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We analyze the Hilbert space and ground state structure of bilayer quantum Hall (BLQH) systems at fractional
filling factors ν = 2/λ (λ odd) and we also study the large SU (4) isospin-λ limit. The model Hamiltonian is an
adaptation of the ν = 2 case [Z. F. Ezawa et al., Phys. Rev. B 71, 125318 (2005)] to the many-body situation
(arbitrary λ flux quanta per electron). The semiclassical regime and quantum phase diagram (in terms of layer
distance, Zeeman, tunneling, etc., control parameters) is obtained by using previously introduced Grassmannian
G4

2 = U (4)/[U (2) × U (2)] coherent states as variational states. The existence of three quantum phases (spin,
canted and ppin) is common to any λ, but the phase transition points depend on λ, and the instance λ = 1
is recovered as a particular case. We also analyze the quantum case through a numerical diagonalization of
the Hamiltonian and compare with the mean-field results, which give a good approximation in the spin and
ppin phases but not in the canted phase, where we detect exactly λ energy level crossings between the ground
and first excited state for given values of the tunneling gap. An energy band structure at low and high interlayer
tunneling (spin and ppin phases, respectively) also appears depending on angular momentum and layer population
imbalance quantum numbers.
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I. INTRODUCTION

A better analytical understanding of the Hilbert space and
ground state structure of multicomponent fractional quantum
Hall systems is needed to have a clear physical picture and
to properly interpret the experimental data. In this paper we
make a contribution in this direction, studying the bilayer case
at fractional values of the filling factor ν = 2/λ (λ odd). Ac-
cording to Jain’s composite fermion picture [1], this is the case
of two quasiparticles (two electrons bound to λ magnetic flux
quanta each) per Landau site. The integer case ν = 2 has been
extensively studied in the literature (see, e.g., Refs. [2–9]),
where the analysis of the ground state structure reveals the
existence of (in general) three quantum phases, shortly denoted
by: spin, canted, and ppin [2,3], depending on which order pa-
rameter (spin or pseudospin/layer) dominates across the con-
trol parameter space: tunneling, Zeeman, bias, etc., couplings
[see later on Eq. (17)]. For ν = 1 the ground state is known
to be spin polarized in the BLQH system, that is, the canted
phase does not exist [3]. The fractional multicomponent case
(including multilayer, graphene, etc.) has also been addressed
(see, e.g., Refs. [10–14]). In particular, for the bilayer quantum
Hall (BLQH) system, the fractional case ν = 2/3 has been
theoretically worked out in Refs. [15] and [16], having an ex-
cellent agreement with previous experimental results [17–19].

The variational states used to study the ground state and
phase diagrams of (multicomponent) fractional QH systems
are usually of Laughlin [20] (phenomenological) type. Com-
plementary descriptions are provided by Halperin [21] and
Haldane’s [22] scheme of hierarchy states, Jain’s composite
fermion theory [1], hierarchy states by MacDonald et al. [23],
etc. In this paper we shall use wave functions introduced
previously by us in a series of papers, firstly for the bilayer case
at fractional values ν = 2/λ [24–26] and recently extended
to the N -component case at ν = M/λ in Ref. [27]. We
followed a group-theoretical approach that generalizes the
classification of SU (4) isospin states at ν = 2 according to the

6-dimensional irreducible totally antisymmetric representation
[1,1] of SU (4) arising in the decomposition of 4 ⊗ 4 =
10 ⊕ 6. For ν = 2/λ we constructed the dλ-dimensional (4)
irreducible representation of SU (4) which, in Young tableau
notation [λ,λ], consists of two rows (two electrons) of λ

boxes (flux quanta) each [see Eq. (3)]. The corresponding
phase space is the Grassmannian G4

2 = U (4)/[U (2) × U (2)],
a picture that has also been considered in some extensions to
N -component antiferromagnets [28–30]. For the case of one
electron, ν = 1/λ, the situation is simpler (it corresponds to a
fully symmetric representation) and the corresponding phase
space is the complex projective CP 3 = U (4)/[U (3) × U (1)]
(the Haldane sphere S2 = CP 1 = U (2)/[U (1) × U (1)] for
the monolayer case). We shall not discuss the ν = 1/λ case
here. The dimension dλ of the corresponding Hilbert space
at a general Landau site for ν = 2/λ grows as dλ ∼ λ4 [see
Eq. (4)] since there are more and more ways of attaching flux
quanta to the indistinguishable electrons. These states have
been used to quantify interlayer coherence and entanglement
in the BLQH system at ν = 2/λ [25]. Here we test our
Grassmannian G4

2 coherent states as variational states to
study the quantum phase diagram (according to Gilmore’s
algorithm [31]) at filling factor ν = 2/λ, the instance λ = 1
being recovered as a particular case [2,3]. We shall see that the
existence of the three quantum phases (spin, canted, and ppin)
is common to any (odd) λ, but the phase transition points
depend on λ. We study the large isospin λ → ∞ limit and
realize that the canted region shrinks for high values of λ in the
tunneling direction. We also analyze the quantum case through
a numerical diagonalization of the Hamiltonian and compare
the results with the mean field (semiclassical) case. We obtain
good agreement between quantum and semiclassical results in
the spin and ppin phases, but not in the canted phase, where
we detect exactly λ energy-level crossings between the ground
and first excited states for given values of the tunneling gap.
Therefore, this degeneracy problem becomes more apparent
for higher λ. The fidelity (overlap) between variational and
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numerical ground states increases when we adapt our coherent
states to a parity symmetry, as it turns out also occurs in other
quantum physical systems undergoing a second order QPT
like the Dicke model of atom-field interactions [32–34], vibron
model of molecules [35–38], Lipkin-Meshkov-Glick [39], etc.

The organization of the paper is the following. In Sec. II
we provide an oscillator realization of the U (4) operators
and the Landau-site Hilbert space for ν = 2/λ, together
with their matrix elements, which will be necessary for the
quantum analysis addressed in Sec. IV. More details can
be found in Refs. [24–26] and appendices A and B, which
have been introduced for the sake of self-containedness.
Especially appendix B, which contains the isospin-λ coherent
states, essential for the semiclassical analysis of the model
Hamiltonian studied in Sec. III. The Landau-site Hamiltonian
governing the BLQH system at ν = 2/λ is an adaptation of
the one proposed in Ref. [2] for λ = 1 to the many body case
(arbitrary λ). Using our coherent states, we obtain in Sec. III
the phase diagram (in the balanced case, for simplicity) for
arbitrary λ and, in particular, we recover the results of Ref. [2]
for λ = 1. We also have a look at λ → ∞ (large isospin) as a
formal limit. In Sec. IV we analyze the quantum case through a
numerical diagonalization of the Hamiltonian and compare the
results with the mean field (semiclassical) case. For low and
high interlayer tunneling (spin and ppin phases, respectively)
an analytical treatment of the Hamiltonian reveals a formation
of energy bands depending on angular momentum and layer
population imbalance quantum numbers. We study the internal
structure of these bands (for other studies on band structure
formation in the FQHE see, e.g., Ref. [40]). In Sec. V we
comment on some experimental issues. Finally, the last section
is left for conclusions and outlook.

II. U(4) OPERATORS AND HILBERT SPACE

BLQH systems underlie an isospin U (4) symmetry. In order
to emphasize the spin SU (2) symmetry in the, let us say,
bottom b (pseudospin down) and top a or (pseudospin up)
layers, it is customary to denote the U (4) generators in the
four-dimensional fundamental representation by the sixteen
4 × 4 matrices τμν ≡ σ

ppin
μ ⊗ σ

spin
ν , μ,ν = 0,1,2,3, where σμ

denote the usual Pauli matrices σk,k = 1,2,3, plus the identity
σ0. In the fractional case, bosonic magnetic flux quanta are
attached to the electrons to form composite fermions. Let us
denote by (a↓

l )† [resp. (b↑
l )†] creation operators of magnetic

flux quanta (flux quanta in the sequel) attached to the electron
l with spin down [resp. up] at layer a [resp. b], and so on.
For the case of two electrons, l = 1,2, the four-component
electron “field” Z is arranged as a compound Z = (Z1,Z2) of
two fermions, so that the sixteen U (4) density operators are
then written as bilinear products of creation and annihilation
operators as (the so-called Schwinger oscillator realization)

Tμν = tr(Z†τμνZ), Z =
(

a
b

)
=

⎛
⎜⎜⎜⎝

a
↓
1 a

↓
2

a
↑
1 a

↑
2

b
↑
1 b

↑
2

b
↓
1 b

↓
2

⎞
⎟⎟⎟⎠. (1)

In the BLQH literature (see, e.g., Ref. [3]) it is customary to
denote the total spin Sk = T0k/2 and pseudospin Pk = Tk0/2,

together with the remaining nine isospin Rkl = Tlk/2 operators
for k,l = 1,2,3. A constraint in the Fock space of eight boson
modes is imposed such that Z†Z = λI2, with λ representing
the number of magnetic flux lines piercing each electron and
I2 the 2 × 2 identity. In particular, the linear Casimir operator
T00 = tr(Z†Z), providing the total number of flux quanta, is
fixed to na + nb = λ + λ = 2λ, with na = n

↑
a1 + n

↓
a1 + n

↑
a2 +

n
↓
a2 the total number of flux quanta in layer a (resp. in layer

b). The quadratic Casimir operator is also fixed to


S2 + 
P 2 + R2 = λ(λ + 4). (2)

We also identify the interlayer imbalance operator P3, which
measures the excess of flux quanta between layers a and b,
that is 1

2 (na − nb). Therefore, the realization (1) defines a
unitary bosonic representation of the U (4) matrix generators
τμν in the Fock space with constrains. This unitary irreducible
representation arises in the Clebsch-Gordan decomposition
of a tensor product of 2λ four-dimensional (fundamental,
elementary) representations of U (4); for example, in Young
tableau notation:

2λ

=

λ
︷ ︸︸ ︷

...

... . . . ,

(3)

or

2λ︷ ︸︸ ︷
[1] ⊗ · · · ⊗ [1] = [λ,λ] ⊕ . . . , where we wanted to high-

light rectangular Young tableaux of shapes [λ,λ] (2 rows of λ

boxes each) corresponding to 2 electrons pierced by λ magnetic
flux lines (i.e., fractional filling factor ν = 2/λ). These are
the Young tableaux determining our carrier Hilbert space
Hλ(G4

2) associated to the eight-dimensional Grassmannian
phase spaces G4

2 = U (4)/U (2) × U (2) (see Refs. [28–30]
for similar pictures in N -component antiferromagnets). The
dimension of this representation can be calculated by the
hook-length formula and gives

dλ = 1
12 (λ + 1)(λ + 2)2(λ + 3). (4)

In Refs. [24,27] we have also provided a physical argument to
derive the expression of dλ in a composite fermion picture. It
turns out to coincide with the total number of ways to distribute
2λ flux quanta among two identical electrons in four (spin-
pseudospin) states. Note that quantum states associated to
Young tableaux [λ,λ] are antisymmetric (fermionic character)
under the interchange of the two electrons (two rows) for λ

odd, whereas they are symmetric (bosonic character) for λ

even. Composite fermions require then λ odd.
In Refs. [24,25] we have worked out an orthonormal basis

of the carrier Hilbert space Hλ(G2), which is spanned by the
set of orthonormal basis vectors{∣∣j,m

qa,qb

〉
,

2j,m ∈ N,

qa,qb = −j, . . . ,j

}
2j+m�λ

, (5)

which can be written in terms of Fock states (to be self-
contained, we give a brief in Appendix A). The basis states
|j,mqa,qb

〉 turn out to be antisymmetric (resp. symmetric) under
the interchange of the two electrons for λ odd (resp. even), so
that the parity of the number of flux quanta attached to each
electron affects the quantum statistics of the compound (see
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Ref. [25]). The d1 = 6-dimensional irrep of SU (4) is usually
divided into two sectors (see, e.g., Ref. [3]): the spin sector
with spin-triplet pseudospin-singlet states

|S↑〉 =
∣∣∣ 1

2 , 0
−1
2 , 1

2

〉
, |S0〉 = 1√

2

(∣∣∣ 1
2 ,0
1
2 , 1

2

〉
−

∣∣∣ 1
2 , 0

−1
2 , −1

2

〉)
,

|S↓〉 =
∣∣∣ 1

2 , 0
1
2 , −1

2

〉
(6)

and the ppin sector with pseudospin-triplet spin-singlet states

|P↑〉 = ∣∣0,1
0,0

〉
, |P0〉 = 1√

2

(∣∣∣ 1
2 , 0
1
2 , 1

2

〉
+

∣∣∣ 1
2 , 0

−1
2 , −1

2

〉)
, |P↓〉 = ∣∣0,0

0,0

〉
.

(7)

The basis states |j,mqa,qb
〉 are eigenstates of the following

operators:

P3

∣∣j,m
qa,qb

〉 = (2j + 2m − λ)
∣∣j,m
qa,qb

〉
,(
S2

a + 
S2
b

)∣∣j,m
qa,qb

〉 = 2j (j + 1)
∣∣j,m
qa,qb

〉
,

S�3

∣∣j,m
qa,qb

〉 = q�

∣∣j,m
qa,qb

〉
, � = a,b, (8)

where we have defined angular momentum operators in
layers a and b as Sak = − 1

2 (Sk + Rk3) and Sbk = 1
2 (Sk − Rk3),

respectively, so that 
S2
a + 
S2

b = 1
2 (
S2 + 
R2

3). Therefore, j rep-
resents the total angular momentum of layers a and b, whereas
qa and qb are the corresponding third components. The integer
m is related to the interlayer imbalance (ppin third component
P3) through 1

2 (na − nb) = (2j + 2m − λ); thus, m = λ,j = 0
means na = 2λ (i.e., all flux quanta occupying layer a),
whereas m = 0,j = 0 means nb = 2λ (i.e., all flux quanta
occupying layer b). The angular momentum third components
qa,qb measure the imbalance between spin up and down in
each layer, more precisely, qa = 1

2 (n↑
a1 − n

↓
a1 + n

↑
a2 − n

↓
a2) and

similarly for qb. For later use, we shall also provide the matrix
elements of the interlayer tunneling operator

P1

∣∣j,m
qa,qb

〉
= Cj,m+1

qa,qb

∣∣∣j− 1
2 ,m+1

qa− 1
2 ,qb− 1

2

〉
+ C

j,m+1
−qa,−qb

∣∣∣j− 1
2 ,m+1

qa+ 1
2 ,qb+ 1

2

〉
+C

j+ 1
2 ,m+2j+2

−qa+ 1
2 ,−qb+ 1

2

∣∣∣j+ 1
2 ,m

qa− 1
2 ,qb− 1

2

〉
+ C

j+ 1
2 ,m+2j+2

qa+ 1
2 ,qb+ 1

2

∣∣∣j+ 1
2 ,m

qa+ 1
2 ,qb+ 1

2

〉
+Cj,m+2j+1

qa,qb

∣∣∣j− 1
2 ,m

qa− 1
2 ,qb− 1

2

〉
+ C

j+ 1
2 ,m

−qa+ 1
2 ,−qb+ 1

2

∣∣∣j+ 1
2 ,m−1

qa− 1
2 ,qb− 1

2

〉
+C

j,m+2j+1
−qa,−qb

∣∣∣j− 1
2 ,m

qa+ 1
2 ,qb+ 1

2

〉
+ C

j+ 1
2 ,m

qa+ 1
2 ,qb+ 1

2

∣∣∣j+ 1
2 ,m−1

qa+ 1
2 ,qb+ 1

2

〉
, (9)

where the coefficients C where calculated in Ref. [24] and are
given by

Cj,m
qa,qb

= 1

2

√
(j + qa)(j + qb)m(λ − (m − 2))√

2j (2j + 1)
, j �= 0,

(10)

and C
j,m
qa,qb

= 0 for j = 0.

III. MODEL HAMILTONIAN AND
SEMICLASSICAL ANALYSIS

Let us introduce the model Hamiltonian from first prin-
ciples, in order to make clear the approximations and

assumptions that we consider. More information can be found
in the standard Ref. [3]. Firstly, we consider a large cyclotron
gap, so that thermal excitations across Landau levels are
disregarded and electrons are confined to the lowest Landau
level with vanishing kinetic energy. The essential properties
of QH systems are determined by the Coulomb interaction
Hamiltonian

HC = 1

2

∑
�,�′=a,b

∫
d2xd2yV��′ (x − y)ρ�(x)ρ�′(y), (11)

where V��(r) = e2/(4πεr) is the intralayer Coulomb inter-
action, whereas Vab(r) = Vba(r) = e2/(4πε

√
r2 + δ2) is the

interlayer Coulomb interaction with δ the interlayer separation.
The Coulomb interaction is decomposed into HC = H+

C +
H−

C , where H+
C depends on the total density ρ = ρa + ρb

while H−
C depends on the density difference between layers

�ρ = 2P3 = ρa − ρb (ppin third component) and is the origin
of the capacitance term (see below). The Coulomb term H+

C is
SU (4) invariant and dominates the BLQH system provided δ

is small enough (we shall usually choose δ = �B , the magnetic
length).

The Hamiltonian that we shall eventually use is of the sigma
model type (QH ferromagnet), written in terms of collective
U (4) isospin operators (see Ref. [27] for the N -component
case). Let us see how to obtain it from HC. One proceeds by
expanding the electron field operator ψμ(x) = ∑

k cμ(k)ϕk(x)
in terms of one-body wave functions ϕk(x) describing an
electron localized around the Landau site k and occupying
an area of 2π�2

B . The coefficients cμ(k) and c†μ(k) denote
annihilation and creation operators of electrons with spin-ppin
index μ = 0,1,2,3 at Landau site k. Substituting the expansion
ψμ(x) into H±

C we obtain the Landau-site Hamiltonians

H+
C =

∑
klk′l′

V +
klk′l′ρ(k,l)ρ(k′,l′),

H−
C = 4

∑
klk′l′

V −
klk′l′P3(k,l)P3(k′,l′), (12)

where the Coulomb matrix elements are

V ±
klk′l′ = 1

2

∫
d2xd2yϕ∗

k (x)ϕl(x)V ±(x − y)ϕ∗
k′(y)ϕl′ (y),

(13)
with V ± = 1

2 (Vaa ± Vab), ρ(k,l) = c†(k)τ00c(l) is the density
operator, P3(k,l) = 1

2c†(k)τ30c(l) is the imbalance operator,
and c = (c0,c1,c2,c3)t . In general, the U (4) isospin operators
are given by Tμν(k,l) = c†(k)τμνc(l), which is the fermionic
counterpart of the bosonic representation (1) for an arbitrary
Landau site.

The QH system is robust against density fluctuations;
actually, we assume the suppression of charge fluctuations.
Moreover, we consider the ground state |g〉 to be coherent
and satisfy the homogeneity condition ρ(k,l)|g〉 = νδk,l |g〉.
Thus, we are working in the mean-field limit, and we
neglect anisotropic or translationally noninvariant solutions.
Therefore, our analysis can be eventually restricted to a single
(but arbitrary) Landau site. The direct part arising from H+

C is
irrelevant as far as perturbations are concerned and we shall
discard it. Therefore, we shall only consider the exchange
interaction part, which can be written as a sum over isospin
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interactions δμμ′
δνν ′Tμν(k)Tμ′ν ′(k′) at Landau sites k,k′. Using

that

δμμ′
δνν ′TμνTμ′ν ′ − ρ2 = 4( 
S2 + 
P2 + R2) (14)

and 
S2
a + 
S2

b = 1
2 ( 
S2 + 
R2

3) and retaining SU (4) noninvariant
terms only, the ground state Coulomb energy per Landau site
for ν = 2 acquires the form (when written in terms of isospin
expectation values 
S, 
P and R per Landau site)

HC = 4ε−
DP 2

3 − 2ε−
X

(
S2 + 
R2
3 + P 2

3

)
, (15)

that is, a sum of the naive capacitance (ε−
D ) and the exchange

(ε−
X ) energies. The exchange and capacitance energy gaps are

given in terms of the Coulomb matrix elements V ±
klk′l′ and,

eventually, in terms of the interlayer distance δ by

ε±
X = 1

4

√
π

2

(
1 ± e(δ/�B )2/2erfc

(
δ√
2�B

))
EC, (16)

and ε−
D = δ

4�B
EC , where EC = e2/(4πε�B) is the Coulomb

energy unit and �B = √
h̄c/(eB) the magnetic length. In the

following we shall simply put ε−
X = εX and ε−

D = εD as no
confusion will arise. We shall usually choose δ = �B , which
gives εX � 0.15 in Coulomb units.

We shall also include a (pseudo) Zeeman term

HZpZ = −�ZS3 − �tP1 − �bP3, (17)

which is comprised of: Zeeman (�Z), interlayer tunneling (�t,
also denoted by �SAS in the literature [3]), and bias (�b) gaps.
The bias term creates an imbalanced configuration. For the
sake of simplicity, we shall restrict ourselves to the balanced
case in the semiclassical study, which eventually means to
discard the therms proportional to εD and �b; we shall take
capacitance and bias into account in the quantum analysis
of Sec. IV. Putting all together, the total Landau-site ground
state energy of the BLQH system at ν = 2 (two electrons at a
general Landau site) is [2].

H = HC + HZpZ. (18)

A minimization process of the ground state energy surface
(based on a semiclassical analysis) reveals the existence of
three quantum phases: spin, canted, and pseudospin (ppin for
short), which are characterized by the squared spin 〈
S〉2 and
ppin 〈 
P 〉2 ground state mean values (order parameters), as in
Fig. 1 and Table I for λ = 1.

The spin (resp. ppin) phase occurs when the Zeeman (resp.
tunneling) term dominates (see Fig. 1). The variational ground
state energies of the three phases (spin, canted, and ppin) are
given by the following expressions (see Ref. [2]; we write
�SAS = �t for the sake of shortness)

Es = −2εX − �Z,

Ec = −2εX

(
1

4

�2
t

(2εX)2
− 1

4

�2
Z

(2εX)2
+ �2

t

�2
t − �2

Z

)
,

Ep = −�t, (19)

respectively, with second order QPT critical points at �sc
t =√

�2
Z + 4εX�Z (where Es = Ec and ∂Es

∂�t
= ∂Ec

∂�t
) and �

cp
t =

2εX +
√
�2

Z + 4ε2
X (where Ec = Ep and ∂Ec

∂�t
= ∂Ep

∂�t
).

FIG. 1. Semiclassical expectation values of squared spin (blue)
and ppin (orange) for λ = 1 and layer separation δ = �B , as a function
of tunneling �t and Zeeman �Z gaps (balanced case). We observe
the three phases in Table I. Coulomb energy units.

Let us see how this phase diagram is modified for fractional
filling factors ν = 2/λ. We have now N = 2λ bosonic particles
(flux quanta), and therefore Coulomb (two-body) interactions
must be renormalized by the number of pairs N (N − 1) to
make them intensive quantities. We also divide one-body
interactions by N in order to work with energy density, as
we shall have a look at the large isospin λ → ∞ limit at some
point. Taking all this information into account, we propose the
following energy density to study the ground state at fractional
filling factors ν = 2/λ:

Hλ = HC

N (N − 1)
+ HZpZ

N
, N = 2λ, (20)

which is an adaptation of (18) to arbitrary N flux quanta
(note that H1 = H/2). Let us promote Pj ,Sj , and Rij to
bosonic operators Tμν in (1) and consider Hλ as an effec-
tive Hamiltonian per Landau site of the BLQH system at
ν = 2/λ. To study the semiclassical limit, we now replace
Pj ,Sj , and Rij by the corresponding expectation values
〈Tμν〉 = 〈Z|Tμν |Z〉 of the operators Tμν (1) in an isospin-λ
coherent state |Z〉 (see Appendix B) labeled by points Z ∈ G4

2,
i.e., 2 × 2 complex matrices with four complex (eight real)
entries denoted by zμ = tr(Zσμ)/2,μ = 0,1,2,3. Let us define
Mμν = 2iλ zμz̄ν−zν z̄

μ

det(σ0+Z†Z) , where zμ = ημνz
ν [we are using Ein-

stein summation convention with Minkowskian metric ημν =
diag(1, − 1, − 1, − 1)] and z̄μ is the complex conjugate. The
coherent state expectation values of the operators appearing
in the Hamiltonian (20) have the following expression (see
Appendix B and Refs. [24,26] for their calculation)

〈S1〉 = M23, 〈S2〉 = M31, 〈S3〉 = M12,

〈Rk3〉 = iM0k, 〈
S〉2 + 〈 
R3〉2 = MμνM
μν/2,

TABLE I. Spin and ppin ground state mean values in the three
BLQH phases.

Phase: Spin Ppin Canted

Order 〈
S〉2 = λ2 〈 
S〉2 = 0 〈 
S〉2 �= 0
parameter: 〈 
P 〉2 = 0 〈 
P 〉2 = λ2 〈 
P 〉2 �= 0
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〈P1〉 = λ�[tr(Z)(1 + det(Z†)]/det(σ0 + ZZ†),

〈P3〉 = λ(det(Z†Z) − 1)/det(σ0 + Z†Z), (21)

where � denotes the real part [〈P2〉 corresponds to the imagi-
nary part] and “i” is the imaginary unit. For the (cumbersome)
coherent state expectation values of quadratic (two-body)
operators 〈T 2〉 we address the reader to Refs. [24,26]. Later we
shall use a parametrization (B5) of Z in terms of eight angles,
for which the imbalance expectation value is simply 〈P3〉 =
−(cos ϑ+ + cos ϑ−)/2. Note that the following identity for the
magnitude of the SU (4) isospin is automatically fulfilled for
coherent state expectation values:

〈
S〉2 + 〈 
P 〉2 + 〈R〉2 = λ2. (22)

For λ = 1 it coincides with the variational ground state
condition provided in Ref. [2]. Note the difference with the
expression of the quadratic Casimir (2), which is fulfilled
for any state of the Hilbert space. The difference between
both expressions denotes the existence of quantum fluctuations
(nonzero variance) proportional to λ for the SU (4) isospin in a
coherent state. These fluctuations are negligible (second order)
in the large isospin, λ → ∞, classical limit.

With these ingredients we can compute the energy surface
Eλ(Z; εX,�t,�Z) = 〈Z|Hλ|Z〉 and proceed to find the values
of Z which minimize it. For this purpose, we have used
the parametrization (B5) of Z in terms of eight angles (the
dimension of the Grassmannian G4

2). The results of the
minimization are as follows. For arbitrary λ, we find the same
phase diagram structure as for λ = 1, that is, spin, canted, and
ppin phases. In all phases we find the common relations

β+ = β− = 0, ϑ+ + ϑ− = π, θa + θb = π, φa = φb.

(23)
In the spin and ppin phases we have

Spin : ϑs
+ = 0 = θs

a , Ppin : ϑ
p
+ = −π/2 = θp

a , (24)

respectively. In the canted phase we get the more involved
expression

tan ϑc
+ = ±

√√√√ (
�2

t − �2
Z

)2 − (4�ZεX(λ))2

−(
�2

t − �2
Z

)2 + (4�tεX(λ))2
, (25)

tan θc
b = ∓ �t

�Z

√√√√ (
�2

t − �2
Z

)2 − (4�ZεX(λ))2

−(
�2

t − �2
Z

)2 + (4�tεX(λ))2
,

where we have defined εX(λ) = λεX/(2λ − 1) for later use.
Note that we have two different solutions of (ϑc

+,θc
b ) in the

canted phase, given by the signs (+,−) and (−,+) in equation
(25), leading to the same minimum energy 〈Zc

±|Hλ|Zc
±〉,

with Zc
± = Z(θa,b,φa,b,ϑ±,β±)|c± the corresponding stationary

point in the Grassmannian G4
2 for any of the two solutions

(+) = (+,−) and (−) = (−,+) together with the common
restrictions (23). Even though both coherent states |Zc

+〉 and
|Zc

−〉 give the same energy, they are distinct; in fact, they
are almost orthogonal 〈Zc

+|Zc
−〉 � 0 in the canted phase. This

indicates that the ground state is degenerated and there is a
broken symmetry in the thermodynamic limit. We will come
back to these degeneracy problems of the canted phase in the
next section.

FIG. 2. Variational (solid) and exact (dotted) ground state energy
E0

λ as a function of tunneling �t (fixed layer separation δ = �B

and Zeeman �Z = 0.01) for λ = 1 (red), λ = 3 (blue), and λ → ∞
(dotted black). The corresponding spin-canted �sc

t (λ) and canted-ppin
�

cp
t (λ) phase transition points are represented by vertical dashed and

solid grid lines, respectively. Numerical values for the canted-ppin
transition points �

cp
t (λ) are also indicated. For the spin-canted

transition we have �sc
t (1) = 0.078, �sc

t (3) = 0.061, and �sc
t (∞) =

0.056. Coulomb energy units.

Let us denote collectively by Z0
+ and Z0

− the two sets
of stationary points in any of the three (spin, canted, and
ppin) quantum phases (note that Z0

+ = Z0
− in the spin and

ppin phases). Both sets of stationary points provide the same
value of the energy expectation value Eλ(Z0

±; εX,�t,�Z) =
〈Z0

±|Hλ|Z0
±〉, which we shall simply denote by E0

λ(εX,�t,�Z).
After some algebraic manipulations, one can see that E0

λ

coincides with (19) when replacing εX → εX(λ), except for a
zero-point energy correction E0

λ = −2εX/(2λ − 1). This zero-
point energy is just due to the nonzero quantum fluctuations
〈A2〉 �= 〈A〉2 of SU (4) operators [compare for example (2)
with (22)] and it vanishes in the high isospin λ limit. There
is also a normalization factor of two difference since, for
λ = 1,Hλ in (20) is related to H in (18) by H1 = H/2. In
Fig. 2 we represent the variational energy density E0

λ as a
function of �t for �Z = 0.01 and interlayer distance δ = �B

for different values of λ. We see that the spin, canted, and ppin
phase regions (separated by vertical grid lines) are affected by
the value of the isospin λ; in fact, the new critical points are
displaced at

�sc
t (λ) =

√
�2

Z + 4εX(λ)�Z, (26)

�
cp
t (λ) = 2εX(λ) +

√
�2

Z + 4ε2
X(λ),

coinciding with the ones after Eq. (19) when replacing
εX → εX(λ).

The high isospin limit λ → ∞ is also formally and straight-
forwardly accomplished just by replacing εX → εX(∞) =
εX/2 in the energy (19) and critical points �sc

t and �
cp
t . We see

that the width of the canted region �
cp
t (λ) − �sc

t (λ) shrinks as
λ increases. We also compare in Fig. 2 the variational (solid)
and numerical (dashed) ground state energies (see next section
for a quantum analysis). We realize that the variational and
numerical results coincide in the spin phase but not in the
canted and ppin regions, except in the high isospin λ limit,
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FIG. 3. Semiclassical expectation values of squared spin (solid)
and ppin (dashed) for λ = 1 (red), λ = 3 (blue), and λ → ∞ (black)
for layer separation δ = �B and �Z = 0.01, as a function of tunneling
�t. Vertical grid lines indicate the spin-canted and canted-ppin (with
numerical value) phase transition points for each λ. Coulomb energy
units.

where exact results converge to the semiclassical (mean-field)
limit. We must stress that the large λ limit is considered here as
a formal, mathematical, reference limit only. To consider large
λ as a physical limit, we should relax some of the assumptions
and approximations made to arrive to the model Hamiltonian
Hλ concerning, for example, the charge gap.

Spin-canted and canted-ppin phase transition points are
better appreciated in Fig. 3, where we represent normalized
squared spin 〈
S〉2 and ppin 〈 
P 〉2 order parameters for the
variational coherent states |Z0

±〉 as a function of �t for
�Z = 0.01, δ = �B and different values of λ. An explicit
expression of spin 〈
S〉2 and ppin 〈 
P 〉2 can be easily obtained
from the expectation values (21), together with the restrictions

(23) common to the three phases, resulting in

〈
S〉2 = λ2 cos2 ϑ+ cos2 θb,

〈 
P 〉2 = λ2 sin2 ϑ+ sin2 θb.

In the spin phase (ϑ+ = 0 = θb) we have maximum spin
〈
S〉2 = λ2 [remember the identity (22)] and minimum ppin
〈 
P 〉2 = 0, whereas in the ppin phase (ϑ+ = −π/2 = θb) we
have minimum spin 〈
S〉2 = 0 and maximum ppin 〈 
P 〉2 = λ2.
In the canted phase, when inserting (25) into (27), we realize
that both spin and ppin do not attain the maximum value, as can
be appreciated in Fig. 3 and summarized in Table I [the case
λ = 1 was already depicted in Fig. 1]. Note that both (negative
and positive) values of θc

a and ϑc
+ in (25) give the same values

of energy and squared spin and ppin in (27), even though the
corresponding variational states |Zc

−〉 and |Zc
+〉 are different

(quasiorthogonal). This reflects a degeneracy problem that we
shall analyze in the following section.

IV. QUANTUM ANALYSIS AND NUMERICAL
DIAGONALIZATION RESULTS

In this section we solve the eigenvalue problem for the
Hamiltonian (20) and compare with the mean field (semiclas-
sical) results of the previous section, analyzing the effect of
quantum fluctuations. The Hamiltonian matrix elements in the
basis (5) are determined by the expressions (8) and (9). For
example, for λ = 1 and arranging the basis vectors (5) as

|1〉 = ∣∣0,0
0,0

〉
, |2〉 = ∣∣0,1

0,0

〉
, |3〉 =

∣∣∣∣ 1
2 , 0
−1
2 , −1

2

〉
,

|4〉 =
∣∣∣∣ 1

2 ,0
1
2 , 1

2

〉
, |5〉 =

∣∣∣∣ 1
2 ,0
1
2 , −1

2

〉
, |6〉 =

∣∣∣∣ 1
2 ,0
−1
2 , 1

2

〉
, (27)

we obtain the 6 × 6 Hamiltonian matrix

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (�b + 4εD − 2εX) 0 −�t

4 −�t
4 0 0

0 1
2 (−�b + 4εD − 2εX) −�t

4 −�t
4 0 0

−�t
4 −�t

4 −3εX 0 0 0

−�t
4 −�t

4 0 −3εX 0 0

0 0 0 0 − 1
2 (�Z + 6εX) 0

0 0 0 0 0 1
2 (�Z − 6εX).

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

Those readers more acquainted with the spin-triplet (ppin-
singlet) and ppin-triplet (spin-singlet) states can perform the
change of basis (6) and (7). The lowest (ground state) energy
E0

λ is plotted in Fig. 2 (dotted curves) as a function of �t

for λ = 1 and λ = 3 (Hilbert space dimensions d1 = 6 and
d3 = 50, respectively). As we have already commented, the
exact ground state energy coincides with the mean-field result
in the spin phase. Actually, the lowest energy eigenstate in
the spin phase is the basis state |j,mqa,qb

〉 = |λ/2, 0
−λ/2,λ/2〉, which is

also an extremal case of coherent state |Z〉 for the critical
angle values (23) and (24) in the spin phase. The mean-field
result does not coincide with the numerical diagonalization
in the canted and ppin phases, but the energy difference

between both gets smaller as λ increases, as can be appreciated
in Fig. 2.

In Fig. 4 we represent the exact (red) variational (dotted-
black) and parity-adapted (blue, see below) ground state
squared expectation values of spin 〈
S〉2 (solid) and ppin 〈 
P 〉2

(dashed) as a function of �t for λ = 3. The variational case
was already depicted in Fig. 3 and presents a smooth behavior,
which contracts with the steplike behavior in the quantum case,
mainly in the canted phase, where we find in general λ steps
for 〈
S〉2 and 〈 
P 〉2. Moreover, the transition from canted to ppin
phase is not so well marked as the transition from spin to canted
phase, which occurs quite sharply. This result agrees with the
one obtained in Ref. [6] through an exact diagonalization of a
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0.061 0.359
t

1

0.5

S ²/ ², P ²/ ²

SPIN CANTED PPIN

FIG. 4. Exact (red) variational (dotted-black) and parity-adapted
(blue) ground state squared expectation values of spin 〈
S〉2 (solid)
and ppin 〈 
P 〉2 (dashed) for λ = 3, layer separation δ = �B , and �Z =
0.01, as a function of tunneling �t. Vertical grid lines indicate the
spin-canted �sc

t (3) = 0.061 and canted-ppin �
cp
t (3) = 0.359 phase

transition points for λ = 3. Coulomb energy units.

few-electron system, where the boundary between the spin and
canted phases is practically unmodified from the mean-field
result, but the boundary between the canted and ppin phases
is considerably modified.

The steplike behavior of spin and ppin in the canted phase is
due to a level crossing at certain values of the tunneling �t for
which the ground and first excited energy levels degenerate.
The number of level crossings increases with λ, in fact, there
are exactly λ crossings (see Fig. 5). In the high isospin λ limit,
this might indicate that there is an avoided crossing in the
whole canted region.

This degenerate situation makes that the overlap between
the variational (mean-field) |Z0

±〉 and exact (numerical) |ψ0
λ〉

ground states is quite small and irregular in the canted phase.
We get better results (but still not good enough) by adapting
our variational states to the parity symmetry, that is, by taking

FIG. 5. Energy gap between ground and first energy levels as a
function of �t, for δ = �B, �Z = 0.01, and different values of λ. As
a reference, we include vertical grid lines indicating the spin-canted
�sc

t (∞) = 0.0556 and canted-ppin �
cp
t (∞) = 0.299 transition points

for the limiting case λ → ∞. Coulomb energy units.

FIG. 6. Overlap/fidelity |〈Z0
sym|ψ0

λ 〉|2 between variational (coher-
ent states) adapted to the parity symmetry and exact ground states,
as a function of �t, for δ = �B, �Z = 0.01, λ = 1 (red), and λ = 3
(blue-dashed). Spin-canted and canted-ppin (with numerical value)
phase transition points are indicated by vertical solid and dotted grid
lines, respectively. Coulomb energy units.

the normalized symmetric combination

∣∣Z0
sym

〉 = |Z0
+〉 + |Z0

−〉√
2(1 + �(〈Z0+|Z0−〉)

. (29)

The results of the overlap/fidelity |〈Z0
sym|ψ0

λ〉|2 between
variational and exact ground states is shown in Fig. 6. We
see that the fidelity is 1 in the spin phase (where the variational
and exact ground states coincide with |λ/2, 0

−λ/2,λ/2〉) and less that
1 in the ppin phase (although it increases with �t). The
degenerate situation in the canted phase gives low fidelity,
except for λ = 1. A fidelity drop is also expected at the phase
transition point, where quantum fluctuations dominate. For
completeness, we have also represented in Fig. 4 the squared
expectation values of spin 〈Z0

sym| 
S|Z0
sym〉2 (solid-blue curve)

and ppin 〈Z0
sym| 
P |Z0

sym〉2 (dashed-blue) in the parity-adapted
state (29), which ‘interpolates’ between the semiclassical and
the quantum case.

Parity adapted coherent states like (29) have also been
successfully used to better reproduce the exact quantum
results at finite size from the mean-field approximation in
other interesting models undergoing a second order QPT
like for example the Dicke model of atom-field interactions
[32–34], the vibron model of molecules [35–38], and the
Lipkin-Meshkov-Glick model [39].

So far we have only studied the balanced case and restricted
our analysis to the ground (and first excited) state. For
completeness, let us introduce imbalance (capacitive and bias
terms) and have a look to the whole spectrum. In Fig. 7 we
represent the energy spectrum as a function of �t for λ = 3
(dimension d3 = 50).

For zero tunneling �t = 0 (spin phase) we observe a
band energy structure that we can explain as follows. The
Hamiltonian for this case is diagonal in the basis (5) and the
corresponding eigenvalues can be straightforwardly obtained
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FIG. 7. Energy spectrum as a function of �t, for δ = �B, �Z =
0.01, �b = 0.01, and λ = 3. The six energy bands emerge in the spin
phase (small �t). They are plotted in different colors and its structure
is given in Table II. Coulomb energy units.

from (8) as

Eλ

(
j,m
qa,qb

) = εcap(2j + 2m − λ)2 − 8εXj (j + 1)

2λ(2λ − 1)

− �Z(qb − qa) + �b(2j + 2m − λ)

2λ
, (30)

where εcap = 4εD − 2εX denotes the capacitance energy. For
small Zeeman and bias interactions, the dominant parts are
the capacitance and exchange energies which grow with
the squared angular momentum j (j + 1) and the squared
layer population imbalance ς2 = (2j + 2m − λ)2. These two
magnitudes (j,ς ) roughly determine (with some exceptions
for higher λ) the energy band arrangement at zero tunneling.
In Table II we represent the band energy structure, giving a
representative value of the band energy E

j,ς

λ together with the
values of the angular momentum j and absolute imbalance
ς = |2j + 2m − λ| common to each energy band for λ = 3.
In general, there are two values of m± = (±ς + λ − 2j )/2
and (2j + 1)2 values of qa,qb common to every couple (j,ς ),
so that the total number of levels forming the energy band (j,ς )
is 2(2j + 1)2, except for ς = 0 that is just (2j + 1)2. Small

TABLE II. Representative value of the band energy E
j,ς

λ at
�t = 0 (spin phase) for λ = 3 and �Z = 0.01 = �b. Each energy
band (j,ς ) is roughly determined by angular momentum and layer
population imbalance ς = |2j + 2m − λ|. There are 2(2j + 1)2

closely spaced energy levels forming each energy band (j,ς ), except
for ς = 0, where there are only (2j + 1)2. Coulomb energy units.

E
j,ς

λ j,ς No. levels

−0.15 j = 3/2,ς = 0 16
−0.056 j = 1,ς = 1 18
−0.03 j = 1/2,ς = 0 4
0.023 j = 0,ς = 1 2
0.064 j = 1/2,ς = 2 8
0.21 j = 0,ς = 3 2

Total: 50

bias and Zeeman interactions slightly break the degeneracy in
m and qa,qb, respectively, determining the bandwidth.

For large tunneling �t (ppin phase), energy bands are
formed around the eigenvalues of the ppin first component P1,
that is, at energies about E

j+m

λ = −�t(2j + 2m − λ)/(2λ),
since the eigenvalues of P1 and P3 coincide (actually, the
discussion also applies for large bias voltage). Therefore, the
number of energy bands arising at high �t is exactly 2λ + 1
[remember discussion in paragraph between (8) and (9)]. We
can label each band by n = 2j + 2m [the homogeneity degree
of polynomials (A2)] and the number of closely spaced energy
levels forming each energy band n is

Dn =
{

(n+1)(n+2)(n+3)
6 , n � λ,

(2λ−n+1)(2λ−n+2)(2λ−n+3)
6 , λ � n � 2λ.

(31)

One can verify that
∑2λ

n=0 Dn = dλ gives the dimension of the
Hilbert space. At intermediate tunneling (canted phase) there
is an intricate spectrum structure with multiple band crossing.

V. COMPARISON WITH EXPERIMENTS

In this paper we are using a quite simplified (toy) model,
with the assumptions and approximations stated at the begin-
ning of Sec. III. Our main aim is to promote the Hilbert space of
composite fermions at one Landau site for ν = 2/λ, focusing
on the structure of the quantum phases and their boundaries.
Therefore, here we just aspire to capture the essence and to give
a qualitative description of some experimental data and basic
phenomenology. A more faithful description of real BLQH
systems would require a more sophisticated model taking into
account interactions.

That said, let us comment about some experimental issues
in connection with Kumada’s et al. results in Refs. [17] and
[18], about BLQH systems (usually GaAs/AlGaAs double-
quantum-well samples) at ν = 2 and ν = 2/3, respectively,
and Refs. [16] and [19] for ν = 2/3. In Refs. [17,18] the
authors provide a relation between Zeemann �Z and tunneling
�t gaps in the spin-ppin phase transition. They observe that
�Z must be enhanced by a factor of 10 with respect to �t

for ν = 2/3 and by a factor of 20 for ν = 2. In other words,
they observe that, for a fixed �Z, the phase transition for
ν = 2/3 occurs for lower values of �t than for ν = 2. This
behavior is qualitatively captured by our results in equation
(26) and Figs. 2 and 3, which show that the critical point �cp

t (λ)
decreases with λ for fixed �Z (the canted region shrinks). This
enhancement of �Z and suppression of �Z is claimed to be
due to interaction effects between composite fermions and
between electrons. Therefore, a better fit could perhaps be
obtained with a less simplified model.

The analysis of the energy difference between the two
lowest eigenstates of a BLQH system at ν = 2/3 made in
Ref. [16], taking the results of Ref. [19], is also qualitatively
captured by our analysis made in Sec. IV, Fig. 5, in the
sense that this energy gap goes to zero in the crossover
region between spin polarized and unpolarized phases. The
increase of level crossings for ν = 2/3, as regards ν = 2,
could also have an effect for the appearance of the so-called
non-QH states, as suggested in Ref. [18]. Anyway, while a
more complete microscopic theory might shed new light on
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the BLQH physics, we think that our present proposal based
on composite fermions offers alternative perspectives worth
exploring.

VI. CONCLUSIONS AND OUTLOOK

The physics of multicomponent quantum Hall systems, and
particularly the bilayer case, is very rich. The fractional case
incorporates extra ingredients that make the problem even
more interesting. In this paper we have analyzed the bilayer
(four components) case at fractional values ν = 2/λ of the
filling factor. We have obtained the phase diagram structure
of the balanced case by using an overcomplete set of coherent
(semiclassical) variational states previously introduced. The
Hamiltonian used is an adaptation of the integer case, ν =
2, to an arbitrary odd number of magnetic flux quanta λ

per electron, to make it intensive for a formal study of
the large SU (4)-isospin λ limit. We have also performed a
numerical diagonalization of the Hamiltonian and compared
exact (quantum) with mean-field (semiclassical) results for the
ground state. The accordance is quite good in the spin and ppin
phases, but not in the canted phase, where degeneracies and
energy level crossings occur, specially at large λ. We have also
analyzed the full energy spectrum and we have found an energy
band arrangement in spin and ppin phases. The particular
structure of these energy bands has also been analyzed in
terms of angular momentum and layer population imbalance
quantum numbers. An experimental corroboration of these
band energy formations would enforce our theoretical work.
To finish, a generalization of the previous study to arbitrary N

component quantum Hall systems at fractional filling factors
ν = M/λ could also be (in principle) carried out with the help
of our recent construction of U (N )/[U (M) × U (N − M)]
coherent states [27] (this is still work in progress).
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APPENDIX A: ORTHONORMAL BASIS FOR
ARBITRARY λ

In Refs. [24,25] we have provided a Fock space represen-
tation of the BLQH basis states (5) for fractional filling factor
ν = 2/λ. The general expression is given by the action of
creation operators a† and b† in layers a and b [see (1) for
the definition of 2 × 2 matrix annihilation operators a and b]
acting on the Fock vacuum |0〉F as

∣∣j,m
qa,qb

〉 = 1√
2j + 1

j∑
q=−j

(−1)qa−q

× ϕ
j,m
−q,−qa

(a†)√
λ!(λ+1)!

(λ−2j−m)!(λ+1−m)!

ϕ
j,λ−2j−m
q,qb

(b†)√
λ!(λ+1)!

m!(2j+m+1)!

|0〉F, (A1)

where

ϕj,m
qa,qb

(Z) =
√

2j + 1

λ + 1

(
λ + 1

2j + m + 1

)(
λ + 1

m

)

× det(Z)mDj
qa,qb

(Z),
2j + m � λ,

qa,qb = −j, . . . ,j

(A2)

are homogeneous polynomials of degree 2j + 2m in four
complex variables arranged in a 2 × 2 complex matrix Z =
(zkl). Here

Dj
qa,qb

(Z)

=
√

(j + qa)!(j − qa)!

(j + qb)!(j − qb)!

min(j+qa,j+qb)∑
k=max(0,qa+qb)

×
(

j + qb

k

)(
j − qb

k − qa − qb

)
zk

11z
j+qa−k

12 z
j+qb−k

21 z
k−qa−qb

22

(A3)

denotes the usual Wigner D matrix [41] with angular mo-
mentum j . The set of polynomials (A2) verifies the closure
relation

λ∑
m=0

(λ−m)/2∑
j=0; 1

2

j∑
qa,qb=−j

ϕ
j,m
qa,qb

(Z′)ϕj,m
qa,qb

(Z) = Kλ(Z′†,Z),

with Kλ(Z′†,Z) = det(σ0 + Z′†Z)λ the so-called Bergmann
kernel.

APPENDIX B: COHERENT STATES ON G4
2

An overcomplete set of coherent states for ν = 2/λ has
been worked out in Ref. [24]. Coherent states |Z〉 are labeled
by a 2 × 2 complex matrix Z (a point on the Grassmannian
G4

2) and can be expanded in terms of the orthonormal basis
vectors (A1) as

|Z〉 =
∑λ

m=0

∑(λ−m)/2
j=0; 1

2

∑j

qa,qb=−j ϕ
j,m
qa,qb

(Z)
∣∣j,m
qa,qb

〉
det(σ0 + Z†Z)λ/2

, (B1)

with coefficients ϕ
j,m
qa,qb

(Z) in (A2). They can also be written in
the form of a boson condensate as (see Ref. [24])

|Z〉 = 1

λ!
√

λ + 1

(
det(b̌† + Zt ǎ†)√
det(σ0 + Z†Z)

)λ

|0〉F, (B2)

where ǎ† = 1
2ημν tr(σμa†)σν denotes the “parity reversed”

2 × 2-matrix creation operator of a† in layer a (similar for
layer b) [we are using Einstein summation convention with
Minkowskian metric ημν = diag(1, − 1, − 1, − 1)]. Coherent
states are normalized, 〈Z|Z〉 = 1, but they do not constitute an
orthogonal set since they have a nonzero (in general) overlap
given by

〈Z′|Z〉 = Kλ(Z′†,Z)

Kλ/2(Z′†,Z′)Kλ/2(Z†,Z)
. (B3)
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Sometimes it is useful to use a coherent state picture
(Bargmann-Fock representation) of a general state |ψ〉 given
by �(Z) ≡ Kλ/2(Z,Z†)〈Z|ψ〉. For example, the Bargmann-
Fock representation of the basis states |j,mqa,qb

〉 is given by the
homogeneous polynomials ϕ

j,m
qa,qb

(Z) in (A2). Given a U (4)
group element (written in block matrix form)

U =
(

A B

C D

)
, A,B,C,B ∈ Mat(2,C),

a point Z in the Grassmannian G4
2 = U (4)/U (2)2 can be

identified with Z = BD−1 in the chart where D is invertible.
From the composition law of two group elements U ′′ = U ′U
we get the (Möbius-like) transformation Z′ = B ′′D′′−1 =
(A′Z + B ′)(C ′Z + D′)−1 of Z under a group translation U ′.
This transformation also defines a representation of the U (4)
infinitesimal generators τμν on the space of holomorphic
functions �(Z), given in terms of differential operators Tμν in
four complex coordinates zμ = tr(Zσμ)/2,μ = 0,1,2,3. For
example, it is easy to see that the differential realization
of the imbalance ppin generator τk0/2 is given by P3 =
zμ∂μ − λ, where we use the Einstein summation convention
and denote ∂μ = ∂/∂zμ and zν = ηνμzμ, with ηνμ = diag(1,

−1, − 1, − 1) the Minkowskian metric. In addition, spin Sk

and Rk3 are written in terms of Mμν = zμ∂ν − zν∂μ as
Si = i

2εiklMkl and Rk3 = Mk0, respectively, where εikl is
the totally antisymmetric tensor (see Refs. [24,26] for the
remainder Tμν operators). With this differential realization, the
(cumbersome) computation of expectation values of operators
in a coherent state (usually related to order parameters)
is reduced to the (easy) calculation of derivatives of the
Bergmann kernel as:

〈Z|Tμν |Z〉 = K−1
λ (Z,Z†)TμνKλ(Z,Z†). (B4)

We have used this simple formula to compute the expectation
values (21).

To finish this appendix, let us introduce a parametrization
of Z in terms of eight angles θa,b,ϑ± ∈ [0,π ) and φa,b,β± ∈
[0,2π ), given by the following decomposition

Z = Va

(
ξ+ 0
0 ξ−

)
V

†
b , ξ± = tan

ϑ±
2

eiβ± ,

V� =
(

cos θ�

2 − sin θ�

2 eiφ�

sin θ�

2 e−iφ� cos θ�

2

)
, � = a,b, (B5)

where Va,b represent rotations in layers � = a,b (note their
“conjugated” character). This parametrization of Z has been
useful to minimize the energy surface 〈Z|Hλ|Z〉 for the
Hamiltonian (20).
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