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Accurate formation energies of charged defects in solids: A systematic approach
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Defects on surfaces of semiconductors have a strong effect on their reactivity and catalytic properties. The
concentration of different charge states of defects is determined by their formation energies. First-principles
calculations are an important tool for computing defect formation energies and for studying the microscopic
environment of the defect. The main problem associated with the widely used supercell method in these
calculations is the error in the electrostatic energy, which is especially pronounced in calculations that involve
surface slabs and two-dimensional materials. We present an internally consistent approach for calculating defect
formation energies in inhomogeneous and anisotropic dielectric environments and demonstrate its applicability
to the cases of the positively charged Cl vacancy on the NaCl (100) surface and the negatively charged S vacancy
in monolayer MoS2.
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I. INTRODUCTION

Defects play an important role in the electronic and
structural properties of semiconductors, so understanding of
the defect’s behavior is critical for materials’ design [1–4]. The
most important quantity for a given defect type is the formation
energy since it determines the concentration of the defect in the
material. Density-functional theory (DFT) based calculations
provide unmatched insight into defect formation energies and
defect microscopic structure [5,6], which can complement
a number of experimental techniques for studying defect
properties, ranging from scanning tunneling microscopy to
electron paramagnetic resonance [7–14]. In DFT calculations,
the widely used supercell method is capable of addressing
structural changes in the material but suffers from systematic
errors when dealing with charged defects due to the use
of periodic boundary conditions (PBCs). This constraint
makes necessary the introduction of an implicit neutralizing
background charge, which adds spurious terms to the total
energy of the system [15–22]. A number of methods for
addressing this problem have been proposed, but most of them
are not applicable to supercells with variable and anisotropic
dielectric profiles. The simplest of corrections accounting
for electrostatic interaction is the Makov-Payne correction
[23], amounting to a difference between the electrostatic
energy of a point charge under open boundary conditions and
the Madelung sum for its energy under periodic boundary
conditions. However, in practical applications it has been
proven hard to use this correction reliably [24,25]; the main
reason being that the expression for the correction energy has
the macroscopic dielectric constant in the denominator but the
supercell method deals with the material on a microscopic
scale and therefore the bulk limit might not be applicable.
Accordingly, alternative schemes were developed to calculate
the true formation energy of an isolated defect for a series of
supercells with the same shape and progressively increasing
size [21,22,26], followed by fitting to a scaling law with
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the inverse size of the supercell while treating the dielectric
constant of the material as a parameter of the model; variants
of the scheme accounting for an anisotropic dielectric tensor
have also been implemented [27]. Recent works aimed at
addressing this issue have concentrated on treating strictly
two-dimensional (2D) materials [28,29].

A method for correcting the charged defect formation
energies was introduced by Freysholdt, Neugebauer, and van
de Walle (FNW) through alignment of the defect-induced po-
tential using the planar-averaged electrostatic potential with-
out including relaxation [17]. However, the defect-induced
potential is affected significantly by atomic relaxation which
calls for the usage of larger simulation supercells and reduces
the accuracy of the calculations based on this approach.
Recently, the method by Kumagai and Oba [20] proposed to
correct the defect formation energy by extending the FNW
scheme by using the atomic site potential. In this paper,
it also was shown that the potential alignment term can
be, in principle, eliminated from the expression of defect
formation energy. Using the atomic site potential in this
method is not efficient in small supercells and gives rise to
non-negligible sampling errors. Komsa and Pasquarello [30]
proposed a method for correcting the electrostatic energy
of charged defects which obtains the charged defect forma-
tion energy in three-dimensional (3D) materials and their
surfaces by estimating the electrostatic energy of localized
charged defects and the neutralizing charge in a dielectric
environment. This method is not applicable for 2D systems
and needs to reconstruct the dielectric constant profile of the
system [28].

Previously proposed methods mostly rely on a combination
of two procedures: (i) modeling the electrostatic energy of
the defect-induced charge, which is the standard definition
in the literature [17] and (ii) employing the concept of
potential alignment. In most methods the computation of the
electrostatic energy typically is implemented for defects in
the bulk and with a simplifying model for the defect-induced
charge [16]. The potential alignment term is due to the use of
a model, typically a Gaussian, for the defect charge [20] and,
as we demonstrate, can be eliminated altogether.
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In this paper, we present a systematic and consistent
approach for computing charged defect formation energies
in complex dielectric environments based on the explicit
construction of the model cell dielectric profile. Unlike the
traditional potential alignment procedure where the potential
alignment term has to be calculated for every single computa-
tion, the model cell dielectric profile has to be constructed only
once for a given material, and the model dielectric parameters
can be used for all subsequent computations without any
additional user-controlled parameters, adding consistency to
the method. In addition, we provide guidance on the com-
putationally efficient implementation of the method, and we
highlight some important technical details of the calculation
procedure, namely, the appropriate mode of extrapolation
of the energy computed under periodic boundary conditions
and the trimming process to make the model supercell for
electrostatic calculations. Equally importantly, we show that
the proposed method allows us to treat both cases, bulk 3D
materials and 2D materials embedded in vacuum, on the same
footing, as well as to include relaxation of the ions.

II. METHOD DESCRIPTION

The method we propose for calculating the true formation
energy of a charged defect Ef (q) is a postprocessing correction
to the total energy of the supercell with a charged defect
obtained from DFT Edef

DFT(q),

Ef (q) = Edef
DFT(q) − Est

DFT +
∑

i

μini

+ q(EVBM + EF ) + Ecorr, (1)

where Est
DFT is the DFT total energy of the stoichiometric

slab, μi is the chemical potentials of the species added or
removed to create the defects under appropriate thermody-
namic conditions, ni is the stoichiometric coefficients for
those species, EVBM is the valence-band maximum (VBM)
energy, EF is the Fermi level with respect to the valence-band
maximum, and Ecorr is the correction energy in our method.
The supercell model for charged defects implicitly imposes a
compensating background charge to make the supercell overall
neutral. This model of an infinite array of defects immersed
in the background charge is very different from the target,
that is, an isolated defect in the host material. As was shown
before [1,30], the difference in total energy between those
models can be captured by an energy correction Ecorr, which
involves subtracting the electrostatic energy of the incorrect
model, EPBC, and adding the electrostatic energy of the isolated
defect-induced charge Eiso. In the following discussion, we
explain the correction method for the case of a charged
chlorine vacancy V +

Cl on the NaCl (100) surface to facilitate
comparison to previously proposed methods. We also discuss
the applicability of the method to two-dimensional materials
(such as graphene, boron nitride, or MoS2) by considering
the case of the charged sulfur vacancy V −

S in MoS2. For DFT
computations we use the Quantum ESPRESSO package [31]. For
the simulation of NaCl surfaces we use a 2 × 2 × 3 supercell
with a 4 × 4 × 1 k-point sampling grid and kinetic-energy
cutoffs for plane-wave expansion of the wave functions equal
to 30 Ry and of the density equal to 300 Ry. For MoS2 we

use a 6 × 6 supercell that can be cast into a rectangular shape,
a vacuum region of size 16 Å with �-point sampling of the
Brillouin zone, and kinetic-energy cutoffs equal to 50 Ry for
the wave functions and 500 Ry for the charge density.

III. ELECTROSTATICS UNDER PERIODIC BOUNDARY
CONDITIONS

The computation of EPBC is based on solving the Poisson
equation under periodic boundary conditions for the electro-
static potential VPBC(�r),

ε0∇[ε(z)∇VPBC(�r)] = −ρd (�r), (2)

where ε0 is the vacuum permittivity, ε(z) is the dielectric profile
of the model slab in the direction perpendicular to the surface
(this can be extended to anisotropic materials as discussed in
Appendix A), and ρd (�r) = |ϕ(�r)|2 is the charge induced by the
defect level in the band gap. The incorrect electrostatic energy
can be computed by integration over the supercell volume,

EPBC = 1

2

∫
ρd (�r)VPBC(�r)d�r. (3)

This model has two key parameters: the defect charge
ρd (�r) and the shape of the dielectric profile ε(z). The main
contribution of our approach is a consistent treatment of the
electrostatic model computation.

Instead of using a Gaussian distribution for the defect-
related charge, we use the actual |ϕ(�r)|2 obtained from the
DFT calculation. A Gaussian model often is used due to
the availability of analytical expressions for the electrostatic
energy and fast convergence of the model electrostatic energy
with respect to the discretized mesh size. In our parallel
implementation of the potential computation, this is not an
important factor, and we can explicitly use the defect wave
function in the Poisson equation. There are several reasons
for doing this: First, we find that often the corresponding
defect wave functions are highly anisotropic and have several
lobes (Fig. 1), so a smooth Gaussian model is an inappropriate
description; second, the complex shape of the wave function
leads to a substantial ambiguity in locating the center of
the Gaussian, and our model calculations reveal that a shift
of the charge center in the direction perpendicular to the
surface by 0.15 bohr (well within the ambiguity involved)
results in changing the electrostatic model energy by 0.1 eV.
Similarly, the anisotropic shape of the wave function results
in a poorly determined Gaussian width, and the uncertainty
in this parameter leads to differences of up to 0.25 eV in the
model energy. Moreover, for multilobe defect wave functions,
such as those related to forming a sulfur vacancy in MoS2, the
overestimate in the width of the Gaussian can lead to “spilling
over” of the model charge from the simulation cell, which is the
case when the cell dimensions are smaller than eight standard
deviations of the Gaussian (±4σ is required to contain 99.99%
of the charge). This is important since we find that losing more
than 0.1% of the charge results in errors in electrostatic energy
on the order of 0.1 eV.

The other input to our method is the shape of the
dielectric profile. For this, we use a model of two constant
dielectric regions joined by error functions at the interfaces;
the parameters defining the profile are as follows: the material’s
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FIG. 1. Defect charge distributions. (a) Top view of the NaCl
(100) surface with V +

Cl : green: Na ions; orange: Cl ions. The blue
cloud represents ρd (�r) = |ϕ(�r)|2 for the defect level in the band gap.
(b) Side view of the same surface slab, showing the slight asymmetry
in the charge distribution shape and additional lobes on Cl atoms
around the vacancy. The dashed line denotes the trimmed cubic part
of the defect charge used in the extrapolation procedure. (c) Top view
of the MoS2 monolayer with V −

S : yellow: S ions; red: Mo ions. The
complex multilobe structure of the charge distribution is apparent.
(d) Side view of the V −

S charge distribution: the difference in spatial
extent in plane and out of plane is apparent.

dielectric constant in each region (for vacuum it is 1.0
by definition) and the positions of the interfaces. Previous
work suggests obtaining the dielectric profile from the DFT
calculations, for example, from the response of the model
slab to an applied electric field [30]. This is not necessary
for the following reasons: First, the DFT simulations have
intrinsic limitations due to the commonly employed semilocal
exchange-correlation functionals and fail to reproduce the
experimental values of the dielectric constant; second, in this
model we seek to capture the response of the semiconductor to
the defect charge at the microscopic level, and the value of the
bulk experimental dielectric constant is not necessarily optimal
for it; third, this method ceases to be applicable when the
ionic relaxations are included because then the field-induced
ionic displacements result in substantial rearrangements of the
electronic density, leading to discontinuities in the dielectric
profile. Instead, we model the dielectric profile approximately
using the experimental value for the dielectric constant of the
material as a starting point and the average of atomic radii of
the surface atoms to get the profile boundaries; as shown below
for the case of 2D materials, the electrostatic correction is fairly
insensitive to the value of the dielectric constant, which makes
the use of the experimental value as a starting point perfectly
reasonable. We then fine-tune those parameters in order to
achieve alignment to the DFT potential as described next.

FIG. 2. Dielectric profile parametrization. The colored lines
represent xy plane-averaged values of the potential alignment �V

defined in Eq. (4) for the NaCl slab with the V +
Cl located at

z = 28 bohr. The circle denotes the far region used for alignment.
The legend denotes the value of the dielectric constant of NaCl used
in the construction of the model dielectric profile. The shaded area
denotes the region occupied by the material.

The notion of potential alignment defines the mismatch of
the potentials induced by the unscreened defect charge in the
model calculation and in the actual DFT computation [20].
This term typically is expressed as

�V = VPBC|far − [V st
DFT − V def

DFT(q)]|far, (4)

where V st
DFT is the electrostatic potential for the stoichio-

metric slab, V def
DFT(q) is the potential for the slab with a charged

defect, and the subscript “far” denotes the vacuum region of
the supercell farthest from the defect. The potential alignment
term arises from the approximations made in the electrostatic
model. The main difference between the method used here
from earlier methods [19,30] is that our approach eliminates
the potential alignment term from the expression of defect
formation energy by capturing the relevant physics through
modeling the electrostatic environment of the simulation cell.
Since we are using the exact wave function of the defect, we
adjust the dielectric profile parameters in a way that properly
aligns the model potential and the DFT potential difference
in the vacuum region of the simulation supercell far from the
defect.

The model electrostatic potential has a qualitatively differ-
ent dependence on the dielectric constant and the positions of
the profile boundaries as shown in Fig. 2: Varying the value of
the dielectric constant changes the amplitude of the features
on the model potential and the slope in the alignment region.
For NaCl we choose the value of 2.8, which results in flat �V ,
see Fig. 2. Variation of the profile boundary position results in
a rigid shift of the potential in vacuum. Overall, by adjusting
those parameters one can find a combination resulting in a flat
line close to zero for �V denoted by the black circles in Fig. 2
in the region far from the defect position. It is important to
emphasize that the potential alignment term can be eliminated
due to utilizing an internally consistent description of the
electrostatic part of the problem as shown before [16–18].
Another motivation to remove the potential alignment term is
the fact that it becomes increasingly hard to define it when the
relaxation of the ionic positions in the material are included
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in the model since the displacement of the atoms changes the
electrostatic potential substantially, and it becomes practically
impossible to carry out the alignment with the far-field bulklike
region in the expression for �V .

Finally, we note that the inaccuracies associated with
sampling the defect-induced charge lead to errors of about
0.03 eV in the values of EPBC. These errors do not converge
fast with finer mesh sampling, so there is no need to specifically
increase the sampling and plane-wave expansion cutoff in the
DFT calculations. Moreover, we find that down-sampling the
output wave function by a factor of 2 or 3 (so that the mesh size
is about 0.3–0.4 bohr) changes the EPBC by about 1 meV, which
can be used to choose computational parameters optimally to
reduce the cost of the calculations.

For an isolated charge the boundary conditions in the Pois-
son equation are lim�r→∞ V (�r) = 0, which requires infinitely
large simulation domain. A proper way to treat this condition is
to perform a direct pairwise summation of interaction energies
for discretized charge elements, including two different dielec-
tric media through the image charge method (Appendix B).
This approach is computationally intensive (it scales as the
sixth power of the mesh size) and allows only one sharp bound-
ary, a rather severe approximation to the real material interface.

A different approach is extrapolation of the energy under
periodic boundary conditions to the limit of the infinite cell
size. The dependence of the model EPBC on the inverse cell size
is linear, which allows easy extrapolation [30] with the only
parameter being the factor by which the model cell is extended
in all dimensions. We analyzed this method for a model system
of Gaussian charge in vacuum as well as for real materials;
we find that in practice a maximal scale of 5 can be used,
resulting in extrapolation errors below 0.03 eV for charges in
vacuum and smaller errors for real materials. The electrostatic
correction decreases with the increase in the size of the original
supercell, so for larger systems the error is dominated by DFT
errors in the EPBC values, which depend on the sampling of the
defect charge state, especially for anisotropic wave functions,
and can reach 0.03 eV.

Another important aspect of the problem is that the
extrapolation is valid only for a model supercell of strictly
cubic shape; extrapolation from cells of different shapes result
in vastly different and incorrect Eiso values. Accordingly, when
simulating real materials, the defect wave function has to be
trimmed to a cubic shape [see Figs. 1(b) and 1(d)] for use
in the extrapolation procedure. Specifically, upon scaling the
system, we pad the trimmed charge distribution with zeros on
all sides, placing it in the center of the scaled cell. For the case
of semiconductor surface regions, we calculate the position of
the dielectric profile boundary closest to the charge by setting
the offset to be the same as in the original cell. The second
boundary position is calculated by scaling the thickness of the
material proportionally to the supercell size.

We investigate the performance of the correction scheme
by calculating formation energies of V +

Cl on the NaCl (100)
surface for several supercells with varying vacuum thicknesses
and lateral dimensions. The results are shown in Fig. 3 for the
case of varying vacuum thicknesses.

The variance in the uncorrected energies (blue line) is as
substantial as the variance in corrected energies with extrapo-
lation from the wave-function charge distributions of noncubic

FIG. 3. Formation energy of V +
Cl on the NaCl (100) surface as a

function of vacuum size (in units of aNaCl = 10.6 bohr). Uncorrected
(blue line) and corrected energies with a noncubic model cell
(green line) used for extrapolation show large variance; the correct
extrapolation procedure gives consistent formation energy values
within 0.06 eV (red line).

shape (green line). Only a correction with the proper extrap-
olation procedure gives consistent formation energies within
0.06 eV, independent of the supercell shape. Analogously, the
dependence on the lateral size of the cell is eliminated.

It is important to note that there are two different simulation
cells: the one used in DFT, and the one used for the electrostatic
computation. The latter one is obtained by discretizing
the defect-related wave function and casting it to a cubic shape
(“trimming”). The trimming procedure is introduced to make
the model supercell for electrostatic calculations cubic since
only in that case the extrapolated isolated boundary conditions
energy is correct (see Fig. 3). Since the Poisson equation is
solved in Fourier space, the exact position of the charge inside
the simulation cell is immaterial as long as it is approximately
in the center of the cell, and in order to achieve that, the model
charge is translated to the middle of the model cell for the
electrostatic computation. The size of the trimmed supercell is
chosen as the smallest one possible in the DFT supercell.

IV. APPLICATION TO TWO-DIMENSIONAL MATERIALS

The above scheme can successfully be used for 2D materials
as demonstrated with the example of the V −

S defect in a
MoS2 monolayer. The only change needed is the method
of scaling the model profile in computing Eiso: In this case,
the positions of both profile boundaries are fixed relative to
the charge, which results in keeping the material thickness
constant throughout the extrapolation procedure. An important
feature of low-dimensional systems is that the actual values of
the diagonal elements of the dielectric tensor do not affect the
model potential as much as the positions of the boundaries of
the dielectric profile. As shown in Fig. 4, the values of the
model potential in the alignment region are very close. We use
the values of ε⊥ = 6 for the out-of-plane component and ε‖ =
15 for the in-plane component; we find the optimal position of
the profile boundaries to be at an offset of 2.7 bohr outwards
from the S atoms. The dependence of EPBC on the inverse
scale of the model cell is similarly linear as shown in Fig. 4.
Application of our correction scheme results in elimination of
the spurious dependence of the vacancy formation energy on
the vacuum layer thickness, the corrected formation energies
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FIG. 4. Electrostatics for MoS2: (a) The difference in DFT
potentials for V −

S (black, dashed line) and model potentials for a
variety of choices for in-plane and out-of-plane components of the
dielectric tensor. The evident mismatch in the alignment region can
be fixed by moving the positions of the dielectric profile boundaries
outwards. (b) The extrapolation procedure illustrated for the cases of
scaling the material thickness in the model profile as for NaCl (3D)
and of keeping constant the material thickness as for MoS2 (2D). Both
cases show a linear dependence on the inverse scale of the model cell.

being consistent to within 0.06 eV. Finally, as an example
of higher charge defect states, we have calculated the defect
formation energies of the Mo vacancy in MoS2. We find
that these formation energies are as follows: 4.44, 5.11, and
5.91 eV for the q = 0,−1,−2 charged states, respectively.
Moreover, in the case of the S vacancy in MoS2, we find the
charge state q = −2 to be unstable above the conduction-band
minimum, consistent with the findings of the work by Komsa
and Krasheninnikov [32].

V. SUMMARY

To summarize, we presented an internally consistent
scheme for the computation of charged defect formation
energies in systems with complex dielectric profiles. The
overall algorithm is the following:

(1) Construct the stoichiometric and defected slabs, obtain
|ϕ(�r)|2, the defect charge density, the level of the VBM, and
electrostatic potentials V st

DFT,V def
DFT(q).

(2) Fine-tune the parameters of the model dielectric profile,
that is, the values of the dielectric constant and the positions

of interfaces in order to achieve alignment between the model
VPBC and V st

DFT − V def
DFT(q); calculate the corresponding EPBC.

(3) Trim |ϕ(�r)|2 to a cubic shape, change the dielectric
boundary positions accordingly, calculate EPBC for a series of
scaled model cells; obtain Eiso through extrapolation to infinite
cell size.

(4) Add the correction Ecorr = Eiso − EPBC to the defect
formation energy.

We find that the electrostatic correction described here is
best suited for applications for 2D materials or semiconductors
with low (<10) dielectric constants. In materials with stronger
screening the value of the electrostatic correction is small;
at the same time, the introduction of charged defects into the
supercell results in substantial rearrangements of atoms, which
are hard to contain in a supercell, even of a size as large as
1000 atoms. This leads to large errors due to elastic energy
contributions, which become the dominant term among errors
associated with the supercell method for such materials (an
example of such a case is TiO2).
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APPENDIX A: ENERGY WITH PERIODIC BOUNDARY
CONDITIONS

The computational scheme described here is based partly
on a previous work proposing a method for defect formation
energy computations [30]. In Fourier space the Poisson
equation Eq. (2) takes the form

ε̂(Gz) ∗ |G|2V̂ ( �G) + Gẑε(Gz) ∗ GzV̂ ( �G) = ρ̂d ( �G), (A1)

where ε̂, V̂ , and ρ̂d are the Fourier transforms of the dielectric
profile, the potential, and the defect charge, respectively. In ac-
tual computational applications the quantities described above,
the charge density of the defect ρd (�r) and the corresponding
potential V (�r) are represented on a discrete mesh of size
(Nx,Ny,Nz) and corresponding mesh spacings �x = Lx/Nx .
With the definition of the mesh in Fourier space, the integral in
the convolutions is reduced to a sum, and then the discretized
form of the Poisson equation can be simplified as follows:

ε̂(Gz) ∗ |G|2V̂ ( �G) + Gẑε(Gz) ∗ GzV̂ ( �G)

=
∑
G′

z

ε̂(Gz − G′
z)G

′
z

2V̂ (Gx,Gy,G
′
z)

+
∑
G′

z

ε̂(Gz − G′
z)

(
G2

x + G2
y

)
V̂ (Gx,Gy,G

′
z)

+
∑
G′

z

ε̂(Gz − G′
z)(Gz − G′

z)V̂ (Gx,Gy,G
′
z)G

′
z
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=
∑
G′

z

ε̂(Gz − G′
z)(G

2
x + G2

y + GzG
′
z)V̂ (Gx,Gy,G

′
z)

= ρ̂d (Gx,Gy,Gz), (A2)

which in discrete representation reads∑
l

εk−l+1
[(

Gi
x

)2 + (
Gj

y

)2 + Gk
zG

l
z

]
Vijl = ρijk, (A3)

where we have introduced the shorthand notation εk−l+1 =
ε̂(Gk

z − Gl
z), Vijl = V̂ (Gi

x,G
j
y,G

l
z), and ρijk = ρ̂d (Gi

x,

G
j
y,G

l
z). The presence of a nontrivial dielectric profile in the

z direction results in coupling between components of Vijl

and ρijk for k,l = 1 · · · Nz. The problem is factorized into
Nx × Ny systems of linear equations defined by matrices Mij

with matrix elements M
ij

kl ,

M
ij

kl = εk−l+1
[(

Gi
x

)2 + (
Gj

y

)2 + Gk
zG

l
z

]
. (A4)

The matrix elements M
ij

kl can be expressed through the
circulant formed from the vector of Fourier components of the
dielectric profile Ĉ[ε],

M
ij

kl = Ĉkl[ε]
[(

Gi
x

)2 + (
Gj

y

)2] + Ĉkl[ε]Gk
zG

l
z. (A5)

The second term in the sum is a Hadamard product of
the circulant Ĉ[ε] with matrix G whose matrix elements are
defined by Gkl = Gk

z Gl
z. In modern software libraries the

enumeration of wave vectors inside the Gi
z set is implemented

with the first half of the set being the wave vectors from G1
z = 0

to G
Nz/2+1
z = πNz

Lz
, and the second half of the set (the negative

wave vectors in ascending order) being the wave vectors from
G

Nz/2+2
z = −π(Nz−1)

Lz
to G

Nz
z = − π

Lz
. With that notation, the

outer product matrix G has zero matrix elements along the first
row and first column, having the rank of Nz − 1. Therefore,
the Hadamard product Ĉ[ε]G also is rank deficit. For this
reason, for the case i = 1, j = 1, when the components
G1

x = 0, G1
y = 0, so is the first term in the equation above,

and the matrix M11 is rank deficient. The component at the
head of this matrix establishes the relation between the average
value of the charge over the simulation cell ρ111 and the cell
average of the electrostatic potential under periodic boundary
conditions V111. This can be alleviated by setting M11

11 equal to
an arbitrary number and then setting V111 to 0 in the resulting
solution. The scheme described here can easily be extended
to the case of the host material with an anisotropic dielectric
tensor when instead of one dielectric profile ε(z) the problem
will have three profiles corresponding to the components of
the dielectric tensor {εxx(z),εyy(z),εzz(z)}. After discretization
the expressions for matrices Mij can be written in terms of
circulant matrices Ĉ[εxx], Ĉ[εyy], and Ĉ[εzz] generated from
the discrete Fourier transforms of εxx(z), εyy(z), and εzz(z),
respectively,

M
ij

kl = Ĉkl[εxx]
(
Gi

x

)2 + Ĉkl[εyy]
(
Gj

y

)2 + Ĉkl[εzz]G
k
zG

l
z.

(A6)

This approach has the computational complexity of
O(NxNyN

2.8
z ) due to Nx × Ny linear systems of size Nz × Nz.

It naturally lends itself to parallelization by distributing

FIG. 5. Illustration of the computation under open boundary
conditions. The points on the mesh for discretizing charge are shown
as hollow white circles, and the points of the potential mesh are shown
as red circles.

the workload for the linear systems’ solution between the
processes and then collecting the resulting components of the
Fourier transform of the potential.

APPENDIX B: ENERGY OF THE ISOLATED CHARGE

The electrostatic potential for an isolated charge also is
governed by the Poisson equation Eq. (3) with the boundary
conditions for the potential to decay to zero at infinity
lim�r→∞ V (�r) = 0. This makes the explicit solution of the Pois-
son equation by discretization of the Laplacian operator not
tractable. A substantial number of modern approaches to the
electrostatic problem under open boundary conditions, such as
the fast multipole method [33], instead are based on the direct
summation of the potential induced by discretized charge
elements with some techniques utilized for improving effi-
ciency [34]. In our case, the inhomogeneous dielectric profile
complicates the problem, so we resort to a direct summation
technique for the potential computation as described next.

The approach we implement here is based on the image
charge method. The key idea is that, for a discrete rep-
resentation of the defect charge on the boundary of two
dielectric media, the potential induced by the point charge
elements on both sides of the dielectric boundary can be
calculated analytically [35]. The situation is illustrated in
Fig. 5, which shows a schematic of the slice of the charge
distribution along the xz plane. The thick black line denotes
the boundary between two media with dielectric constants ε1

and ε2, respectively. For the potential computation an auxiliary
grid is introduced since the 1/r Coulomb potential is singular;
this auxiliary grid is shifted by a vector (�x

2 ,
�y

2 ,�z
2 ) compared

to the charge mesh. For each charge point the contributions
to all points on the potential grid are computed; there are
two types of potential expressions depending on the positions
of charge and potential mesh points relative to the interface.
For points on the same side of the interface, the potential is
induced by the charge itself: 1/ε1r1 with the dielectric constant
ε1 corresponding to the material in that part of the simulation
domain. Another contribution is from the image charge, which
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induces a potential with an effective screening factor of ε1−ε2
ε1+ε2

.
In the limit of charge in vacuum near the metal surface, the
effective screening factor is −1, which corresponds to the
well-known limit of an image charge of equal magnitude and
opposite sign. The lateral positions of the image charge are
the same as those of the original charge element, and the z

coordinate is obtained by applying a mirror reflection operation
on the plane separating the two media. For points on the
opposite side of the interface, only the original charge element
has a contribution with an effective dielectric constant of 2

ε1+ε2
.

After obtaining the potential values on the offset grid the
values of the potential are interpolated back on the original
charge mesh. Due to the two iterations over all mesh points,
the resulting computational cost is O(N2

x N2
y N2

z ) with a much
smaller contribution for the interpolation. However, it lends
itself naturally to parallelization where the computation of
subarrays of the offset potential grid can be distributed among
processes.

This approach has three major drawbacks: First, the method
scales as the sixth power of the mesh linear size; second,
a single plane is a very crude approximation to the actual
dielectric interface on the atomic scale; third, such a boundary
model accommodates only one interface, thereby excluding
2D materials from consideration. We investigate another
approach for computing the electrostatic energy under open
boundary conditions through extrapolation of the periodic
boundary conditions’ energy to infinite cell size. This method
is inspired by the “scaling relationships” discussed in earlier
methodology work [26] where it was shown that the error
in electrostatic energy scales as an inverse of the supercell
size. This method was mentioned in the literature before
[30], but it has two important caveats which we discuss
here.

The isolated energy can be recovered by carrying out
a series of model electrostatic calculations for increasingly
larger model supercells scaled by an integer factor α compared
to the original size and then fitting the resulting energies to a
straight line as a function of 1/α; the limit of 1/α → 0 is
the electrostatic energy of an isolated charge. We consider
a Gaussian charge of width 1.0 bohr in vacuum in a cell
of 12 × 12 × 12 bohr. The extrapolation procedure is carried
out by computing the electrostatic energies for that charge
for a number of scaling factors up to 7 (84 × 84 × 84 bohr)
and fitting the resulting energies to a straight line. The result
matches closely the true electrostatic self-energy of an isolated
Gaussian charge distribution in vacuum EGauss = 7.67 eV; the
errors in extrapolated energy are 0.05, 0.03, and 0.02 eV
for the maximal scaling factors of 3, 5, and 7, respectively.
The electrostatic energies and, correspondingly, differences
between them scale inversely with the dielectric constant of
the system, so the calculations in vacuum represent an upper
bound on the error estimates in our case. Therefore, in practice
it should be sufficient to set the scaling factor to 4 or 5. The
electrostatic correction decreases with the increase in the size
of the original supercell, so for larger systems the error is
dominated by DFT errors in E(α) values, which depend on the
sampling of the defect charge state, especially for anisotropic
wave functions, and can reach ∼0.03 eV.

Another important component of the problem is the initial
shape of the cell containing the charge. We have found that
even for a Gaussian charge in vacuum any deviation of the orig-
inal cell shape from cubic will result in very large errors (up to
5 eV for the starting shape of 24 × 24 × 12 bohr). This is a crit-
ical point that is rarely if ever mentioned in discussions of the
extrapolation, and only for a cubic shape of the original super-
cell does the extrapolated energy converge to the proper limit.
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