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Electric currents at semiconductor surfaces from the perspective of drift-diffusion equations
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Surface sensitive electric current measurements are important experimental tools poorly corroborated by
theoretical models. We show that the drift-diffusion equations offer a framework for a consistent description of
such experiments. The current flow is calculated as a perturbation of an equilibrium solution depicting the space
charge layer. We investigate the accumulation and inversion layers in great detail. Relying on numerical findings,
we identify the proper length parameter, the relationship of which with the length of the space charge layer is
not simple. If the length parameter is large enough, long-ranged modes dominate the Green’s function of the
current equation, leading to two-dimensional currents. In addition, we demonstrate that the surface behavior of
the currents is ruled by only a few parameters. This explains the fact that simplistic conductivity models have
proven effective but makes reconstructions of conductance profiles from surface currents rather questionable.
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I. INTRODUCTION

Electric current measurements at semiconductor surfaces
at (sub)micron distances have become a topic of interest
[1–3]. In such experiments, the electrostatic potential due
to current injections from compact electrodes is locally
probed at the surfaces. The progress in the construction
of new multiprobe scanning tunneling microscopes [4,5]
paves the way towards transport experiments at distances
of hundreds (and perhaps tens) of nanometers. However, the
understanding of the surface-sensitive current measurements
is far from being satisfactory. In particular, there are several
reports on the observation of two-dimensional current flows at
semiconductor surfaces [6–10]. It is suggested that this is due
to the formation of an inversion layer near the semiconductor
surface. Alternatively, when two-dimensional currents are
observed only at lower temperatures, decoupling from the bulk
conductivity is argued, e.g., Ref. [10]. A phenomenological
approach widely explores the distinction between two- and
three-dimensional currents [11] to describe the experimental
results. However, the mechanism behind the generation of
the two-dimensional currents and their relationship to the
three-dimensional current flows are poorly understood.

In more analytical approaches, a two-step procedure is
applied [1–3,12,13]. First, the variation of the carrier density
related to the surface Fermi level pinning is calculated from
the Poisson equation. Second, the current density is calculated
using the (classical) drift current equation. Although this
approach offers insight into the underlying physics, it imposes
several difficulties. The most serious objection to the scheme
results from the fact that the drift equation simply generalizes
the Ohm’s law. Consequently, it is not suitable for describing
the p-n junctions present in inversion layers. Furthermore,
the relation between the electrostatic potential behind band
bending and the one behind the current flow remains elusive.
An interpretation of their sum or difference has not been
clarified. The last shortcoming of the scheme is that it does
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not take into account the recombination processes, and it is
unclear how they could be considered.

This motivated us to model the surface sensitive transport
within a more general theory, which is the system of the
drift-diffusion equations [14]. These equations offer a unified
description of the space charge layer and the transport
experiments. In this paper, we restrict our model to two
bands, i.e., electrons and holes. Extensions to other bands,
e.g., surface bands, can be naturally worked out.

In addition, we pin down a mathematical mechanism
responsible for the appearance of the two-dimensional currents
within three-dimensional models. Our analysis reveals that
only a few parameters are necessary to capture the surface
manifestation of the nontrivial depth-dependent conductance;
two parameters are sufficient in the case of inversion or
accumulation layers. This explains why simple three-layer
models of the conductivity profile can be successfully used
to describe the experimental results [15]. These findings
are important as they shed light on the limitations of the
reconstruction of the depth-dependent carrier profile from the
surface-sensitive measurements [13].

The paper is organized as follows. In the next section, we
show how the drift-diffusion equations describe the space-
charge layer and the current transport experiments. The model
involves the Poisson equation for the electrostatic potential
and current equations for every considered carrier type. Here,
we formulate the current equations using a quasi-Fermi level
ansatz. In Sec. II B, we comment on the linearized Poisson
equation and the reduction of the drift-diffusion equations to
the drift equation. Next, in Sec. III, we outline the presentation
scheme for the surface profiles of the quasi-Fermi level and
the voltage drop. The scheme facilitates the classification of
solutions in terms of two- and three-dimensional currents
as it takes advantage of the relevant scaling properties.
Furthermore, the current equation is analyzed. After a brief
summary of the known results (Sec. IV A), we identify
the parameters crucial for the surface currents and pinpoint
the mechanism behind the appearance of two-dimensional
currents (Sec. IV B). These findings also enable comments on
the reconstruction problem. In Sec. V, we study the inversion
layer at the Si(111)-Ag surface as reported in Ref. [9]. Finally,
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we sum up our developments and point out a few open issues.
Several technicalities are discussed in the Appendices.

The equation for quasi-Fermi levels was examined with
mathematical rigor in the context of the so-called Calderon
problem [16]. This theory puts the electrical impedance
tomography [17] on firm ground. Despite some overlap
between our work and these developments, these two problems
are both physically and mathematically autonomous.

II. DRIFT-DIFFUSION MODEL

A. Model

Based on the Boltzmann transport equation for semi-
conductors, many calculation schemes of electric transport
phenomena are derived [14,18], among them the drift-diffusion
equations. An intuitive derivation from scattering analysis can
be found in Ref. [19]. Notably, this theory is the first-choice
scheme for device simulations [20].

The (low current) drift-diffusion model is a coupled system
of equations for the electrostatic potential (multiplied by the
elementary charge e) V (x) and electron n(x) and hole p(x)
densities. The equations for stationary current flow read as

�V (x) = e2

ε0εr

(n(x) − p(x) − N (x)), (1)

∇(kBT μn∇n − μnn∇V ) = R(V,n,p) + fn(x), (2)

∇(kBT μp∇p + μpp∇V ) = R(V,n,p) + fp(x), (3)

where N (x) stands for the net density of charged ions, R

for the recombination rate, fn(x) and fp(x) for external
current sources of electrons and holes, respectively, ε0 denotes
the vacuum permittivity, εr—the material dielectric constant,
T —the temperature, and kB—the Boltzmann constant. The
diffusion coefficient is absent in the equations due to the
Einstein-Smoluchowski relation between the mobility μ and
diffusion coefficient D, D = kBT μ/e. If the subscripts for the
electrons and holes are not explicitly given, the relation holds
for holes and electrons separately. On the right-hand sides of
Eqs. (2) and (3), other current sources, like currents generated
by the electromagnetic waves, can be added. The electron jn
and hole jp current densities are

jn = μn(kBT ∇n − n∇V ), (4)

jp = −μp(kBT ∇p + p∇V ). (5)

In equilibrium, all currents vanish: jn = jp = 0. For electrons,
the condition can be rewritten in the form

∇ V0

kBT
= ∇ ln

n0

nb

, (6)

and hence

n0(x) = nb exp
V0(x)

kBT
. (7)

The constant electron density nb is introduced to have a
dimensionless expression under the logarithmic function. An
analogous calculation can be performed for holes. The above
calculation makes it evident that the equations (1)–(3) build on
the Boltzmann statistics. The space-charge layer is modeled

by the appropriate boundary condition imposed on V [21,22].
We denote the equilibrium potential and carrier densities with
a subscript zero. These equilibrium quantities depend on the
distance from the surface only, and we assume that the carrier
densities saturate in the bulk. Below, we will consider the
convention that the surface is located at z = 0 and the semiaxis
z > 0 corresponds to the crystal bulk.

The surface transport experiments are believed to slightly
perturb the structure of the space charge layer without any
substantial damage to it. As such, we are interested in the
linearization of the above equations around the V0, n0, and p0

solutions. To this end, we write the electrostatic potential in
the following form

V = V0 + v (8)

and parametrize the carrier densities with the quasi-Fermi
levels ϕ,

n = n0 exp
v + ϕn

kBT
, (9)

p = p0 exp
−v − ϕp

kBT
. (10)

A quasi-Fermi level traces the deviations from the equilibrium
occupancy of the related band. The linearized equations are
obtained by plugging the above ansatz into Eqs. (1)–(3) and
keeping the linear terms in v, ϕn, and ϕp only. The final
relations read as

− �v + λ(n0 + p0)v = −λ(n0ϕn + p0ϕp), (11)

∇(μnn0∇ϕn) = R̃(V0,v,ϕn,ϕp) + fn, (12)

− ∇(μpp0∇ϕp) = R̃(V0,v,ϕn,ϕp) + fp, (13)

where R̃ stands for the linearized recombination rate, and

λ = 1

kBT

e2

ε0εr

. (14)

A similar approach can be found in Ref. [22]. In the following,
we neglect band mixing R̃ and this results in the decoupling
of the three equations: The current equations can be calculated
independently and then the Poisson equation can be solved.
The boundary conditions imposed on any of the quasi-Fermi
levels ϕ ensure that there are no currents flowing through the
surface:

∂

∂z
ϕ(x)

∣∣∣∣
z=0

= 0. (15)

We assume that the surface charge is not substantially changed
by the transport experiments, and hence

∂

∂z
v(x)

∣∣∣∣
z=0

= 0. (16)

Upon the identification σn = μnn (and analogously for holes),
the current equations (12)–(13) get the form of the (classical)
drift current equation. Hence, previous results [12,13] can
be straightforwardly adapted to the framework of the drift-
diffusion equations. At this stage, one could incorporate
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surface bands into the theory by adding an additional band
to Eqs. (1)–(3), but we leave this issue to a future study.

The system of drift-diffusion equations has been widely
used in electronic device simulations, but one should keep in
mind that it is an approximation. The model does not report
on thermal effects, and so it is not suitable for systems with
substantial heating of the sample. Also, the equations are based
on the quasiclassical description of the electronic bands and
the Boltzmann statistics for charge carriers. Hence, they may
not be able to capture quantum effects and poorly perform
for systems with Fermi levels close to the band edges. Models
consistent with the Fermi-Dirac statistics [14] have rarely been
considered in the literature. We believe that the qualitative
analysis delivered below remains relevant even for the Fermi-
Dirac statistical distribution of the charge carriers.

B. Linearized Poisson equation

The linearized Poisson equation has the structure of the
Schrödinger operator with a source. The homogeneous part of
the equation reads

[−� + λ(n0 + p0)]︸ ︷︷ ︸
P̂

v = 0. (17)

The potential is positive and reflects the screening efficiency
of the free charge carriers. The inverse of

√
λ(n0 + p0) is

called the Debye-Hückel length. It is instructive to consider
perturbations around a constant carrier density �. Then, the
equation turns into the well-known screened Poisson equation.
A Fourier transformation of the equation P̂ v = −λ�ϕ yields
the relation

ṽ(k) = − λ�ϕ̃(k)

k2 + λ�
, (18)

where the transformed functions are denoted with tildes. If
the source term ϕ̃(k) has a considerable amplitude for small
k (k2 � λ�) only, then the approximate solution reads as
ṽ = −ϕ̃, and hence v = −ϕ. Plugging this into the linearized
current equation, we obtain

∇(σ∇v) = ±f, (19)

where the sign of f depends on the band under consideration.
It is the drift equation widely used in modeling the surface
current measurements. Here, it emerges as a long-wavelength
approximation to the drift-diffusion equation. It is valid far
from the current source, where the quasi-Fermi levels are
determined by small modes. This can also be seen from the
Green’s function in real space, which reads

v(x) = −λ�

∫
d3y

exp(−√
λ�|x − y|)

|x − y| ϕ(y). (20)

This equation shows that the potential v can be regarded as
the smoothed-out quasi-Fermi level. For the slowly varying
charge densities, the abovementioned Green’s function can be
used approximately upon the substitution � → �(x) (adiabatic
approximation). The characteristic length scale dividing the
short- and long-ranged variations is given by 1/

√
λ�. For

silicon and germanium, we give the values of the Debye-
Hückle length in Table I. For large carrier densities, the
parameter is in the range of several nanometers, and the drift

TABLE I. Debye-Hückel length (λ�)−1/2 for silicon and germa-
nium at various temperatures and carrier densities �.

Si Ge

� (cm−3) 100 K 300 K 100 K 300 K

1013 720 nm 1244 nm 847 nm 1467 nm
1016 23 nm 39 nm 27 nm 46 nm
1018 2.3 nm 3.9 nm 2.7 nm 4.6 nm

equation appears as a legitimate approximation. At low carrier
densities or quick variation of σ , this is not true and one needs
to deal with the equation system.

The intuition that the electrostatic potential smears the
quasi-Fermi levels over a certain volume is well known.
As such, one can expect that the notions of two- and
three-dimensional currents and electrostatic potentials remain
valid within the drift-diffusion equations. Indeed, if a current
equation results in the quasi-Fermi level behaving at the
surface as ln(r) or r−1, then the electrostatic potential follows
the same function with a different multiplicative factor (r
stands for the distance from the current source). Notably,
while the quasi-Fermi level associated with the logarithmic
function is z independent, the electrostatic potential will vary
with the distance from the surface. More details are given in
Appendix A.

III. PRESENTATION SCHEME

The distinction between two- and three-dimensional cur-
rents marks a qualitative difference. In the first case, ϕ and
v at the surface vary as ln(r), in the latter as r−1. For the
sake of a qualitative discussion focused on this distinction,
related scaling properties are helpful. The presentation scheme
applied in recent experimental reports [6,7] makes these
relations manifest. In those experiments, the current source
and drain were located at the surface at (0,0) and (D,0), and
two additional electrodes measured the voltage drop between
points D

2 (1 + x,0) and D
2 (1 − x,0) for some 0 < x < 1. To

illustrate this, we show the resistance R (voltage drop divided
by the current flowing through the system) as a function of
x for several D. Then [6], the resistance R depends only on
x in the case of two-dimensional currents. Both x and D are
necessary to determine the resistance in the three-dimensional
case where the quantity R × D is independent of D. In both
cases, the formulas for the resistance are analytic:

R2 = v2(0)

πσ2
ln

1 + x

1 − x
(21)

for two-dimensional currents, where σ2 is a two-dimensional
conductivity parameter, and

R3 = v3(0)

Dπσ3

x

1 − x2
(22)

for three-dimensional currents; σ3 stands for the three-
dimensional conductivity. The numerical factors σ2 and σ3

result from the current equation, while v2(0) and v3(0) from the
Poisson equation, see Appendix A. Obviously, if v2 = v3 = 1,
one gets the formulas obtained from the drift equation.
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IV. CURRENT EQUATION

A. General framework

Now, we consider the current equations (12) and (13).
As already mentioned, we neglect the recombination and,
in consequence, the current equations for different bands get
decoupled. We concentrate on the relation

∇(σ∇ϕ) = f, (23)

where ϕ is the quasi-Fermi level, σ > 0 stands for the
conductivity, and f is a source function. The boundary
condition (15) prevents any current flow through the surface. A
comparison of Eq. (23) and Eqs. (12)–(13) makes it clear that
the conductivity characterizes every single band. We aim for a
description of the quasi-Fermi level close to the surface and the
extraction of physical content. We begin with a brief résumé of
the results published in Ref. [12]. In that paper, it was pointed
out that the theory may result in strange long-ranged behavior
if d

dz
σ (0) �= 0. We clarify this issue in Appendix B, concluding

that there is no physical difference between d
dz

σ (0) = 0 and
d
dz

σ (0) �= 0.
To arrive at the general solution of Eq. (23), we look for

solutions of the function ξ :

ξ = √
σϕ, (24)

which recasts Eq. (23) into a Schrödinger-like form:[
−� + �

√
σ√

σ

]
︸ ︷︷ ︸

L̂

ξ = σ−1/2f. (25)

The boundary condition (15) is

dξ (z)

dz

∣∣∣∣
z=0

= 1

2σ

dσ (z)

dz

∣∣∣∣
z=0

. (26)

The useful formula for the Green’s function G is given in terms
of solutions of the following one-dimensional equation(

− d2

dz2
+ U (z)

)
ψ(k; z) = k2ψ(k; z), (27)

where the potential U (z) is given by the formula

U (z) = σ−1/2 d2√σ

dz2
. (28)

{ψ(k; z)}k are normalized (generalized) eigenfunctions of the
linear operator L̂. The general solution of Eq. (23) is

ϕ(x) =
∫

dx ′dy ′dz′G(x; x′)f (x′), (29)

where

G(x; x′) = 1

2π
√

σ (z)σ (z′)

×
∫ ∞

0
dk K0(k

√
(x − x ′)2 + (y − y ′)2)

×ψ(k; z)ψ(k,z′). (30)

K0 stands for the modified Bessel function of the second
kind of the zeroth order. As demonstrated in Appendix C,
operator L̂ has a positive spectrum only; in the case of

semispace, it corresponds to the continuous spectrum. We
consider below the quasi-Fermi level due to a point source
located at (x ′′,y ′′,z′′ = 0)

f (x′) = Iδ(x ′ − x ′′)δ(y ′ − y ′′)δ(z′),

where I stands for the current supplied to the sample. This
gives rise to the formula for the surface profile φ(r) = ϕ(r,z =
0):

φ(r) = I

2πσ (0)

∫ ∞

0
dk K0(kr)ψ2(k; 0), (31)

where r is the two-dimensional radius√
(x − x ′′)2 + (y − y ′′)2. Below, we consider a one-source

model, although it leads to sample electrical charging (no
stationary solution). A complete model has to include both
current sources and drains. Due to the linearity of the
equations, this is a simple generalization of the one-source
case.

This paper deals with the elementary features of the model.
In particular, we are interested in what can be seen on surfaces
at some distance from the source. We do not examine the
structure of the very contact and the details of the injection.
This approach is justified by the local character of the screened
Poisson equation and the fact that two- and three-dimensional
currents depend on the long-ranged modes.

B. Mechanism behind the dimensional reduction

The following analysis builds on Eq. (31). It clarifies that the
conductivity profile impacts the surface current measurements
through the function ψ2(k; 0). As such, we numerically inves-
tigate the possible shapes of that function for different profiles
σ (z). In Fig. 1(a), three close but clearly distinct conduction
profiles [23] are shown, in Fig. 1(b)—resulting potentials U (z),
and in Figs. 1(c) and 1(d)—functions ψ2(k; 0). The most im-
portant fact about ψ2(k; 0) is evident at the first glance, i.e., the
functions have several pronounced peaks, in particular around
k = 0. In general, the peaks seem to originate from resonances;
shape resonances naturally appear in the potentials of the
type shown in Fig. 1(c) with regions, from which a classical
particle cannot escape unless it is given sufficient energy. It
can be inferred that the resonances mark effective transmission
channels between the surface and the bulk through the potential
U . On a semiaxis, where the Laplace operator is not always a
positive operator [24], the zero resonance is allowed even for
a positive and monotonically decreasing potential U (z). We
observe the zero resonance if σ approaches its bulk value from
above, i.e., there is some enhancement of the conductivity close
to the surface. In the opposite case, there is a zero antiresonance
and ψ2(k; 0) has a local minimum for k = 0. We aim to
describe experiments at large distances, so we concentrate
on the peak for k = 0; however, analogous discussions can be
conducted for any other peak.

As shown in Fig. 1(d), the k = 0 peaks calculated for
three different functions σ are nearly indistinguishable and
well approximated by a Lorentzian. Based on our experience,
this is generic behavior: any well-defined peak of ψ2(k; 0) is
satisfactorily reproduced by the Lorentz function

g(�,A,p; k) = A�2

(k − p)2 + �2
, (32)
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FIG. 1. Panel (a) shows the three conductivity profiles numerically considered: 14(1 − tanh z−0.06
0.005 ) − 9(1 − tanh z−0.01

0.003 ) + 1—red, 25(1 −
tanh z−0.0405

0.015 ) − 21(1 − tanh z−0.01
0.01 ) + 1—blue, and 15(1 − tanh z−0.048

0.007 ) + 1—green. The resulting potentials U (z) are shown in panel (b); the
following functions ψ2(k; 0) in panel (c). Image (d) is a close-up view of ψ2(k; 0) for small k with several points corresponding to the Lorentzian,
as defined in Eq. (32), with �2 = 0.41 μm−2, p = 0, and A = 1 shown for illustration. The functions ψ2(k; 0) are rescaled so that ψ2(0; 0) = 1
[panels (c) and (d)].

where A stands for the peak amplitude, � for its width, and p

for its position. Discrepancies are sometimes observed at the
tails.

Following formula (31), φ(r) emerges upon integration.
Function K0(x) diverges at the origin and quickly vanishes
starting from x ≈ 3. A thin peak in ψ2(k; 0) can dominate the
integral so that we can approximate

K0(kr) ∼ − ln kr = − ln
k

q
− ln qr, (33)

where q is an arbitrary parameter. This allows writing the
quasi-Fermi level at the surface in the form

φ(r) ≈ −
∫ ∞

0
dk

(
ln

k

q
+ ln qr

)
ψ2(k; 0), (34)

and hence

φ(r) = const + ln (qr)
∫ ∞

0
dk ψ2(k; 0). (35)

The constant term can be absorbed into the logarithm
modifying q. This parameter has no physical meaning as it
corresponds to shifting the potential by a constant value, and
when considering both current source and drain, one can get
rid of this parameter. Note that there is no such parameter in
Eq. (21), which corresponds to the physical measurements. So
far we have taken into account the peaked structure of ψ2(k; 0)
with no assumption as to its functional form. If ψ2(k; 0) is
given by a Lorentzian, the integral can be performed, and the

two-dimensional (sheet) conductivity can be expressed as

σ2 = σ (∞)

π2�
. (36)

The above formula takes advantage of the fact that ψ2(0; 0) =
σ (0)/σ (∞) [12]. If r is too large (0.1 � �2r2 for a Lorentzian),
the peak becomes broad and the approximation (33) is no
longer instrumental. Then, three-dimensional conductivity
prevails [12]. An ansatz with a single peak for ψ2(k,0) allows
the modeling of the two- and three-dimensional character
of the surface currents, as demonstrated in Fig. 2. Notably,
parameter �−1 is the only characteristic length and its value
is not simply related to the width of the space charge layer or
any other length parameter to be identified in the system.

The logarithmic solution of Eq. (23) appears for a plate as a
zero mode with no z dependence. It dominates the solution for r

comparable to the plate thickness. We argue in Appendix D that
the quasi-Fermi levels are approximately z independent, even
in the semispace. It follows from the fact that the long-ranged
modes closely resemble the zero mode beneath the surface.

The above considerations show how the confined currents
appear in the system and allow calculations of the two-
dimensional conductivity from the function σ (z). The physical
significance of the structure of the theory goes beyond this
statement. Assuming the Lorentz shape of the peak around
k = 0, we see that the surface conductivity far from the source
is governed by two parameters [�, σ (∞)] only. At smaller
distances, additional three parameters can appear: the position,
width, and amplitude of the second peak. Typically, the second
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FIG. 2. Normalized resistance ω = σ (∞)φ/I for the geometry depicted in Sec. III for various �2: �2 = 0.0005 μm−2 in (a), �2 = 0.1 μm−2

in (b), and �2 = 20 μm−2 in (c). Colors correspond to different values of D: 2 μm—green, 10 μm—blue, and 20 μm—red. The two-dimensional
character resulting in the independence of D is shown in panel (a). The nearly three-dimensional case is shown in panel (c) as the quantity
DRσ (∞) = Dω appears to be D independent. An exemplary transition behavior is shown in panel (b), where neither graphs of ω(x) nor
Dω(x) coincide. The points (stars) in panels (a) and (c) demonstrate the validity of Eq. (21) and Eq. (22), respectively, with fitted numerical
coefficients. Dω is a dimensionless quantity while ω has the dimension length−1, we write cm−1 due to the convention [σ ] = (� cm)−1.

235423-5



JAKUB LIS PHYSICAL REVIEW B 95, 235423 (2017)

peak becomes important at distances well below 1 μm and the
third one at distances where the theory is no longer valid. As
a consequence, the reconstruction of the conductivity profile
σ (z) can be doubted since many functions σ will lead to the
same peak structure.

V. CASE STUDY: SI(111)
√

3 × √
3-AG

To demonstrate how the theory works, we comment on
the current flow measurements on Si(111)

√
3 × √

3-Ag as
reported in Ref. [9]. At room temperature, both p-type and
n-type doped samples were investigated. For p-type doped
samples, three-dimensional currents were observed, while for
n-type doped samples, two-dimensional currents were seen.
This was explained as a result of the surface Fermi level
pinning 0.16 eV above the top of the valence band and the
formation of inversion and accumulation layers for n-type and
p-type doped samples, respectively. As such, C. Liu et al.
assumed that the two-dimensional current was flowing through
the surface channel. The system has been experimentally
investigated in many ways in the context of the surface
conductivity [2,25]. There is no doubt that the current through
the surface states depends also on the bulk electronic structure,
as evidenced by the fact that the two-dimensional conductance
coincides with the appearance of the inversion layer. As a
consequence, if the surface band is an active transport channel,
it is not known what fraction of the current goes through. We
have no good model of the phenomenon, so we assume a
limiting case—the inversion layer as the dominant channel.
Reports on Ge(001) and Ge(001):H [7] demonstrate that it is
always a viable option.

The bulk Fermi level in the sample is said [9] to be about
0.25–0.30 eV below the conduction band at room temperature.
This is consistent with a low donor density, in calculations we
assume 6 × 1015 cm−3. Four point probes were arranged in
a line with an equal spacing of 20 μm. In that geometry,
the change to the resistance in the temperature range 120–
300 K was measured. The resistance decreased along with
the temperature from 300 K to about 140 K; however, at lower
temperatures it remained roughly constant. The measurements
were performed on samples of 500 μm in thickness.

We begin by calculating the equilibrium quantities: V0, n0,
and p0; see Sec. II A. The equilibrium densities of the carriers
at 120 and 300 K are shown in Fig. 3. The hole density at
the surface highly exceeds the electron one, so we neglect the
electron current. Notably, the carrier density at the surface is
not governed by the Debye-Hückel length, which shows how
the electrostatic potential changes.

Next, we calculate the function ψ2(k; 0). The peak for
k ∼ 0 appears to be extremely thin. Due to the accumulation
of numerical errors, we cannot accurately analyze its structure.
The data for k > 10−6 μm−1 suggest a single peak with
� ∼ 10−10 μm−1; more sophisticated numerical work could
probably alter this value but cannot make �−1 commensurate
with the sample thickness d. This makes it necessary to
reanalyze the model in terms of discrete eigenvalues and
eigenfunctions; see Appendix E. The result can be easily
stated. What counts is the zero mode only. The contribution of
the mode associated with the lowest nonzero eigenvalue k2

1 is
proportional to ψ2(k1,0). Since k2

1 ∼ d−2, ψ2(k1; 0) is orders
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FIG. 3. Upper panel: Logarithmic variation of the equilibrium
electron and hole densities normalized by the bulk carrier density
ñ = log10

n0(z)
pb+nb

and p̃ = log10
p0(z)

pb+nb
at 300 K and 120 K. The bulk

carrier density reads 6 × 1015 and 5 × 1015 cm−3 at 300 and 120 K,
respectively. Lower panel: The number of holes located between
the surface and the depth z as a fraction of all the positive current
carriers in the sample. The exact value of the sample thickness d in
the range 100–1000 μm has no impact on the graphs. These graphs
demonstrate that half of the holes are located in the 5 nm zone beneath
the surface, while nearly all positive charge carriers are located in the
20 nm subsurface zone at room temperature. At 120 K the holes are
concentrated even closer to the surface.

of magnitude smaller than the zero mode. The electrostatic
potential reads as

v(r,z = 0) = Iv2(0)

2π
∫ d

0 dz σ (z)
ln(qr), (37)

where q is a dummy parameter, as discussed in Sec. IV B.
The zero mode usually prevails at a distance from the source
comparable to the sample thickness. Here, it is the conductivity
profile that promotes that mode to the only measurable
mode. Note that it explains why two-dimensional currents
are detected at distances from several micrometers to half a
millimeter [9] with no substantial change to the resistivity.

Following Eq. (13) the current density jp reads μpp0∇φ.
Under the assumption that the mobility is a single number,
i.e., it does not vary with z, the current density in the radial
direction is proportional to p0(z)/r and vanishes in the other
directions. So, the largest current density is close to the surface
and it rapidly decreases with the distance from the surface;
see Fig. 3. In our approach, the conductivity of the inversion
layer is decoupled from the bulk conductivity. It is in stark
contrast to the models using the drift equation that assume
a continuous transformation of the conductivity between the
hole conductivity at the surface and the electron one in the
bulk [13].

The use of the drift-diffusion equations also has quantitative
consequences. This is evident for the mobility values that
we can calculate from the resistance R measured in the
experiment [9] and our model. The relevant formula reads
as

R = ln 2

2πμp

v2(0)∫ d

0 dz p0(z)
, (38)

where v2 is defined by Eq. (A3). The results are shown
in Table II. The obtained mobility at room temperature is
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TABLE II. Hole mobility calculated from experimental data μp

[cm2/(V s)] using the drift-diffusion scheme and μv=1
p [cm2/(V s)]

from the drift equation, i.e., under the assumption v2(0) = 1.

T (K) 120 140 160 180 200 220 240 260 280 300

μp 242 201 151 97.7 61.5 34.5 17.2 8.33 4.07 2.68
μv=1

p 9 × 105 66 252 7 887 1 235 277 79.0 27.0 10.6 4.64 2.95

extremely small, but surprisingly, the values on the order
of 10 cm2/(V s) were reported in Ref. [26] for the surface
channel on the Si(111)-

√
3 × √

3-Ag. The variation of the
mobility with temperature is reasonable within the drift-
diffusion equations; the change calculated from the drift
equation seems to be nonphysical. The mobility in inversion
layers has been investigated for a long time [20], mostly in the
context of microelectronics [27]. A further study is necessary
to determine if the mobility calculated here can be simply
related to those results.

VI. CONCLUSIONS

In this paper, we described the surface-sensitive transport
measurements by the drift-diffusion equations. The outlined
calculation scheme offers a unified and logical framework. The
space charge layer corresponds to the equilibrium solution,
while the transport equations are regarded as a small per-
turbation of those solutions. We qualitatively characterize the
screened Poisson equation needed to calculate the electrostatic
potential. This allows us to draw a connection between our
model and the models using the drift equation. We also analyze
the mechanism leading to two-dimensional currents. It reveals
that the surface currents are governed by very few parameters
for the accumulation and inversion layers. It is unclear if the
Poisson equation can help in reconstructing the conductivity
profiles. Finally, we analyze the experimental data for the
Si(111)-

√
3 × √

3-Ag within a simple model of the inversion
layer. In this case, the observed two-dimensional currents are
due to the zero mode of the minority charge carriers.

The work can be continued in many ways. To develop a
complete model comparable to experiments, the incorporation
of the surface bands is imperative. Another interesting issue
is the universality of the Lorentzian shape of the function
ψ2(k; 0). Both the mathematical mechanism resulting in this
shape and an explicit formula for � are highly anticipated.
The limits for the reconstruction of the conductivity profile,
which are approximately outlined in our work, need further
elaboration. Finally, the implication of the close-to-surface
mobility (as calculated above) and its transferability between
various systems is an open issue that can be highlighted by
future experiments.
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APPENDIX A: RELEVANT SOLUTIONS

Based on the developments in a previous paper [12] and
in Sec. IV B, we know that the drift equation, and hence
the current equations for the quasi-Fermi level, can produce
two- and three-dimensional currents. Here, we calculate the
electrostatic potential for two relevant profiles of the quasi-
Fermi levels. First, we consider two-dimensional currents with
the quasi-Fermi level given by the formula

ϕp(r,z) = I

2πσ2
ln qr, (A1)

where I is the current supplied by the source, σ2 stands for the
two-dimensional conductance, and q stands for a (dummy)
parameter making the argument of ln(·) dimensionless. We
consider the current flowing in one channel only, to be specific,
the hole current. We plug the ansatz

v(r,z) = I

2πσ2
v2(z) ln qr (A2)

into the screened Poisson equation (11) and obtain the relation
for v2:[

− d2

dz2
+ λ(n0(z) + p0(z))

]
v2(z) = −λp0(z). (A3)

The boundary condition at the surface is d
dz

v2(0) = 0. The
solution can be formulated using the appropriate Green’s
function. Alternatively, one can solve this equation requiring
that v2(z) → p0(z)/[n0(z) + p0(z)] for z → ∞. These two
methods are equivalent and ensure that the solution does not
couple to the unbounded (nonphysical) solutions of Eq. (A3).
Note that the potential is z dependent, contrary to the quasi-
Fermi level ϕp. Following Eq. (A2), the surface electrostatic
potential has the form

v(r,z = 0) = I

2πσ2
v2(0) ln qr, (A4)

which we use in Secs. III and V.
Analogously, for the surface quasi-Fermi level behaving as

r−1, one can assume that the quasi-Fermi level has the form

ϕ(r,z) = I

2πσ

1√
r2 + z2

,

with σ standing for some three-dimensional conductivity. The
ansatz

v(r,z) = I

2πσ

v3(z)√
r2 + z2

allows writing the Poisson equation in the form of Eq. (A3).
However, in this case it is an approximate equation, neglecting
terms of the order z/(r2 + z2)3/2, and hence valid close to
the surface only. The local nature of the screened Poisson
equation suggests that the solution at the surfaces is close to
the all-inclusive solution.

APPENDIX B: BOUNDARY CONDITIONS

In Ref. [12] it was noted that the condition d
dz

σ (0) �= 0
might result in the asymptotic behavior φ(r) ∼ r−3 for large
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values of r . It was based on the observation that generalized
wave functions {cos(kz + �(k))}k>0, where

� = −sign

(
dσ (0)

dz

)
arccos

k√
k2 + (

1
2σ (0)

dσ (0)
dz

)2
(B1)

vanish for z = 0 and k → 0. The long-range behavior of
the current is given by ψ(0; 0). Indeed, if ψ(0; 0) = 0 there
are no 1/r terms in the Green’s function of operator L̂, see
Eq. (31). However, it is not the case here. It follows from the
presence of the zero-resonance

√
σ (z)σ−1(∞). This function

satisfies the boundary condition (26) and solves Eq. (27) with
k = 0; factor σ−1(∞) ensures the correct normalization. As
such, it locally describes how the solutions satisfying the
same boundary condition as

√
σ (z)σ−1(∞) behave near z = 0

for small k. Hence, ψ2(0; 0) = σ (0)σ−1(∞) and the usual
asymptotic behavior ϕ(r) ∼ (σ (∞)r)−1 holds for r → ∞. The
arguments given in Ref. [12] for k → ∞ remain valid in the
case at hand as cos2 �(k) → 1 for k → ∞.

APPENDIX C: ABSENCE OF BOUND EIGENSTATES OF L̂

In this section, we argue that the current operator L̂, see
Eq. (25), admits no negative eigenvalues. Solutions of Eq. (23)
with no source correspond to extrema of the functional

E[ϕ] = 1

2

∫
d� σ (∇ϕ)2, (C1)

which is interpreted as the energy dissipated by the current
in the source-free region of space per unit time [28] when ϕ

stands for the voltage drop (within the drift equation). The
integration is done over the whole region. For any given
function ϕ, the functional results in a non-negative number.
Upon substitution (24) the energy gains an equivalent form

E[ξ ] = 1

2

∫
d� ξL̂ξ, (C2)

excluding any negative eigenvalue as well as the zero eigen-
value with a square-integrable eigenfunction. The equivalence
between functional (C1) and (C2) can be shown if boundary
condition (26) is taken into account. In the cases of interest
here, there are two options. For the semispace approximation
R2 × [0,∞), the potential U (z) defined by Eq. (28) asymp-
totically approaches zero, U (z) → 0 for z → ∞. Hence, no
bound states are allowed and only a continuous (scattering)
spectrum is present. Thus, the conclusions of Ref. [12] are
valid in any case; the current will have the three-dimensional
character at sufficiently small and large distances from the
source. Therefore, the confinement close to the surface may
only appear at limited distances. The case of a real sample of
a finite thickness (R2 × [0,d]) is described in Appendix E.

APPENDIX D: DEPTH INDEPENDENCE OF THE
QUASI-FERMI LEVEL

Here, we aim to show that the logarithmic behavior of the
quasi-Fermi level is accompanied by the depth independence
of the quasi-Fermi level and rationalize the ansatz (A2).
Consider solutions of the equation

L̂u(k; z) = k2u(k; z) (D1)

with the boundary conditions

u(0) =
√

σ (0)

σ (∞)
, (D2)

du(z)

dz

∣∣∣∣
z=0

= d

dz

√
σ (z)

σ (∞)

∣∣∣∣
z=0

. (D3)

For small k, functions u approach pointwise the solution√
σ (z)
σ (∞) . Hence, for 0 � z � z0 one can approximate

u(k; z) ≈
√

σ (z)
σ (∞) . (D4)

Numerical investigations show that for a class of physical
σ (z) this approximation is valid for z0 in the range of
the surface layer. The difference between u(k; z) and the
(generalized) eigenfunctions ψ(k; z) lies in normalization. The
multiplicative factor can be easily found

u(k; z) =
√

σ (0)

σ (∞)

ψ(k; z)

ψ(k; 0)
. (D5)

Combining the approximations (D4), (D5), and the Green’s
function formula (30) we obtain

ϕ(r,z) = I

2π

∫
dk K0(kr)ψ2(k; 0), (D6)

which does not depend on z and motivates the ansatz (A2).

APPENDIX E: FINITE-THICKNESS EFFECTS

For the current equation (23) considered for samples of
finite thickness d, the expansion of the Green’s function in
terms of the eigenfunctions and eigenvalues reads as

G(x; x′) = 1

2π
√

σ (z)σ (z′)

∞∑
n=1

K0(knr)ψ(kn; z)ψ(kn; z′),

(E1)

where k2
n stands for the nth eigenvalue of the operator L̂;

see Eq. (25). In Sec. V, we consider the system that strongly
enhances the modes close to k = 0. The width � of the peak
in ψ2(k; 0) is orders of magnitude smaller than k1 ∼ d−1.
Hence, the above modes cannot describe the surface currents.
However, to any solution of Eq. (23) zero modes can be added.
Far from the source, the zero mode has the form

C + 1∫ d

0 dz̃ σ (z̃)
ln qr, (E2)

where C is an arbitrary constant and q is the dummy parameter.
Note that q and C are not independent. Heuristically, the
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logarithm in the above formula is due to summing up all modes
parallel to the surface with the zero eigenvalue in the normal
direction, i.e.,

ln q
√

(x − x ′)2 + (y − y ′)2∫ d

0 dz̃ σ (z̃)
− C

= ψ(0; z)ψ(0; z′)
2π

√
σ (z)σ (z′)

×
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

exp i(kx(x − x ′) + ky(y − y ′))
k2
x + k2

y

.

(E3)

As such, we expect that only the zero mode ∼ln qr + C

contributes to the measured current. This approach supports the
conclusions of Appendix D that quasi-Fermi levels associated
with the logarithmic currents are z independent. Furthermore,
it allows for a nonrigorous estimation of parameter � by
comparing the above coefficient of ln(·) function and Eq. (36).
It results in the relation

� ∼ σ (∞)∫ d

0 dz̃ σ (z̃)
, (E4)

which may be used if the resulting � does not depend on d

over several orders of magnitude.
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