 1 i −1 −i

tσc2 tσ 1 −i −1 i

(8.177)

Examples of representations of D4 are shown in Table XII.
The tensor product of two linear representations is defined by

Uρ1⊗ρ2 (p) := Uρ1 (p)Uρ2 (p), (8.178)

which induces the ring structure on R(D4), the Abelian group generated by linear representations of D4. If ρ2 is a ω-projective
representation, Eq. (8.178) defines the R(D4)-module structure of Rω(D4), the Abelian group generated by ω-projective
representations. Table XIII summarizes the tensor product representations. As the notations suggest, AB and BW mean A ⊗ B

and B ⊗ W , respectively. From Table XIII, the representation ring of D4 reads as

R(D4) ∼= Z[A,B,E]/(1 − A2,1 − B2,E − AE,E − BE,E2 − 1 − A − B − AB). (8.179)

TABLE XIII. The table of tensor product representations of D4.

ρ1 ⊗ ρ2,ρ1\ρ2 1 A B AB E W BW

1 1 A B AB E W BW

A A 1 AB B E W BW

B B AB 1 A E BW W

AB AB B A 1 E BW W

E E E E E 1 + A + B + AB W + BW W + BW
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TABLE XIV. Subgroups of D4 = {1,c4,c2,c
3
4,σ,σc4,σc2,σc3

4} and restrictions of representations of D4 to subgroups. In the restriction of
two irreps. of ω-projective irreps., we trivialize the two-cocycle ω by the redefinition Uc4 �→ ζ−1Uc4 .

Subgroup H Elements R(H ) 1|H A|H B|H AB|H E|H W |H BW |H
C4 {1,c4,c2,c

3
4} Z[t]/(1 − t4) 1 1 t2 t2 t + t3 1 + t t2 + t3

D
(v)
2 {1,c2,σ,σc2} Z[t1,t2]/(t2

1 ,t2
2 ) 1 t1t2 1 t1t2 t1 + t2 W W

D
(d)
2 {1,c2,σc4,σc3

4} Z[t1,t2]/(t2
1 ,t2

2 ) 1 t1t2 t1t2 1 t1 + t2 W W

Z2 {1,c2} Z[s]/(1 − s2) 1 1 1 1 2s 1 + s 1 + s

Z(v)
2 {1,σ } ∼ {1,σc2} Z[s]/(1 − s2) 1 s 1 s 1 + s 1 + s 1 + s

Z(d)
2 {1,σc4} ∼ {1,σc3

4} Z[s]/(1 − s2) 1 s s 1 1 + s 1 + s 1 + s

We can read off the R(D4)-module structure of the ω-projective
representations Rω(D4) as

Rω(D4) ∼= (1 + A + E). (8.180)

The restriction of group elements of D4 to its subgroup H

leads to the restriction of the two-cocycle

ω → ω|H ∈ Z2(H,U (1)) (8.181)

and the restriction of ω-projective representations of D4 to
(ω|H )-projective representations

ρ → ρ|H ∈ Rω|H (H ). (8.182)

We summarize the restriction of irreps. of D4 in
Table XIV.

4. K group of one-dimensional subspace X1

To compute the K group, we introduce D4-invariant subspaces X1, Y1, and Z:

.

In the computation below, we focus on the following fundamental region in the BZ torus that is surrounded by �, M , and X

points. We mark points on the edges of the fundamental region with I1, I2, and I3. See the following figure:

.

First, we compute the K group of Y1 by use of the Mayer-Vietoris sequence. Y1 is divided into two parts Y1 = U ∪ V , where
U and V have the following D4-equivariant homotopy equivalences:

U ∼ {�} = (D4/D4) × pt, V ∼ {X,c4 · X} ∼ (
D4/D

(v)
2

) × pt, (8.183)

where D
(v)
2 = {1,σ,σc2,c2} is a subgroup of D4. The intersection has the D4-equivariant homotopy equivalence

U ∩ V ∼ {I1,c4I1,c2I1,c
3
4I1} ∼ (

D4/Z
(y)
2

) × pt = {{1,σ },{c2,σc2},
{
c4,σc3

4

}
,
{
c3

4,σc4
}}

. (8.184)
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Here, we chose Z(y)
2 = {1,σ } as a Z2 subgroup. In this choice, the intersection U ∩ V can be labeled by the D4 space (D4/Z

(y)
2 ) ×

pt as follows:

.

The D4 group naturally acts on the set D4/Z
(y)
2 . An alternative choice is Z(x)

2 = {1,σc2}. The final expression for the K group
Kτ+c+n

D4
(Y1) does not depend on the choices Z(x)

2 and Z(y)
2 .

The six-term Mayer-Vietoris sequence associated with the decomposition Y1 = U ∪ V is given by

(8.185)

The homomorphism �0 of R(D4) modules is given by

�0 : (ρ,g(tσc2 ,tσ )) �→ ρ|Z(y)
2

· (1 + tσ ) − g(1,tσ ). (8.186)

Ker(�0) is spanned by the following basis:

{(W,tσc2 + tσ ),(BW,tσc2 + tσ )︸ ︷︷ ︸
(1+A+E)

, (0,1 − tσc2 ),(0,tσ − tσc2 tσ )︸ ︷︷ ︸
(1+B−E)

}. (8.187)

We have

K
τp4g+ω+0
D4

(Y1) ∼= Ker(�0) ∼=
Z2︷ ︸︸ ︷

(1 + A + E) ⊕
Z2︷ ︸︸ ︷

(1 + B − E) , K
τp4g+ω+1
D4

(Y1) = 0, (8.188)

where (1 + A + E) and (1 + B − E) are R(D4) ideals defined by

(1 + A + E) = {(1 + A + E)f (A,B,E)|f (A,B,E) ∈ R(D4)}, (8.189)

(1 + B − E) = {(1 + B − E)f (A,B,E)|f (A,B,E) ∈ R(D4)}. (8.190)

Next, we compute the K group of the subspace X1. Decompose X1 to U ∪ V as follows:

.

U and V are D4-equivariantly homotopy equivalent to Y1 and the point (π,π ) ∼ D4/D4, respectively. The intersection U ∩ V is
D4-equivariantly homotopy equivalent to the disjoint union of two D4 spaces:

. (8.191)
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The Mayer-Vietoris sequence of X1 = U ∪ V is given by

(8.192)

From Table XIV, the restrictions of elements in the K group K
τp4g+ω+0
D4

(Y1) and Rω(D4) to the intersection are given by

j ∗
U : K

τp4g+ω+0
D4

(Y1) �→ R
(
Z(d)

2

) ⊕ R
(
Z(x)

2

)
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
W,tσc2 + tσ

) �→ (
1 + tσc3

4
,1 + tσc2

)
,(

BW,tσc2 + tσ
) �→ (

1 + tσc3
4
,1 + tσc2

)
,(

0,1 − tσc2

) �→ (
0,1 − tσc2

)
,(

0,tσ − tσc2 tσ
) �→ (

0,1 − tσc2

)
,

(8.193)

j ∗
V : Rω(D4) �→ R

(
Z(d)

2

) ⊕ R
(
Z(x)

2

)
,

{
W �→ (

1 + tσc3
4
,1 + tσc2

)
,

BW �→ (
1 + tσc3

4
,1 + tσc2

)
.

(8.194)

Then, the kernel of �0 = j ∗
U − j ∗

V is spanned by the following basis in terms of representations at symmetric points
(�,X,M):

{(W,tσc2 + tσ ,W ),(BW,tσc2 + tσ ,BW )︸ ︷︷ ︸
(1+A+E)

, (0,1 − tσc2 − tσ + tσc2 tσ ,0)︸ ︷︷ ︸
(1+A+B+AB−2E)

, (0,0,W − BW )︸ ︷︷ ︸
(1+A−B−AB)

} ⊂ Rω(D4) ⊕ R(D(v)
2 ) ⊕ Rω(D4).

(8.195)

Im(�0) is spanned by {(
1 + tσc3

4
,1 + tσc2

)
,
(
0,1 − tσc2

)} ⊂ R
(
Z(d)

2

) ⊕ R
(
Z(x)

2

)
. (8.196)

Notice that a basis of R(Z(d)
2 ) ⊕ R(Z(x)

2 ) can be chosen as

{(1,0),(0,1),
(
1 + tσc3

4
,1 + tσc2

)
,
(
0,1 − tσc2

)}
. (8.197)

Hence, coker(�0) is generated by two elements {[1,1],[0,1]}. The R(D4) actions on these generators,

A · [1,1] = [(
tσc3

4
,tσc2

)
(1,1)

] = [
tσc3

4
,tσc2

] = −[1,1],

B · [1,1] = [(
tσc3

4
,1
)
(1,1)

] = [
tσc3

4
,1
] = −[1,1],

E · [1,1] = [(
1 + tσc3

4
,1 + tσc2

)
(1,1)

] = [
1 + tσc3

4
,1 + tσc2

] = 0,

(8.198)

A · [0,1] = [(
tσc3

4
,tσc2

)
(0,1)

] = [
0,tσc2

] = [0,1],

B · [0,1] = [(
tσc3

4
,1
)
(0,1)

] = [0,1],

E · [0,1] = [(
1 + tσc3

4
,1 + tσc2

)
(0,1)

] = [
0,1 + tσc2

] = 2[0,1],

(8.199)

imply the R(D4)-module structures Z[1,1] ∼= (1 − A − B + AB) and Z[0,1] ∼= (1 + A + B + AB + 2E). We consequently get
the K group of X1 as follows:

K
τp4g+ω+0
D4

(X1) ∼=
Z2︷ ︸︸ ︷

(1 + A + E) ⊕
Z︷ ︸︸ ︷

(1 + A + B + AB − 2E) ⊕
Z︷ ︸︸ ︷

(1 + A − B − AB) , (8.200)

K
τp4g+ω+1
D4

(X1) ∼=
Z︷ ︸︸ ︷

(1 − A − B + AB) ⊕
Z︷ ︸︸ ︷

(1 + A + B + AB + 2E) . (8.201)
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5. K group of Y1 ∨ Z

In the same way, the K group of the subspace Z is given by the Mayer-Vietoris sequence

(8.202)

Here, �0 is given by

�0 : (f (B),g(B)) �→ [f (1) − g(1)]
(
1 + tσc3

4

)
. (8.203)

The kernel of �0 is spanned by

ker(�0) : {(W,W ),(BW,BW )︸ ︷︷ ︸
(1+A+E)

, (0,W − BW )︸ ︷︷ ︸
1+A−B−AB

} ⊂ Rω(D4) ⊕ Rω(D4). (8.204)

The generator of the cokernel of �0 is represented by [1] ∈ R(Z(d)
2 ), and the R(D4)-module structure is summarized as A · [1] =

−[1], B · [1] = −[1], and E · [1] = 0, which implies coker(�0) ∼= (1 − A − B + AB). We have

K
τp4g+ω+0
D4

(Z) ∼=
Z2︷ ︸︸ ︷

(1 + A + E) ⊕
Z︷ ︸︸ ︷

(1 + A − B − AB) , (8.205)

K
τp4g+ω+1
D4

(Z) ∼=
Z︷ ︸︸ ︷

(1 − A − B + AB) . (8.206)

Gluing the K groups of Y1 and Z at the single fixed point � = (0,0) of the D4 action, we have the K group of Y1 ∨ Z, where
Y1 ∨ Z is defined as the disjoint union Y1 � Z with the � point of Y1 and that of Z identified:

K
τp4g+ω+0
D4

(Y1 ∨ Z) ∼=
Z2︷ ︸︸ ︷

(1 + A + E) ⊕
Z︷ ︸︸ ︷

(1 + A − B − AB) ⊕
Z2︷ ︸︸ ︷

(1 + B − E) , (8.207)

K
τp4g+ω+1
D4

(Y1 ∨ Z) ∼=
Z︷ ︸︸ ︷

(1 − A − B + AB) . (8.208)

6. K group over T 2

Next, we “extend” the wave function over the subspaces X1 and Y1 ∨ Z to that over the BZ torus T 2. In other words, we
assume that the existence of a finite-energy gap persists in the whole region of BZ torus T 2, which gives rise to a kind of global
consistency condition on the wave functions with p4g symmetry. Mathematically, this global constraint can be expressed by the
exact sequence for the pair (T 2,X1):

(8.209)

which is the exact sequence of R(D4) modules

(8.210)

Here, we used

K
τp4g+ω+n

D4
(T 2,X1) ∼= K̃n

D4
(D4 × e2) ∼= Kn(S2) ∼=

{
(1 + A + B + AB + 2E) (n = 0),

0 (n = 1).
(8.211)
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Any R(D4) homomorphism f : (1 − A − B + AB) → (1 + A + B + AB + 2E) is trivial because f (1) = A · f (1) = f (A ·
1) = f (−1) = −f (1) = 0. Therefore, δ is either (i) trivial; (ii) nontrivial and surjective; or (iii) nontrivial and nonsurjective. To
determine which is the case, we employ the exact sequence for the pair (T 2,Y1 ∨ Z):

(8.212)

Here, we used the excision axiom and the Thom isomorphism to get

K
τp4g+ω+n

D4
(T 2,Y1 ∨ Z) ∼= Kn

Z(v)
2

(e2,∂e2) ∼= K̃n

Z(v)
2

(S2) =
{

0 (n = 0),

(1 − A + B − AB) (n = 1),
(8.213)

where the Z(v)
2 action on the sphere is the reflection S2 � (n0,n1,n2) �→ (n0,n1, − n2). In the exact sequence (8.212), the Abelian

group K
τp4g+ω+0
D4

(Y1 ∨ Z) is free. Hence, K
τp4g+ω+0
D4

(T 2) must be torsion free, and the case (iii) is rejected. Now, let us assume

that (i) is the case. Then, the exact sequence for the pair (T 2,X1) implies K
τp4g+ω+1
D4

(T 2) ∼= K
τp4g+ω+1
D4

(X1). Substituting this into

the exact sequence (8.212) for (T 2,Y1 ∨ Z), we find that K
τp4g+ω+1
D4

(T 2,Y1 ∨ Z) surjects onto (1 + A + B + AB + 2E) because
any R(D4) homomorphism (1 + A + B + AB + 2E) → (1 − A − B + AB) is trivial. However, this is impossible in view of
(8.213). As a result, we conclude that (ii) is the case, and we eventually reached the conclusion

K
τp4g+ω+0
D4

(T 2) ∼= K
τp4g+ω+0
D4

(X1) ∼=
Z2︷ ︸︸ ︷

(1 + A + E) ⊕
Z︷ ︸︸ ︷

(1 + A + B + AB − 2E) ⊕
Z︷ ︸︸ ︷

(1 + A − B − AB) , (8.214)

K
τp4g+ω+1
D4

(T 2) ∼= K
τp4g+ω+1
D4

(Z) ∼=
Z︷ ︸︸ ︷

(1 − A − B + AB) . (8.215)

7. Models of K group K
τ p4g+ω+0
D4

(T 2)

In this section, we will reconstruct the R(D4)-module structure (8.214) from models with small filling number. The minimum
number of Wyckoff positions inside a unit cell is two, which are realized in the two Wyckoff positions labeled by (a) and (b):

, (8.216)

. (8.217)

In the right figures, the solid lines represent the unit cells, and xA and xB are the localized positions from the center of the unit
cell. In the Wyckoff position (a), each A and B is invariant under the subgroup C4 = {1,c4,c2,c

3
4} modulo the lattice translation,

hence, local orbitals at A and B obey a representation of C4, which implies the minimum number of filling of atomic insulators
by putting degrees of freedom at the Wyckoff position (a) becomes two. On the other hand, in the Wyckoff position (b), each A

and B position is invariant under the subgroup D
(d)
2 = {1,c2,σc4,σc3

4} modulo the lattice translation, thus, the local orbitals at A

and B obey a nontrivial projective representation of D
(d)
2 if spin is half-integer. This means that the minimum number of fillings

for the Wyckoff position (b) is four.
The generating models are given as follows. First, we consider the Wyckoff position (a). Put an s orbital with spin-up (-down)

polarized state of spin- 1
2 degrees of freedom at A (B). The D4 group acts on these local states by Uc4 |s,↑/↓〉 = e∓πi/4|s,↑/↓〉

and Uσ |s,↑/↓〉 = ±|s,↓/↑〉. By taking the space-group transformation into account, the corresponding D4-equivariant vector
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bundle E1 is given by

(8.218)

where the matrix is for the A and B space. The orbital part can be replaced by other one-dimensional representations
dxy,px+iy ,px−iy of C4, and spin part can be exchanged. In addition to the atomic ground state E1, we have the following
three independent atomic ground states:

(8.219)

(8.220)

(8.221)

From the table of projective characters (8.177), one can read off the representations at symmetric points of the above atomic
ground states, which are summarized as the following table:

E E|� E|X E|M
E1 W 1 + tσc2 tσ W

AB · E1 BW tσc2 + tσ BW

E2 W tσc2 + tσ BW

AB · E2 BW 1 + tσc2 tσ W

(8.222)

Comparing these data with the K group (8.214), one can recognize that the above table (8.222) lacks the generator with the
data (W,tσc2 + tσ ,W ), (W,1 + tσc2 tσ ,BW ), (BW,1 + tσc2 tσ ,BW ), or (BW,tσc2 + tσ ,W ). As a formal difference of two vector
bundles, this deficit can be filled with the atomic ground state obtained by the Wyckoff position (b). Let E3 be the atomic
ground state defined by putting an s orbital with spin- 1

2 degrees of freedom at the two positions A and B of the Wyckoff
label (b):

(8.223)
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All the projective characters of E3 at symmetric points are zero,
which leads to the following data of projective representations
of E3:

E E|� E|X E|M
E3 W + BW 1 + tσc2 + tσ + tσc2 tσ W + BW

(8.224)

Then, the formal difference [E3] − [AB · E1] provides the
remaining generator of the K group (8.214).

Interestingly, the vector bundle with the data (BW,1 +
tσc2 tσ ,BW ) can be realized as a band insulator. Let us consider
a Hamiltonian Ĥ on the atomic insulator E3:

Ĥ :=ψ
†
B(R)t1ψA(R) + ψ

†
A(R + x̂)t2ψA(R)

+ H.c. + (space-group symmetrization), (8.225)

where t1 and t2 are nearest and next-nearest hopping
terms, respectively. The space-group transformations are
defined by

Ûc4ψ
†
A(R)Û−1

c4
= ψ

†
B(c4 R)e− πi

4 σz ,
(8.226)

Ûc4ψ
†
B(R)Û−1

c4
= ψ

†
A(c4 R + ŷ)e− πi

4 σz ,

Ûσψ
†
A(R)Û−1

σ = ψ
†
B(σ R)(−iσy),

(8.227)
Ûσψ

†
B(R)Û−1

σ = ψ
†
A(σ R + x̂)(−iσy),

which leads to constraints

t1 = α + β
σx − σy√

2
, α,β ∈ C (8.228)

t2 = a + bσz + icσx + idσy, a,b,c,d ∈ R. (8.229)

Let us consider the following Hamiltonian:

Ĥ4 :=ψ
†
B(R)

1 + i

4
ψA(R) + ψ

†
A(R + x̂)

σz

4
ψA(R)

+ H.c. + (space-group symmetrization). (8.230)

The one-particle Hamiltonian H4(k) in the momentum space
is written as

H4(k) =
(

1
2 (cos kx − cos ky)σz

1−i
4 (1 + e−i(kx+ky )) + 1+i

4 (e−ikx + e−iky )

1+i
4 (1 + ei(kx+ky )) + 1−i

4 (eikx + eiky ) − 1
2 (cos kx − cos ky)σz

)
. (8.231)

This model conserves the z component of the spin and is fully
gapped with the dispersion

ε(k) = ±
√

6 + cos(2kx) + cos(2ky)

8
. (8.232)

At the symmetric points, H4(k) takes the following forms:

H4(�) =
(

0 σ0

σ0 0

)
, H4(M) =

(
0 −iσ0

iσ0 0

)
,

H4(X) =
(−σz 0

0 σz

)
. (8.233)

Then, the occupied basis �P (P = �,M,X) at symmetric
points reads as

�� =
{ |A,↑〉 − |B,↑〉√

2
,
|A,↓〉 − |B,↓〉√

2

}
,

�M =
{ |A,↑〉 − i|B,↑〉√

2
,
|A,↓〉 − i|B,↓〉√

2

}
, (8.234)

�X = {|A,↑〉,|B,↓〉}. (8.235)

Let E4 be the occupied state bundle of the Hamiltonian H4(k).
The representation matrices Up(P ) (P = �,M,X) on E4 are
given by

Uc4 (�) =
(−ζ 0

0 −ζ−1

)
, Uc4 (M) =

(
iζ 0
0 iζ−1

)
,

Uc2 (X) =
(−i 0

0 −i

)
, Uσ (X) =

(
0 1
1 0

)
, (8.236)

which implies that the occupied state bundle has the data
E4 := (BW,1 + tσc2 tσ ,BW ). In the same way, the unoccupied

states of Ĥ have the data (W,tσc2 + tσ ,W ). We conjecture the
following:

The vector bundles with the data (W,tσc2 + tσ ,W ), (W,1 +
tσc2 tσ ,BW ), (BW,1 + tσc2 tσ ,BW ), and (BW,tσc2 + tσ ,W )
cannot be realized as atomic insulators.

If this is true, the band insulator E4 we constructed is a
topologically nontrivial ground state in the sense that there is
no atomic orbital representation, which is similar to filling
enforced topological insulators protected by space-group
symmetry [75]. Our model E4 is not filling enforced since
atomic ground states obtained by the Wyckoff position (a)
have the same filling number as E4.

8. Models of K group K
τ p4g+ω+1
D4

(T 2): 2D class AIII insulator

Now, we consider a generating model of the K group
K

τp4g+ω+1
D4

(T 2), which is represented by a class AIII insulator
with p4g symmetry in spin half-integer systems. From
(8.215), the the topological invariant detecting the K group
K

τp4g+ω+1
D4

(T 2) ∼= Z can be understood by the subspace Z.
Under the two-cocycle (8.173), the reflection Uσc3

4
(k) satisfies

Uσc3
4
(ky,kx)Uσc3

4
(kx,ky) = −1. We can define the mirror

winding number wσc3
4

on the invariant line of σc3
4 reflection as

wσc3
4

:= 1

i
· 1

4πi

∮ π

−π

dk tr

× [
Uσc3

4
(k,k)�H (k,k)−1∂kH (k,k)

] ∈ 2Z, (8.237)

where � is the chiral operator. That the mirror winding number
wσc3

4
is an even integer is ensured by the absence of the total

winding number associated with the same line.
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We give an example of a nontrivial model. We define a
Hamiltonian H (k) on the atomic vector bundle E1 ⊗ C2 where
E1 is introduced in (8.218) and C2 represents internal degrees

of freedom on which the point group D4 acts trivially. Let Ĥ be
the following model with nearest-neighbor and next-nearest-
neighbor hopping:

Ĥ := ψ
†
Bs↓(R)e−πi/4σxψAs↑(R) + tψ

†
As↑(R + x̂)σyψAs↑(R) + mψ

†
As↑(R)σyψAs↑(R) (8.238)

+ (space-group symmetrization) (8.239)

=
∑

k

(ψ†
As↑(k),ψ†

Bs↓(k))H (k)

(
ψAs↑(k)
ψBs↓(k)

)
, (8.240)

H (k) =
(

(m + 2t cos kx + 2t cos ky)σy eπi/4(1 − ieiky − e−ikx+iky + ie−ikx )σx

e−πi/4(1 + ie−iky − eikx−iky − ieikx )σx (m + 2t cos kx + 2t cos ky)σy

)
, (8.241)

where σμ (μ = x,y,z) are the Pauli matrices for the internal degrees of freedom. The space-group transformations are defined
by

Ûc4ψ
†
As↑(R)Û−1

c4
= ψ

†
As↑(c4 R)e−πi/4, Ûc4ψ

†
Bs↓(R)Û−1

c4
= ψ

†
Bs↓(c4 R + ŷ)eπi/4, (8.242)

Ûσψ
†
As↑(R)Û−1

σ = ψ
†
Bs↓(σ R), Ûσψ

†
Bs↓(R)Û−1

σ = ψ
†
As↑(σ R + x̂)(−1). (8.243)

The chiral operator is � = σz. The one-particle Hamiltonian H (k) has the mirror winding number

wσc3
4
=

⎧⎪⎨⎪⎩
2

(
t < −|m|

4

)
,

0
(−|m|

4 < t <
|m|
4

)
,

−2
( |m|

4 < t
)
.

(8.244)

The module structure (8.215) of the K group can be understood from the mirror winding number (8.237). From the character
Table XII, the operator Uσc3

4
(k) is changed under the actions of A and B irreps. as Uσc3

4
(k) �→ −Uσc3

4
(k), which implies that the

mirror winding number wσc3
4

is the invariant of the R(D4) module (1 − A − B + AB).

9. Models of K group K
τ p4g+ω+1
D4

(T 2): 2D class A surface state

The K group K
τp4g+ω+1
D4

(T 2) with grading n = 1 classifies gapless states in 2D BZ torus T 2 with p4g symmetry in spin
half-integer systems. The corresponding 3D model Hamiltonian and topological invariants immediately follow from (8.237) and
(8.241). The mirror Chern number is defined on the σc3

4-invariant plane [60]

chσc3
4

:= 1

i
· i

2π

∮ π

−π

dk

∮ π

−π

dkztr
[
Uσc3

4
(k,k,kz)Fkkz

(k,k,kz)
] ∈ 2Z, (8.245)

where Fkkz
is the Berry curvature on the σc3

4-invariant plane. From the dimensional-raising map, the 2D class AIII Hamiltonian
(8.241) becomes

H̃ (kx,ky,kz) =
(

(m + 2t cos kx + 2t cos ky + 2t cos kz)σy + sin kzσz eπi/4(1 − ie−iky − e−ikx+iky + ie−ikx )σx

e−πi/4(1 + ieiky − eikx−iky − ieikx )σx (m + 2t cos kx + 2t cos ky + 2t cos kz)σy + sin kzσz

)
.

(8.246)

10. A stable gapless phase protected by representation at X point:
2D class A

The K group (8.214) is characterized by the representations
at the symmetric points �, X, and M . From the local
data of the K group (8.195) on X1, one can find that not
every representation at the point X is allowed. Only two
representations

tσc2 + tσ ,1 + tσc2 tσ ∈ Rτp4g |X+ω
(
D

(v)
2

)
(8.247)

survive on the subspace X1. The evenness of the rank is due to
the nonsymmorphic property of the wallpaper group p4g. In

addition to a simple condition on the number of filing, (8.247)
means there is an additional condition:

If a band spectrum is isolated from other bands on the subspace
X1, then the representation at X point should be a direct sum
of tσc2 + tσ ,1 + tσc2 tσ ∈ Rτp4g |X+ω(D(v)

2 ).

The contraposition of this condition provides a criterion of
stable gapless phases:

If the representation of a valence band at the X point is not a
direct sum of tσc2 + tσ ,1 + tσc2 tσ ∈ Rτp4g |X+ω(D(v)

2 ), then there
should be a gapless point on the subspace X1, unless the
valence band at the X point touches the conduction band.
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(b) (c)(a)

FIG. 8. Band crossings protected by the representation at the X point. (a) Subspace X1. (b) The energy spectrum on the subspace X1 of
Hamiltonian (8.248) which corresponds to the parameters (α,β,a,b,c,d) = (0,1,0,0,0,0) of Eqs. (8.228) and (8.229). (c) Another parameter
choice (α,β,a,b,c,d) = (1 + i,1,0.2,0,0,0).

We give a simple model in a form (8.225). Let us consider the following Hamiltonian on the atomic insulator E3:

Ĥ5 := ψ
†
B(R)

σx − σy

2
ψA(R) + H.c. + (space-group symmetrization) (8.248)

=
∑

k

(ψ†
A(k),ψ†

B(k))H5(k)

(
ψA(k)
ψB(k)

)
, (8.249)

H5(k) =
(

0 σx−σy

2 (1 − e−ikx−iky ) + σx+σy

2 (e−iky − e−ikx )
σx−σy

2 (1 − eikx+iky ) + σx+σy

2 (eiky − eikx )

)
. (8.250)

At the X point, the Hamiltonian becomes H5(X) = ( 0 σx

σx 0 )
and the occupied states at X belong to the representation tσc2 +
tσc2 tσ ∈ Rτp4g |X+ω(D(v)

2 ). Then, the above criterion implies that
there should be a topologically stable gapless point on the
subspace X1 as long as the mass gap at the X point is preserved.
Figure 8(b) shows the energy spectrum of (8.248). Figure 8(c)
shows the perturbed energy spectrum from (8.248). The band
crossing on the subspace X1 is protected by the representation
of the X point.

H. Weyl semimetals and nodal superconductors protected
by inversion symmetry

In this section, we introduce a Z2-invariant protecting
Weyl semimetals and nodal superconductors defined from the
inversion symmetry which is not discussed in the literature.

1. Z2 invariant from unoriented surface

We start with a Z2 invariant arising from unoriented BZ
manifold. Let X be a 2D unoriented manifold. Complex
bundles E on X can be classified by their first Chern classes
c1(E) ∈ H 2(X;Z). If X is nonorientable, H 2(X;Z) may have
a torsion part. For example, the real projective plane RP 2

shows H 2(RP 2;Z) = Z2, which implies that we have a “Z2

topological insulator” on RP 2.
The torsion part of the first Chern class can be detected as

follows [76]. Let A(k) be the Berry connection of occupied
states on RP 2. Let � be a noncontractible loop on RP 2. Then,
RP 2 can be considered as a disk D surrounded by the loop �

and its copy. See Fig. 9(a). Then, the Z2 invariant c1 ∈ {0,1/2}

is defined by

c1 := i

2π
ln hol�(A) + 1

2

i

2π

∫
D

trF (mod 1), (8.251)

where hol�(A) ∈ U(1) is the Berry phase [U(1) holonomy]
along the loop �, and F is the Berry curvature. c1 is quantized
to 0 or 1

2 because of the Stokes’ theorem

2c1 = i

2π
ln hol∂D(A) + i

2π

∫
D

trF = 0 (mod 1). (8.252)

A nontrivial model Hamiltonian will be presented in
Sec. VIII H 2.

It is worth reminding the definition of the Berry phase in
the cases where the Berry connection A on the loop � needs

(a) (b)

FIG. 9. (a) The real projective plane and a noncontractible loop
�. (b) The line � connecting the inversion symmetric pair of points P

and −P . The surface D bounds � and its inversion symmetric pair −�.
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multiple patches. In such cases, the Berry phase is defined
by integral of parallel transports on patches and transition
functions. Let {Ui}i=1,...,N be a cover including the loop �.

We divide � to N components so that �i ⊂ Ui . Let pi be
junction points of �i , namely, ∂�i = pi+1 − pi . Then, the U(1)
holonomy is defined by

hol�(A) = e
− ∫

�1
trA1 · det g1,2(p2) · e

− ∫
�2

trA2 · det g2,3(p3) . . . e
− ∫

�N
trAN · det gN,1(p1), (8.253)

whereAi is the Berry connection on Ui and gi,j is the transition
function on Ui ∩ Uj .

A similar construction is possible for the Klein bottle and
also the torsion part of higher Chern classes cd (E), d > 1 [76].

2. Z2 invariant from the inversion symmetry

Now, we discuss an application of the Z2 invariant
(8.251) to Weyl semimetals and nodal superconductors. Let
us consider an inversion symmetric 3D Hamiltonian

U (k)H (k)U (k)−1 = H (−k), U (−k)U (k) = 1. (8.254)

The existence of the Z2 invariant is understood as follows.
We pick a closed surface � on which the inversion symmetry
freely acts. We effectively have a Hamiltonian on the quotient
�/Z2 which is a nonorientable manifold. This implies there
is a Z2 invariant similar to (8.251).

Let us define the Z2 invariant. We pick a pair of inversion
symmetric points P and −P . Let � be an oriented line from P

to −P . In the presence of the inversion symmetry, even if the
line � is not closed, one can define a well-defined Berry phase
associated with the line �. The Bloch states at P and −P are
related by a unitary matrix V (P ) as

U (−P )�(−P ) = �(P )V (P ), (8.255)

where �(k) is the frame of occupied states �(k) =
(|φ1(k)〉, . . . ,|φm(k)〉). We define the Berry phase associated
with the line � by

hol�(A) := e− ∫ −P

P,�
trA · det[V (P )] ∈ U(1). (8.256)

(Here we have assumed that � is covered by a single patch.) The
phase hol�(A) is gauge invariant since the gauge dependencies
of the parallel transport and the unitary matrix V (P ) are
canceled.

It should be noticed that there is ambiguity in hol�(A)
arising from U (k). The change of sign U (k) �→ −U (k) in-
duces the π phase shift hol�(A) �→ −hol�(A). This ambiguity
cannot be eliminated, however, Z2 distinction is well defined
if U (k) is fixed. In the same way as (8.251), we can define the
Z2 invariant. The line � and its inversion symmetric line −�

together form a closed loop � ∪ (−�) in the BZ. We choose a
surface D whose boundary is � ∪ (−�). See Fig. 9(b). Then, the
same formula as (8.251) defines the Z2 invariant c1 ∈ {0,1/2}.
Notice that the Z2 invariant c1 depends on both the line � and
the surface D.

Now, we give a nontrivial model Hamiltonian. Let

|k〉 := 1

|k|
(

kx + iky

kz

)
, k �= 0 (8.257)

be a single occupied state with two orbitals near k = 0. The
associated 2 × 2 Hamiltonian is given by

H (k) = |k|2(12×2 − 2|k〉〈k|)

=
(

−k2
x − k2

y + k2
z −2kz(kx − iky)

−2kz(kx + iky) k2
x + k2

y − k2
z

)
. (8.258)

For example, the BdG Hamiltonian of (dzx + idzy)-wave
superconductors takes this form. k = 0 point is the gapless
point of this Hamiltonian. This model has the symmetry
H (−k) = H (k). Let us compute the Z2 invariant associ-
ated with the north hemisphere of a |k| = const sphere
as shown in Fig. 9(b). Under the choice U (k) = 12×2, the
inversion symmetry |−k〉 = −|k〉 means that the V (k) in
(8.255) is V (k) = −1. Introduce the spherical coordinate
k = |k|(sin θ cos φ, sin θ sin φ, cos θ ). The Berry connection
and the curvature of |k〉 are given byA = i

2 (1 − cos 2θ )dφ and
F = i sin 2θ dθ ∧ dφ, respectively. It is easy to show that the
Z2 invariant (8.251) becomes c1 = 1/2 (mod 1). On the other
hand, the trivial nonsingular Hamiltonian H (k) = diag(1,−1)
shows c1 = 0 (mod 1). Thus, c1 = 1/2 (mod 1) protects
the gapless point of the Hamiltonian (8.258). Notice that
the singular point of the Hamiltonian (8.258) has no Chern
number, so the singularity of (8.258) can be stabilized only
after the inversion symmetry is enforced.

Let us consider more implications of the Z2 nontriviality.
To make it easy to understand, we use the notation of the
BdG Hamiltonian of (dzx + idzy)-wave superconductors with
a spin sz conserved system. But, the following discussion can
be applied to any inversion symmetric systems. Let us consider
a Hamiltonian

Hd (k) =
⎛⎝ k2

x+k2
y

2m
− k2

z

2m′ − μ �kz(kx + iky)

�kz(kx − iky) − k2
x+k2

y

2m
+ k2

z

2m′ + μ

⎞⎠, m,m′ > 0. (8.259)

Depending on the sign of the “chemical potential” μ, the singular points of the Hamiltonian (8.259) form a ring (μ > 0), single
point (μ = 0), and pair of two points with Chern number (μ < 0) as shown in Fig. 10(a). An important point is that both ring
and point like singularities have the same Z2 invariant c1 = 1/2, provided that the inversion symmetric sphere surrounds these
singular regions.
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(a) (b)

FIG. 10. (a) The red curves and points represent singular gapless points. The blue curves represent the “Fermi surfaces” of the diagonal
part of the Hamiltonian (8.259). (b) The pair of two Z2 charges. The green x marks are inversion symmetric points.

The inversion symmetric version of Nielsen-Ninomiya’s theorem holds true. Let us consider a lattice analog of (8.259) along
the z direction:

Hd,lattice(kx,ky,kz) =
⎛⎝ k2

x+k2
y

2m
− t cos kz − μ �kz(kx + iky)

�kz(kx − iky) − k2
x+k2

y

2m
+ t cos kz + μ

⎞⎠, m,t > 0. (8.260)

For the parameter region −t < μ < t , the “Fermi surface”
of the diagonal part of (8.260) forms a spheroid as shown in
Fig. 10(b). There is a ring singularity withZ2 charge c1 = 1

2 on
the kz = 0 plane. Moreover, near the (0,0,π ) point, there are
two pointlike singularities which have the Z2 charge c1 = 1

2
as a pair. Nielsen-Ninomiya’s theorem is that in the closed
BZ torus the single Z2 charge c1 = 1

2 is forbidden. Like this
example, if there is a ring node near an inversion symmetric
point (0,0,0), there should be another node with Z2 charge
c1 = 1

2 .

3. Generalization to higher dimensions

It is easy to generalize the discussion so far to
higher space dimensions with inversion symmetry. Let us
consider d-dimensional systems with inversion symmetry
U (k)H (−k)U (k)−1 = H (−k),k = (k1, . . . ,kd ). We focus on
an inversion symmetric (d − 1)-dimensional sphere Sd−1. The
K theory on the sphere Sd−1 is given by [77]

KZ2 (Sd−1) ∼= K(Sd−1/Z2) = K(RP d−1) = Zp ⊕ Z,

p =
{

2(d−1)/2 (d = odd),
2(d−2)/2 (d = even).

(8.261)

Here, Z2 acts on Sd−1 as the antipodal map. The free part Z of
the K group KZ2 (Sd−1) is generated by the trivial line bundle
[1] on RP d−1. The torsion part Zp is generated by the formal
difference [ξ ′] − [1], where ξ ′ is the complexification ξ ′ =
ξ ⊗ C of the tautological real line bundle ξ over RP d−1 [77].
Zp implies that (ξ ′)⊕p is stably isomorphic to the trivial bundle
1⊕p. The Z2-equivariant line bundle on Sd−1 corresponding to
ξ ′ is given by a form similar to (8.257),

|n〉=
{

(n1 + in2,n3 + in4, . . . ,nd )T (d = odd),

(n1+in2,n3+in4, . . . ,nd−1+ind )T (d = even),
(8.262)

where n = (n1, . . . ,nd ), |n| = 1 is the coordinate of
Sd−1.

For d � 6 (which correspondsZ2 orZ4 classifications), ele-
ments in the K group can be distinguished by the Chern classes.
Recall that the total Chern class c(E) = 1 + ∑

j>0 cj (E) of a
given complex bundle E over a space M takes values in the
cohomology ring H ∗(M;Z). The Whitney sum induces the cup
product c(E ⊕ F ) = c(E)c(F ) in H ∗(M;Z). The cohomology
of RP d−1 is given by

Hj (RP d−1;Z) =
⎧⎨⎩Z (j = 0; and j = d − 1 for even d),
Z2 (even j with 0 < j < d − 1; and j = d − 1 for odd d),
0 (otherwise).

(8.263)

The nonzero elements of H 2j (RP d−1;Z) = Z2 (0 < j �
[d/2]) are given by the cup products t j ∈ H 2j (RP d−1;Z) of
the first Chern class t = c1(ξ ′) of the tautological line bundle.
The generator [ξ ′] of the torsion part of the K group has the
Chern class c(ξ ′) = 1 + t .

For example, the torsion part of K(RP 4) = Z4 ⊕ Z is
generated by [ξ ′] = (1,1) ∈ K(RP 4). In this case, the Chern

class can distinguish all elements of Z4 since c(ξ ′ ⊕ ξ ′) = 1 +
t2, c(ξ ′ ⊕ ξ ′ ⊕ ξ ′) = 1 + t + t2, and c(ξ ′ ⊕ ξ ′ ⊕ ξ ′ ⊕ ξ ′) =
1, i.e., the first and second Chern classes detect all the Z4

phases. On the other hand, the torsion part of K(RP 6) = Z8 ⊕
Z cannot be detected by the Chern classes. This is because
the 4 ∈ Z8 phase is trivial in the Chern class c[(ξ ′)⊕4] =
(1 + t)4 = 1 ∈ H ∗(RP 6;Z).
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TABLE XV. Topological charges of Fermi points in inversion symmetric systems. d is the space dimension. In classes AI and AII, the
inversion symmetry commutes with the TRS. K̃(RP d−1), K̃O(RP d−1), and ˜KSp(RP d−1) represent the reduced complex, real, and quaternionic
K theories, respectively.

AZ class K group d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A K̃(RP d−1) 0 0 Z2 Z2 Z4 Z4 Z8 Z8

AI K̃O(RP d−1) 0 Z2 Z4 Z4 Z8 Z8 Z8 Z8

AII ˜KSp(RP d−1) 0 0 0 0 Z2 Z4 Z8 Z8

4. Time-reversal symmetry with inversion symmetry:
Stiefel-Whitney class

The interplay of TRS and inversion symmetry gives rise to
Fermi points with a nontrivial topological charge and some
topological charges can be captured by Stiefel-Whitney (SW)
classes. Let us consider the class AI TRS with inversion
symmetry which commutes with the TRS

T H (k)T −1 = H (−k), T 2 = 1, (8.264)

U (k)H (k)U (k)−1 = H (−k), U (−k)U (k) = 1, (8.265)

T U (k) = U (−k)T , (8.266)

where T is antiunitary. We, here, focus on the class AI which
is the TRS for spin integer systems. In the cases of class
AII TRS T 2 = −1, there is no torsion part in lower space
dimensions, hence, we only show the K group in Table XV.
The combined symmetry T U (k) acts on the BZ without
changing the momentum as

T U (k)H (k)[T U (k)]−1 = H (k), [T U (k)]2 = 1, (8.267)

so T U (k) induces the real structure on the occupied states.
Since the inversion symmetry U (k) commutes with the
combined symmetry T U (k), the K theory of a sphere Sd−1

surrounding the symmetric point k = 0 is recast into that of the
quotient Sd−1/Z2 = RP d−1. The real K theory KO(RP d−1)
of the real projective space is known [77]:

φKτ+0
Z2

(Sd−1) = KO(RP d−1) = Z2g ⊕ Z, (8.268)

where g is the number of integers s such that 0 < s � d − 1
and s ≡ 0,1,2, or 4 mod 8. Here, the twisting τ represents the
commutation relation between T and U (k). See Table II for
some examples. The torsion part of KO(RP d−1) is additively
generated by the formal difference ([ξ ] − [1]) where ξ is the
tautological real line bundle over RP d−1.

A generating Z2-equivariant real line bundle over Sd−1

corresponding to ξ is given as follows. Let |k〉 be a line bundle
with TRS and inversion

|k〉 = 1

|k| (k1,k2, . . . ,kd )T , |k〉 = |k〉∗, |−k〉 = −|k〉.
(8.269)

Notice that k = 0 is singular. The restriction of the line bundle
|k〉 to a sphere |k| = const leads to the generator of the torsion
part. A Hamiltonian of which the occupied state is |k〉 is given
by

H (k) = |k|2(1d×d − 2|k〉〈k|). (8.270)

In the same way as the complex K theory of RP d−1,
Z2 and Z4 classifications of the K groups KO(RP d−1)
can be characterized by the SW classes. A real bundle E

over a manifold M defines the total SW class w(E) = 1 +∑
j>0 wj (E) ∈ H ∗(M;Z2). The real projective space RP d−1

has the following cohomology with Z2 coefficients:

Hj (RP d−1;Z2) =
{
Z2 (0 � j � d − 1),

0 (otherwise).
(8.271)

As the cohomology ring, H ∗(RP d−1;Z2) is isomorphic to
Z2[t]/(1 − td ). The tautological real line bundle ξ over RP d−1

has the data w(ξ ) = 1 + t . From the structure of the SW classes
w(E ⊕ F ) = w(E)w(F ), one can show that the Z2 and Z4

subgroups in the torsion part of the K group KO(RP d−1) can
be characterized by the SW classes.

Let us construct the Z2-equivariant first SW class on Sd−1.
A similar invariant defined by TRS and C4-rotation symmetry
is discussed in Ref. [78]. Choose a point P and its inversion
symmetric pair −P in the BZ. Let � be an oriented path from P

to −P . Let �(k),(k ∈ �) be a frame of occupied states which
is smoothly defined on the line �. We fix the gauge freedom of
�(k) so that the combined symmetry T U (k) is represented by
a k-independent unitary matrix W as T U (k)�(k) = �(k)W
on the line �. Because of the inversion symmetry, �(P ) and
�(−P ) are related as U (−P )�(−P ) = �(P )V (P ) with V (P )
a unitary matrix. From the assumption T U (k) = U (−k)T ,
one can show that WV (P )∗ = V (P )W , which leads to the
Z2 quantization of the determinant det[V (P )] = ±1. This
determinant det[V (P )] is the Z2-equivariant version of the
first SW class. Notice that the change of sign U (k) �→ −U (k)
induces V (P ) �→ −V (P ), thus, the Z2 invariant det[V (P )] is
relatively well defined from the trivial occupied state. On the
other hand, unfortunately, there is no simple expression of the
second SW class w2(E) for a given occupied states bundle E

with T and U (k) symmetries.
Here, we give two examples in low dimensions. In two

spatial dimensions, the model Hamiltonian (8.270) reads as

H2d (kx,ky) =
(

−k2
x + k2

y −2kxky

−2kxky k2
x − k2

y

)
. (8.272)

Such a Hamiltonian is realized in a d-wave superconductor and
a d-density wave in two dimensions. The TRS and inversion
symmetry are given as T = K and U (k) = 12×2, where K

means the complex conjugate. The occupied state is |k〉 =
(kx,ky)T /|k| (k �= 0). This occupied state satisfies the gauge
fixing condition T U (k)|k〉 = |k〉, that is, W = 1. Because of
U (k)|k〉 = −|−k〉, the Z2 invariant is det[V (k)] = −1. Thus,
the singular point k = 0 of the Hamiltonian (8.272) is stable
unless T or U (k) symmetry is broken.
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In three spatial dimensions, the model Hamiltonian (8.270)
reads as

H3d (kx,ky,kz)

=

⎛⎜⎝−k2
x + k2

y + k2
z −2kxky −2kxkz

−2kxky k2
x − k2

y + k2
z −2kykz

−2kxkz −2kykz k2
x + k2

y − k2
z

⎞⎟⎠.

(8.273)

The occupied states of this Hamiltonian have the Z4 charge
of the KO theory KO(RP 2) = Z4 ⊕ Z. Actually, in the
same way as two dimensions, the occupied state |k〉 =
(kx,ky,kz)T /|k| has the Z2 charge det[V (k)] = −1. From the
property of w, the first SW class of the direct sum |k〉 ⊕ |k〉
is trivial, but the second SW class is nontrivial. The first and
second SW classes of the direct sum |k〉 ⊕ |k〉 ⊕ |k〉 are both
nontrivial.

IX. CONCLUSION

In this paper, we formulate topological crystalline materials
on the basis of the twisted equivariant K theory. We illustrate
how space and magnetic space groups are incorporated into
topological classification of both gapful and gapless crystalline
materials in a unified manner. The twisted equivariant K

theory φK
(τ,c)−n

G (T d ) on the BZ torus T d serves the stable
classification of bulk TCIs and TCSCs and their boundary and
defect gapless states. K theories are not just additive groups,
but are equipped with the module structures for point groups
so that the classification naturally includes the information
on crystals such as point-group representations and Wyckoff
positions. Using isomorphisms between K theories, we also
discuss bulk-boundary and bulk-defect correspondences in the
presence of crystalline symmetry. In Sec. VI, we propose
a systematic method to classify bulk gapless topological
crystalline materials in terms of K theory. We show that the
cokernel of the map i∗Y between K theories, which is induced
by the inclusion iY of a subspace Y into the BZ torus T d ,
defines bulk gapless topological materials. In Sec. VII, we
present topological table with wallpaper groups in the absence
of TRS and PHS. In particular, the module structures for point
groups are identified in the wallpaper classification, of which
information is important to understand crystalline materials.
Furthermore, we illustrate computations of K groups for
various systems in Sec. VIII.

More computations of K groups are necessary to fully
explore topological crystalline materials. Even for relatively
simple wallpaper groups, the full computation is missing
in the presence of TRS and/or PHS, although a part of
computations have been done by the present authors [27].
In three dimensions, most of K groups with (magnetic) space
groups have not been known yet. Our present formulation
provides a precise and systematic framework to step into the
unexplored field of topological crystalline materials.

Note added in proof. Recently, we became aware of a recent
independent work by Kruthoff et al. [64], which discussed the
topological classification of bulk insulators and stable nodal
structures in the presence of space groups, mainly focusing
on class A spinless systems. They also gave the classification

of class A spinless topological crystalline insulators in two
dimensions with wallpaper groups, which is consistent with
us and Refs. [58,59].
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APPENDIX A: AN EXAMPLE OF MISMATCH BETWEEN
K THEORY AND ISOMORPHISM CLASSES

OF VECTOR BUNDLES

A simple example of the mismatch between the K theory
and the set of isomorphic classes of vector bundles is real vector
bundle over S2. The tangent bundle T S2 is not isomorphic to
the trivial rank-2 vector bundle R ⊕ R since T S2 does not
have any nowhere vanishing sections. On the other hand, in
the sense of stable equivalence, T S2 is trivialized by adding
a trivial line bundle R on S2 because R is isomorphic to the
normal bundle NS2. So, we found

T S2 ⊕ R ∼= T S2 ⊕ NS2 ∼= R ⊕ R ⊕ R, (A1)

which implies T S2 and R ⊕ R give the same element [T S2] =
[R ⊕ R] ∈ KO(S2) in the K theory.

APPENDIX B: GROUP COHOMOLOGY

Let G be a finite group. A G bimodule is by definition an
Abelian group M with a left action m �→ gL · m of gL ∈ G and
a right action m �→ m · gR of gR ∈ G which are compatible
(gL · m) · gR = gL · (m · gR). An example is the trivial G

module M , which is an Abelian group M with the left and
right actions of G by the identity m �→ m. Another example
relevant to the body of this paper is M = C(X,R/2πZ)φ .
This is the group C(X,R/2πZ) of R/2πZ-valued functions
on X endowed with the left action α(k) �→ φ(g)α(g−1k) of
gL ∈ G and the trivial right action α(k) �→ α(k), where φ :
G → {1,−1} is a homomorphism indicating that the symmetry
g is unitary [φ(g) = 1] or antiunitary [φ(g) = −1].

Given a G bimodule M , we write Cn(G; M) = C(Gn,M)
for the set of maps τ : Gn → M for n = 1,2, . . . . In the
case of n = 0, we put C0(G; M) = M . With the addition
(τ + τ ′)(g1, . . . ,gn) = τ (g1, . . . ,gn) + τ ′(g1, . . . ,gn), the set
Cn(G; M) gives rise to an Abelian group. We define a
homomorphism δ : Cn(G; M) → Cn+1(G; M) to be

(δτ )(g1, . . . ,gn+1) = g1 · τ (g2, . . . ,gn+1)

+
n∑

i=1

(−1)iτ (g1, . . . ,gigi+1, . . . ,gn+1)

+ (−1)n+1τ (g1, . . . ,gn) · gn+1

by using the left action of G in the first term and the
right action in the last. We can directly verify δδ = 0,
so that (C∗(G; M),δ) is a cochain complex. As usual, we
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write Zn(G; M) = ker(δ) ∩ Cn(G; M) for the subgroup of n-
cocycles and Bn(G; M) = Im(δ) ∩ Cn(G; M) for the subgroup
of n-coboundaries. Then, the group cohomology of G with
coefficients in the G bimodule M is defined by

Hn(G; M) = Zn(G; M)/Bn(G; M).

As a matter of fact, the group cohomology Hn(G; M) with
coefficients in the trivial G module M is isomorphic to
the Borel equivariant cohomology Hn

G(pt ; M) of the point
with coefficients in M . In particular, H 2(G;R/2πZ) ∼=
H 2

G(pt ;R/2πZ) ∼= H 3
G(pt ;Z) by the exponential exact se-

quence.

APPENDIX C: MORE ON VECTOR BUNDLE
FORMULATION

As in Sec. III A, the K group K(X) = K0(X) of a space
X can be defined as the group of pairs ([E],[F ]) or formal
differences [E] − [F ]. This is a standard formulation of the
K theory [79], and we can generalize this to formulate some
twisted equivariant K theory as well [55]: Suppose that a
finite group G acts on X and a two-cocycle τ = {τg,g′ (k)} ∈
Z2(G; C(X,R/2πZ)) is given. A complex vector bundle E

on X is said to be a τ -twisted G-equivariant vector bundle if
there are vector bundle maps Up : E → E which cover the left
actions g : X → X of g ∈ G and are subject to the relations

Ug(g′k)Ug′(k) = eiτg,g′ (gg′k)Ugg′(k)

on the fiber of E at k ∈ X. Since the direct sum of these vector
bundles makes sense, the same argument as in Sec. III A leads
to the formulation of the τ -twisted G-equivariant K group
Kτ+0

G (X) by using twisted vector bundles.
The odd K group Kτ−1

G (X) can also be formulated in terms
of the twisted equivariant vector bundle: For a τ -twisted G-
equivariant vector bundle E, let us consider an automorphism
q : E → E of vector bundles which cover the identity map of
the base space X and are subject to the relations

q(gk)Ug(k) = Ug(k)q(k)

on the fiber of E at k ∈ X. The equivalence classes of
such automorphisms constitute Kτ−1

G (X). Automorphisms
of twisted vector bundles q : E → E and q ′ : E′ → E′ are
equivalent if there is a twisted bundle F such that E ⊕ F and
E′ ⊕ F are isomorphic and q ⊕ 1F and q ′ ⊕ 1F are homotopic
in the way compatible with the symmetries.

APPENDIX D: MAYER-VIETORIS SEQUENCE

Given a finite group G acting on a space X and a group
two-cocycle τ = {τg,g′(k)} ∈ Z2(G; C(X,R/2πZ)), we have
the twisted equivariant K theory Kτ+0

G (X). [More generally,
τ can be a twist [80], a geometric object classified by
the Borel equivariant cohomology H 3

G(X;Z).] If Y ⊂ X is
a closed subspace, then the relative K group Kτ+0

G (X,Y )
can be defined. In Karoubi’s formulation, the equivalence
classes of triples (E,H,H ′) such that H (k) = H ′(k) for k ∈ Y

constitute Kτ
G(X,Y ) = Kτ+0

G (X,Y ). For n � 0, we use n chiral
symmetries to define Kτ−n

G (X,Y ) similarly. These K groups
are naturally modules over the representation ring R(G) of G,

and there is a natural R(G)-module isomorphism, called the
Bott periodicity:

Kτ−n
G (X,Y ) ∼= Kτ−n−2

G (X,Y ).

Extending this isomorphism, we define Kτ+n
G (X,Y ) for all

n ∈ Z.
Let X′ be another G space, and Y ′ ⊂ X′ a closed sub-

space. If f : X′ → X is a G-equivariant map such that
f (Y ′) ⊂ Y , then we write f : (X′,Y ′) → (X,Y ). Such a map
induces by pullback an R(G)-module homomorphism f ∗ :
Kτ+n

G (X,Y ) → K
f ∗τ+n

G (X′,Y ′). For g : (X′′,Y ′′) → (X′,Y ′),
it holds that (f ◦ g)∗ = g∗ ◦ f ∗. The basic behavior of the
groups {Kτ+n

G (X,Y )}n∈Z and the homomorphisms f ∗ are sum-
marized as the axioms of generalized equivariant cohomology
theory as follows [80]:

(i) The homotopy axiom. Let f0 : X′ → X and f1 : X′ →
X be G-equivariant maps such that fi(Y ′) ⊂ Y . Suppose that
f0 and f1 are G-equivariantly homotopic, in the sense that
there is a G-equivariant map F : X′ × [0,1] → X such that
F (x ′,i) = fi(x ′) for i = 0,1 and x ′ ∈ X. Here, the G action on
[0,1] is trivial. If in addition F (Y ′ × [0,1]) ⊂ Y , then there is
an isomorphism of twists f ∗

0 τ ∼= f ∗
1 τ and we have the equality

of the R(G)-module homomorphisms f ∗
0 = f ∗

1 .
(ii) The excision axiom. Let A,B ⊂ X be closed invariant

subspaces. Then, the inclusion j : A → A ∪ B induces an
isomorphism of R(G) modules

j ∗ : K
τ |A∪B+n

G (A ∪ B,B) → K
τ |A+n

G (A,A ∩ B),

where we put τ |A∪B = i∗A∪Bτ and τ |A = i∗Aτ by using the
inclusion maps iA∪B : A ∪ B → X and iA : A → X.

(iii) The exactness axiom. For a pair (X,Y ) consisting of
a space X with G action and an invariant closed subspace
Y ⊂ X, there is a long exact sequence of R(G) modules

· · · → Kτ+n
G (X,Y ) → Kτ+n

G (X)

i∗→ K
τ |Y +n

G (Y ) → Kτ+n+1
G (X,Y ) → · · · ,

where i∗ : Kτ+n
G (X) → K

τ |Y +n

G (X) is induced form the inclu-
sion i : Y → X.

(iv) The additivity. Suppose that spaces Xλ with G action,
their invariant subspaces Yλ ⊂ Xλ and twists τλ of Xλ are
given. Then, the inclusions Xλ → ⊔

λ Xλ induce an isomor-
phism of R(G) modules

K
�λτλ+n
G

(⊔
λ

Xλ,
⊔
λ

Yλ

)
∼=
∏
λ

Kτ+n
G (Xλ,Yλ).

The above axioms are parallel to the Eilenberg-Steenrod
axioms of ordinary cohomology theory but the dimension
axiom. To state the counterpart of the dimension axiom,
we remark that, for the space pt consisting of a single
point, the equivariant cohomology H 3

G(pt ;Z) classifies central
extensions Gω of G by U(1):

1 → U(1) → Gω → G → 1.

Since G is a finite group, we have H 3
G(pt ;Z) ∼= H 3(G;Z) ∼=

H 2(G; U(1)), and a two-cocycle ω = {ωg,g′ } defines a cen-
tral extension Gω by introducing the multiplication (g,u) ·
(g′,u′) = (gg′,uu′eiωg,g′ ) to the set G × U(1).
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For ω ∈ Z2(G;R/2πZ), there are isomorphisms

Kω+0
G (pt) ∼= Rω(G), Kω+1

G (pt) = 0,

where Rω(G) is the free Abelian group generated by the equiv-
alence classes of representations of Gω such that the central
U(1) ⊂ Gω acts by the scalar multiplication or equivalently
ω-projective representations of G.

Some direct consequences of the axioms of cohomology theory
are as follows:

If f : X′ → X is a G-equivariant homotopy equivalence, then
f ∗ : Kτ+n

G (X) → K
f ∗τ+n

G (X′) is an isomorphism.

Mayer-Vietoris exact sequence. For closed invariant subspaces
A,B ⊂ X, there is an exact sequence of R(G) modules:

· · · → K
τ |A∪B+n

G (A ∪ B)
(i∗

A
,i∗

B
)→ K

τ |A+n

G (A) ⊕ K
τ |B+n

G (B)
�→ K

τ |A∩B+n

G (A ∩ B) → K
τ |A∪B+n+1
G (A ∪ B) → · · · ,

where iA : A → A ∪ B and iB : B → A ∪ B are the inclu-
sions, and � is expressed as �(a,b) = j ∗

A(a) − j ∗
B (b) by using

the inclusions jA : A ∩ B → A and j ∗
B : A ∩ B → B.

It is often useful to introduce the reduced K theory. This is
defined only when the cocycle τ is a constant function on
X, that is, τ ∈ Z2(G; U(1)). In this case, we choose a point
pt ∈ X to define the reduced K theory as follows:

K̃τ+n
G (X) = Kτ+n

G (X,pt).

It turns out that K̃τ+n
G (X,pt) is isomorphic to the kernel of

the homomorphism i∗ : Kτ+n
G (X) → Kτ+n

G (pt) induced from
the inclusion i : pt → X. We also have a natural direct sum
decomposition

Kτ+n
G (X) ∼= Kτ+n

G (pt) ⊕ K̃τ+n
G (X).

So far, the equivariant K theory Kτ+n
G (X,Y ) twisted by an

ungraded twist τ is considered. In general, a twist τ can be
graded by an element of H 1

G(X;Z2). For example, a homo-
morphism c : G → Z2 defines an element of H 1

G(X;Z2), and
hence a grading. For the equivariant K theory K

(τ,c)+n
G (X,Y )

twisted by the graded twist (τ,c), the axioms of cohomology
theory and their consequences above are valid. In the presence
of a homomorphism φ : G → Z2, the same claims hold
true for φK

(τ,c)+n
G (X,Y ), for which the Bott periodicity is

φK
(τ,c)+n
G (X,Y ) ∼= φK

(τ,c)+n+8
G (X,Y ).

APPENDIX E: THOM ISOMORPHISM

We let π : V → X be a G-equivariant real vector bundle
of real rank r . Assuming that V has a G-invariant Riemannian
metric, we write π : D(V ) → X for the unit disk bundle of
V , and π : S(V ) → X for the unit sphere bundle of V . These
spaces inherit G actions from V . We also let τ be a twist
with its Z2 grading c. In this setting, the Thom isomorphism
theorem [80] for V in twisted K theory states the existence of
an R(G)-module isomorphism

K
(τ,c)+n
G (X) ∼= K

π∗[(τ,c)+(τV ,cV )]+n+r
G (D(V ),S(V )). (E1)

The twist τV of X and its grading cV are associated to
V . In terms of characteristic classes of V , the twist τV is
classified by the equivariant third integral Stiefel-Whitney
class WG

3 (V ) ∈ H 3
G(X;Z), which is the obstruction for V to

admitting a G-equivariant Pinc structure. Similarly, the Z2

grading cV is classified by the equivariant first Stiefel-Whitney
class wG

1 (V ) ∈ H 1
G(X;Z2), which is the obstruction for V to

being G-equivariantly orientable. In the special case that V

underlies a G-equivariant complex vector bundle, we have
wG

1 (V ) = 0 and WG
3 (V ) = 0.

To illustrate a nontrivial case, let us assume for a moment
that X = pt . Under this assumption, a G-equivariant real vec-
tor bundle on pt is nothing but a real representation ρ : G →
O(V ). In this case, we have H 1

G(pt ;Z2) ∼= hom(G,Z2). Then,
wG

1 (V ) ∈ H 1
G(pt ;Z2) is given by the homomorphism det ◦ρ :

G → Z2. For an interpretation of WG
3 (V ) ∈ H 3

G(pt ;Z), recall
that the Pin group is a double covering of the orthogonal group

and the group Pinc(r) is defined to be the quotient of Pin(r) ×
U(1) under the diagonal Z2 action. Accordingly, Pinc(r) is a
central extension of O(r) by U(1). The pullback under ρ :
G → O(r) gives a central extension of G:

Recall also that H 3
G(pt ;Z) classifies central extensions of G

by U(1). Then, the characteristic class WG
3 (V ) ∈ H 3

G(pt ;Z)
classifies the central extension ρ∗Pinc(r).

Finally, we clarify the meaning of (τ,c) + (τV ,cV ). This
is a product of graded twists. If we identify a twist τi

with a cohomology class τi ∈ H 3
G(X;Z) and its Z2 grading

ci with ci ∈ H 1
G(X;Z2) through the classifications, then the

graded twist (τ0,c0) + (τ1,c1) is identified with the following
cohomology class:

(τ0,c0) + (τ1,c1) = [τ0 + τ1 + β(c0 ∪ c1), c0 + c1]

∈ H 3
G(X;Z) × H 1

G(X;Z2),

where c0 ∪ c1 ∈ H 2
G(X;Z2) is the cup product, and β :

H 2
G(X;Z2) → H 3

G(X;Z) is the Bockstein homomorphism

associated to the exact sequence of coefficients 0 → Z
2→

Z → Z2 → 0.

APPENDIX F: GYSIN EXACT SEQUENCE

As above, let π : V → X be a G-equivariant real vector
bundle of rank r . From the exact sequence for the pair
(D(V ),S(V )) and the Thom isomorphism, we can derive the
Gysin exact sequence for the sphere bundle π : S(V ) → X,
which is the following six-term exact sequence of R(G)
modules:

235425-52



TOPOLOGICAL CRYSTALLINE MATERIALS: GENERAL . . . PHYSICAL REVIEW B 95, 235425 (2017)

Suppose now that there is a fixed point pt ∈ S(V ). In this
case, the equivariant map s : X → S(V ) given by s(x) =
pt obeys π ◦ s = 1, so that the Gysin exact sequence
splits:

K
π∗[(τ,c)+(τV ,cV )]+r+n
G [S(V )]

∼= K
(τ,c)+(τV ,cV )+r+n
G (X) ⊕ K

(τ,c)+n−1
G (X).

For topological insulators, the following are useful:
(i) Index for boundary gapless state. If G trivially acts on

S1, then

K
π∗(τ,c)+n
G (X × S1) ∼= K

(τ,c)+n
G (X) ⊕ K

(τ,c)+n−1
G (X).

(F1)

(ii) Dimensional reduction forZ2 symmetry. IfZ2 = {1,σ }
acts on S1 as “reflection” σ : eiθ �→ e−iθ , then

K
π∗(τ,c)+n

Z2
(X × S1) ∼= K

(τ,c)+n

Z2
(X) ⊕ K

(τ,c+w)+n−1
Z2

(X),

(F2)

where the “antisymmetry” w ∈ H 1
Z2

(X;Z2) is the pullback of
the identity map 1 ∈ H 1

Z2
(pt ;Z2) = hom(Z2,Z2) under the

collaption map X → pt .
(iii) Defect gapless state as a boundary state. If G acts on

Sr through G → O(r + 1) with a point fixed, then

K
π∗(τ,c)+n
G (X × Sr × Sr )

∼= K
(τ,c)+n
G (X × Sr ) ⊕ K

(τ,c)+(τV ,cV )+n−r
G (X × Sr )

∼= K
(τ,c)+n
G (X) ⊕ K

(τ,c)+(τV ,cV )+n−r
G (X)

⊕ K
(τ,c)+(τV ,cV )+n−r
G (X) ⊕ K

(τ,c)+n
G (X). (F3)

Here, the first three direct summands are “weak” indices.

APPENDIX G: EXT FUNCTOR Ext1
R(A,B)

Let A and B be modules over a ring R. An R-module E

fitting into the exact sequence of R modules

0 → B → E → A → 0

is called an extension of A by B. Such an extension is generally
not unique, and the isomorphism classes of the extensions
are in one to one correspondence with the elements in the
group Ext1R(A,B). To definte Ext1R(A,B), let us choose a free
resolution of A, which is an exact sequence of R modules

· · · ∂→ Fn
∂→ Fn−1

∂→ · · · F1
∂→ F0 → A → 0

such that each Fi is a free R module, that is, the direct sum
of copies of R. Setting Fn = homR(Fn,B) and defining δ :
Fn → Fn+1 to be δ(f ) = f ◦ ∂ for f ∈ Fn, we have a cochain
complex (Fn,δ). Its first cohomology is Ext1(A,B).

Proof of (8.145)

Now, we apply the above classification of extensions to the
case where R = R(Z4) = Z[t]/(1 − t4) is the representation
ring of Z4, A is the ideal A = (1 − t + t2 − t3), and B =
R(Z4). A free resolution of A can be given by taking Fn =
R(Z4), in which ∂ : Fn → Fn−1 is the multiplication by 1 + t

if n is odd and that by 1 − t + t2 − t3 if n even. Any R-
module homomorphism f ∈ F 1 = homR(Z4)(R(Z4),R(Z4))
is uniquely specified by the value of 1 ∈ R(Z4). Let
a0, . . . ,a3 ∈ Z be defined by f (1) = a0 + a1t + a2t

2 + a3t
3.

On the one hand, the condition for f to be δ(f ) = 0 is
a0 − a1 + a2 − a3 = 0. Therefore, any f ∈ F 1 ∩ ker(δ) is of
the form f (1) = a0(1 + t3) + a1(t − t3) + a2(t2 + t3). On the
other hand, if we define g ∈ F 0 to be the multiplication by
a1t + (a2 − a1)t2 + a0t

3, then δ(g) = f for f as above. This
means that the kernel of δ : F 1 → F 2 agrees with the image of
δ : F 0 → F 1, and hence Ext1R(Z4)[(1 − t + t2 − t3),R(Z4)] =
0. Consequently, any extension of (1 − t + t2 − t3) by R(Z4)
is isomorphic to the obvious extension R(Z4) ⊕ (1 − t +
t2 − t3).
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