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Polaron resonances in two vertically stacked quantum dots
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In this work, we present a theoretical study of polaron states in a double-quantum-dot system. We present
realistic calculations which combine 8-band k· p model, configuration-interaction approach, and collective-modes
method. We investigate the dependence of polaron energy branches on axial electric field. We show that coupling
between carriers and longitudinal optical phonons via Fröhlich interaction leads to qualitative and quantitative
reconstruction of the optical spectra. In particular, we study the structure of resonances between the states
localized in different dots. We show that p-shell states are strongly coupled to the phonon replicas of s-shell
states, in contrast to the weak direct s-p coupling. We discuss also the dependence of the phonon-assisted tunnel
coupling strength on the separation between the dots.
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I. INTRODUCTION

Self-assembled quantum dots (QDs) are continuously at-
tracting attention both in fundamental research, as well as in
the development of novel applications in quantum optics and
quantum information. With the continuing effort and progress
in miniaturization, QDs find technological use in many types
of devices, including QD lasers [1,2], solar cells [3], and many
others.

One of the most interesting aspects of QD physics is
related to carrier-phonon coupling. Apart from dissipative
processes induced by phonons, this coupling can lead to the
formation of polarons, that is, eigenstates of the interacting
carrier-phonon systems in which the carrier state is correlated
with the coherent field of longitudinal optical (LO) phonons.
In QDs, the carrier spectrum is discrete, while the relatively
weak carrier localization limits the effectively coupled LO
phonons to the nearly dispersionless zone-center part of their
spectrum. As a result, the system is in the strong coupling
regime and the polaron states are manifested in the form of
pronounced resonances whenever one excited state spectrally
crosses a LO-phonon replica of another state [4–6]. The width
of the resonances provides a natural quantitative measure of
the strength of the carrier-phonon coupling. The effectively
dispersionless nature of LO phonons forming the polaron
states in QDs makes it possible to describe the system in
terms of a finite number of collective modes [7], which
opens the path to numerically exact diagonalization of the
carrier-LO-phonon (Fröhlich) Hamiltonian in a restricted basis
of carrier states. Experimental and theoretical work on QD
polarons has brought good understanding of their essential
properties both for single-electron states and for excitons
[8,9], as well as of their crucial role for carrier relaxation
in self-assembled QD systems, where typical energy level
separations are comparable to the LO-phonon energy [10–14].

Systems composed of vertically stacked coupled QDs offer
richer physical properties and a higher level of controllability
than a single QD. In particular, a double-quantum-dot (DQD)
structure supports spatially direct and indirect states with
different dipole moments, the energy of which can be tuned
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in a broad range by applying an axial electric field [15–
19]. Recently, the spectrum of such a system was mapped
out by combined spectroscopy techniques and successfully
modeled using 8-band k· p theory in the envelope-function
approximation [20]. The electric-field tunability of energy
levels in such systems might allow one to study the polaron
resonances as a function of the electric field by matching
various energy shells of the two dots, which offers much more
flexibility in comparison to the single-QD studies, where only
limited tunability by magnetic field is available [4,5].

In this paper, we study polaron states in a DQD structure. In
such a coupled structure, a prerequisite of any quantitatively
reasonable modeling is an accurate model of wave functions.
Therefore, in order to find electron and hole states we apply
the 8-band k· p model with strain distribution found within
continuous elasticity approach [21]. We then calculate exciton
states using the configuration-interaction method. Finally,
polaron states are found by orthogonalization of the Fröhlich
Hamiltonian in the basis of collective phonon modes [7]. We
propose a numerically efficient scheme of mode orthogo-
nalization and selection of effectively coupled modes based
on the Rowe orthogonalization [22]. We study the system
spectrum, focusing on the polaron resonances, i.e., the spectral
anticrossing structures appearing when the energies of two
carrier states differ by one LO-phonon energy. We show that
the width of such a LO-phonon-assisted resonance between
direct and indirect exciton states of the same symmetry follows
an exponential dependence on the interdot separation with
a similar exponent but lower amplitude, as compared to the
direct resonance. In contrast, for a pair of states with different
symmetry, where the direct resonance is only allowed by weak
spin-orbit effects, the coupling mediated by LO phonons is
much stronger than the direct one.

The paper is organized as follows. In Sec. II, we define the
system under consideration and the theoretical model. Next,
in Sec. III we present the results. Section IV contains the final
discussion. In the Appendix, we justify the basis cutoff used
in our calculations.

II. MODEL AND NUMERICAL METHOD

In this section, we first describe the carrier system and its
model used in our calculations and summarize the essential
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FIG. 1. Material distribution in the system.

features of the exciton spectrum to facilitate further discussion
of the polaronic effects (Sec. II A). Next, we define the LO-
phonon-related part of the model (Sec. II B). Then, we present
the collective mode method with the mode orthogonalization
scheme (Sec. II C).

A. Carrier system and its model

The system under study is made up of two vertically stacked
InGaAs/GaAs self-assembled QDs resting on wetting layers.
We assume lens shape of the upper (u) and lower (l) dot. In our
calculations, we take height h = 4.2 nm (the same for both
dots) and base radii rl = 10.2 nm, ru = 10.8 nm. The local
InAs content in each QD and in the wetting layers is 80%
InAs, the matrix contains 100% GaAs. The cross section of
the InGaAs distribution is shown in Fig. 1.

The Hamiltonian of a system of carriers coupled to LO
phonons is

H = H0 + Vc + Vef + Hph + HF,

where H0 describes the single-particle states, Vc is the
Coulomb interaction between the particles, Vef represents an
axial electric field, Hph is the Hamiltonian of the LO-phonon
bath, and HF is a Fröhlich interaction between carriers and LO
phonons.

The first term of the Hamiltonian is

H0 =
∑

n

ε(e)
n a†

nan +
∑
m

ε(h)
m h†

mhm,

where ε(e)
n /ε(h)

m are the energies of the electron/hole states
obtained from the 8-band k· p calculations, a

†
n/h

†
m, an/hm

are the creation and annihilation operators of the electron/hole
in the state n/m, respectively.

The Coulomb interaction is

Vc =
∑

nn′mm′
vnmm′n′a†

nh
†
mhm′an′ ,

where

vnmm′n′ = − e2

4πε0ε∞

∫
d r

∫
d r ′�∗(e)

n (r)�∗(h)
m (r ′)

× 1

|r − r ′|�
(h)
m′ (r ′)�(e)

n′ (r).
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FIG. 2. Schematic plot of exciton energy branches as a function
of external axial electric field at D = 9 nm.

Here, e is the electron charge, ε0 and ε∞ = 10.6 are vacuum
permittivity and high-frequency dielectric constant (we take
GaAs values for dielectric constants [23]), �(e)

n (r)/�(h)
m (r ′)

corresponds to the electron/hole wave functions which, ac-
cording to our k· p model, are eight-component spinors. For
the sake of efficiency, we calculate vnmm′n′ in the inverse space
(see details in Ref. [24]).

The potential of an axial electric field is defined by

Vef =
∑
nn′

Z
(e)
nn′a

†
nan′ −

∑
mm′

Z
(h)
mm′h

†
mhm′ ,

where

Z
(e/h)
ij = Fz

∫
d r �

∗(e/h)
i (r)z�(e/h)

j (r)

and Fz is the magnitude of the electric field in the z direction.
The strain distribution in the system is taken into account

within the standard continuous elasticity framework [21].
Piezoelectricity is included up to the second order in strain
tensor elements [25] using parameters from Ref. [26]. In order
to find electron and hole states, we perform the calculation
using the 8-band k· p method in the envelope-function approx-
imation. The calculation details have been widely described in
Refs. [27,28] and material parameters are taken from Ref. [29].

Having the single-particle states, we then compute the exci-
ton states which are found using the configuration-interaction
(CI) method. The axial field is included at the CI stage [30].
Due to numerical efficiency reasons, we limit our basis to four
lowest electron and hole states (i.e., electron and hole s shell
in the lower and in the upper dots). A part of the exciton
spectrum obtained in this way1 is schematically presented
in Fig. 2 (obtained by restricting the basis to s states only).
This well-known spectrum of excitons in an electric field
[15,16] is composed of spatially direct and indirect exciton
states, clearly distinguishable by the small and large slopes
of the field dependence of their energies, respectively. If two
such states are tuned into the resonance (and if the symmetry
of the states is such that selection rules are met), avoided
crossing appears in the energy spectrum [15–19]. In Fig. 2,

1Since the LO-phonon coupling is not included explicitly in this
calculation, we have replaced ε∞ by εs in Vc to account for the
LO-phonon-induced contribution to the screening.
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these resonance structures are marked by E1, E2 (electron
tunneling resonance), H1, H2 (hole tunneling), and EH (very
weak coupling between two indirect configurations).

We stress that Fig. 2 is a schematic plot that shows only the
electric-field dependence and general structure of resonances
of s-shell states. In a full model, excited states would appear
in the presented parameter window, forming a more complex
pattern of tunnel and Coulomb resonances [20,24]. Another
point is that even with a basis extended by adding higher
electron and/or hole shells with respect to in-plane excitation,
as is common in this kind of modeling, the wave function
within a single QD remains rigid against shifts along the
growth axis and the only degree of freedom is the transfer
between the dots. This precludes the appearance of strong
effects related to charge separation within a single QD in an
axial electric field, that appear when the potential energy drop
across the QD is comparable with the excitation energy for
the relative motion [31]. However, for a strongly confined,
self-assembled system with the F field along the axis of
the strongest confinement and with field magnitudes on the
order of 10 kV/cm, the system polarizability is negligible.
Quantitatively, even for a very conservative choice of the
excitation energy along the growth axis, the ratio of the two
quantities mentioned above is on the order of at most 10−2.
Therefore, we are far below the field range where the effects
described in Ref. [31] occur. This is in fact consistent with
experiments, where the field-dependent spectra of QDs show
an approximately uniform, weak slope of the direct exciton
lines (attributed to the built-in, intra-QD dipole) throughout
the investigated range of fields (see, e.g., Ref. [20]). In a
double-QD system, the spectrum is clearly dominated by
the transitions between spatially direct and indirect excitons,
which are correctly described by our numerical model [20].

B. LO phonons

In the polaron formation, we assume nondispersive LO-
phonon modes with h̄� = 36 meV. The LO-phonon bath is
then described by the Hamiltonian

Hph =
∑

q

h̄�b†qbq,

where b
†
q and bq are, respectively, the creation and annihilation

operators for the LO-phonon mode q. The carrier-phonon
coupling is modeled by the Fröhlich Hamiltonian

HF = −
∑

q

e

q

√
h̄�

2V ε̃ε0

(∑
nn′

F (e)
nn′(q)a†

nan′

−
∑
mm′

F (h)
mm′(q)h†

mhm′

)
(bq + b

†
−q),

where ε̃ = (1/ε∞ − 1/εs)−1, εs = 12.4 is a static dielectric
constant in GaAs, V is the normalization volume for phonon
modes, and F (e/h)

nn′ (q) = F (e/h)∗
n′n (−q) is the one-particle (elec-

tron or hole) form factor

F (e/h)
ij (q) =

∫
�

∗(e/h)
i (r)�(e/h)

j (r)eik·rd r.

We perform calculations for excitonic polaron states in the
basis of noninteracting electron and hole configurations |ν〉 =
|n〉e ⊗ |m〉h. In this pair-state basis the Fröhlich Hamiltonian
for two-particle (exciton) states has the form

HF = −
∑

q

e

q

√
h̄�

2V ε̃ε0

∑
νν ′

F (x)
νν ′(q)|ν〉〈ν ′|(bq + b

†
−q), (1)

whereF (x)
νν ′ = F (e)

nn′(q)δmm′ − F (h)
mm′(q)δnn′ with ν ∼ (nm), ν ′ ∼

(n′m′).

C. Collective modes

The direct diagonalization of the Hamiltonian would imply
sampling the q space, which is not feasible due to the large
number of required q points. However, for nondispersive
LO-phonon modes, one can use the collective modes method
[7]. One defines the collective modes corresponding to the
annihilation operators

B̃νμ =
∑

q

√
l0

V

1

q
F (x)

νμ (q)bq, (2)

where l0 is an arbitrary characteristic length. The Fröhlich
Hamiltonian then becomes

HF = −
∑
νμ

√
h̄�e2

2l0̃εε0
|ν〉〈μ|B̃νμ + H.c. (3)

However, the collective phonon modes B̃νμ are not orthonor-
mal in the sense of canonical commutation relations. In order
to simplify notation, in the following we will use a combined
index j to represent the pair (ν,μ). Then, the commutator is

Aj ′j = [B̃j ,B̃
†
j ′ ] = (Fj ′,Fj ), (4)

where

(Fj ′,Fj ) = l0

V

∑
q

1

q2
F∗

j ′(q)Fj (q) (5)

is the scalar product of the form factors, defined with an
appropriate weight. Thus, canonical commutators between the
new modes are related to the orthogonality of the form factors,
which is not guaranteed in general.

At this point, one has to choose between the original
approach involving orthogonalization of the modes [7] and the
alternative method of nonorthogonal modes [32]. The latter
saves one computational step required for orthogonalization
but becomes inconvenient when the form factors defining the
modes are not guaranteed to be linearly independent, which is
the case, e.g., for the Fock-Darwin model [6]. Here, we use
an efficient method of selecting a spanning set of orthogonal
modes based on Löwdin’s symmetric orthogonalization [33] in
the form proposed by Rowe [22], in which the possible linear
dependence of the modes is naturally taken into account.

Thus, following Rowe [22], if λα are the nonzero eigen-
values of the Hermitian, positive-semidefinite Gram matrix
A [Eq. (4)] and u(α) = (u(α)

1 ,u
(α)
2 . . .) are the corresponding
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normalized eigenvectors, then the functions

Gα(q) = 1√
λα

∑
j

u
(α)
j Fj (q)

are orthonormal. On the other hand, the set of form factors
Fj satisfies a linear dependence relation

∑
j u

(α)
j Fj = 0 if and

only if u(α) is in the kernel of A. For α such that λα 
= 0, define
the modes

Bα =
∑

q

√
l0

V

1

q
Gα(q)bq . (6)

These modes are orthonormal, i.e., they satisfy the canonical
commutation relations [Bα,B

†
α′ ] = δαα′ , etc. On the other

hand, completeness of the set {u(α)} implies that Fj (q) =∑
α u

(α)∗
j

√
λαGα(q). Substituting this relation to Eq. (2) and

using Eq. (6) one finds, returning to the original index-
ing (j → ν,μ), B̃νμ = ∑

α u(α)∗
νμ

√
λαBα , hence, the Fröhlich

Hamiltonian [Eq. (3)] can be written in terms of the orthogonal
modes in the form

HF =
∑
ανμ

C(α)
νμ Bα|ν〉〈μ| + H.c., (7)

where the coupling coefficient reads as

C(α)
νμ =

√
h̄�e2

2l0̃εε0

√
λαu(α)∗

νμ .

Finally, we diagonalize this Hamiltonian in the space of
zero-, one-, and two-phonon states

|�i〉 =
∑

ν

dν |ν〉 +
∑
να

dναB†
α|ν〉 +

∑
ναβ

dναβηαβB†
αB

†
β |ν〉.

Here, dν , dνα , and dναβ are the coefficients of the zero-, one-,
and two-phonon states, respectively, and ν corresponds to the

noninteracting electron-hole pair states defined in Sec. II B,
while ηαβ = 1/

√
2 for α = β and 1 otherwise. As a result

of this procedure, for the exciton-polaron problem with a
restricted exciton basis the Hamiltonian involves only a small
number of orthogonal modes out of the initial n2 modes, where
n denotes number of exciton states.

Since the Hilbert space of the collective-mode model is infi-
nite dimensional, a cutoff for the number of phonons is needed
in the numerical calculations. Here, we include configurations
up to two LO phonons. In order to validate this approximation
we have calculated the spectrum around one of the resonances
to be discussed in Sec. III using an extended, three-phonon
basis. As shown in detail in the Appendix, including three-
phonon configurations only slightly shifts the position of the
main resonance and does not affect its width noticeably.

The fast convergence of the results with respect to the
number of phonons in the model is consistent with the fact that
InAs and GaAs are moderately polar materials. In addition, for
the globally neutral excitonic states, partial charge cancellation
reduces the Fröhlich coupling. The Huang-Rhys factor for the
ground state

ξ =
∑

α

∣∣C(α)
00

∣∣2

(h̄�)2
,

that is commonly used to quantify the strength of the polaronic
effects, is only 5.15 × 10−3 in our case, which indicates that
the system studied here is well within the perturbative regime
and strong polaronic effects (that might require a nonperturba-
tive adjustment of the computational basis) do not occur here.

III. RESULTS

The polaron energy branches were calculated as a function
of an axial electric field (Fig. 3). As described in Sec. II, every
polaron state |�i〉 is expressed in the basis of zero-, one-,
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FIG. 3. Polaron energy branches as a function of axial electric field at D = 9 nm.
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FIG. 4. The width of avoided crossings related to electron
tunneling as a function of the interdot distance (E1 in Fig. 2 and
box 1 in Fig. 3). The blue/red line corresponds to an exponential fit
of the numerical results.

and two-phonon states. The overview of the polaron spectrum,
presented in Fig. 3, has been obtained using the minimal basis
of s-shell electron and hole states and up to two LO phonons
(neglecting two-phonon states would result in the appearance
of nonphysical resonances in the single-phonon spectra). In
the following discussion, the number of electron states will
be extended when needed, while the accuracy of the two-
phonon cutoff is justified in the Appendix. We calculated the
amplitudes of these components and marked the dominating
one in Fig. 3 by assigning colors to the lines: red, green,
and blue, respectively. The colors are mixed at the resonances
involving states with different numbers of phonons. The central
part of the plot corresponds to the states with a dominant zero-
phonon (pure excitonic) component. They show the same level
structure as in Fig. 2 with only a small shift. The same pattern
is reflected in n-phonon replicas at the energies shifted by
approximately nh̄�. Box 1 contains an avoided level crossing
between the direct exciton state (localized in the upper dot) and
the single-phonon replica of the indirect exciton state (the hole
in the upper dot and the electron in the lower dot). Thus, this
anticrossing corresponds to the resonant electron tunneling

combined with emission/absorption of a single LO phonon
(decoupled phonon modes do not lead to an anticrossing).
The accuracy of the spectrum in the area of this resonance,
obtained in the s-shell basis, can be verified by comparison
to numerical results performed in an extended basis. We have
found that adding electron p- and d-shell states changes the
width of this particular resonance by less than 1% and its
position just about 0.1 kV/cm.

A similar resonance structure appears for the hole (box
2). However, for the considered DQD, its coupling strength is
much weaker than in the electron case. Furthermore, in contrast
to the electron case (which already converges in a small basis),
the accurate treatment of the hole-phonon resonances would
require larger basis which rapidly increases the computation
cost. Therefore, we limit our present discussion to the
most pronounced electron-phonon resonances. The resonances
marked by the box 3 involve the coupling to two-phonon
states. They occur at very large electric fields and represent
a second-order process with much weaker coupling strength
compared to the single-phonon case. Furthermore, a proper
treatment of two-phonon states requires taking into account
three-phonon states [6].

An interesting question is the dependence of the tunnel
coupling strength (extracted from the numerical results as the
half-width of the resonant splitting) on the interdot distance.
The well-known one-dimensional model of tunneling yields
exponential dependence. Such a behavior is indeed obtained
for an electron in a DQD structure [34] (which is not obvious,
as demonstrated by the hole-related counterexample [35,36]).
Therefore, we have investigated the width of the electron
tunneling resonance as a function of the distance D be-
tween the dots. In Fig. 4, the upper dependence (blue line)
corresponds to the electron avoided crossing width (E2 in
Fig. 2). The dependence follows the exponential law [37].
We obtained an excellent fit for f (D) = a exp(−bD) with
a = 0.751 eV and b = 0.555 eV/nm. Similarly to the direct
tunnel resonance, we obtained also an exponential decay of the
avoided crossing width combined with emission/absorption
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FIG. 5. Polaron energy branches as a function of axial electric field at D = 9 nm. The panels on the right show magnified pictures of the
corresponding regions.
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of LO phonon (corresponding to the box 1 in Fig. 5). The
exponential fitting by the function f (D) = a exp(−bD) yields
a = 0.119 eV and b = 0.503 eV/nm. Apart from the much
lower amplitude, which is expected for a phonon-assisted
process, the decay rate b of the polaron resonance is about
10% lower in comparison to the direct resonance.

In the next step, we study the coupling between the electron
p-shell states located in the upper dot and the phonon replica
of the s state from the lower one. To this end, we extended the
electron basis to 24 states (s, p, d shells in each dot) while the
hole basis still contains four states. The results are shown in
Fig. 5. The basis extension increases the number of orthogonal
phonon modes. The box 2 contains avoided crossing related to
the resonant transition between s and p states of the different
dots. Since the angular momentum has to be conserved, this
coupling is possible only if the axial symmetry of the system is
broken. This can be caused, e.g., by the relative displacement
of the dots [27], bulk inversion asymmetry (BIA) [38], or
emerge from the atomistic structure [39,40]. However, in the
present model we assume perfectly aligned dots and the only
coupling mechanism is due to BIA and spin-orbit coupling
via composition inhomogeneity at the interface. This leads to
narrow avoided crossings visible in box 2. On the other hand,
phonons carry angular momentum and can couple states with
different values of the angular momentum. In consequence,
we observe the pronounced anticrossings between the electron
states from p shell and the phonon replicas of the s-shell
states (see box 3). This LO-phonon-assisted coupling is much
stronger than those resulting from BIA (box 2).

IV. SUMMARY

We calculated polaron states for excitons in self-assembled
double quantum dots using realistic wave functions obtained
from k· p and configuration-interaction calculations. We ap-
plied a mode orthogonalization scheme that yields a spanning
set of effectively coupled collective modes. We investigated
resonances (avoided level crossings) related to the electron
resonant tunneling combined with emission/absorption of an
LO phonon. We have found that the strength of this LO-
phonon-mediated coupling shows exponential dependence on
the interdot distance, like in the one-dimensional tunneling
problem, with a characteristic length comparable to the
direct (zero-phonon) tunneling resonance but with a smaller
amplitude. We have also shown that LO-phonon modes
can efficiently couple states that belong to different shells
(s and p) from different dots. In this case, direct resonance

1.1

1.102

1.104

55 56 57 58 59

E
(e

V
)

F (kV/cm) 

FIG. 6. Comparison of the spectrum around the s-s (box 1 in
Fig. 5) resonance as obtained from the model with the basis extended
to include three-LO-phonon configurations (dashed lines) and from
the two-LO-phonon model, as used in the main body of the paper
(solid lines). Color coding as in Figs. 3 and 5.

is strongly suppressed by angular momentum selection rules,
while the LO-phonon-assisted coupling is allowed and has a
larger amplitude.
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APPENDIX : THREE-PHONON CORRECTIONS

In this appendix, we present the spectrum around the s-s
resonance in a model in order to justify the truncation of our
computational basis to at most two-LO-phonon configurations.

The part of the spectrum around the resonance, calculated
using a model with s-shell states only but including configura-
tions with up to three LO phonons, is shown in Fig. 6 (dashed
lines) and compared to the results from the two-LO-phonon
model (solid lines). As one can see, the polaron resonance not
only remains qualitatively the same but even quantitatively
its width is almost unchanged (it increases by 0,69% only).
The position of the resonance is shifted noticeably (by 0.33
kV/cm) but also this shift is small compared to the overall
range of the spectrum (tens of kV/cm) and does not affect the
physical picture emerging from our results.
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