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Scalable designs for quasiparticle-poisoning-protected topological quantum computation
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We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more
Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into

superconducting islands with significant charging energy. Quantum information can be manipulated according
to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and
nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues:
(1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they
are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and
utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed
by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential
capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate

magic states.
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I. INTRODUCTION

Non-Abelian topological phases of matter provide an
attractive platform, in principle, for fault-tolerant quantum
computation. However, there are a number of obstacles that
must be surmounted in order to make this a reality. (1) A
non-Abelian topological phase must be found or engineered.
(2) Quasiparticles must be braided in order to manipulate
the quantum information that is encoded in them; moving
individual quasiparticle excitations is a feat that has never been
accomplished before, and it would have to be done routinely
during the operation of a topological quantum computer.
(3) The topological charge of a pair of quasiparticles must
be measured in order to determine the result of a calculation.
The conceptually simplest way to do this would be with an
anyonic interferometry measurement [1-6], but that requires
coherent transport, potentially over long scales; neither an
interferometry nor any other measurement has unambiguously
measured the topological charge of a pair of quasiparticles.
In this paper, we present a scheme for topological quantum
computation that obviates these difficulties.

A path surmounting the first obstacle noted above was
opened up by the advent of semiconductor-superconductor het-
erostructures that combine superconductivity, strong spin-orbit
coupling, and magnetic fields to create a topological super-
conducting state that supports Majorana zero modes (MZMs)
[7-9]. While originally envisioned in two dimensions [10],
such topological superconducting phases can also be hosted
in one-dimensional systems, e.g., nanowires [8,9,11,12], and
braiding operations can be implemented in wire networks
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[13]. There is strong experimental evidence that a topological
superconductor has been realized with semiconductor
nanowires [14-20].

The price that is paid in such an approach is that a
topological superconductor is not quite a topological phase
of matter but, rather, a “fermion parity-protected topological
phase” [21] and, therefore, is vulnerable to “quasiparticle
poisoning” (QPP), i.e., to processes that change the number
of electrons in the device. However, one can prevent QPP
of MZMs on a superconducting island by incorporating
relatively large charging energies that provide a Coulomb
blockade for the island, as utilized in the proposals of Refs.
[22-26]. (Charging energy does not protect MZMs from
quasiparticle excitations occurring within the device. However,
such excitations and the errors they cause are exponentially
suppressed by A /T for energy gap A and temperature 7.) We
refer to a Coulomb-blockaded superconducting island hosting
MZMs as a “MZM island”.

A recent experiment, inspired by the theoretical prediction
of Ref. [27], reported the first systematic measurement of the
ground-state degeneracy splitting for proximitized nanowires
in a Coulomb-blockade regime and observed that it is exponen-
tial in the nanowire length L [20]. The transport measurements
of Ref. [20] are in qualitative agreement with theoretical cal-
culations [28]. The combination of material science progress
[29,30], device quality and controllability [20,31], and the-
oretical advances involving semiconductor-superconductor
heterostructures [32-36] provides a pathway for topological
quantum computation with semiconductor nanowires.
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A way to circumvent the second obstacle, i.e., the need
to move quasiparticles, is to use a ‘“measurement-only”
protocol [37,38], wherein a sequence of measurements has the
same effect as a braiding operation. Such methods eliminate
the need to move the computational quasiparticles and, thus,
eliminate the need for coherent topological “T junctions” [13],
which may present banal engineering issues such as those
identified in Ref. [39].

The remaining obstacle is the measurement of the topo-
logical charge of quasiparticle pairs. One might worry that
measurements could still involve moving probe quasiparticles
through an interferometry loop, thereby reintroducing the
second obstacle. However, this concern can be surmounted
by taking advantage of the distinction between a fermion
parity-protected topological phase and a true topological
phase (which is a mathematical abstraction that may not
quite correspond to any real physical system anyway [21]):
topological charge can be manipulated by the process of an
electron tunneling into a MZM [40]. As shown in Ref. [27],
transport through a pair of MZMs can provide a measurement
of their combined topological charge in the presence of a large
charging energy.

Majorana-based qubits with four MZMs residing on a
Coulomb-blockaded island have been studied recently. In
particular, Refs. [22,23] have focused on surface code archi-
tectures where the MZM islands form a hexagonal lattice. The
large charging energies invoked in these papers distinguishes
them from other Majorana surface code proposals in which the
charging energies are small [41,42]. The former surface code
approach has the advantage that conductance measurement
via interference is naturally built in, with the interfering
paths involving cotunneling through MZM islands. While the
surface code aims for fault-tolerant computation, one can also
think about a minimal setup in which islands with four MZMs
constitute logical qubits, denoted as “Majorana box qubits”
in Ref. [26], and measurements are performed by detecting
frequency shifts of double-dot systems. In that work, a minimal
demonstration of the Clifford gates was proposed using four
such qubits.

In this paper, we design a modular system for measurement-
only MZM topological quantum computation in which the
basic module contains a small network of (4 or 6) MZMs and
quantum dots for measurement.! Related ideas have appeared
in the independent work of Ref. [26], but they are sharpened
here by quantum information requirements that lead us to a
scalable arrangement with novel features.

We analyze five new scalable architectures [43,44] for
Majorana-based quantum computing, each of which over-
comes all of the obstacles listed above. Each architecture
is centered around a qubit composed of parallel sets of
topological superconducting wires. The wires are electrically
connected by normal superconductors, so that no individual
wire has a charging energy, but the entire qubit is Coulomb
blockaded at all times. This fact is an important distinction with
respect to the previous Majorana-based quantum computing
proposals [13,45-51]. Quantum information is manipulated

"The coupling to quantum dots plays a different role here than in
Ref. [112], where the dot is a spin qubit.
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by joint fermion parity measurements on pairs and quartets
of MZMs. These measurements allow for intraqubit braiding
operations via the measurement-only protocols, as well as
for two-qubit entangling operations. Of our five proposed
architectures, three involve six MZMs per superconducting
island, which we refer to as “hexons”, and two involve
four MZMs per island, which we call “tetrons”. We eval-
uate each hexon and tetron design on four axes: (1) QPP
time ~ charging energy Ec; (2) signal visibility ~E:!;
(3) fabrication simplicity; and (4) computational efficiency.
Due to the exponential suppression of errors, our proposed
qubit designs should have sufficiently long coherence times to
solve low-depth problems. For long enough computations, the
exponentially small errors will eventually become important
and must be addressed through some form of error correction.
The computational universality of our proposed qubits allows
flexibility in the choice of code, although it would be wise to
use codes that take advantage of having high-fidelity Clifford
gates. While the implementation of an error-correcting code
on the system is an interesting and important question, it is
not the focus of this paper and will instead be addressed in a
future work [52].

This paper is organized as follows. In Sec. II, we describe
one of our five designs, the “one-sided hexon”, as an illustrative
example of the key concepts utilized in our proposals. All of
our designs rely on measurement-only topological quantum
computation [37,38], so in Sec. III, we explain how the
fermion parity of an even number of MZMs can be measured
through their coupling to nearby quantum dots. In Sec. IV,
we give a detailed description of all of our topological qubit
designs: the one-sided hexon introduced in Sec. II, as well
as two-sided hexons, linear hexons, two-sided tetrons, and
linear tetrons. We elucidate the quantum information-theoretic
basis for achieving all Clifford operations, i.e., a “Clifford-
complete” gate set, in a topologically protected manner with
these designs. In Sec. IVC, we compare and contrast the
proposed qubit designs using the axes (1)—(4) mentioned
above. In Sec. V, we describe how our proposed architectures
support universal quantum computation by using approximate
magic state production and distillation. Finally, in Sec. VI, we
outline the next experimental steps towards realizing our qubit
designs.

II. OVERVIEW AND DESIGN EXAMPLE

In this section, we discuss the main principles of the scalable
Majorana-based quantum computing architectures presented
in this paper. For concreteness, we focus on a particular
example of hexons consisting of six proximitized nanowires.
In Sec. IV, we present additional architectures utilizing hexons
and tetrons constructed from various numbers of proximitized
nanowires.

The main building block of the presented design is a
comblike structure (see Fig. 1) consisting of six floating (i.e.,
not grounded) one-dimensional topological superconductors
(1IDTSs) of length L. These 1DTSs may be realized, for
instance, using InAs wires coated by a superconducting half-
shell [29]. To form a single island hosting multiple MZMs,
the 1DTSs are connected by a strip of (s-wave) supercon-
ductor at one side, which we refer to as the “backbone”.
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Since the superconducting backbone is a conventional (i.e.,
nontopological) superconductor, the 1DTSs and the magnetic
field needed to bring them into the topological phase can
all be aligned in the same direction. The vertical distance
between neighboring 1DTS is chosen to be shorter than the
superconducting coherence length, which will lead to a strong
hybridization of the six MZMs located at the backbone side of
the 1DTSs. Consequently, there remain only six MZMs in the
structure, localized at the nonbackbone side. We denote these
MZMs by y; for j =1, ...,6, which we also use to represent
the corresponding Majorana operators. We call this comblike
structure a “one-sided hexon”.

The hexon acts as a topological Cooper pair box [53,54].
If operated away from charge degeneracies, i.e., in Coulomb
valleys, the overall parity of the hexon —i ]_[?:1 y; will be
fixed and the charging energy will protect the system from
QPP. A QPP event would occur if an unpaired fermionic
quasiparticle hopped onto or off of the hexon. However, due to
the hexon charging energy E¢, such events will be suppressed
as exp(—E¢/T). As such, the hexon has a (nearly) degenerate
ground-state subspace that is four dimensional, which we
use to encode a logical qubit and an ancilla. A QPP event
would be a “leakage error” in which the system leaves the
four-dimensional computation subspace.

One might additionally be concerned about thermally
excited quasiparticles within the device. Provided the temper-
ature is much smaller than the energy gap A, such excitations
and the errors they cause are exponentially suppressed in
AJT.

In order to avoid errors due to splitting the ground-state
degeneracies of the MZMs from accruing in the quantum in-
formation stored in a hexon, we require two crucial constraints
for the one-sided hexons. First, the IDTSs need to be long
enough compared to the effective coherence length £ within the
1DTSs,i.e., L > &,to suppress the hybridization of the MZMs
by a factor of exp(—2L/&). Second, we need to suppress
the charging energy associated with the mutual capacitance
between two 1DTSs within a hexon. Both hybridization of
the MZMs and relative charging energies between 1DTSs
would result in splitting the degeneracy of the hexon ground
states. The relative charging energy decreases exponentially
with the number of channels that connect the 1DTSs to the
backbone [55]. In the limit of many weak channels (described
by a Josephson energy E ), the relative charging energy Ecg
is suppressed by a factor exp(—+/8E;/Eco). We assume that
a direct connection of the backbone with the superconducting
shell of a nanowire has a large area in units of the Fermi
wavelength, i.e., the number of transverse channels in the
junction exceeds thousands. Thus, the relative charging energy
will be quenched with exponential accuracy so that one can
characterize this system as a superconducting island with an
overall charging energy E¢. In other words, it is a topological
Cooper pair box.

As the superconducting island’s charging energy Ec¢ is
inversely related to its geometric capacitance, there is a tradeoff
between using long 1DTSs and maintaining a large charging
energy. When the wire length L is much longer than the
width w of the island (i.e., the length of the superconducting
backbone), the geometric capacitance of the island will
approximately depend linearly in L; the dependence of the
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capacitance on w will be more complicated, but can safely
be estimated to be sublinear. Thus, the charging energy will
roughly behave as 1/L and there will be an optimal value of
L that maximizes the combined protection, i.e., roughly when
Ec/T =~ 2L /& for the one-sided hexon. Based on estimates
from experiments [20], it should not be difficult to reach a
regime in which E¢/T ~ L/§ > 1.

With the above conditions, dynamical phases and QPP
errors will be strongly suppressed by large exponentials. This
opens the path to creating qubits with exceptionally long
coherence times. In the next subsection, we discuss how these
qubits can be manipulated and combined to a large-scale
quantum computer.

A. Single-qubit operations

A universal gate set can be generated by the Clifford
operations [which can be generated from the Hadamard gate,
phase gate, and controlled-NOT (CNOT gate)] supplemented by
an additional non-Clifford gate. One benefit of Majorana-based
quantum computing is that the Clifford operations may be
implemented with topological protection, as we now explain
for the hexon. We discuss how to implement the (non-Clifford)
T gate in Sec. V.

The hexon can be understood as a standard encoding of a
topological qubit in four MZMs combined with an ancillary
pair of MZMs. For concreteness, we let the topological qubit
be encoded in MZMs yy, ¥»2, ¥5, and ys, Which are taken
to have total fermion parity even. We can choose the basis
states of the topological qubit to be |0) = |p12 = ps¢ = —1)
and |1) = |p12 = pss = +1), where pj; is the eigenvalue of

LY Vk-
The ancillary pair of MZMs y3 and y4 is thus constrained
to have iy3ys = —1 in this encoding. The presence of the

ancillary pair of MZMs allows us to implement arbitrary
braiding operations on the four MZMs of the topological
qubit by appropriate measurements [37]. Moreover, we can use
measurements to change which MZMs encode the computa-
tional qubit, shuttling around the ancillary MZMs via anyonic
teleportation. As an example, performing a sequence of parity
measurements of i 34, i y1V3, i V23, and then i 34 generates
the same operator obtained by exchanging y; and y, (see
Sec. IV A 1 for details). In this way, intrahexon measurements
provide a precise way of generating all single-qubit Clifford
gates (which can be generated by the Hadamard gate and phase
gate, for example) on the topological qubits.

These operations require us to have the ability to perform
a sufficiently diverse set of parity measurements of MZM
pairs. Our designs incorporate this via a quantum dot based
measurement scheme. Quantum dots can be defined and
selectively coupled to MZMs by tuning depletion gates in
a nearby semiconducting wire that is connected to the hexon’s
MZM side (see Fig. 1). Measurements of the parity iy;y; can
then be done by connecting MZMs y; and y; to quantum
dots in the semiconducting wire. In general, the eigenvalue
pjr of iy;y, will affect the ground-state energy as well as the
average charge and differential capacitance of the quantum
dots. This can be used in a variety of schemes to make the
desired measurement, as is detailed in Sec. III.
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FIG. 1. An example of a scalable hexon architecture. The minimal building block defining a qubit and an ancilla are one-sided hexons,
which are topological Cooper pair boxes containing six MZMs (magnified in the left panel). Note: the illustration is not drawn to scale; in
practice, the length L of 1DTS wires is much larger than the coherence length & and vertical separation distances between wires are much
smaller than £. The measurement of joint parities of MZMs becomes possible by selective coupling to quantum dots. The latter are defined and
controlled by gates as depicted in the magnification in the right panel. Two-MZM measurements within a hexon and four-MZM measurements
involving two hexons (with two MZMs from a given hexon) enable Clifford-complete operations on the array of qubits.

B. Entangling operations and full quantum computation

We must entangle different hexons in order to implement
quantum operations corresponding to the full set of Clifford
gates. Such entangling operations between hexons can be
achieved by performing four-MZM measurements, involving
two MZMs from each hexon. The latter can also be realized
using quantum dots (see Sec. III for details). The main idea
is to use an interference effect [22,23] in the hybridization
of two quantum dots arranged as in the magnified panel of
Fig. 1. The pinch-off gates are tuned so that there is no direct
connection between the two quantum dots. However, the two
dots can hybridize via tunneling in and out of the MZM states
of the nearby hexons. Coherently summing amplitudes along
the paths through each nearby hexon leads to a detectable
dependence of the hybridization energy on the overall parity
of the four involved MZMs.

In order to achieve a fully connected two-dimensional
graph for the entangling operations, some of the four-
MZM measurements must involve MZMs that are separated
by distances of approximately 2L. Measurements involv-
ing these longer distances require additional structure to
actualize. For this purpose, additional floating topological
superconductors of length 2L can act as links to bridge
these distances by MZM-mediated coherent electron tun-
neling [27,28]. Two such coherent links are placed above
and below any superconducting backbone (see Fig. 1). The
resulting (trivalent) connectivity graph of the hexon qubits is
hexagonal.

Due to the freedom of arbitrary MZM exchanges within
each hexon, a single entangling operation between adjacent
hexon pairs is enough to realize CNOT operations between
qubits and therefore make the hexons Clifford complete. The
latter can be augmented to full quantum universality if we can
also generate approximate magic states. The designs presented
here naturally allow us to prepare very precise magic states,
which lowers the overhead for magic state distillation (see
Sec. V).

We further note that error correction may be imple-
mented at the software level on the array of hexons,
as Clifford-complete physical qubits support all stabilizer
codes [56].

III. MAJORANA MEASUREMENTS

A key feature of our approach to scalable topological
quantum computing is the ability to perform projective
measurements of the combined fermionic parity of multiple
MZMs. Such measurements are initiated by appropriately
tuning gates to couple MZMs to quantum dots, as seen in
the magnified right panel of Fig. 1. This realizes the devices
depicted in Fig. 2 with one quantum dot (left panel) or two
quantum dots (right panel). The gates control the amplitudes
t; for electrons to tunnel between the MZMs (red) and a
quantum dot (light gray). At low temperature 7 < E¢, the
probability of an excited state with an electron on the island is
exponentially small, as it is proportional to exp(—E¢/T). The
virtual transitions of electrons to the island are state dependent
and, therefore, shift the energy levels in a parity-dependent
manner. Suitable spectroscopy on the quantum dot system
allows measurements of the two-MZM parity (left panel) or of
the four-MZM parity (right panel) parity [24,26].

The amplitude #; is exponentially suppressed in the tunnel
barrier separating y; from the quantum dot, and as such may
be accurately tuned to zero. Before and after the measurement,
all couplings are turned off, leaving the MZM island and

7 7 V3
0 (@)
(@)

Y2 V2 Y4

tunneling amp.
semicond.

=== top. supercond.
=== supercond.

@ MzZM
© quantum dot

FIG. 2. Appropriately tuning the gates shown in the magnification
of the right of Fig. 1 creates the scenarios depicted in the left and
right panels here. Left panel: a device configuration for measuring
the two-MZM parity p;, (eigenvalue of iy,y,). MZMs y; and y, are
coupled to a single quantum dot with tunneling amplitudes ¢, and t,,
respectively. Right panel: a device configuration for measuring the
four-MZM parity p = pi» p3a, where pj is the eigenvalue of iy;y;.
MZMs yy,ys are tunnel coupled to the upper quantum dot, while
MZMs y, and y, are tunnel coupled to the lower quantum dot. Both
geometries can be modified to measure nonadjacent pairs of MZMs,
as demonstrated in Fig. 9.
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the quantum dot with fixed charge. In this decoupled state,
environmental noise, which couples to charge, can cause
decoherence of states with different occupancy on the quantum
dot(s), but has no effect on the MZM island. Thus, unless we
are actively performing a measurement, noise cannot measure
and collapse the qubit state.

There is a small probability that the final occupancy of the
quantum dot(s) after the measurement will be different than
before the tunnel couplings were turned on. This probability
is suppressed by the charging energy of the MZM island, but
it is not zero. If the charge of the quantum dot(s) is different
after the measurement than it was before the measurement,
then QPP has occurred [the MZM island was poisoned by the
dot(s)]. To correct this error, one could repeat the measurement
until the final dot occupations are as desired. The chance of
such a QPP event can be reduced by tuning the quantum dot(s)
far away from resonance before disconnecting the couplings.

A. Projective measurement of two-MZM parity

We first discuss the case of two MZMs y; and y; coupled to
a single quantum dot as shown in the left panel of Fig. 2. While
coupling to a single MZM does not provide any information on
fermion parity, nonlocal coupling to two or more MZMs may
contain this information [27]. The coupling of quantum dots
to MZMs was first discussed in Ref. [40], which considered
the case of a grounded superconductor (i.e., E¢ = 0).

When the tunneling amplitudes are zero, the MZM island
and the quantum dot are decoupled. In that case, the Hamilto-
nian for the MZM island is

Hy = Hgcs + Hc, (D

where Hpcs is the BCS Hamiltonian for an s-wave su-
perconductor coupled to multiple semiconductor nanowires,
and H¢ is the charging energy Hamiltonian for the MZM
island. In the low-energy approximation when energies are
much smaller than the superconducting gap A, the low-energy
subspace contains only MZMs. (See Appendix A for a more
detailed discussion.) We neglect the length-dependent energy
splitting of MZMs, unless otherwise stated. We also assume
charging energies of tetrons and hexons are large compared to
temperature. The corresponding charging energy Hamiltonian
is

He = Ec(Ng — Np)*. 2)

The operator N counts the combined charge of the nanowire-
superconductor island in units of the electron charge e and
has integer eigenvalues Ng. The induced (dimensionless)
charge on the island N, is controlled by the gate voltage.
Henceforth, we consider the limit when the charging energy on
the island is large compared to temperature (E¢ >> T), so that
its charge does not change during the course of a measurement.
For simplicity, we will assume that |[N,| < 1, so that the
ground-state configuration has an average charge (Ng) =0
and energy Eg = EcN gz. For A > E the two lowest excited
states |[Ng = =£1) have energies £y = Ec(1 — Ng)2 and E, =
Ec(1+ Ng)z. Thus, for E¢ > T the corresponding excitation
energies are much larger than the temperature.

We assume that the semiconductor quantum dot is in a few-
electron occupancy regime. The corresponding Hamiltonian is

PHYSICAL REVIEW B 95, 235305 (2017)

given by
Hop =Y ha £ fu + &c(h = ng)?, 3)

where « indexes the electron orbitals of the quantum dot,
fo and fj are the corresponding fermionic annihilation and
creation operators, respectively, and i = ), £l f. is the total
occupation operator. The h, are the corresponding orbital
energies and &¢ is the charging energy. Here, we assume that
quantum dot is in the spinless regime due to the large magnetic
field necessary to drive the semiconductor nanowires into the
topological phase [8,9]. We consider the low-temperature limit
such that the charging energy ec and the level spacing in
the dot are much larger than the temperature. The regime
of interest is when the quantum dot is tuned to be near the
charge-degeneracy point for n and n 4 1 electrons. In this
case, one approximates the above Hamiltonian by an effective
one corresponding to a single spinless fermion level

HEY = hity + ec(iy —ng ), )

where the operator /iy = f ' f has integer eigenvalues n f-
The two relevant low-energy states of the dot are defined
by |ny =0,1). This approximation is justified as long as
the dot charging energy is the largest relevant energy scale
in the system, i.e., much larger than the charging energy of
the superconducting island, e¢ > E¢. The charge-degeneracy
point nz is defined by the condition € 1(n2‘,) = eo(nz,), where

€i1(ng) = ec(1 —ng)’ +h, &)

eo(ng) = ecnj. (6)

When T « A,E¢, we can consider the low-energy ap-
proximation where one writes Hp in terms of the MZMs
on the island. Provided that the tunneling matrix elements
between the quantum dot and the MZM island are smaller
than the induced superconducting gap in the nanowires and
the charging energy, 1; < A, E¢, one can write the effective
tunneling Hamiltonian [27,40] as

o—i®/2
2
where  and #, correspond to tunneling between the quantum
dot and y; and y», respectively, and ¢'?/* is the shift operator
which adds an electron to the island ¢/#/?|Ng) = |Ng + 1).
Finally, the total Hamiltonian for the coupled system is given
by

i fiy +02fTy) + He, @)

Hypn = —i

H[ot = HO + Hég + Hlunn~ (8)

The effect of Hyyyy, is to allow fermions to tunnel between
the quantum dot and MZM island. We assume that the charging
energy on the island is large at all times. Therefore, all electron
charging processes are virtual, i.e., any fermion that hops
onto the MZM island must hop back to the dot and vice
versa. As shown below, such virtual transitions perturb the
ground-state energies in a parity-dependent manner. Consider
first the case where ny = 1 when the tunneling amplitudes
are turned off. Turning on the ¢; allows a fermion to tunnel
from the dot into the MZM and then tunnel back onto
the dot through a possibly different MZM. This process
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mixes the ground state |[Ng = 0) ® |ny = 1) with the excited
state [Ns = 1) ® |ny = 0), resulting in a shifted ground-state
energy (to the lowest order in |¢;|/E¢)

It11? + |0)? +ip(in — nty)

etOt:E N2 € —
1 clNg Fe 4[Ec(1 —2N,) + €0 — €1]

©))

Here, p i is the eigenvalue of i y; y, the fermion parity of the
two MZMs coupled to the quantum dot. In other words, this
calculation applies to both p;, = %1 initial ground states. This
parity dependence originates from elastic cotunneling through
the corresponding pair of MZMs.

Alternatively, if the quantum dot is unoccupied when
t; = 0, then when the ¢; are turned on, an electron can tunnel
from a MZM onto the dot, then tunnel into a (possibly different)
MZM, mixing the ground state |Ng =0) ® [ny = 0) with
the excited state |[Ng = —1) ® |ny = 1). The corresponding
shifted ground-state energy is (to lowest order in |¢;|/E¢)

1> + > — ipi@itn — 61})
4[Ec(1 +2N,) + €1 — €]

tot 2
800 = EcNg + €y —

(10)

In both Egs. (9) and (10), the parity dependence arises from
the coupling between the quantum dot and MZMs. Indeed,
by setting either #; or #, to zero one finds a correction to the
quantum dot ground-state energy that is independent of p;,. At
the charge-degeneracy point n;, of the quantum dot, the parity

dependence of \* — & scales as Im[r{1,/ Ec].

It is also important to observe that the parity dependence
disappears if both #; and #, are real, even if both quantities
are finite. Since time-reversal symmetry is broken, this is not
generic. However, for spinless fermions one may introduce
an artificial antiunitary symmetry 7 that squares to +1 [57].
Since a bilinear coupling between y; and y; is precluded, #
and t, are necessarily real. Fortunately, 7 is most certainly
not a microscopic symmetry of our setup. However, the
parity dependence of the shifted ground-state energies may
be “accidentally” weak for nongeneric tunneling amplitudes.
We comment further on this issue in Sec. VI.

B. Projective measurement of four-MZM parity

In order to describe the device configuration shown in the
right panel of Fig. 2, the Hamiltonian of Eq. (8) is modified
to include two superconducting islands (four MZMs) and two
quantum dots. The decoupled MZM island Hamiltonian H
becomes a sum of Hamiltonians for the left and right MZM
islands (labeled a = 1 and 2, respectively). The two islands
may have different charging energies and induced charges, so
the total (decoupled) charging energy Hamiltonian is the sum
of those of the two islands:

He= )" Hca (11

a=1,2

Heo = Eca(Nsy — Ngo) (12)

For simplicity, we again assume that |N,,| < 1 for both
islands, so the ground state of the decoupled MZM islands has
energy Ey = Eclegz’l + EC,2N§’2. In general, the charging
energies and induced charges of the two quantum dots can
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also be different. For simplicity, we consider the case in which
they are the same. The effective Hamiltonian for the two
semiconductor QDs may be written as

Hég = Z haﬁf,a + EC,a(ﬁf,a - ng,a)2
a=1,2

+emipr —ng )Aigr —ng o). (13)

The first term in Eq. (13) is simply the sum of the effective
Hamiltonians of the two decoupled QDs, while the last
term describes a mutual charging energy between the two
quantum dots. We consider the case when ¢y < ec 4. The
mutual charging energy may be appreciable for the geometry
shown in the right panel of Fig. 2, but can be neglected
in other measurements of the joint parity of four MZMs
(e.g., measurements involving MZMs on opposite sides of
the two-sided hexon shown in Fig. 10). For simplicity, we will
henceforthseth| = hp = hand ec,| = ec» = &c. We assume
that there is no direct tunneling from one dot to the other; the
only way for an electron to tunnel between quantum dots is
through a superconducting island.

The tunneling Hamiltonian now involves four MZMs,
taking the form

je"i%1/2
2
e i92/2

2

Hlunn = - (tlfl]LVI + fzsz)/z)

t3flys + tafiv) +He,  (14)

where the upper and lower quantum dots are labeled 1 and 2,
respectively, so that f, f,T, f>, and f; are their corresponding

1 s . i 91 ;92
annihilation and creation operators. e'2 and e™'2 are the
electron shift operators for left and right islands, respectively.

As we saw for two MZMs, nonzero tunneling amplitudes
mediate virtual transfer of fermions between the MZM islands
and the quantum dot, thereby shifting the spectrum from that of
the decoupled system. Crucially, the perturbed energies depend
on the joint parity of the two MZM islands p = piyp34 and
does not depend on pj, or ps4 individually. This dependence
can be intuitively understood by considering the tunneling
paths a fermion can take: it either travels partway around the
loop and then backtracks (thereby only picking factors of p?k

or p?k, both of which equal one), or it makes a full loop (picking
up a factor of py; p34). These arguments can be generalized to
higher orders in perturbation theory where multiple loops are
allowed. The resulting energy shifts only depend on the joint
parity in any order of perturbation theory.

More quantitatively, the total Hamiltonian

H[‘:)ftf = HC + HBCS + Héf]g + Htunn (15)

has four low-energy states for given values of p» and piq,
which we label 8 = 0,1,2,3, with corresponding energies 8}?‘.
Whent; = 0and N, , = 0, these four states are those in which
the occupancies (ny1,n ) of the two dots are (0,0), (1,0),
(0,1), and (1, 1), and which have the respective energies €y, €/,
€;, and €3, which are defined in Eqs. (A28)—(A31).

Consider the case where both islands have equal charging

energy Ec, = Ec. When t; # 0, the states 8 =0 and 3,
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corresponding to quantum dot occupancies (0,0) and (1,1),
do not hybridize. The tunneling Hamiltonian allows fermions
to tunnel into and out of the same MZM, resulting in the
perturbed energies given by

2 2
€t0t =€ — l |t1| + |t3|
0 4\Ec+e€ —ep

6% + |ta|?
[t2]” + [t4] ) (16)
Ec+e—¢€
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to leading order in #;/ Ec. These energies are clearly indepen-
dent of the MZM parities.

In contrast, nonzero ¢; hybridizes the 8 = 1 and 2 states,
corresponding to quantum dot occupancies (1,0) and (0,1).
The second-order perturbation theory Hamiltonian for these
two states can be written as

HY + H® = Byl + B,o, + Byo, + B.o,,  (18)

2 2 2 2
e = 5 — l( 61" + Il 2| + |l ) (17)  where the Pauli matrices o, act in the basis of the quantum
4\Ec+e—e3 Ec+e—e dot states (1,0) and (0,1). We find diagonal elements
|
€ +e€ 1 2Ec +€y+€3—€ — € 2Ec + €y +€3— € — €
Bo=¥——[(|tl|2+|r3|2)< cTRT S >+(|12|2+|f4|2)( crorTs o2 )]
2 8 (Ec +e€—€)Ec + € —€) (Ec + €3 —€)(Ec +¢€ —€)
(19)
€ —€ 1 €3 — € — €+ € € — € — €3+ €
B.= =~ g[(|r1|2+ |r3|2>( i )+<|rz|2 + |t4|2>( . )]
(Ec +e€ —€)Ec+e—e) (Ec +€—€)Ec+e —e)
(20)
and off-diagonal matrix elements
1 2F -2 2F -2
B, =Re[p12t1t;+p34t3tf]—< ctete; € cteé+ €3 €1 >’ @1
8\(Ec+e —e)Ec+e—€) (Ec+e —e)Ec+e—e€)
1 2E -2 2E -2
B, = Im[pints + p34t3tj‘]—< ct+eée te; € cteéete; €1 ) 22)
8\(Ec+e —e)Ec+e—€) (Ec+e —e)Ec+e—e)

The latter correspond to elastic cotunneling processes medi-
ated by different pairs of MZMs. The energy eigenvalues of
Eq. (18) are given by

e = By — /B + B2 + B2, (23)
ey' = Bo+ /B2 + B2+ BZ. 24)

Clearly, the parity dependence in these energies comes from
B + B)z, and results in a term under the square root in Egs. (23)
and (24) that is proportional to

|piatity + paatsty]®

= 0?6 + 5P 1a? + 2p Re(nti L), (25)

Thus, the only MZM parity dependence of the energies is on
the total parity p = p2p34 of the four MZMs, arising from
fermions tunneling around the entire loop. In Appendix A,
we discuss the more general dependence of eigenvalues on
parameters and compare results from exact diagonalization to
the perturbative approximation of Egs. (23) and (24).

In the lower panel of Fig. 4, we plot the eigenvalues of
Eq. (15) as a function of the induced charge n, ; on the top
quantum dot. Notice that the parity dependence of & and
3" is strongest for n, | = ng 5, where charge fluctuations are
strongest. Experimentally it would therefore be best to tune to a
regime where the (1,0) and (0, 1) states are resonant [and lower
in energy than the (0,0) and (1,1) states]. The corresponding
stability diagram for the ground state of the decoupled double

dot system is shown in the upper panel of Fig. 4.

(

The energy dependence on the four-MZM joint parity p
could also be achieved with a single quantum dot. The right
panel of Fig. 2 can be modified by removing the lower dot and
directly coupling MZMs y, and y4. Such a system sacrifices
some of the tunability of the double quantum dot system and
could introduce complications from low-lying excited states
in the semiconductor wire segment connecting y, and y4.
Nonetheless, if a single-dot system were substantially easier to
realize, it could prove to be more advantageous to achieve the
same projective measurement of four-MZM parity in this way.
Similarly, the two-MZM parity measurements of Sec. IIT A
could also be performed using two quantum dots instead of
one.

Finally, the above analysis is easily generalized to measure
the joint parity of any even number of MZMs. Whenever gate
voltages are tuned such that the tunneling connections create a
single closed-loop path for electrons that traverses 2n MZMs,
the energy of the system will depend on the 2n-MZM parity.
An example configuration for a multiple-MZM measurement
using an array of one-sided hexons is shown in Fig. 3. In
practice, the measurement visibility will decrease with each
additional MZM pair, so it is important to utilize measurements
involving the smallest number of MZMs possible.

C. Experimental proposals for MZM parity measurements

The parity-dependent energy shift, discussed in the previous
subsections, can be observed using energy level spectroscopy,
quantum dot charge, or differential capacitance measurements.
We now briefly discuss these different measurements and
consider specific proposals which differ in their speed and
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FIG. 3. An example configuration for a joint parity measurement
of eight MZMs involving two one-sided hexons and two coherent
links (using the same legend as Fig. 2). Four of the MZMs involved
in the measurement are associated with coherent links and are used
to facilitate the measurement of the other four MZMs, which are

associated to the hexons. The resulting measurement can provide a
two-qubit entangling operation on the two hexons.

sensitivity to noise. Each such measurement is designed to
project the system to a definite parity state (of two MZMs in
Sec. III A and four MZMs in Sec. III B). For concreteness, we
focus henceforth on the four-MZM case (right panel of Fig. 2);
the discussion generalizes straightforwardly to the two-MZM
case (left panel of Fig. 2).

We assume the double quantum dot system is properly tuned
such that the relevant states are those sensitive to the parity
of the MZMs, that is, the relevant states have one electron
shared between the two quantum dots. Moreover, we focus
on the regime in which the system has only weakly occupied
excited states, so that the system can be described by the
ground state with corresponding energy ¢}*". When the double
dot system is tuned close to resonance, the gap to the lowest
excited state is of the order of |¢|>/ E¢ when |t i1 ~ |t]. In order
to have an appreciable difference between the occupation of
the ground and excited states, we require that 7 < |¢|*/E¢.>
Away from resonance, the condition on temperature can be
relaxed at the cost of reducing the visibility (see Fig. 4).
Similarly, finite-temperature effects are negligible for single
quantum dot measurements in which the first excited state is
separated from the ground state by an energy on the order
of E C-

Let us first consider energy level spectroscopy. The de-
pendence of the ground-state energy on parity is shown in
Fig. 4. One possible spectroscopic measurement is done by
coupling the system (MZM island and quantum dots) to a
superconducting transmission line resonator. The resonator
frequency will have a parity-dependent frequency shift Aw
which can be detected using the reflectometry technique [58].
We find that for the four-MZM device discussed in Sec. III B,
the frequency shift is given by
2 1
48 w? EC ’

where g is the coupling between the resonator and the
quantum dot and Sw is the detuning, i.e., the frequency
difference between &5 — &) at the degeneracy point n, and
the resonator frequency. Here, we have assumed that all of the
tunneling matrix elements are comparable to  (see Appendix B

Aw ~ (26)

ZFor the parameters of Fig. 4, with Ec = 1K, the gap is of the order
of 50 mK, which would suffice for typical temperatures 7 ~ 20 mK.
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FIG. 4. Energy as a function of dimensionless induced charges
on the quantum dots for the system shown in the right panel of
Fig. 2. Top panel: stability diagram for the decoupled system (t; = 0)
as a function of the occupation numbers (ny;,n¢,) of the double
quantum dot system in the ground state. The color scale refers to the
ground-state energy, whose precise values away from zero (indicated
by white) are unimportant for the current discussion. Bottom panel:
the four lowest energies &5/ Ec as a function of n, y forn,» = (1 +
h/ec)/2 with tunneling amplitudes #; = 0.1E¢ and t;+; = 0.2Ec.
We use the parameter values N, =0, ec = 10Ec, h = Ec /2, and
en = E¢/2. For nonvanishing tunneling amplitudes, the quantum
dot states (1,0) and (0,1) hybridize. The symmetric combination of
the (1,0) and (0,1) states has energy &3 (shown in red) and the
antisymmetric combination has energy ¢ (shown in black). These
energies ¢ and &5 depend on the joint parity p of the four MZMs;
the solid curves correspond to even parity p = 1 and dashed curves
to odd parity p = —1. As our model only considers two quantum dot
levels, the states (0,0) and (1,1) do not hybridize. These states have
corresponding parity-independent energies & (shown as the blue
dotted-dashed curve) and &5 (shown as the purple dotted-dashed
curve), respectively. From the stability diagram (top panel), we see
that the mutual charging energy &) increases the range of n,; and

ng > for which the parity-dependent energy ¢} is the ground state.

0.520

for details). Using realistic parameters defined in Fig. 4,
frequency estimates given in Ref. [59], and E¢c = 160 pueV
(see Ref. [20]), we estimate Aw ~ 100 MHz. This frequency
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shift falls well within the range of transmon sensitivity.
Spectroscopy with a transmission line resonator benefits from
a fairly short measurement time on the order of 1 us. However,
the resonator will have to operate in large magnetic fields, so
one would need to adapt this technology to such conditions.

The main drawback of this proposal is that while this
measurement technique is suitable for a small number of
qubits, it may become problematic when scaling to a two-
dimensional array of qubits. This is because the resonators
need to be taken off the plane containing the topological qubits
since there is no room for them in the planar layout shown in
Fig. 1. Coupling out-of-plane resonators to qubits is an open
experimental problem.

Another way of performing a joint parity measurement is to
detect the average charge on a quantum dot. Indeed, the charge
n 1 on the upper dot is related to the energy by

1 0E 0E
L Gs  &m 9Lgs , 27)
2ec 8ng,1 2¢ec 8ng,Z

(ng1) ®ngy —

where Egs denotes the ground-state energy of the system.
In this expression, we have neglected O(g2,/¢2) terms. The
dependence of the average charge on the joint parity of MZMs
is shown in Fig. 5. Quantum charge fluctuations broaden the
step function in a manner that depends on the joint fermion
parity of MZMs. Hence, measurement of the charge on the dot
allows one to distinguish different parity states. Given that the
average charge on the dot can be measured very accurately at
low temperatures, i.e., up to roughly 1073 ¢/ /Tint Where iy
is the integration time [60—62], we believe that our predictions
are within experimental reach. Charge measurements are
very fast and accurate. This technique is well understood
in the semiconductor community and is compatible with
large magnetic fields. While the inclusion of single-electron
transitors (SETSs) in the qubit plane makes the design somewhat
more complicated, it does not preclude scaling the system up
to a two-dimensional array of qubits.

Finally, we discuss the third proposal, a differential
capacitance (also referred to as the quantum capacitance)
measurement [63—-66]. The differential capacitance of the

(ng1)
1.0

0.8t
0.6¢
0.4¢
0.2}

e ——

0.520

‘ ‘ Mg,
0.525  0.530  0.535

FIG. 5. Average charge (in units of electron charge) on the upper
quantum dot as a function of the dimensionless induced charge n,
for the system shown in the right panel of Fig. 2. We assume the
system is in the ground state, and plot the average charge for both
even parity (solid curve) and odd parity (dashed curve). We use the
parameter values N, , = 0,ec = 10E¢,h = Ec/2,and ey = Ec/2.
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upper quantum dot is given by

Caitr =_( C, )23(<nf,1>—ng,1)

CE,D 8ng,1

Csop 7 @8
where C, is the capacitance between the gate and the upper
quantum dot, and Cx p = e?/2¢ec is the total capacitance of
the dot. When the system is tuned close to resonance of the
two quantum dots, the energy is sensitive to changes in n, 1,
making the differential capacitance become appreciable. We
can use rf reflectometry to measure the differential capacitance
of the upper quantum dot by coupling the gate voltage
V,,1 = eng 1/ C, directly to a inductor-capacitor (LC) circuit.
The circuit’s resonant frequency will depend on the differential
capacitance, which, in turn, depends on the joint parity of the
four MZMs. Thus, the reflection of an rf signal sent through
the circuit can be analyzed to infer the parity state of the
system. The frequency of the f signal will have to be properly
engineered. If the frequency of the rf signal is lower than the
excitation gap near the resonance (i.e., near ng | = n;‘, which
is the location of the anticrossing in Fig. 4), the system will
remain in the ground state, and the differential capacitance will
contain information about the ground-state curvature at this
point. However, if the frequency is too large, the system will
undergo a Landau-Zener transition at the resonance (transition-
ing from one of the lower curves in Fig. 4 to one of the upper
ones), and the reflected signal will not contain information
about the ground-state curvature, resulting in a vanishingly
small differential capacitance. Since differential capacitance
is peaked at the degeneracy point, thermal fluctuations or
gate-voltage fluctuations will broaden the signal. In order
to suppress the effect of thermal fluctuations, we require
that |¢|>/E¢ > T. Provided this broadening is smaller than
the parity-dependent differential capacitance difference, the
projective measurement can be efficiently performed.
Assuming that the quantum dot charging energy &c ~
1-10 K, which corresponds to the total capacitance
Cs.p ~ 10°-10° aF, the change of the differential capacitance
for different parity states should be §Cgr ~ 10>~10° aF
(see Fig. 6). Note that this curve is the derivative of the

Caisr
Cs.p
6
5 i
' — p=+1
4- 1
y A
2 I~
1,
et Ng,1
0.520 0.525 0.530 0.535

FIG. 6. Differential capacitance of the ground state Cg (in units
of Cx p) as a function of the dimensionless induced charge n,
for the system shown in the right panel of Fig. 2. Both even parity
(solid curve) and odd parity (dashed curve) are shown. We use the
parameter values N, , = 0,6c = 10Ec,h = Ec/2,ey = Ec/2,and
Cg/Cz_D == Ol
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charge as a function of the ng ; curve shown in Fig. 5. That
is, it involves the second derivatives (rather than the first
derivatives) of the energy with respect to ng and n, . The
curves in Fig. 6 are peaked where the curves in Fig. 5 are
steepest. Reflectometry experiments in quantum dot systems
have measured differential capacitances of the order of 10 aF
in 40 pus [66]. Therefore, we believe that the joint parity state
should be measurable through the differential capacitance even
when the tunnel couplings are not optimized. The gates needed
for the reflectometry measurement are already necessary in the
system in order to define the quantum dots (see Fig. 1), and the
LC circuits can be moved off the plane of the MZM islands.
Both charge-sensing and reflectometry detection of dif-
ferential capacitance have the attractive feature of being
measurements of ground-state properties. Up to exponentially
small thermal corrections, there is no decoherence in the
ground state; as such, the visibility of these measurements
will not decrease significantly over time. We elaborate on this
statement in Appendix C for the charge measurement.

IV. CLIFFORD-COMPLETE MAJORANA
ARCHITECTURES

We now show how the projective measurements of the
previous section may be used in combination with MZM-based
qubits to implement the complete set of multiqubit Clifford
gates in a topologically protected manner.

A. Hexon architectures

In this section, we describe the three different hexon
architectures, an example of which is shown in Fig. 1. Six is
the smallest number of MZMs that supports the combination
of one computational qubit (encoded in four of the MZMs) and
one ancillary pair of MZMs. This combination is particularly
useful because the presence of the ancillary pair makes
it possible to generate the braiding transformations of the
topological qubit without physically transporting the MZMs.
That is, sequences of topological charge measurements can
generate the braiding transformations on the qubit states
encoded in the MZMs [37,38]. The topological charge of an
even number of MZMs is their joint electron number parity.
In this paper, we focus on measurement-based protocols.
However, the braiding transformations can equivalently be
performed using similar methods that instead utilize adiabatic
tuning of couplings between MZMs [67] or hybrid protocols
that use both nearly adiabatic tuning and measurement [59].
Furthermore, an entangling gate can be implemented with the
addition of a joint parity measurement of four MZMs from
neighboring hexons, two MZMs from each hexon. Thus, by
using the hexon together with the ability to perform joint parity
measurements, one generates all multiqubit Clifford gates with
topological protection, while simultaneously protecting the
qubit from QPP errors.

1. Quantum information basics

The full set of single-qubit Clifford gates can be generated
on the computational qubit encoded in a single hexon given an
appropriate minimal set of joint parity measurements of pairs
of MZMs. We can diagrammatically represent the topological
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71 Y2 V3 Y4 V5 Y6

NS

a=0,1

FIG. 7. Diagrammatic representation of the topological states
(degenerate ground states) of a hexon. The center two MZMs y3 and
ya fuse to even fermion parity, forming the ancillary pair of MZMs.
The left and right pairs of MZMs both fuse to a = 0 or 1, which
correspond to even or odd fermion parity, respectively. These outer
pairs of MZMs form the computational qubit. The fusion channel a
labels the qubit basis state.

state of a hexon as shown in Fig. 7. We label the MZMs
y; with j =1, ...,6 from left to right. The diagram may be
interpreted as follows: the center two MZMs y3 and y4, forming
the ancillary pair, fuse to even fermion parity (p34 = —1). The
leftmost and the rightmost pairs of MZMs, y; and y,, and ys
and yg, respectively, forming the computational qubit, have
the same fusion channel a = 0 (even fermion parity) or 1 (odd
fermion parity). That is, the fusion channel a labels the qubit
basis states

[0) = |p12 = pss = —1), (29)

[1) = |p12 = pss = +1). (30)

The total fusion channel of the four MZMs forming the
computational qubit is even fermion parity (pi2pse = 1).

In Sec. IIIC, we explained how joint fermion parity
measurements may be implemented using dispersive transmon
measurements, charge sensing, or reflectometry. While the
outcomes of quantum measurements are inherently probabilis-
tic, for our purposes, we can use a “forced-measurement”
protocol [37] to obtain the desired measurement outcome
of a particular step of the measurement-only protocol. This
is a repeat-until-success protocol involving alternating mea-
surements between the pair of MZMs that is to become
ancillary and the pair that was ancillary, until the desired
outcome is achieved. As such, the encoded computational state
information is preserved and this allows us to think in terms
of projectors, rather than projective measurements.

Let YY) = ]_’% project MZMs j and k to the vacuum
(even fermion parity) channel. Braiding operations can be
implemented through the application of a series of such
projectors. For instance, the following sequence of projec-
tions generates the braiding transformation corresponding to
exchanging the first and second MZMs

5V ng g o R @ g, 31)

where R'? = (1 4 y;y2)/+/2 is the braiding transformation
for exchanging MZMs 1 and 2. Whether the operator R(?
describes a clockwise or counterclockwise exchange of the
MZMs is a matter of convention since the y; operators can be
changed by a sign via a gauge transformation. Here, we define
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Y1 Y2 Y3 Y4

N

Y5 Ve

a

FIG. 8. Diagrammatic representation of T15" T4 15> 15 ap-
plied to the topological state of a hexon qubit. Pairs of MZMs are
projected to the vacuum (even fermion parity) fusion channel to
perform anyonic teleportations on the topological state space of the
MZMs. The series of projections has the same effect as exchanging
the positions of MZMs 1 and 2, i.e., it generates the braiding operator
RU?_ This provides a diagrammatic proof of Eq. (31), as originally
given in Ref. [37].

it as a counterclockwise exchange as diagrammatically repre-
sented in Fig. 8. This choice determines whether the projector
HE)B) is interpreted in the diagrammatic representation as an
overcrossing or undercrossing with respect to the y, charge
line.

We note that the above convention should be fixed with
respect to a particular measurement setup (defined by the
complex couplings ¢; of MZM:s to quantum dots). The effect of
achange of the measurement setup during the calculation (e.g.,
by deciding to measure a certain pair of MZMs differently than
in the initial definition) can be tracked by a bookkeeping of
phase changes [13,68,69].

While Eq. (31) has the elegant diagrammatic representation
shown in Fig. 8, which makes the relation to braiding apparent,
it can also be derived explicitly in terms of Majorana operators

1—[2)34)1—12)13)1—[823)1—[834)
l—iysyal —iyiys L —iypys L —iyays
2 2 2 2
=27*1 —iysy)(1 — iviys — ivays + 1)1 — iy3ys)
=271+ )1 —iyaya)’
=271+ yiy)(1 —iysya)
=2732R1D @ 1Y, (32)

where we used the fact that (1 — iy3ya)iy.ys(1 —iysys) =
iy, y3(1 +iysya)(l —iysys) =0 for a # 3,4. The way the
projectors are written in terms of MZMs is again a choice
of convention.

A sufficient gate set for generating all single-qubit Clifford
gates is given by the two (intrahexon) braiding transformations
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R"2 and R, which, up to an overall phase, respectively
correspond to the computational gates

R<12)=<(1) _Ol,>, (33)
R

using the qubit basis. Note that the Hadamard gate is given by
H = RU2 p(25 p(2)

The braiding transformation R>> may be implemented
using the following sequence of projections:

HE}34)H§]35)H§)23)H§)34) x R(ZS) ® 1—[5)34)' (35)

In order to have a multiqubit Clifford-complete gate set,
we only need to add the ability to perform an entangling
two-qubit Clifford gate between neighboring computational
qubits. Similarly labeling the MZMs of a second hexon
by j=7,...,12, we find that the following sequence of
projective parity measurements on two and four MZMs in
two hexons

NG OO O U ICD o o8 @ 39 (36)
generates WO = (1 4+ iysysy715)/+/2. In terms of the

topological qubit basis states of the two hexons, this yields
the two-qubit entangling Clifford gate

1 0 0 0
0 i 0 0

=10 0 i of 37)
00 0 1

up to an overall phase. Proofs of Eq. (36) in terms of both
the diagrammatic calculus and the MZM operators are given
in Appendix D. Note that the controlled-Z gate is given by
C(Z) — R(IZ)R(78) W(5678).

We emphasize that this two-hexon operation respects the
fermion parity of each hexon separately, so it is compatible
with the protection from QPP afforded by the Coulomb charg-
ing energy on each superconducting island. We also note that,
as long as one is able to perform the appropriate measurements
of MZMs, one ancillary pair of MZMs on an island is sufficient
for implementing entangling gates between two computational
qubits on separate islands (i.e., between two hexon qubits),
without the need of extra ancillary MZMs. In the above
example, the only ancillary pair needed was MZMs 3 and 4.

Taken together, Egs. (31), (35), and (36) reveal a sufficient
set of measurements that allow us to generate all multi-
qubit Clifford gates. While the operational efficiency may be
improved if we are able to perform measurements on additional
groups of MZMs, practical constraints may limit which groups
of MZMs we can jointly measure, as we will discuss below. In
our proposed hexon architectures, we find that we are always
able to perform measurements that are Clifford complete.

The three different hexon architectures that are described in
the following subsections support several additional operations
that make computations more efficient. For instance, it is
convenient to be able to shuttle the computational MZMs,
so that they are adjacent to each other. This shuttling
can be achieved with a series of projective fermion parity
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FIG. 9. An example generalizing the measurements of MZMs
from Fig. 2 (using the same legend). The upper region shows a four-
MZM measurement of the joint parity operator —y;y3y»ye. The
lower region shows a two-MZM measurement of the parity operator
iy Y4 . The quantum dots (gray ellipses) and their couplings (yellow
lines) to MZMs are defined by appropriately tuning a set of underlying
gates (see Fig. 1). Note: the illustration is not drawn to scale. In
practice, the length (horizontal direction on the figure) is much larger
than the width L > w, so as to simultaneously optimize topological
protection due to the length of the 1DTSs and suppression of QPP
error rates by large charging energies. As a practical constraint, in
order for the quantum dots connecting MZMs to remain coherent, the
vertical separation of the MZMs connected to the same quantum dot
must be shorter than the effective coherence length of that quantum
dot. The same principles apply to subsequent figures.

measurements of pairs of MZMs, as shown in Appendix D.
From the Gottesman-Knill theorem, we know that Clifford
operations can be efficiently modeled on a classical computer.
This can be used to transfer some of the computation from
quantum operations, such as those described above, to classical
simulation, by appropriately keeping track of which gates have
been performed. These “Pauli frame changes” are discussed
in further detail for the tetron architectures in Sec. IV B.

2. One-sided hexon

The main operational principles of one-sided hexon archi-
tectures are discussed in Sec. II. Here, we provide further
details. Figure 9 gives examples of defining connections and
quantum dots in the semiconducting structure that is coupled to
MZMs for possible two-MZM measurements and four-MZM
measurements. With obvious generalizations of the depicted
two-MZM measurement, it is possible to measure the parity of
an arbitrary pair of MZMs inside a hexon. Together with a set
of four-MZM measurements between neighboring hexons, this
design allows for more than enough measurements to achieve
Clifford completeness (see Sec. IV A 1).

Measurement of the joint parity of vertically separated
MZMs places a practical constraint on the width w of the
one-sided hexon (i.e., the length of the the backbone). A
quantum dot coupled to the top and bottom MZMs of a
given hexon must remain coherent for the measurement to
be successful. Thus, the width of the one-sided hexon must be
smaller than the effective coherence length of the quantum
dots. Furthermore, as discussed in Sec. II, simultaneously
optimizing charging energy and suppressing hybridization
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of the computational MZMs (i.e., L > &) implies that it is
beneficial to design the one-sided hexon so that it is much
longer than it is wide (L > w). The same two principles
apply to all qubit designs presented in this paper. For ease
of illustrating the important features of the qubit designs, the
corresponding figures are not drawn to scale.

The one-sided hexon has an additional constraint on the
width compared to the alternative hexon designs presented
in the following sections: the 1DTSs should have vertical
separation less than & in order to strongly hybridize the MZMs
at the backbone side of the device. When this condition is
satisfied, the one-sided hexon provides topological protection
corresponding to MZM separation distances of 2L for IDTSs
of length L. This property should also enable the one-sided
hexon design to realize a better optimal combination of
topological protection and protection from QPP granted by the
charging energy. As discussed in Sec. II, we roughly expect the
charging energy of a hexon to have 1 /L dependence for L > w.
Garnering topological protection for MZM separations of 2L
makes it more endurable to decrease L for the tradeoff of
increasing the charging energy and its corresponding QPP
protection. Another potential tradeoff involved in decreasing
L is a reduced visibility for MZM parity measurements. This
is because the MZM parity-dependent terms in the shifted
ground-state energies of the hexon coupled to quantum dots
depend inversely on excited-state energies that increase as L
decreases [see, e.g., Egs. (9) and (10)].

A possible challenge for one-sided hexons could arise if
the energy splitting due to hybridization of the MZMs at the
backbone side of the wires is small for some reason. When
the device has the 72 = 41 symmetry mentioned at the end
of Sec. IIT A, these energy splittings will vanish. Generically,
this symmetry is not present, but it can occur when the cubic
Rashba couplings vanish and the Zeeman field is perfectly
aligned with the wires. If the symmetry is only weakly broken,
then some of these energy splittings will be small. When
the energy splittings are smaller than the temperature, there
will be fluctuating low-energy degrees of freedom in the
superconducting backbone. For the purpose of protecting
the information stored in MZMs at the nonbackbone side of
the hexon, the relevant length scale for topological protection
is then reduced from 2L to L, the distance separating the
MZMs from the backbone. Similar arguments would apply for
low-energy states induced by disorder at the backbone-1DTS
interface. We briefly return to this issue in Sec. VL.

3. Two-sided hexon

A two-sided hexon consists of three 1DTSs joined by
a superconducting backbone, as depicted schematically in
the magnification of Fig. 10. In contrast to the one-sided
hexon, the backbone is located far away from the MZMs
at the ends of the 1DTS. Similar to the one-sided hexon,
it is straightforward to measure the parity of any pair of
the three MZMs at a given side (left or right) of the
two-sided hexon. However, achieving single-qubit Clifford
completeness requires the ability to measure the parity for
at least two distinct pairings of MZMs involving one MZM
from each side of the hexon. For example, enumerating the
MZMs 1-6 as shown in Fig. 10, we see that Egs. (31)
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FIG. 10. A two-sided hexon architecture. Note: the illustration is
not drawn to scale for the same reason as Fig. 9. The magnification
shows a single two-sided hexon. Additional topological super-
conducting links and semiconducting structures allow appropriate
measurements to manipulate and entangle two-sided hexons.

and (35) utilize the measurements 1'[834) and H(()35). Due to
the large distance L between the MZMs on the left and right
sides of the hexon, such measurements require long coherent
links between both sides. These can be provided by floating
topological superconductors, as in the case of the interhexon
links in the one-sided design. Due to the connectivity of all the
MZMs to the semiconducting structure at each corresponding
side of the two-sided hexon, adding a single link of length
L to each hexon is sufficient to perform arbitrary two-MZM
measurements within the hexon.

Entangling four-MZM measurements between horizontally
adjacent two-sided hexons can be implemented in a manner
similar to those in the one-sided hexon case (cf. Fig. 9). For
vertically adjacent two-sided hexons, entangling operations
could be performed by defining a quantum dot in each of the
semiconducting structures to the left and to the right of the
hexons and connecting each dot to each of the two hexons.
To avoid unwanted two-MZM measurements, each dot at
the left side should have exactly one connection to the left
side of each of the hexons involved, and similarly each dot at
the right side should have exactly one connection to the right
side of each hexon.

The main differences from the one-sided hexon designs
are that the connectivity graph of the hexon qubits (linking
pairs that can be directly acted on by entangling operators) is
now rectangular (4-valent), rather than hexagonal, and that
the relevant distance for MZM hybridization is L, rather
than 2L. In order to attain the same level of topological
protection, two-sided hexons will generally be more elongated
than their one-sided counterparts. We therefore expect the
two-sided hexons to have a smaller charging energy (roughly
half as large) than the one-sided hexons, for the same level of
topological protection. Note that the presence of accidental
low-energy states, e.g., due to disorder, at the backbone-
IDTS interfaces might further reduce the length scale of the
topological protection to L /2.

4. Linear hexon

A linear hexon consists of a single 1DTS wire of length
L, where two segments of length ¢, are tuned to be in a
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FIG. 11. A linear hexon architecture. Note: the figure is not
drawn to scale for the same reason as in Fig. 9. The length ¢, of
the nontopological segments is much larger than the corresponding
coherence length & of the nontopological regions and the length
£, of the topological segments is much larger than the coherence
length & of the topological regions. The legend used is the same as in
Fig. 10. The magnification shows a single linear hexon. Additional
topological superconducting links and semiconducting structures
allow appropriate measurements to manipulate and entangle linear
hexons.

normal superconducting state (for example, by gating), leaving
three topological segments of length ¢,. This is depicted
schematically in the magnification in Fig. 11. Since topological
regions are joined by the same superconducting shell, this
construction does not require additional superconducting
backbones to define an island hosting six MZMs. This
simplifies the fabrication of linear hexons. On the other
hand, no pairs of MZMs within a single linear hexon can be
simultaneously connected to a single quantum dot. As such,
this design requires a more elaborate measurement apparatus
to enable measurements within a hexon. As in the other hexon
designs, we envision floating topological superconductors as
coherent links that can bridge longer distances. Each MZM
measurement in a linear hexon array involves a combination
of such links and quantum dots.

‘We arrange the hexons in a rectangular array. Between each
vertical row of hexons, we arrange a vertical row of coherent
links, where five links are used to span the length of one
hexon. Quantum dots exist in the orange regions of Fig. 11
and can be controlled by gates. The use of quantum dots is
completely analogous to those depicted in Fig. 9. The dots can
be tunably coupled to any adjacent MZM independently. In
this way, any pair of MZMs connected by an orange region
can be simultaneously coupled to a quantum dot. Two-MZM
measurements within a given hexon are performed using the
coherent links spanning that hexon. It is possible to perform
all two-MZM measurements within a hexon, which grants
single-qubit Clifford completeness.

Entangling operations on vertically adjacent linear hexons
also works similar to the examples depicted in Fig. 9. As
discussed in Sec. IV A 2, there will be a maximum vertical
distance between MZMs that can be simultaneously coupled
to a given quantum dot. We assume this distance allows the dots
to vertically reach at least two rows apart (i.e., at least between
neighboring rows of hexons) in either direction. A greater
reach can reduce the need for some operations, such as SWAP
gates, but is not necessary to achieve Clifford completeness.

Entangling operations on horizontally adjacent linear hex-
ons require the use of links to facilitate coherent transport
between distant MZMs. In principle, the linear hexon design

235305-13



TORSTEN KARZIG et al.

allows the joint measurement of any four MZMs within a
given horizontal row of hexons, where two of the measured
MZMs belong to one hexon and two belong to another hexon,
by using multiple coherent links to couple distant pairs of
MZMs. However, practical constraints of the measurement
visibility will limit the number of links that can be used in
a given measurement. Fortunately, Clifford completeness can
be achieved with measurements that require at most two links
per measurement.

In order to attain good topological protection, both £. and
£; should be much longer than the corresponding coherence
lengths (& and &) in the conventional and topological super-
conducting regions. Assuming similar length scales for the
latter, the relevant scale of the topological protection is given
by L/5 in terms of the length of the parent 1DTS. Linear
hexon designs therefore require much larger L as compared
to the other hexon designs. We expect this also leads to the
smallest hexon charging energy (and, hence, the worst QPP
protection) of the three designs.

B. Tetron architectures

In this section, we describe the architectures of tetrons,
which are topological qubits composed of four MZMs,
examples of which are shown in Figs. 13 and 14. Four is
the smallest number of MZMs for which a sector of fixed total
fermion parity supports a qubit, i.e., a two-dimensional Hilbert
space. The absence of the extra ancillary pair of MZMs that
were present in the hexon designs results in two important
differences. The first is that we have only two main tetron
designs; the tetron analog of the one-sided hexon design cannot
be scaled into a two-dimensional array, as each qubit can
only connect to its vertically adjacent neighbors. The second
difference is that we are not able to generate topologically
protected single-qubit Clifford gates via operations acting
on only one tetron. Instead, the Clifford gates are generated
either by joint parity measurements on a pair of tetron qubits
or by “Pauli frame changes”. In the following section, we
show how to perform the desired gates using a limited set
of measurements; in subsequent sections, we detail various
designs, some of which will allow more variety in the possible
measurement operations. The more limited set of operations
will require a more complicated construction of the Clifford
gates requiring additional resources and operations, so there is
atradeoff to minimizing the number of different measurements
implemented.

1. Quantum information basics

Consider a system of qubits arranged in a plane in a
square lattice, with each qubit labeled by its integer horizontal
and vertical coordinates in the lattice. Assume that one has
the ability to make a limited set of measurements that we
call the elementary operations: between any pair of qubits
j and k separated by a displacement (0,£1), one can make
measurements of the operators Y; Y, Z; Zy, X j Xx, X Zx, and
Z;Xy; between any pair of qubits j and k separated by a
displacement (£1,0), one can make measurements of either
the operator Z; Z; or Y;Y} (either one suffices). Assume also
that we can make single-qubit measurements of the operators
Xj, Yk, and Z[.
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We first explain how this set of measurements provides
a Clifford-complete set of operations for this system, up to
Pauli frame changes. Subsequently, we explain how a smaller
set of measurements may generate Cilfford completeness by
creating “standards”, which removes the need for the single-
qubit measurements and the vertical Y;Y; measurements. In
a final reduction, we show that Clifford completeness may
be attained even if the only available operations are vertical
X j X measurements and horizontal Z;Z; measurements. In
the basic architectures utilizing these methods, we break the
qubits into a “checkerboard” arrangement, using one color as
data qubits and one as ancillary qubits. That is, we designate a
qubit as a data qubit when the sum of its coordinates is even,
and as an ancillary qubit when the sum of its coordinates is
odd.

The available measurements described in this section differ
by a notational choice from those described in later sections
by a permutation of the X, Y, and Z operators, which amounts
to a “Pauli frame change”. The reason is that, here, X and Z
are a natural pair of measurements to use to build CNOT gates.

Pauli frame changes. Pauli frame changes [70] refer to the
idea of not performing certain single-qubit Clifford gates such
as X, Z, and H in a quantum circuit, but instead modifying
subsequent measurements accordingly. The idea is that, given
a sequence composed of single-qubit operators X, Z, and H,
and single-qubit Pauli measurements, we classically track the
total single-qubit operation and perform the appropriately con-
jugated measurements. Thus, for a sequence such as measure
Z;Zy, apply Hy, measure Z; Z;, apply Xy, and measure Z; Z,
we commute the operators X and H through the measurements
by appropriately changing what measurements we perform.
USil’lg ZkZlHk = HkaZl and ZjZkaHk = —XkaZij,
we find that this sequence of operations is equivalent to the
sequence measure Z; Z;, measure X Z;, measure —Z; Xy, and
apply Xy Hy. The final single-qubit Clifford gates do not need
to be performed if they follow all measurements in the circuit.

One can also commute the single-qubit Clifford gates
through CNOT gates. Since magic state injection is performed
using CNOT gates, single-qubit Clifford gates are not necessary
even when the circuit includes 7' gates, where

The effect of Pauli frame changes is to permute the set of
two-qubit measurements. This may change the set of available
measurements if the set of elementary operations does not
include all two-qubit measurements. For this reason, we will
avoid Pauli frame changes corresponding to commuting the

Clifford phase gate
(1 O
S = (O i) 39)

through other operations. This allows the set of available
vertical measurements needed to remain fixed throughout the
computation.

As we describe specific operations that we build out of
the elementary measurements, we will sometimes say that
we can perform an operation “up to {X,Z,H}” or “up to
{X,Z}”, describing the possible frame change on the qubits.
The particular frame change that is implemented is determined
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FIG. 12. Two equivalent circuits implementing the CNOT gate.
The control, ancillary, and target qubits are labeled C, A, and T,
respectively. Gates labeled H are Hadamard gates, the other boxes
correspond to one- and two-qubit measurements as indicated by the
corresponding Pauli operators. The left circuit implements a CNOT
up to {X,Z} on qubits C and T. As explained in text, the Hadamard
operators can be commuted through to yield the simplified circuit
shown on the right, up to {X,Z,H }.

by the measurement outcomes. An operation up to {X,Z}
may map Z — +Z and X — £X (with the mapping on Y
determined by the mapping of X and Z). An operation up to
{X,Z,H} may additionally map Z - £X and X — +Z.

Vertical teleportation. Using measurements X; X; and Z; Z;
between a pair of qubits with displacement (0,£1), one can
create an EPR pair of the qubits £ and [. A further pair of
measurements X ; X; and Z; Z; will teleport the state of qubit
Jj to qubit /. This teleportation is up to {X,Z} on qubit /.

Vertical CNOT and SWAP. We can also apply a CNOT gate,
up to {X, Z}, on two qubits separated by (0,12), e.g., two data
qubits separated vertically by one ancillary qubit in-between
them. For this, we can use the left circuit of Fig. 12 (this
circuit is the same as in Fig. 2 of Ref. [71]), where the
control, ancillary, and target qubits are labeled C, A, and T,
respectively. Qubit A is initialized in an eigenstate of Z. We
take qubits C and T to be on the even sublattice, separated in
the vertical direction with A the ancillary qubit in-between
them. This circuit gives a CNOT up to {X,Z} on qubits
CandT.

The Hadamard operators in this circuit can be commuted
through the measurements to the end of the circuit, resulting
in the CNOT gate up to {X,Z, H}. The resulting sequence of
operations in the simplified circuit is measure Z¢ X 4, measure
Z s Xr, and measure X 4.

The ability to perform CNOT gates in both directions on a
pair of qubits allows one to swap the pair of qubits (through
the application of three alternating CNOT gates). This allows
arbitrary motion of the data qubits in the vertical direction.

Hadamard gate without Pauli frame change and single-
qubit X measurement. The method of Pauli frame changes
above is the most efficient method to implement a single-qubit
Clifford gate, as no actual operations need to be performed on
the qubits. However, switching between different Pauli frames
may change the set of available operations. The Hadamard gate
does not affect the set of available operations in the vertical
direction. Thus, if we only consider vertical measurements,
we can perform Hadamard gates by frame changes. However,
suppose that we wish to perform a Hadamard gate followed by
a measurement of Z; Z; of qubits separated by (£1,0). In this
case, the new frame requires a measurement of Z; X, which
is not an elementary operation for those qubits.

In order to overcome this, we show how to perform a
Hadamard gate while only utilizing Pauli frame changes that
are up to {X,Z}, as such Pauli frame changes will leave the
set of available horizontal operations unchanged. Let SWAP j;
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swap qubits j and k. Consider the operation
U = SWAP;; H SWAP H, (40)

for a pair of data qubits j and [ that are separated by (0,42)
(i.e., vertically nearest-neighbor data qubits with one ancillary
qubit in-between them). Our implementation of SWAP ; is up
to {X,Z}. Since H; appears twice in this operation, the net
frame change in performing U is still up to {X,Z}; that is,
it will not interchange X <> Zj. As an operator, U = H; H;
applies the Hadamard gate to each of the two qubits.

An alternative way to implement a Hadamard gate is to
use the following variant of the vertical teleportation protocol.
Use measurements X;Z; and Z; X; between a pair of qubits
separated by (0,%1), e.g., one data qubit and one ancillary
qubit, to create an EPR pair up to the Hadamard gate on /.
Then, measure X ; X; and Z; Z to teleport the state of qubit j
to qubit / while performing a Hadamard on the encoded state.
Since teleportation may be used to route qubits, this allows the
Hadamard gate to be performed “for free” at the same time as
a teleportation.

Horizontal cCNOT and SWAP. Using the method described
above to generate a Hadamard gate without frame change,
the horizontal measurements of Z;Z; can be conjugated to
become measurements of Z; X; or X;X;. We thereby obtain
a CNOT gate acting on a pair of qubits separated by (£2,0)
by using only Z;Z; measurements horizontally. If instead
we have only Y;Y; measurements horizontally, we can use
an § gate (which we explain how to implement below) to
conjugate them to become measurements of X;X;. Since
a SWAP is generated from three alternating CNOT gates,
we now have the ability to perform horizontal swaps of
second-nearest-neighbor pairs of qubits, using the intermediate
qubit as an ancillary qubit to facilitate the operation.

S gate. An S gate can be implemented without frame change
by utilizing state injection of a +1 eigenstate of Y. Such a state
can be produced by measuring a single-qubit Y operator.

Note that instead of implementing a standard state injection
using unitary gates (e.g., a CNOT gate), a measurement-based
injection is more tailored for our architectures. In particular, a
shorter circuit for implementing an S gate (up to Z gates on
the source) is given by the sequence of operations: prepare an
ancillary qubit in the 4-1 eigenstate of ¥, measure the operator
ZX, where Z is on the data qubit and X is on the ancillary
qubit, and then measure Z on the ancillary qubit.

Y; Y, measurement. We can measure Y;Y; between any pair
of qubits j and k that are separated by (0,42) using only the
other elementary operations, through the following sequence:
apply a CNOT gate from j to k, apply a Hadamard gate on qubit
J, apply a CNOT gate from j to k, measure Z;, apply a CNOT
gate from j to k, apply a Hadamard gate on qubit j, and apply
a CNOT gate from j to k. One may verify that the result of this
sequence of operations is equal to a measurement of —Y;Y;.

Living without single-qubit measurements: Using “stan-
dards”. If it is not possible to perform single-qubit measure-
ments, but only two-qubit measurements, it is still possible to
generate a Clifford complete set of operations. By measuring
XXk, Y;Yi, or Z;Zy, a qubit state that is an eigenvector of
X, Y, or Z can be copied indefinitely. We call such a qubit a
“standard”.
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To achieve Clifford completeness without single-qubit
measurements, we store standards in every data qubit with odd
horizontal coordinate. The data qubits now have coordinates
(2n,2m) in the lattice, for n,m € 7Z (i.e., there are now three
ancillary qubits per data qubit). With this arrangement, one
can perform single-qubit measurements on qubits with even
horizontal coordinate. In fact, which eigenstate of X, Y, or
Z we choose for the standard is arbitrary, as the choice
has no effect on measurements, when restricting to Clifford
operations. If magic state injection is performed, the choice of
eigenstate used for the Y standard becomes important. In this
case, magic state injection can be used to identify the choice
of Y standard (see the discussion on page 38 of Ref. [72]).

Restricted two-qubit operations. Now suppose that we can
measure X ; or Z; on any single qubit, but we can only perform
the limited set of two-qubit measurements: Z;Z; between
a pair of vertically separated qubits and X;X; between a
pair of horizontally separated qubits. This is still sufficient
to build a universal quantum computer if we can produce
an approximate magic state. While this is not likely to be a
practical architecture and all architectures we describe have
more than this set of measurements, it is interesting that this
restricted set of operations remains universal. The following
discussion of operations will be up to {X,Z}.

Using the same circuit shown in Fig. 12, we can perform
a CNOT between two qubits separated by a displacement (+1,
+1). For example, to generate a CNOT gate with the (0,0) qubit
as the control and the (1,1) qubit as the target, we use the fol-
lowing sequence: prepare the ancillary qubit A in an X eigen-
state, measure Z¢ Z 4, and measure X 4 X 7. Given the ability to
perform CNOT gates, we can perform SWAP. In the above ex-
ample, the (1,1) qubit is a standard. Applying multiple SWAP
operations allows the data qubits to move arbitrarily within the
data qubit sublattice while leaving the standards intact.

However, we do not yet have the ability to perform the full
Pauli group with this restricted set since we do not have the
ability to perform the Hadamard gate. These gates cannot be
implemented through Pauli frame changes as we have a smaller
set of elementary operations. Suppose, however, that we could
produce many Y standards, either Y = 41 or —1 eigenstates.
Using this Y standard and state injection, we can perform an S
gate. Once we have an S gate, we can also measure Y; X¢, X ; Yy,
and Y, Y} between any two horizontally separated qubits. Thus,
we have the ability to perform all the elementary operations
described at the beginning of this section, but with ¥ and Z
operators interchanged and horizontal and vertical directions
interchanged. We therefore have operations that are Clifford
complete up to {X,Z}.

If we can produce approximate Y standards, we can distill
them using methods similar to, but simpler than, the methods
of Ref. [73]. For this, we can use any Calderbank-Shor-Steane
(CSS) code that allows transversal S gates, such as the seven-
qubit code [74]. Using a CSS code allows us to check the
stabilizers of the code using only CNOT gates and measurement
and preparation of qubits in Z and X eigenstates. We note
that we can generate Y standards, for example, if we can
generate an approximate S gate. Of course, if we can generate
approximate 7 gates, then we can produce approximate S =
T? gates. Similarly, if we can produce approximate magic
states, we can use them to produce approximate Y standards.
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FIG. 13. A linear tetron architecture. Note: the illustration is not
drawn to scale for the same reason as in Fig. 9. The length ¢, of
the nontopological segments is much larger than the corresponding
coherence length &, of the nontopological regions and the length ¢, of
the topological segments is much larger than the coherence length &
of the topological regions. The legend used is the same as in Fig. 10.
The magnification shows a single linear tetron. Additional topological
superconducting links (gray) and semiconducting structures (orange)
allow appropriate measurements to manipulate and entangle linear
tetrons.

2. Linear tetron

A linear tetron consists of a single 1DTS wire in which
a middle segment of length ¢, has been tuned to be in
a normal superconducting state (for example, by gating),
leaving two topological segments of length ¢,. This is depicted
schematically in the magnification in Fig. 13. As a result,
there are four MZMs, one at each end of the wire and one at
each of the two boundaries between topological and normal
superconducting regions. The linear tetron is, in some sense,
the simplest of our qubit designs. However, this simplicity
of the single qubit is somewhat offset by the complexity
of the associated measurement apparatus, i.e., the array of
quantum dots and floating topological superconductor links
that are needed for measurements, which we now describe
(see Fig. 13).

We arrange the tetrons in a rectangular array. Between
each vertical row of tetrons, we arrange a vertical row
of coherent links, where three links are used to span the
length of one tetron. These links can be provided by floating
topological superconductors, as in the case of the linear hexon.
Measurements of linear tetrons are done in a similar manner to
measurements of linear hexons. Any pair of MZMs connected
by an orange region of Fig. 13 can be simultaneously coupled
to a quantum dot. As discussed in Sec. IV A2, there will
be a maximum vertical distance between MZMs that can be
simultaneously coupled to a given quantum dot. We assume
this distance allows quantum dots to span the separation
between neighboring rows of hexons. This is sufficient to
perform the measurements used in the protocols of Sec. IV B 1.
Just as for linear hexons, a greater reach can reduce the need
for some operations.

Let us label the MZMs on a given tetron as yi, ¥, ¥3, and
y4, from left to right. We required the total fermion parity of a
tetron to be even (e.g., by using charging energy), pi2p34 = 1.
The qubit basis states are then defined to be

[0) = |p12 = p3a = —1), (41)

[1) = |p12 = p3s = +1). (42)

235305-16



SCALABLE DESIGNS FOR QUASIPARTICLE-POISONING- ...

The Pauli operators on the qubit are represented in terms of
MZM operators as

X =iyys =iyivs, (43)
Y =iyiy3 = —iyaYa, (44)
7z = i)/l)/z = i]/3)/4, (45)

up to an overall phase. In order to distinguish different tetrons,
we label each tetron and its operators by its (integer-valued)
coordinate (j,k) in the two-dimensional array.

Measurements of ZURzGk+D — xG.RxGk+D  apd
YUy Uk+D petween vertically neighboring tetrons can be
performed by turning on the couplings of the corresponding
MZMs to the adjacent quantum dots located between the two
tetrons, and then probing these quantum dots by measuring
the shift of the capacitance or charge, as discussed in
Sec. III C. More specifically, quantum dots connecting MZMs
of vertically neighboring tetrons can be directly coupled to
the pairs yi("’k) and yi(”kH) fori = 1,2,3,4. By turning on two
such pairs of couplings, we can measure the claimed two-qubit
operators.

Measurements of Z:KZU+1LH  between horizontally
neighboring tetrons further require the use of links to facilitate
coherent transport between distant MZMs. In some cases, we
need to use multiple links in order to couple more distant
MZMs, as discussed for the linear hexon design in Sec. IV A 4.
To be more specific, a quantum dot that sits between two
horizontally neighboring tetrons at (j,k) and (j + 1,k) can
be directly coupled to both " and y/*"". Using the
combination of two coherent links and three quantum dots,
we can couple this unit to both y\”* and /""", We can
think of this combination of coherent links and dots as an
effective quantum dot, to relate to the measurement discussion
of Sec. III B. The “quantum dot” energy levels now depend on

the joint parity p = p(; i) P(j+1,k), Which is the eigenvalue of

the operator ZUHZUH1R = U0, G0, GHLR ) GO,

In this way, we can perform all the two-qubit measure-
ments assumed in the previous section. These two-qubit
measurements are sufficient for Clifford-complete operations,
as described in Sec. IV B 1. However, similar to the case of
linear hexons, we can also perform single-qubit measurements
and other two-qubit (entangling) measurements by using the
links to facilitate coherent transport across longer distances.
For example, an effective quantum dot (composed of links
and quantum dots) can be coupled to any two different MZMs
from the same tetron, so that the dot’s energy levels depend on
the parity of these two MZM operators, in other words, on the
eigenvalue of the corresponding Pauli operator.

3. Two-sided tetron

A two-sided tetron consists of two 1DTSs joined by a
superconducting backbone, as depicted schematically in the
magnification in Fig. 14. The backbone is located in the middle
of the wires, far away from any of the four MZMs at the ends of
the 1DTSs. This design facilitates joint measurements between
horizontally neighboring tetrons and somewhat complicated
measurements between vertically neighboring tetrons, which
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FIG. 14. A two-sided tetron architecture. Note: the illustration
is not drawn to scale for the same reason as in Fig. 9. The
legend used is the same as in Fig. 10. The magnification shows
a single two-sided tetron. Additional topological superconducting
links and semiconducting structures allow appropriate measurements
to manipulate and entangle two-sided tetrons.

are analogous to those depicted in Fig. 9 for hexons. One
could include links to increase the variety of operations, but it
is instructive to consider the architecture design with no links.

Let us label the MZMs of a two-sided tetron as yy, y», 3, and
y4, in clockwise order starting from the upper left. A joint Pauli
operator on horizontally neighboring tetrons can be measured

if one quantum dot is coupled to )/z(j *) and y,(j 10 and a second

quantum dot is coupled to y;j *) and yij 0 This coupling

configuration allows for a measurement of XU-HxXU+Lb —
.k Gk GHLE) - (+1,k)

_V2J V3J 7/1] )/4j .

The simplest measurement of vertically neighboring tetrons

is given by coupling one quantum dot to yl(j * and yij D and

a second quantum dot to yz(j * and y3(j KD This coupling

configuration allows for a measurement of ZU:X) ZU+Lb —

k), k) Gok+1) ) (f.k+1)
_ylj sz y3j )/4] )

Using the semiconductor wires (orange in Fig. 14), we
can perform additional measurements that require coupling
MZMs over a slightly more extended range. The length
scale of the quantum dots constrains the distance over which
a measurement may be performed (see the discussion in
Sec. IV A 2). For example, we can couple one quantum dot to

yl(j *) and yij *1 and instead couple the second quantum dot

to y3(J * and )/3(’ *+D This coupling configuration allows for a
measurement of YUK zU+Lh — —yl(j’k)yéj’k)ygj’kﬂ)y4(j’k+1).
The other two-qubit joint Pauli measurements of vertically
neighboring tetrons can be similarly implemented.

The only single-qubit measurement that is possible in this
architecture (without introducing links) is a measurement of X,

which can be implemented by coupling a quantum dot to yl(j =

and yj”k) or to yz(]’k) and y;]'k). As described in Sec. IVB 1,
if we only have this restricted set of measurements, we can
still achieve Clifford-complete operations through the use of
“standards”.

As in the other architectures, we can increase the set of
possible operations by introducing horizontal links provided
by floating topological superconductors, that facilitate coher-
ent transport across the length of the hexons. In particular,
this enables measurement of all single-qubit Pauli operators
measurements. Such structures were previously considered in
Ref. [26].
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C. Design summary

The different hexon and tetron architectures presented in
this paper have different advantages and challenges. A priori,
it is difficult to make quantitative performance estimates and
rankings between the designs. In this section, we summarize
the common principles that apply to all the presented designs,
as well as their differences.

1. Common design principles

The common design principles we used to protect the
encoded quantum information are as follows®: (1) magnetic
field alignment in the direction of the 1DTSs to maximize the
gap; (2) avoiding the use of topological T junctions to avoid
low-energy modes close to the MZMs; (3) finite charging
energy of the individual qubit units (hexons or tetrons) to
suppress QPP at low temperature; (4) long 1DTSs to suppress
hybridization of the computational MZMs; and (5) the ability
to perform a sufficient set of measurements to achieve a
topologically protected Clifford-complete gate set.

Design principles (1)-(5) lead to exponential suppression
of errors in the qubit architectures. More explicitly, error
rates from QPP and thermally excited quasiparticles are
exponentially suppressed by the ratios E¢/T and A/T,
respectively. Errors due to MZM hybridization are exponen-
tially small in L/&. Furthermore, the fidelity of manipulating
quantum information in the presented measurement-based
scheme scales exponentially with the integration time of the
measurement.*

2. Design differences

We qualitatively compare the different designs using the
four axes mentioned in the Introduction: (1) QPP time, (2) sig-
nal visibility, (3) fabrication simplicity, and (4) computational
efficiency.

(1) The larger the charging energy E¢ of each individual
qubit unit (hexon or tetron), the stronger the suppression of
QPP. As discussed in Sec. II, when the length L of a qubit unit
(along the direction of the 1DTS wires) is much larger than
its width w, we expect the geometric capacitance of a qubit
unit to depend roughly linearly on L and sublinearly on w.
Thus, there is a tradeoff between shorter L, which provides
better protection against QPP, and longer L, which provides
better protection against hybridization of the MZMs. The
maximum combined protection is achieved at some optimal
value of L, where the corresponding error rates are equal. This
is roughly when E¢/T =~ Ly/&, where Ly is the effective
distance between MZMs. For the one-sided hexons, two-sided

3Note that we also avoided using tunable Josephson junctions in
our designs. Tunable Josephson junctions provide the ability to cut
and reconnect the superconducting backbone of the designs, which
allows for additional flexibility in coupling distant MZMs. In order
to reach both regimes of coupled and fully decoupled MZMs, the
Josephson junction would need to be tunable over a wide range E; ~
Ec...E; > Ec, which might be difficult in practice.

“The fidelity of manipulating quantum information in a
measurement-only protocol is set by the experimental certainty for
distinguishing between two measurement outcomes.
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hexons, linear hexons, linear tetrons, and two-sided tetrons,
we roughly have Ly, ~ 2L, L, L/5, L/3, and L. Assuming
that the coherence length & and the w dependence of E¢ is
approximately the same for all the qubit designs, we rank
their relative error protection (combined protection from QPP
and MZM hybridization) from largest to smallest as follows:
one-sided hexons, two-sided tetrons, two-sided hexons, linear
tetrons, and linear hexons. Note that this ordering assumes that
there are no low-energy states from weakly hybridized MZMs
at the superconducting backbone of the one-sided hexons.
When this assumption is not valid, Ly &~ L for the one-sided
hexons, and so its ranking will drop to below the two-sided
hexons.

(2) Since the MZM measurements rely on fermion parity-
dependent energies of the system when MZMs are coupled
to quantum dots, the visibility of such measurements will be
lower when the charging energy E¢ is larger [see (1)]. This is
because the parity-dependent terms in these energies depend
inversely (to lowest order in perturbation theory) on excited-
state energies that are of the order of the charging energy.
This effect can be compensated to some degree by increasing
the tunneling amplitudes ¢;. Another aspect that influences
the visibility is the separation distance between the MZMs
being measured. Longer distance measurements require more
coherent links, which will decrease visibility. In this regard,
the linear hexons and tetrons require more coherent links than
the other designs. It is difficult to precisely estimate the effects
of all these factors on the visibility in order to produce a
meaningful ranking of designs.

(3) The simplicity of fabricating different designs will
ultimately be decided experimentally. Here, we mention
qualitative differences in the fabrication of the designs. While
it is clear that fabricating a tetron is slightly easier than
fabricating a corresponding hexon, we do not expect qualitative
differences in the fabrication difficulty and focus on hexons
in the following discussion. One important challenge for the
one-sided and two-sided hexons will be the deposition of
the superconducting backbone, as this must be done without
disturbing the underlying 1TDSs too much. Attaining the
larger charging energy of the one-sided hexon additionally
requires sufficient hybridization of the MZMs in the supercon-
ducting backbone. The linear hexons have the advantage of not
requiring any such superconducting backbones. The drawback
is the presence of more coherent links and the requirement of
tuning larger regions of the IDTS out of the topological regime.

(4) A full analysis of the complexity of all designs will
be published elsewhere [52]. Here, we provide some general
remarks about the computational efficiency of the designs.
Hexons are computationally more efficient than tetrons. With
six MZMs for each qubit, it is possible to do all single-qubit
Clifford operations within a hexon. Furthermore, adjacent
qubits may be entangled without any additional ancillary
hexons. In contrast, even in the most efficient tetron design,
roughly half of the tetrons are required to be ancillary in order
to provide the full set of Clifford gates, thus requiring a total
of eight MZMs for each qubit. The computational efficiency is
further reduced when limiting the number of allowed single-
qubit Pauli measurements, as in the case of the two-sided tetron
without coherent links. Clever algorithms using standards
(described in Sec. IV B 1) still allow realization of all Clifford
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operations. However, the computational efficiency is reduced
since this scheme requires % of the tetrons to be ancillary
(as one fourth of the tetrons are used to encode standards),
leaving only one fourth as computational data qubits. On
top of the increased hardware requirements, the preparation
and distribution of appropriate standards requires additional

applications of gate operations.

V. UNIVERSAL QUANTUM COMPUTING
A. T gate

Nearly all of our discussion so far has focused on achieving
topologically protected Clifford-complete operations via an
adaptive sequence of measurements. However, the Gottesman-
Knill theorem demonstrates that Clifford operations can be
efficiently modeled on a classical computer by updating
the list of stabilizers that define the ground-state vector at
each computational step [75]. Thus, a computing device
that is only Clifford complete can be classically simulated.
Nevertheless, Clifford operations are valuable because they
can be augmented by a single additional (non-Clifford) gate
to become a universal model for quantum computation (BQP
complete) [76], and they play a significant role in prominent
error-correction protocols [77]. In the designs presented in
this paper, this augmentation process can be achieved with the
identical hardware described for Clifford-complete computa-
tion by using a more elaborate classical control protocol than
is required to implement the Clifford-complete operations.

While any additional (non-Clifford) gate in principle
suffices [78—80], an attractive choice is the T gate (also known
as the r /8 phase gate) of Eq. (38). Given the ability to perform
Clifford gates and perform measurements, the ability to apply
a T gate is equivalent to the ability to generate ancillary qubits
in a “magic state”, such as

L
V2

The fundamental virtue of magic states is that they may be
distilled using only Clifford operations [81]. In its original
formulation, magic state distillation is a process that consumes
15 low-fidelity approximations to the magic state and produces
one copy of the magic state with improved fidelity, using only
Clifford operations. This procedure requires only very modest
fidelity of 1 — €, where € < 0.14, for the 15 input magic states
to commence and asymptotically yields a magic state with
fidelity of 1 — const x €. Much work has since been done
on optimizing distillation protocols and related strategies for
crossing the divide between Clifford completeness to universal
quantum computation (see Refs. [73,82,83]). Note that the
distillation can either be performed on the physical topological
qubits for low-depth circuits, or at the level of logical qubits
in error-correcting codes. In the following, we will focus
on magic state preparation and distillation for the physical
topological qubits. Once an approximate magic state can be
prepared on the level of physical qubits, the high-fidelity
Clifford gates also allow preparation of an approximate logical
magic state.

Magic state distillation will constitute the bulk of the work
of any quantum computer of a few hundred qubits with
topologically protected Clifford gates. For larger quantum

(10) + &™/4]1)). (46)
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computers, the cost of communication, i.e., use of SWAP
gates, could rival distillation as an expense until long-range
communication is properly addressed. For this reason, the
circuit depth for magic state distillation is a good surro-
gate for the overall efficiency of the layout of a quantum
computer. A detailed study examining the efficiency of
distillation in the five design layouts detailed in this paper
will be published elsewhere [52]. Such an analysis will
quantify the computational efficiency axis (4) discussed in
Sec. IVC2.

Magic state distillation is often presented without a concrete
qubit architecture in mind, where all unitary Clifford gates and
measurements are possible on all qubits and all pairs of qubits
(a complete graph model). In the five planar design layouts that
we have presented, magic state distillation may be efficiently
synthesized using the combinations of measurements that each
layout permits (see Sec. IV). This is a concrete implementation
of measurement-only quantum computation as described in
Refs. [37,67]. In the case of the tetron designs, Clifford
completeness requires at least half of the tetrons to be ancillary
(more if links are not used). In all our designs, an additional
portion of the hexon or tetron qubits will need to be dedicated
to the preparation of approximate magic states.

We now sketch how the same classical control electronics
used to produce Clifford operations can instead be used to
produce approximate magic states. Details will be explained
in Ref. [84], which describes an extension and combination
of two antecedents already in print: an adiabatic protocol
which produces high-fidelity magic states via a dynamic
decoupling that exploits topologically protected regions of
the single-qubit Bloch sphere [85], and a hybrid adiabatic-
measurement protocol that utilizes measurement to suppress
diabatic errors [59].

As described in Ref. [85], a MZM-based qubit state
adiabatically evolved around a closed loop in the Bloch
sphere picks up a relative phase of o between the even
and odd fermion parity sectors, where « is the solid angle
enclosed by the loop, i.e., the geometric phase. This evolution
is performed by changing couplings to ancillary MZM:s.
Because MZM couplings drop off exponentially in system
parameters, combinations in which one (or two) couplings are
zero constitute topologically protected great circle paths on
the Bloch sphere (formed by the boundaries of octants of the
sphere). It is the protected nature of these paths, specifically
the closed path enclosing one octant of the Bloch sphere,
that leads to the topologically protected phase gate S, for
which o = 7 /2. Producing the T gate with o = 7 /4 is not
protected, but one may cancel low-frequency errors by defining
a particular loop contour ¢ on the Bloch sphere. This contour
is “snakelike”, consisting of different vertical sweeps from
the north pole to the equator, some partial evolution along
the equator, and sweeps back to the north pole (see Fig. 4
in Ref. [85]). Optimal cancellation is achieved by selecting
Chebyshev roots as turning points along the equator.

One may adapt this idea to a measurement-based scheme
in the same spirit as measurement-only topological quantum
computation [37,38], in which the unitary gate implemented
by an elementary braid exchange is instead implemented by
a composition of measurements, each incorporating one fixed
anyon of an ancillary pair. In the present context, a similar
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sequence of measurements that now project on the turning
points of ¢ can produce the same relative phase between the
different qubit states as the earlier adiabatic protocol [85].
This yields a measurement-based implementation of the T
gate. As in earlier measurement-only schemes, recovery from
unwanted measurement outcomes must be addressed. In the
case of hexons, one may use the incorporated ancillary MZMs
for this recovery. In the case of tetrons, one must instead utilize
one of the nearby ancillary tetrons.

Whereas all measurements used in our constructions of
Clifford gates involved creating a single closed loop through
MZM islands and quantum dot tunnel junctions, in order to
create the projections required to simulate adiabatic evolution
along the Bloch sphere contour c, this is not sufficient. Just as
c explores along the X — Y equator, we will need to simulta-
neously turn on tunneling at the junctions used to implement
an X measurement and the junctions used to implement a
Y measurement. Moving along this equator corresponds to
tuning the relative tunneling amplitudes between these two
sets of junctions. Tuning these ratios will require uniformity
of manufacture and careful calibration of each junction, but
given the mathematical ability of dynamic decoupling to
remove low-frequency errors, we have some confidence in this
procedure, at least to generate magic states accurate enough
for distillation.

B. Quantum error correction

Combining the topologically protected implementation of
the Clifford gates with the ability to produce and distill magic
states, we expect the architectures proposed in Sec. IV can
lead to a high-fidelity quantum computer that allows for many
gate operations before decohering. For low-depth quantum
computing (with magic state distillation), this approach might
even be sufficient without quantum error correction [86].
Large-scale quantum computing, however, will still require
embedding the presented architectures into an error-correcting
superstructure. A detailed discussion of error correction is
beyond the scope of this paper and will instead be addressed
in a future work [52]. We note that since our designs allow for
a complete set of high-fidelity Clifford operations, any error
correcting stabilizer code can be implemented on a software
basis without changing the presented designs. Finding an
optimized hardware for error correction is an interesting
subject for future research.

VI. CONCLUSIONS AND NEAR-TERM DIRECTIONS

Experimental explorations of MZMs in nanowire devices
have evolved to an impressive degree over the past few
years, with synergistic breakthroughs on the fabrication and
characterization fronts [14-20,29,31,87,88]. In parallel, new
theory insights have emerged that appear auspicious for
eventual quantum computing applications. Notable exam-
ples include anticipation of the virtues of charging energy,
both for protecting quantum information and facilitating
Majorana measurements [22-27]; measurement-only topo-
logical quantum computation [37,38]; improved modeling
of microscopic details of Majorana systems [39,89-96]; a
quantitative understanding of braiding “speed limits” [97-100]
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and the role of measurement in saturating them [59]; and
improved methods of producing phase gates which, together
with topologically protected operations, enable computational
universality [85].

In this paper, we have considered these new theoretical
developments in the context of realistic experimental imple-
mentations in order to design scalable MZM-based quantum
computing architectures with a variety of possible modules.
All of our designs feature (i) parallel topological wires
connected into units with appreciable charging energy and (ii)
common measurement-based approaches that use proximate
quantum dots and/or interferometry to enact all operations
necessary for achieving fault-tolerant universal quantum com-
putation. These architectures display some similarities to the
surface-code setups introduced recently in Refs. [22,23,101],
but seek to leverage the topological quantum information
processing afforded by MZMs, rather than pursuing active
error correction. Our study is instead closer in spirit to the
parallel works of Refs. [25,26], but goes beyond these works
in designing two-dimensional arrays rather than few-qubit
arrangements.

While we primarily focused on issues pertinent for long-
term circuit designs, there are many interesting shorter-
term goals for investigating the basic operating principles
in relatively simple setups. Demonstrating the ability to
perform fermion parity measurements of MZMs presents one
notable target given the prominence of measurements in our
proposed schemes. In this regard, it is worth commenting that
relying only on parallel topological wires entails a potential
challenge: the measurement visibility for certain MZM pairs
within a given unit can be “accidentally” low, as discussed
in Sec. IITA. We stress, however, that many factors (e.g.,
higher-order band-structure corrections, orbital magnetic field
effects, or additional spin-orbit couplings) are expected to
alleviate this issue. Optimizing the visibility for such cases
poses a worthwhile problem both for theory and experiment.
Other measurement issues also warrant further attention.
Contrary to the topological qubits themselves, interferometric
measurements are not immune to dephasing, which can
hamper visibility. It is important to establish the length scales
over which 1DTSs can serve as effective coherent links, the
time scales required to perform a measurement, and the length
and time scales over which we can resolve the state of MZMs
coupled through intervening quantum dots.

These measurement-centric issues can be addressed in the
framework of experiments relevant for quantum information.
We partition these experiments into groups involving progres-
sively more complex device geometries.

Two separate floating 1DTSs. In order to test the length
scales over which floating 1DTSs can be used as coherent
links, a device with two floating nanowires, as shown in
Fig. 15(a), could be used to realize an interference experiment
that is conceptually similar to the proposal in Ref. [27]. Two
1DTSs act as the arms of an Aharonov-Bohm interferometer.
If coherence is maintained, the tunneling between a quantum
dot on the left and one on the right is modulated by the
enclosed flux. Although this device cannot access properties
of topological qubits, since the MZM parities are fixed by
the individual 1DTSs’ charging energies, such an experiment
is a crucial test of the concept of using floating 1DTSs as
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FIG. 15. Examples of designs for experiments that demonstrate
some of the basic operating principles in our scalable quantum
computing architectures. (a) Experimental test of long-distance
coherent transport through floating 1DTSs. Two long wires are
coated with a superconductor and tuned into the topological regime.
If single electron transport is coherent, the hybridization of left
and right quantum dots should show Aharonov-Bohm oscillations
when changing the enclosed flux ¢. (b), (c) Experimental test of
QPP rate, MZM hybridization, and measurement functionality of
a topological qubit. These single tetron configurations contain the
minimal structure for a topological qubit. The left and right leads
can be used to first tune the system into the topological regime by
checking for zero-bias peaks associated with y; and y4. The central
dot allows one to measure iy,ys, e.g., using charge sensing. The
apparatuses shown in (b) and (c) differ in fabrication details. In (b)
the quantum dot is defined on the same nanowire as the MZMs
in a region where the superconducting shell was etched away. A
superconducting bridge joins the two superconducting shells. In
(c), no superconducting bridge is needed. A nontopological region
between ), and y; is created by etching away the semiconducting
part of the nanowire, or possibly by gating. The quantum dot is
defined in a nearby nanowire connected to the 1DTS composed of
four joined wires [102]. Note that the distance between y, and y;
has to be much larger than the superconducting coherence length. (d)
For enhanced measurement flexibility, additional gates allow one to
replace single-dot configurations by double-dot configurations.

coherent links. Moreover, such a system can provide strong
evidence for topological superconductivity by observing 7
shifts in the interference pattern when the dimensionless gate
voltage applied to one 1DTS changes by 1 (indicating the
parity of the IDTS has flipped).

Single tetron. A device with four MZMs on a single
superconducting island with charging energy, i.e., a tetron,
features the minimal number of MZMs that yields a ground-
state degeneracy and constitutes a single topological qubit.
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Figures 15(b) and 15(c) show devices designed for first-
generation experiments. A wealth of information can already
be gleaned from such systems. For example, one can partly
characterize the qubit’s stability by continuously measuring
the parity of a given MZM pair. In the devices shown in
Figs. 15(b) and 15(c), the parity i >3 can be measured via the
central quantum dot. QPP events would manifest as telegraph
noise in the signal of such a continuous measurement, provided
subsequent instances of QPP events are separated by suffi-
ciently long times. The extracted parity lifetimes would help
quantify the suppression of QPP events by charging energy, as
well as limitations from thermally excited or nonequilibrium
excited quasiparticles within a tetron. In the regime of very
small QPP rates, the central quantum dot allows us to quantify
the hybridization between MZM pairs.

A measurement of iy,y; initializes the qubit in an X
eigenstate. After performing such a measurement and turning
off the couplings to the quantum dot, hybridization due to
tunneling between y; and y;, or between y3 and y4 will split
the ground-state degeneracy, acting as a perturbation to the
Hamiltonian proportional to Z. Thus, the probability distribu-
tion of outcomes for subsequent measurements of iy,y3 will
reveal this energy splitting by varying the intermittent time
intervals between measurements. In Appendix C, we elaborate
on the details of how the coherence times may be extracted
from such an experiment, as well as the effect of noise on the
measurements. If the quantum dot in the middle is replaced
by two quantum dots, as depicted in Fig. 15(d), we will have
more flexibility in performing the measurement. For instance,
it will be possible to turn on the couplings of the MZMs
to the quantum dots for a very short time interval and then
subsequently measure their effect on the double-dot system
over a longer time interval.

By adapting the protocols from Ref. [51], tetrons can be
used to detect the nontrivial fusion rules of MZMs. The imple-
mentation is especially straightforward if the setup allows the
individual measurements of both iy;y» and iy, ys (this would
be the case for either of the tetron designs of Sec. IV B).
A measurement-only approach to fusion-rule detection can
then be viewed as follows. Measurement i y; y, projects onto a
particular fusion channel, initializing the topological qubit in
a fixed direction of the Bloch sphere. Subsequently measuring
iy2y3 then projects the topological qubit onto an axis of the
Bloch sphere rotated from the previous state’s direction by
/2. This should yield equal probability of the two possible
measurement outcomes, reflecting the two accessible fusion
channels.

In principle, it is also possible to detect fusion rules in
the devices show in Figs. 15(b) and 15(c), provided one can
control the coupling between MZMs y; and y, or between
y3 and yy4, for example, by tuning the topological gap via
the external magnetic field. Once the coupling becomes
appreciable, the environment will relax the system to the
ground state, effectively performing the projection into a fixed
fusion channel.

Finally, these devices allow one to implement an approx-
imate 7' gate. With a well-timed pulse changing Vi 2, Vo p,
and Vg3, ¥» and y3 can be coupled temporarily such that
the dynamical phase accrued by the state of the system

o T
1S §p23.

235305-21



TORSTEN KARZIG et al.

Single hexon. Adding two more MZMs to the above module,
i.e., building a hexon, provides the minimal architecture
to test the measurement-only implementation of braiding
transformations, as explained in Sec. IV A 1. Moreover, this
setup allows for more advanced approaches to implementing
T gates [85].

Two tetrons. The final basic operation needed for quantum
computing, namely, four-MZM measurement, can be demon-
strated with two tetrons each realizing a single topological
qubit. Experimental validation requires some care to ensure
that the implementation of the measurement does not uninten-
tionally probe the state of any MZM pairs within the quartet
of MZMs whose joint parity is being measured. For example,
suppose that we wish to measure —y " y\Vy PP = zH z®,
but inadvertently project onto an eigenstate of i yl(l)yél) =2zM
in the process. This error can be detected by initializing the
system in the state %(IO) + |1))(|0) + |1)), performing the
measurement (intended to be) of Z(" Z®, and then performing
a measurement of Z). If the final measurement does not
yield both possible outcomes with equal probability, then
it indicates that the measurements are not performing as
intended. A battery of similar tests may be used to more
precisely characterize errors in the measurements.

Together, these experiments test much of the physics un-
derlying our scalable designs. Outcomes of even the simplest
tests should discriminate among the various possible qubit
designs that we proposed and inform inevitable refinements.
Yet another issue that should factor into eventual designs is
circuit calibration, in the sense of ensuring that each individual
1DTS wire resides in its topological phase for systems
supporting a large number of qubits. One could, of course,
view successful implementation of the preceding experiments
as calibration, though coarser methods that merely indicate
the presence of MZMs, rather than information about their
quantum states, are clearly desirable. We expect that the
interferometric measurements involving quantum dots, which
we invoked for computation, also suffice for this purpose,
though detailed studies would certainly be useful.

A further research topic is to understand how much
advantage can be gained by using architectures that allow more
general measurements. Even using only a fairly limited set of
two-qubit measurements, we were able to generate universal
Clifford operations. However, more general measurements
simplify the implementation of certain computational op-
erations and, thus, might allow quantum algorithms to be
implemented using fewer measurements in total. This leads
to a tradeoff worth investigating further.

Finally, we note that tailored algorithms for our
measurement-based architectures can significantly increase
the efficiency of our designs. Efficient algorithms will, in
general, differ from the standard literature, which usually
relies on a set of unitary Clifford gates and single-qubit
measurements. For example, instead of using several CNOT
gates for state injection or SWAP operations, where each
CNOT gate requires a set of single-qubit and multiqubit
measurements, it will be more efficient to directly perform the
desired operation without using CNOT gates (see the example
in Sec. IV B 1, S gate). The search for such tailored algorithms
will be an important subject of future research.
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APPENDIX A: PARITY DEPENDENCE OF MZM
ISLAND-QUANTUM DOT ENERGIES

In this Appendix, we discuss the model considered in
Sec. III B. Let us consider the following Hamiltonian for the
two MZM islands:

Hy = Z Hgcs,a + He,a,
a=1,2

(AD)

where a =1 and 2 label the two islands. The first term
describes quasiparticle excitations in the island and the second
term corresponds to the charging energy. In the low-energy
approximation (i.e., energies much smaller than the super-
conducting gap), one can write the effective Hamiltonian Hy
in terms of the MZMs. In order to demonstrate this fact,
we consider a toy model for a MZM island in which it is
written as a collection of discretized Majorana wires with the
same superconducting phase ¢. In the dimerized limit, the
Hamiltonian for each wire is given by [11]

M—1

Hyire = —Ap Z(C]]: - ei¢ck)(ck+l + e_i¢ci+|)s
k=1

(A2)

where ¢ and cf, respectively, correspond to the fermion
annihilation and creation operators in the wire and A p is the
induced p-wave superconductor gap. The operator e/, where
¢ is the phase of the superconductor, adds a Cooper pair to the
MZM island.

In order to carefully track phase factors, it is helpful to
employ the number-conserving formalism from Ref. [103].
(For other number-conserving descriptions of MZMs see, e.g.,
Refs. [27,40,53,54,104-109].) In particular, two manifestly
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physical operators that commute with Hy, are
F:,l = CI + e, (A3)
T, =il —e®cy). (A4)

The operators FI , and Fl » add a charge to the MZM island
and, therefore, do not commute with the number-conserving
Hamiltonian H¢, given in Eq. (11). However, the charge-
neutral combination

Il Toy =€) 17, (A5)

does commute with ]\75.,1. Furthermore, as iF;1 I'c m squares
to identity and anticommutes with I'; ; and I'; 5, it counts the
fermion parity of the MZM island.

For the system depicted in the right panel of Fig. 2, we
label the four 1DTSs 1,2,3,4, matching the corresponding
MZM labels in the figure. We write the corresponding fermion

operators of the 1DTSs as c,(cj ) and c,({j T Then, we can define
= 1—‘c“),Mv I = FC(2),M9
N3=Tw;, =T, (A6)

We define fermion parities on the left and right MZM islands
as eigenvalues of the operators i['|T"; and i F;F4. That is,

irir2|[712> = p2lp12), iF§F4|P34) = pulpya). (A7)

Let us now derive the tunneling Hamiltonians given in
Secs. IIT A and III B for tunneling between the quantum dots
and MZMs. A natural model of the coupling between the MZM
islands and the quantum dots is that fermions from the dot can
hop into the fermionic mode at the end of the 1DTSs. This
corresponds to a Hamiltonian of the form

Huam = — (1 71 + 6 £1@ + 13 £16D + 14 f1e®) + He.
(A8)

Recall from Eq. (13) that the quantum dot fermionic operators
are f, and fj . Equation (AS8) reduces to Eq. (14) when we
project the Hamiltonian to the low-energy subspace described
by the operators I';:

(1)

(2) 3)
Cym

i 4
Cy —> 5[‘2, ¢ “

i 1
— EFI’ g §F3, (&

and then rewrite the I'; operators in terms of the conventional
MZM operators [10]

yj = e T (A10)
The Hamiltonian of the total system is
Hlot = HO + HQD + Htunn- (All)

Itis convenient to use the basis of lowest-energy eigenstates
of the decoupled MZM islands. We write this basis as
[Ns.1,Ns2; p12; p3a). For a given ground state |0,0; p12, p34),
the five lowest-energy states related through H, are

|0y = 10,05 p12, p34), (A12)

1) = [1,0; —p12. pa3) = T'1[0) = ipaTh10),  (A13)
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12) = |—1,0; —=p12,p3a) = T'1|0) = ip12I2]0), (Al4)
13) =10,1; p12,—p3a) = F;|O) = ipul}0), (A15)

[4) = 10,—1; p12,— p3a) = I'3|0) = ip3sT'4]0).

We write the lowest-energy quantum dot states in the basis
|n 1,7 1) The four lowest-energy quantum dot states are

(A16)

|0) = 0,0), (A17)
1) = |1,0), (A18)
12) = 10,1), (A19)
13) = |1,1). (A20)
In this basis, Hy and Hqp take the form
Hy=) E.u)(ul®L (A21)
)
Hop =1® Y 4 ¢41B) (Bl (A22)
where energies E,, of the decoupled MZM islands are
Ey = Ec N}, + Ec,N;,. (A23)
Ey = Eci(1 = Ng1)’ 4 EcaNg ., (A24)
Ey = Eci(14 Ng1)’ 4 EcaNg . (A25)
E3 = Ec N, + Eca(l — Ngo)?, (A26)
Ey = Ec N}, + Eco(14 Nyg»o) (A27)

and energies € of the decoupled double-dot system are

2 2
€0 = EC,1Ny | + ECo2Ny o + EMNg 1N 2, (A28)

€1 =eci(1—ng1)* +h + 8c,2n§,2 —em(l —ng 1ng o,
(A29)

€ = €C,1n§,1 +eca(l —ngn) +hy — eyng 1(1 — ng o),
(A30)

€3 =eci(1—ng ) +hy +eco(l —ng2)* +hy
+em(l —ng 1)1 — nyg2).

For brevity, we now define the
E,;=E,+¢s
The tunneling Hamiltonian in Eq. (14) becomes

(A31)

shorthand notation

Huynn = —%<|2><0| +10)(1) ® (IT)(0] + 13)(2])
— P12%(|2) (0] — 10)(1) ® (12)(0] — 13)(1])
- %3<|4><0| +10)3D ® (1)) + 13) (3])

+p34%(|4)(0| —10)(3) ® (12)(0] — [3)(1]) + H.c.
(A32)

235305-23



TORSTEN KARZIG et al.

As discussed in the main text, for given values of pj, and
P34 there are four states in the low-energy subspace when
the quantum dots are tuned near their degenerate point. Two

PHYSICAL REVIEW B 95, 235305 (2017)

for this parity-dependent low-energy state subspace to second
orderint/Ec as

" ~ — g (2)
of the states are superpositions of |0) ® |0) and |0) ® |3). The Het = H + H™, (A33)
energies of these two states are independent of the MZM parity where H© is the zeroth-order Hamiltonian
to second order ¢/ E¢ [see Egs. (16) and (17)]. 3 E. - 0
The~0ther two states are superpositions of |0) ® |1) and HY = ( 0.1 ) (A34)
|0) ® |2). The corresponding energies are parity dependent 0 Eos
[see Egs. (23) and (24)]. We can write an effective Hamiltonian ;14 @ is the second-order Hamiltonian
|
s 5 S [2a)? a
H(2) _ l Eoi—=Erp Egi—Ey; Egi—-Esp Egi—Eys (A35)
4 o GO U - GONRN TG
Eys—Ey; Eys—E 5 Eos—Ey; Eys—Esp
where the off-diagonal elements are
_ _putl < 2Egi —Ei5— Exs 2Ey; —Ey5—Ep )
2 \(Egi—Eip)Egi — Eys)  (Eoz— Ey5)(Egs — Epp)
_ butty < 2Ei — E3p — Ey3 2Ey5 — Ey45 — E3 > (A36)
2 \(Egi— Esp)Eoi — Ey3)  (Eos— Eg35)(Egs — Esp)

The perturbatively computed energies of Eq. (A33) are in
good agreement with the energy values obtained numerically
by exact diagonalization of Eq. (8), as shown in Fig. 16.

We now discuss dependence of the energy spectrum
on different physical parameters. Let n, = (1 +h/ec)/2,
the charge-degenerate point when £y = 0. When N, | #0
and ng, = ny, the parity-dependent energies are no longer
symmetric about the pointng | = nj. Since E¢ is chosen to be
much smaller than ¢, this asymmetry is small. When N, | = 0
and ng» # ny, as shown in Fig. 17, the crossing of the parity-
independent energies &' and ey shifts horizontally with
respect to the avoided level crossing of the parity-dependent
energies €| and .

When ¢y, =0, as is appropriate for four-MZM parity
measurements involving MZMs from two different hexons,

the level crossing of e and &5 shifts down and the avoided

crossing of & and &5 shifts up, so that both crossings are at

the same energies. In this situation, it is important to ensure

i%/Ec

— perturbative

545° --- exact
5407
5.35¢

530

: : : : n971
0.520  0.525  0.530  0.535

FIG. 16. Agreement between perturbative (solid black) and exact
(dashed red) parity-dependent energies | and &5 in units of Ec.
We use the parameter values N,, =0, ny, = n;, P = P12Pxu =
1, eca = 10Ec, h=Ec/2, eyy = Ec/2, t; =0.1E¢, and tiz1 =

0.2Ec.

(

that either the ground state corresponds to the parity-dependent

energy €}, or that the states with parity-independent energies

eyt and 5" are inaccessible.

APPENDIX B: TRANSMON MEASUREMENT

Following the discussion in Ref. [59], a projective parity
measurement using a transmon-type dispersive readout would
require resolving a frequency of

2
1
Aa):g—

2 (560 +e(p=+D)—e(p=-1
! B1)
So+ e (p=+)—(p=-1)

Using the perturbative expressions for & and &},
given in Egs. (23) and (24), with tunneling amplitudes
Efgot / EC
= P (p = 1)
ST ey
— e p=41) Tl e
S A S
(
(

‘ ‘ g1
0.525 0530  0.535

0520

FIG. 17. Energy &§* as a function of ng, for ng» = n} —0.01.
We use the parameter values N,, =0, ec =10E¢c, h = Ec/2,
em = Ec/2, t1 =0.1E¢, and t, = 0.2E¢. The parity-independent
energies g (shown in blue dotted-dashed) and &¥* (shown in purple
dotted-dashed). Parity-dependent energies | (black) and £5* (red)
are shown with solid curves for even parity and dashed curves for

odd parity.
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|ta] = |t3] = |t4] = ¢ > Oand |t;] = 0.5¢, we find the maximal
dispersive shift (when #{t,13¢} is real) to be

2 1
Aw=———. (B2)
480)2 EC
For the frequency estimates given in Ref. [59],

g/2nr ~40 MHz, dw/2m ~200 MHz, and -estimating
Ec =160 ueV and t = 0.2E¢, Eq. (B1) gives Aw =~ 100
MHz, which falls well within the range of transmon sensitivity.

APPENDIX C: MEASUREMENT PROCEDURE AND
DEPHASING IN A SINGLE MODULE WITH FOUR MZMs

In this Appendix, we elaborate on how to measure the MZM
hybridization in the devices shown in Figs. 15(b) and 15(c), and
we discuss the general effect of noise on the charge-sensing
measurements. We first consider the case without noise.

1. Measurement of the MZM hybridization

We assume that one of the devices shown in Figs. 15(b)
and 15(c) has been tuned into the topological phase, such that
there are two MZMs on either leg of the qubit. The gates
Vi1 and Vg4 are tuned such that the qubit is decoupled from
the left and right leads. The gates Vi, and Vi3, respectively,
control the tunneling amplitude #, and #; for an electron to
tunnel between the quantum dot and the corresponding MZM
Y2 Or y3.

The system is described by the Hamiltonian

H = Hc + Hynn + Hiyp. (C1)

For simplicity, we consider the system at N, = 0 and at the
charge-degenerate point n, = nj,. We add a constant to the
charging energy Hamiltonian to ignore the (constant) energy
contribution from the quantum dot:

He = Ecﬁgv + Sc(ﬁf — I’lz)z + hﬁf - Scnzz

= EcNi. (C2)

The tunneling Hamiltonian is given by
i ) 1 .
Hynn = —Efsze_”sz - ElafTe_le% +Hc., (C3)

where, as in Appendix A, the operator ¢'#/? adds an electron
to the MZM island and f is the annihilation operator for the
quantum dot.

The last term in H describes the hybridization between
the MZMs. For simplicity, we assume that the direct overlap
between y, and y3 can be neglected, so the hybridization
Hamiltonian takes the form

Huyo = SE12iy1Y2 + S E3ai Y3V (C4)

The states of the system are spanned by the basis
[Ns; P23, p1a) @ Iny).

The hybridization energies 6 £, and § E34 are exponentially
suppressed in the separation between MZMs y; and y, and
MZMs y3 and y4, respectively. The combined MZM hybridiza-
tion B, = §E1» + § E34 will lead to oscillations between the
two low-energy states of the qubit (which are degenerate
ground states for B, = 0).
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The goal of the experiment is to quantify B, via the follow-
ing protocol: (1) initialize the system with a measurement of
iy2Y3, (2) turn off the tunneling amplitudes #, and #; for a time
79, (3) turn on the tunneling amplitudes #, and #; for a time t;
and remeasure the system, e.g., with charge sensing. We now
demonstrate that this sequence will return a charge expectation
value for the quantum dot (7 ;) that depends on the quantity
B.. We further show that charge noise acting on the quantum
dot does not cause the B, dependence of (7 ¢) to decay in 7;. In
this analysis, we neglect the effect of exponentially suppressed
thermal corrections.

Assume that the system is initialized in the state
0; —1,—1) ® |1) at time 7 =0. If we assume ideal step
functions for turning off and on the tunneling amplitudes, then
the charge expectation value will be

(Y (mo + )lAsl¥(To + T1))s (C5)
where the state at Ty + 77 is given by

1Y (to + 71)) = e HrremHhwtHOw 0 1 1) @ |1).
(C6)

Note that H¢|0;—1,—1) ® |1) = Hc]0;1,1) ® |1) = 0. We
can write

e~ HmptHAID |0 1, —1) @ |1)

= ¢~ Mhw10; —1,—1) @ |1)
= cos(B,7)|0; —1,—1) ® |1) — i sin(B,7)|0; 1, 1) @ [1).
(&)

We choose 7; such that 7; < B I, This is easy to achieve
as B, is an exponentially suppressed parameter. Given this
choice, we may safely neglect Hyy, for the duration of time
71 when the tunneling amplitudes are on. For simplicity,
until otherwise stated, we take the regime where the parity
dependence of Hyyy, is strongest, corresponding tot, = t3 = ¢,
for which |0;—1,—1) ® |1) is maximally coupled to the
excited state |1;1,—1) ® |0) and |0;1,1) ® |1) is decoupled
from [1; —1,1) ® |0). At this special point,

it . ,
Hlunn = _EfTe_m/z(Vz - ly3) + H.c.
= —itfle7 ey + ir*e?cl, 1. (C8)

From the second equality, we can see that Hyn, [0; 1,1) ® |1) =
0,as £10;1,1) @ [1) = cl3]0; 1,1) @ |1) = 0.
Diagonalizing Eq. (C8), we have

He + Hum = -18)(8] + e+le)(e] + e_1g")(g'| + &/ le'} ('],
(€9

where |g) and |e) are the ground and excited states in the
sector spanned by {|0;—1,—1)® [1),[1;1,—1) ® |0)} and
|g’) and |e’) are the ground and excited states in the sector
spanned by {|0; 1,1) ® [1), |1; —1,1) ® |0)}.

At the fine-tuned point #, = 3 = ¢, the primed sector is
unaffected by the tunneling Hamiltonian, thus giving |g’) =
[0;1,1) ® |1) and |¢’) = |1; —1,1) ® |0), with corresponding
energies ¢/ =0 and ¢/, = E¢. In the unprimed sector, the
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ground and excited states will be

lg) = (e410; -1,—-1) ® 1)
el + |12
—it*|1;1,—1) ® |0)), (C10)
1 :
le) = ——=(—it]|0; —1,—1) ® |1)
JEL + It
+e4]l;1,—1) ® |0)) (C11)
with the corresponding energies
1
e = E(EC F EZ +4t]?). (C12)

It follows that the state at time tp 4+ T; may be written
(neglecting the very small corrections depending on B, 1)) as

[V (To + 71)) = cos(Byo)ag(t1)[g) + cos(Byto)ae(t1)le)
—isin(B,7)|g), (C13)

where the coefficients are given to leading order in ¢t/ E¢ by

e . 122 .
ay(t1) = et~ <1 - §|E—|2>e'8'r‘,
Jexr + |t c
(C14)
it* e*i&rfl ~ ze*i&rfl_

a,(1) = —————
N Ec

Thus, the quantum dot charge expectation value for the
measured state is

(C15)

(Y (zo + )l s|¥ (To + 71))
= cos?(Byto)(lag(11)|*(gli £1g) + la.(t)|*(elii ¢le)
+ag(tiag (r)leliif|g) + ag(ti)ac(ti){(glisle))

+ sin®(B, 1), (C16)

where the charge matrix elements are given to leading order

int/Ec by
2 2
&3 It
Arle) = —F ~ (1=, C17
(elisle) = Z= 5 ( Eg) (C17)
(elifley = A1 P C18)
elnrle) = ——— >~ —-,
/ el +t?  E:X
(sliile) = (eliiflg)* = 1~ (c19)
nrlie) = (€\ny¢ = =" —,
sy 718 83_+|t|2 Ec
Therefore, the expectation value is
(Y (o + )l (to + T1))
202 2(B.10) + 2|12
— —————— cos“ (B, 1 _
EZ + 4112 T EZ AP
x cos*(By1o) cos (v EZ + 4|t|*1y). (C20)
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2. Effect of noise

Turning on a finite tunneling amplitude essentially couples
the MZM island to a charge qubit given by the occupation of the
quantum dot. The dominant source of dephasing and relaxation
in charge qubits originates from the electrostatic coupling of
the charge to fluctuations in the background charges of the
substrate [110]. We expect this to be the dominant source
of noise for the experiment considered in the systems of
Figs. 15(b) and 15(c) to come from the charge noise coupled
to the dipole moment of the quantum dot MZM island system.
The noise has both diagonal and off-diagonal components in
the energy basis. The corresponding Bloch equations, ignoring
the exponentially small corrections from temperature, tell us
that Eq. (C15) should be modified in the presence of charge
noise as

lae(t)2 = lac(r)Pe ™, (c21)
lag ()] = 1+ (lag(r)2 — De™ 7, (C22)
a/()a’(m) — ag(m)ai(m)e ™. (C23)

Here, T} and T, are the energy and phase relaxation times of
the hybridized MZM island-quantum dot system (not to be
mistaken with the coherence times of the topological qubit,
which we expect to be much larger). 7} and T, depend on the
spectral density of the noise [111].

It follows that to lowest order in ¢/ E,

(Y (zo + )l f|Y(T0 + T1))
=1- L cosz(ero)
el + |12
|tI*Ec

2|t 2
4+ —— cos?(B,1o)cos (+/ EX + 4|t|>t;)e /2.
EL L aip (By1o) cos (\/ EZ + 4|t [°71)

(C24)

cos?(B,tp)e ™/ T

Importantly, at zero temperature, the charge expectation value
has a B,-dependent term that does not decay with ;.

We now comment on how B, may be extracted
from a charge-sensing measurement. We assume that
the measurement takes place over a time 7| satisfying
max[71,T>] € 11 K< By !. The purpose of the lower bound
is to ensure that the exponentially decaying terms in Eq. (C24)
may be neglected. The upper bound is to justify neglecting
the effects of Hyyp, when H, is turned on; violating the upper
bound would result in a measurement of (7 y) averaged over
the two MZM parity states. Satisfying the upper bound,
instead, ensures that the charge-sensing measurement is a
strong projective measurement for the MZM parity. On the
other hand, we assume that the time scales of the island-dot
charge degrees of freedom are fast, so that the measurement for
the quantum dot occupation is weak. The measurement process
therefore is carried out over the following steps. Initially, after
a time 1y the system will be in particular superposition of
the even and odd parity qubit states determined by the phase
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B, 79 [see (C7)]. The measurement collapses this superposition  tunneling amplitudes are turned back on, the system will be in a
so that the hybridized system is either in the primed or the superposition of the two ground states and will have no excited-
unprimed sector [see Eq. (C9)]. For our choice of tunneling state component. As such, (¥ (tp + )7 r|¥ (7o + 71)) will
amplitudes, the charge expectation value in the primed and  have no decaying terms.

respectively. Finally, the results in this appendix survive beyond the
point ©, = t3 = t. Away from this fine-tuned limit, the eigen-
states of H in the unprimed sector will be a mixture of
|0;—1,—1) ® |1) and |1;1,—1) ® |0) and the eigenstates of
H in the primed sector will be a mixture of |0; 1,1) ® |1) and
[1; —1,1) ® |0). Thus, |¢¥(to+ 71)) Will be a superposition
of all four basis states. Let |g) denote the ground state
for the sector spanned by {|0; —1,—1) ® |1),|1;1,—1) ® |0)},
as before, and |g’) denote the ground state for the sector
spanned by {|0;1,1) ® |1),|1; —1,1) ® |0)}. Then, provided
that (gliir|g) # (g'|fif|g’), the charge expectation value will
still have a B,-dependent term that is not decaying in t;.

unprimed sectors corresponds to 1 or 1 — Eg’
Repeating the experiment many times for fixed B,ty gives
the charge expectation value (C24) where the primed and
unprimed sectors are weighted depending on the amplitudes of
the initial superposition. Finally, by varying ty we can detect
the cosine squared dependence on B,, and thus extract the
MZM hybridization.

The above calculation may be modified to consider the
case where the tunneling amplitudes are turned off and on
in a time scale slow compared Egl, but fast compared to
B ! In this case, the transition from evolution with Hyyy, to
evolution with H can be made nearly adiabatic. When the

J

APPENDIX D: HEXON DETAILS

In this appendix, we prove Eq. (36) and explain how to shuttle computational MZMs through the qubit. (In the following
diagrammatic analysis, we neglect the unimportant overall constants.)
For the two-qubit entangling gate

0
>0l (o1
0

SO O
SO = O
— o OO

we begin by considering the qubit basis states of two hexons in the initial configurations shown below

e Y273 Y45 Yo VT Y8Y9 Y10 Y11 Y12

a.b) = v v (2

As in Fig. 7, a,b € {0,1} label the fermion parity even or odd states of the outermost pairs of MZMs in a given hexon.
Projecting the fusion channel of MZMs 4 and 5 to vacuum (e.g., using forced measurement) gives

Y1 Y2773 V4 Y5 Y6 V7 Y87Y9 Y10 Y11 Y12

115" |a, b) W v

71 Y273 ’74% Yo Y7 8 79 Y10 Y11 Y12 M1 72 3 Y4 Y5 Y6 Y7 8 79 Y10 Y11 Y12

where the wiggly line denotes fusion to a fermion.

(D3)
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Applying the four-MZM projector Hf)5678) to the above superposition yields

Y1 Y273 Y475 Y6 7 879 Y10 Y11 V12

ESTI) |, g) — b . (D4)

Then, projecting MZMs 3 and 5 to the vacuum channel gives

Y1 Y2 Y3 Y4 Y5 Ve V7 Y879 Y10 Y11 Y12

H(Sa H(oews 4O)| W v

Y2 Y3 V4 Y5 Y6 V7T Y89 Y10 Y11 Y12

(5678)
Wabab’ \<\>/ \v/ .
/b/

This step utilizes the diagrammatic braiding relation of MZMs or Ising anyons:

(D5)

a v 7 Jd v
/
- 5 Wabab,\</. ®6)
b a’ b= %

Finally, projecting MZMs 3 and 4 to the vacuum channel gives

71 Y273 Yays Y6 V7 Y879 Y10 Y11 Y12

34) 11(35) 17(5678) 11 (45 5678 D7
) — 3w W v o7
/b/

which is the desired entangling gate.
An alternative derivation of Eq. (36) can be performed by explicitly multiplying the projectors written in terms of Majorana
operators, as follows:

1—1i 1-— 1—1
H(24)H(25)H(5678)H(45)H(34) 1_1(34) 12 V3Vs V52V6)/7 Vs 12 2V 1_[5)34)

=276 (1 = iysys — ivays + vava — VsVevrvs + iv3Veyrvs — ivaveyrVs + VavavsYeyrvo) g
=271+ y3ya — ¥svey7¥8 + Vavavsveyr v TG

- 2—3f<

)(1 +iysysyrye)s?

7

1 .
— Zem/4W(5678) ® HE)34)_ (D8)

Here, we used H2)34)i)/3 Vi 1'1(%4) I"I(34) LysYj 1'1(34) = 0 for j # 3 or 4 and the fact that H(34) projects iy3ys = —1.
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Finally, the following diagrams illustrate how the computational MZMs may be shuttled through the qubit using anyonic

teleportation:
Y1 Y2 Y3 Y4 V5 Y6 Y1 Y2 Y3 Y4 Vs Y6 Y1 Y273 Y475 Y6
(23) NS (12)
o o \<>/ (D9)
= =
a
(34) (23)
1_[() HO
a
Y1 Y2 Y3 Y4 V5 Y6 Y1 Y2 Y3 ’74\/75 Y6 71 Y273 Y475 Y6
H645) HE)56)
= = (D10)
. - a
H(()34) Héﬁlo)
a
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