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Three-dimensional quantum electrodynamics exhibits a number of interesting properties, such as dynamical
chiral symmetry breaking, weak confinement, and non-Fermi-liquid behavior, and also has wide applications
in condensed-matter physics. We study the effects of random potentials, which exist in almost all realistic
condensed-matter systems, on the low-energy behaviors of massless Dirac fermions by means of renormalization-
group method, and show that the role of random mass is significantly enhanced by the gauge interaction, whereas
random scalar and vector potentials are insusceptible to the gauge interaction at the one-loop order. The static
random potential breaks the Lorentz invariance, and as such induces unusual renormalization of fermion velocity.
We then consider the case in which three types of random potentials coexist in the system. The random scalar
potential is found to play a dominant role in the low-energy region, and drives the system to undergo a quantum
phase transition.
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I. INTRODUCTION

Massless three-dimensional quantum electrodynamics
(QED3) describes the interaction between massless Dirac
fermions and the U(1) gauge boson [1–3]. This field theory
exhibits such nonperturbative phenomena as dynamical chiral
symmetry breaking (DCSB) [4–14] and weak confinement
[15,16], and thus is often regarded as a toy model of QCD.
When the fermion flavor is sufficiently large, the model is
a conformal field theory [17]. QED3 and its variants have
wide applications in condensed-matter physics, being the
low-energy effective theory of high-Tc cuprate superconduc-
tors [18–26] and certain spin-liquid systems [27–32]. The
nonperturbative phenomenon of DCSB provides an elegant
field-theoretic description of the two-dimensional Heisenberg
quantum antiferromagnetism [18–23], whereas the non-Fermi-
liquid behaviors induced by gauge interaction may be used
to understand the observed unusual normal state of high-Tc

superconductors [22–26,33,34]. For these reasons, QED3 has
attracted considerable research interest in the communities of
both high-energy and condensed-matter physics.

Previous works studying QED3 have mainly focused on
DCSB [4–14] and non-Fermi-liquid behaviors [33–35] caused
by the U(1) gauge boson in the clean limit. The effects
of random potential are rarely considered in the literature.
In a realistic condensed-matter system, there are always
certain amount and types of random potential, which may
substantially affect the dynamics of massless Dirac fermions. If
some random potential is a relevant perturbation to the system,
it can determine many of the low-T transport properties of
Dirac fermions. Moreover, random potential can also lead to
instabilities of the system, which would drive various kinds
of quantum phase transition. To broaden the applicability of
QED3 in condensed-matter physics, it is necessary to examine
the impact of various types of random potential.

In this paper, we analyze the roles played by random
potentials in the low-energy region and determine all the
possible infrared fixed points. To make an unbiased analysis,
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we shall treat the gauge interaction and random potential
equally, and study their interplay by means of renormalization-
group (RG) method. Depending on the value of fermion flavor
N , QED3 stays in the DCSB phase for small N and chirally
symmetric phase for large N . Here, we suppose a large N

and keep Dirac fermions massless. The random potential is
assumed to be static, and might be caused by defects and/or
impurity atoms in various realistic condensed-matter systems.
Generically, there are three types of random potential that can
couple to Dirac fermions [36–43]: random mass (RM), random
scalar potential (RSP), and random vector (gauge) potential
(RVP). We will first study the impact of each single random
potential, and then examine how different types of random
potential affect each other.

RG analysis show that the random potentials can lead
to unusual renormalization of fermion velocity vF as a
consequence of explicit Lorentz symmetry breaking. The
role played by RM can be significantly enhanced by
the gauge interaction, but the roles played by RVP and RSP
are nearly unchanged by the gauge interaction. We also study
the fixed-point structure of the system with all three types of
random potential present simultaneously. In this case, RSP is
much more important than RM and RVP in the low-energy
region, and drives the system to undergo a diffusive quantum
phase transition, which occurs even when RSP is quite weak.
In the absence of RSP, we find that RVP promotes the role of
RM and also induces an anomalous dimension for vF .

The rest of the paper is organized as follows. We present
the whole action and the corresponding Feynman rules in
Sec. II, and derive the RG equations in Sec. III. The impact of
each single type of random potential and the mutual influence
between different random potentials are analyzed in Sec. IV.
We summarize the results and highlight possible future works
in Sec. V.

II. EFFECTIVE ACTION

The Lagrangian density of QED3 with N flavors of massless
Dirac fermions is given by

LF =
N∑

σ=1

ψ̄σ γ μ(∂μ + ieAμ)ψσ − 1

4
F 2

μν, (1)
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where ∂μ = (∂0,vF ∂i) with i = 1,2. The electromagnetic
tensor is Fμν = ∂μAν − ∂νAμ. Here, the Dirac fermion is
described by a four-component spinor ψ , the conjugate of
which is defined as ψ̄ = ψ†γ0. The gamma matrices can
be chosen as (γ0,γ1,γ2) = (σ3,σ2, − σ1) ⊗ σ3, which satisfy
the Clifford algebra {γμ,γν} = 2δμν . In (2+1) dimensions,
there are two chiral matrices, denoted by γ3 = I2×2 ⊗ σ1

and γ5 = −I2×2 ⊗ σ2, respectively, which anticommute with
γ0,1,2. The model contains two parameters: electric charge
e and fermion velocity vF . It is easy to check that e is
dimensional, so this field theory is renormalizable and thus
safe in the UV region. However, the gauge interaction becomes
strong in the IR region, which might cause nontrivial physics.

The full theory respects the Lorentz symmetry, the U(1)
local gauge symmetry, and an additional continuous U (2N )
chiral symmetry ψ → eiθγ3,5ψ with θ being an arbitrary
constant if the fermions are massless. The local gauge
symmetry is robust, but the other two symmetries can be easily
broken, either explicitly or dynamically.

Extensive previous studies [4–7,9,10] have confirmed that
a finite fermion mass can be dynamically generated by the
gauge interaction if the fermion flavor N is smaller than certain
critical value Nc, which leads to DCSB. In the DCSB phase,
the massive fermions are confined by a logarithmic potential
[15,16]. For N > Nc, the Dirac fermions remain massless and
thus the theory preserves the chiral symmetry. In the chirally
symmetric phase, the physical properties are far from trivial
as the strong gauge interaction can induce non-Fermi-liquid
behaviors of Dirac fermions [22–26,33,34].

At zero temperature, the Lorentz invariance is strictly
preserved. In this case, the fermion velocity vF does not
renormalize at all and remains a constant. If the Lorentz
invariance is broken, the gauge interaction would renormalize
vF , which then exhibits explicit dependence on momenta

and energy. Thermal fluctuation definitely breaks the Lorentz
invariance, and hence leads to velocity renormalization [44]. If
we stay at zero temperature but include static random potential,
the Lorentz invariance is also explicitly broken. As a result,
the fermion velocity will be renormalized.

We now incorporate random potential into the Lagrangian
density of QED3 by writing down the following term [36–43]:

Ld =
N∑

σ=1

ψ̄σ

(∑
	

V	(x)	

)
ψσ , (2)

where the function V	(x) stands for the randomly distributed
potential. We assume V	(x) to be a quenched, Gaussian white-
noise potential characterized by the following identities:

〈V	(x)〉 = 0, 〈V	(x)V	(x′)〉 = 
	δ2(x − x′). (3)

The random potential is classified by the expression of matrix
	: 	 = I4×4 for RM; 	 = γ0 for RSP; 	 = (iγ1,iγ2) for RVP.
It is also possible to include other types of random potential,
but these three types are most frequently studied. The random
potential can be induced by various mechanisms in realistic
Dirac fermion materials [37,45–50]. These three types of
random potential might exist individually, or coexist in the
same material. We will first consider the impact of each single
random potential, and then study their mutual influence.

The random potential V (x) needs to be properly averaged.
The simplest and most widely used scheme is to average over
V (x) by employing the replica method [51–58], which leads
us to an effective replicated action written in the Euclidean
space:

S =
∫

d2xdτ

{
ψ̄α

σ [γ0(∂0 + ieA0) + γj (vF ∂j + ieAj )]ψα
σ − 1

4
F 2

μν

}
− 1

2

∫
d2xdτdτ ′

× [

M (ψ̄α

σ ψα
σ )x(ψ̄β

σ ψβ
σ )x ′ + 
S

(
ψ̄α

σ γ0ψ
α
σ

)
x

(
ψ̄β

σ γ0ψ
β
σ

)
x ′ + 
V

(
ψ̄α

σ iγjψ
α
σ

)
x

(
ψ̄β

σ iγjψ
β
σ

)
x ′
]
. (4)

Here, α and β are the replica indices, and x ≡ (x,τ ) and
x ′ ≡ (x,τ ′). All the repeated indices are summed up auto-
matically. To distinguish different types of random potential,
we have introduced three new parameters 
M , 
S , and 
V

to characterize the effective strength of quartic couplings of
Dirac fermions induced by averaging over RM, RVP, and RSP,
respectively.

We choose to work in the Euclidean space, and write the
free fermion propagator as

G0(k0,k) = −i

γ0k0 + vF γ · k
. (5)

The free gauge boson propagator under Landau gauge reads

D0
μν(q) = v2

F

Q2

(
δμν − QμQν

Q2

)
, (6)

where Qμ ≡ (q0,vF q) and Q2 = QμQμ = q2
0 + v2

F q2.

In the next section, we will perform RG calculations
starting from Eq. (4). The interaction between Dirac fermions
and gauge boson is treated by making a 1/N expansion by
supposing a general large N . For large value of N , DCSB
cannot take place and the Dirac fermions are kept massless
throughout our calculations. However, the parameters 
M ,

S , and 
V are assumed to be small, corresponding to the
nearly clean case.

III. DERIVATION OF RG EQUATIONS

In this section, we calculate the quantum corrections to
the polarization tensor, fermion self-energy, fermion-disorder
vertex, and gauge coupling vertex to the leading order of
perturbative expansion. Based on these results, we will be
able to derive the RG flow equations for all the free model
parameters.
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FIG. 1. One-loop Feynman diagram for the polarization tensor,
where the solid line stands for the free fermion propagator and the
wavy line stands for the bare gauge boson propagator.

A. Polarization tensor and fermion self-energy

At the one-loop level, the diagram for the polarization
function is shown in Fig. 1. It is straightforward to get

�μν(q) = Ne2
∫

d3k

(2π )3
Tr [G(k)γμG(k + q)γν],

= Ne2 1

v2
F

∫
d3K

(2π )3
Tr [G(K)γμG(K + Q)γν],

= �(Q)

(
δμν − QμQν

Q2

)
, (7)

where the function

�(Q) = −αQ

v2
F

(8)

with α = Ne2/8. For massless QED3, the dimensional cou-
pling α = Ne2/8 is kept fixed as N → ∞, providing the only
fixed energy scale in the theory [1–6]. Including the corrections
to the polarization function, we write the effective gauge boson
propagator in the form

Dμν(Q) = v2
F

Q2 + αQ

(
δμν − QμQν

Q2

)

≈ v2
F

αQ

(
δμν − QμQν

Q2

)
. (9)

The quantum correction is rapidly damped for momenta
Q > α [5–7], thus the above approximation is well justified
and also has been widely used [19,22,25].

Diagrams for fermion self-energy are shown in Fig. 2.
According to Fig. 2(a), the correction due to gauge interaction
to the leading order of 1/N expansion is

�G(p0,p) = −e2
∫

d3q

(2π )3
γμG(p − q)γνDμν(Q)

= iηψγμPμ ln b. (10)

FIG. 2. One-loop fermion self-energy due to (a) gauge interaction
and (b) random potential (dashed line).

FIG. 3. One-loop gauge coupling correction due to (a) gauge
interaction and (b) random potential.

Here, the momenta integration is restricted within the shell
Q ∈ [�/b,�], where � is a UV cutoff and b = el with
l � being a freely varying length scale. We use ηψ to
denote the anomalous dimension of the fermion wave-function
renormalization. To the leading order, we have

ηψ = 8

3π2N
, (11)

which is in accordance with Refs. [7,8].
From the above calculations, we can see that the fermion

velocity vF is not renormalized at all, which means vF is a
constant independent of varying energy scale. It is therefore
safe to set vF ≡ 1 and recover vF whenever necessary.
However, when static random potential is added to the system,
the Lorentz symmetry is explicitly broken, and vF may receive
singular corrections.

According to Fig. 2(b), the one-loop disorder-induced
fermion self-energy is given by

�dis(k0) =
∑

	


	

∫
d2k

(2π )2
	G0(k0,k)	

= −ik0

∑
	


		γ0	

2πv2
F

ln b

= −ik0γ0

S + 
M + 2
V

2πv2
F

ln b. (12)

It is clear that random potential does not lead to wave-
function renormalization of spatial components, so vF will
be renormalized.

B. Gauge coupling and fermion-disorder vertex

Besides the gauge coupling parameter, disorder also brings
another kind of parameter which is the effective strength of
coupling between fermion and disorder. In this subsection,
these vertices corrections are computed.

The one-loop diagram gauge coupling corrections are
depicted in Fig. 3. At vanishing external momenta and energy,
the vertex correction due to gauge interaction shown in
Fig. 3(a) is

V G
e = −ie3

∫
d3q

(2π )3
γρG0(q)γμG0(q)γνDρν(Q)

= −ieγμηψ ln b. (13)
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FIG. 4. One-loop corrections to the coupling vertex between
fermions and random potentials in the vanishing replica limit.

According to Fig. 3(b), the gauge coupling correction due to
random potential at zero external momenta energy is

V d
e = ie

∑
	


	

∫
d2k

(2π )2
	G0(k0,k)γμG0(k0,k)	

= ieγ0

S + 
M + 2
V

2πv2
F

ln b. (14)

In the replica limit, the one-loop Feynman diagrams for the
corrections to the fermion-disorder vertex are shown in Fig. 4.
At zero external momentum and frequency, the corresponding
correction induced by gauge interaction depicted in Fig. 4(a)
is calculated as

V G
dis = e2
	

∫
d3q

(2π )3
γμG0(q)	G0(q)γνDμν(Q)

= aηψ ln b(
		), (15)

where a = −3 for RM, and a = 1 for RSP and RVP.
Figure 4(b) is the vertex correction due to disorder averaging,
and given by

V d
dis = 
a

∑
	b


b

∫
d2q

(2π )2
	bG0(q0,q)	aG0(q0,q)	b.

(16)

After analytical calculations, we get

V d
dis = −(
S + 
M + 2
V )
M

2πv2
F

I4×4 ln b (17)

for RM,

V d
dis = (
S + 
M − 2
V )
S

2πv2
F

γ0 ln b (18)

for RSP, and

V d
dis = 0 (19)

for RVP. The sum of the two diagrams given by Figs. 4(c)
and 4(d) produces a nonzero correction to another type of
random potential defined by the matrix 	 = γ0γ along with
parameters (	a,	b) = (I4×4,γ0) [54,58]. However, this type of
random potential is not considered in the present paper. For
the three types of random potential under consideration, the
contributions from Figs. 4(c) and 4(d) simply cancel each other
by virtue of the relation [55,56] G(−k0, − k) = −G(k0,k).

C. RG equations for model parameters

To perform RG analysis, we rescale the frequency and
momenta as follows [59]:

x̃μ = xμb−1. (20)

The field operators and model parameters are rescaled in the
following way:

ψ̃ = √
Zψψ, 
̃	 =

√
Z	
	,

ṽF = ZvvF , ẽ = Zee. (21)

On the basis of the above scaling transformations, we obtain
the complete set of RG equations:

de2

d ln b
= e2 − N

8
e4, (22)

d
M

d ln b
= −2
M (
M + 
S − 2
V − 4ηψ ), (23)

d
S

d ln b
= 2
S(
M + 
S + 2
V ), (24)

d
V

d ln b
= 0, (25)

dvF

d ln b
= −(
M + 
S + 2
V )vF . (26)

In the derivation of RG equations, we have redefined the
renormalized gauge coupling as [60,61]

e2(p) = e2

1 − �(p)
, (27)

which naturally gives rise to the flow Eq. (22). Moreover, the
effective parameter for random potentials is redefined as


	/(2πv2
F ) → 
	. (28)

Equation (22) shows that the flow equation of gauge coupling
is not affected by random potentials at the leading order. This
reflects the fact that random potential does not couple directly
to the gauge boson. Their mutual effects can only be induced
by their separate interaction with Dirac fermions, which are
higher-order corrections to the leading-order results. Indeed,
the flow equation Eq. (22) coincides with previous results
[62–64] and exhibits a stable infrared fixed point at e2

∗ ∼
O(1/N ) to the leading order of perturbative expansion. The
other four RG equations, i.e., Eqs. (23)–(25), incorporate the
influence of random potentials, and are apparently absent in
the clean limit with 
M = 
S = 
V = 0.

According to Eqs. (23)–(25), we observe that RM is the
only random potential that is directly influenced by the gauge
interaction. For RSP, the flow of 
S depends sensitively on
the interplay of different random potentials. The effective
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FIG. 5. (a) Flow diagram of 
M for RM. There is an unstable Gaussian fixed point 
M = 0 and a finite stable fixed point 
M = 4ηψ + 2
0
V .

(b) Dependence of 
M on the running scale l at different initial values. Here, N = 4 and 
0
V = 0.07.

parameter for RVP, namely, 
V , simply does not flow with
varying energy scale, which is a consequence of the existence
of a time-independent gauge transformation that ensures that
RVP is unrenormalized and is valid at any order of loop
expansion [40]. Some previous works [40,41] have studied the
RG flow of 
V by considering the interplay of long-range
Coulomb interaction and RVP in graphene. It was found
[40,41] that the parameter 
V also does not flow.

IV. INTERPLAY BETWEEN GAUGE INTERACTION
AND RANDOM POTENTIALS

In this section, we analyze the RG solutions and also discuss
the physical effects of random potential on Dirac fermions.
Since 
V does not flow, it can be taken at a certain constant. We
will always retain gauge interaction and RVP with 
V = 
0

V

in the system, and study how the system is influenced by RM
and by RSP, respectively. We then consider the most general
case in which the gauge interaction and all three types of
random potentials coexist in the system. Our aim is to find out
the possible infrared fixed points, which will be used to judge
the relevance (or irrelevance) of random potential.

A. Random mass

In the case of RM, we set 
S = 0 and 
V = 
0
V , which

simplify the RG equations of 
M and vF to

d
M

dl
= −2
M

(

M − 2
0

V − 4ηψ

)
, (29)

dvF

dl
= −(


M + 2
0
V

)
vF , (30)

where ηψ is the anomalous dimension induced by gauge
interaction and 
0

V is a small constant. The solution for
Eq. (29) has the following form:


M (l) = 2
0
M

(
2ηψ + 
0

V

)
e4(2ηψ+
0

V )l


0
M [e4(2ηψ+
0

V )l − 1] + 2
(
2ηψ + 
0

V

) , (31)

where 
0
M is the value of 
M defined at the UV cutoff. It is

easy to find that

lim
l→∞


M (l) = 2
(
2ηψ + 
0

V

)
(32)

in the long-wavelength limit, which clearly tells us that

∗

M = 2(2ηψ + 
0
V ) is the only stable infrared fixed point. In

addition, one can verify that 
M also has an unstable Gaussian
fixed point 
∗

M = 0. The existence of these two fixed points
is illustrated in Figs. 5(a) and 5(b). According to Eq. (32),
the finite stable infrared point can be produced by both the
gauge interaction and RVP. Therefore, as long as RM coexists
with one of these two kinds of interaction, it will become a
marginally relevant perturbation to the system.

To gain a better understanding of the impact of gauge
interaction and RVP on RM, it is interesting to take a look
at the coupling between RM and fermions. When the system
contains only RM and Dirac fermions, RG analysis show
that 
∗

M = 0 is the only stable fixed point. Although RM is
marginally irrelevant in the absence of gauge interaction and
RVP, its importance can be significantly enhanced by the gauge
interaction and RVP. We know from the above discussion that
RM becomes marginally relevant when it coexists with the
gauge interaction. Such an interaction-induced enhancement
of random potential appears to be a generic property of several
planar strongly correlated systems [39,54,65]. Recall that we
are employing a weak-coupling expansion for the coupling
between fermions and random potential. The infrared stable
fixed point generated by gauge interaction is on the order of
O(1/N ), thus the weak-coupling expansion in the case of RM
is reliable. Moreover, when RM and RVP coexist in the system
without gauge interaction, the finite fixed point is still present.
Therefore, RVP can also enhance RM [66,67].

The enhancement of the role of RM by gauge interaction
can be made clearer by analyzing the low-energy behaviors of
fermion velocity vF . Substituting Eq. (31) into Eq. (30), and
then solving the differential equations, we obtain

vF (l) = v0
F e−2
0

V l√
tm[e4(2ηψ+
0

V )l − 1] + 1
, (33)
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where

tm ≡ 
0
M/2

(
2ηψ + 
0

V

)
(34)

and v0
F is the initial value of vF at upper cutoff �. We first

consider the simplest case in which Dirac fermions couple to
RM alone. Since ηψ = 
0

V = 0, the function vF (l) becomes

vF (l) = v0
F√

2
0
Ml + 1

. (35)

Thus, vF (l) is driven by RM to decrease with growing l and
vanish as l → +∞. However, this is not an exponential decay
for which there is no anomalous dimension generated for vF .
Indeed, RM only generates a logarithmic correction to vF .

We now add the gauge interaction into the system but keep

0

V = 0, and find that Eq. (33) becomes

vF (l) = v0
F√

tGm (e8ηψ l − 1) + 1
, (36)

where tGm ≡ 
0
M/4ηψ . In the lowest-energy limit, the velocity

behaves as

vF (l)
∣∣
l→∞ ∼ v0

F /

√
tGm e−4ηψ l . (37)

In this case, vF (l) flows to zero exponentially with growing
l. The function Eq. (37) can be reexpressed as a function of
momentum k in the form

vF (k) ∝ kηv , (38)

where ηv = 4ηψ = 32/3π2N corresponds to the stable in-
frared fixed point of RM produced by the gauge interaction.
We can see that vF now acquires a finite anomalous dimension
ηv , which takes a universal constant at a given flavor N . The
expression of this anomalous dimension is analogous to that
obtained in Ref. [35], which studied the fermion velocity
renormalization in QED3 defined at finite fermion density.
Moreover, this kind of fermion velocity renormalization is a
special property of Dirac fermion systems, including graphene
[43,68–71] and high-Tc superconductors [25,72–75]. It leads
to a series of extraordinary spectral, thermodynamic, and
transport properties of massless Dirac fermions [25,43,68–75].

We then remove the gauge boson and consider the coexis-
tence of RVP and RM. In this case, Eq. (33) becomes

vF (l) = v0
F e−2
0

V l√
tdm(e4
0

V l − 1) + 1
, (39)

where tdm ≡ 
0
M/2
0

V . It is easy to find that the velocity varies
with l as

vF (l)
∣∣
l→∞ ∼ v0

F /

√
tdme−4
0

V l . (40)

Similarly, vF (l) flows to zero exponentially as l grows. We
then convert Eq. (40) to the expression

vF (k) ∝ kηv (41)

where ηv = 4
0
V corresponds to the stable infrared fixed point

induced by RVP and RM. It is thus clear that, similar to the
gauge interaction, RVP can also enhance the role played by RM

FIG. 6. Dependence of vF (l) on the running scale l at different
initial values of 
M,
V . Here, ηψ = 0 represents the case without
gauge interaction. For nonzero ηψ , we assume N = 4.

and induce an anomalous dimension of vF that is proportional
to the strength of RVP.

When RM coexists with both the gauge interaction and RVP,
the fermion velocity acquires an anomalous dimension ηv =
2(2ηψ + 
0

V ). We present the detailed l dependence of vF in
Fig. 6 for the four different cases discussed in this subsection.

B. Random scalar potential

We then remove RM and add RSP to the system. By setting

M = 0 and 
V = 
0

V , we get the RG equations of 
S and
vF in the presence of RSP:

d
S

dl
= 2
S

(

S + 2
0

V

)
, (42)

dvF

dl
= −(


S + 2
0
V

)
vF . (43)

The corresponding flow diagram is schematically shown in
Figs. 7(a) and 7(b). We find that there is only one unstable
Gaussian fixed point 
∗

S = 0. As l increases, 
S(l) exhibits a
runaway behavior for any small initial value. To illustrate this
fact more quantitatively, we obtain the following solution:


S(l) = 2
0
S


0
V(


0
S + 2
0

V

)
e−4
0

V l − 
0
S

. (44)

Therefore, the renormalized parameter 
S increases rapidly
with growing l and formally diverges at a finite length scale
lc = 1/4
0

V ln [1 + 2
0
V /
0

S]. However, we should empha-
size that 
S does not really diverge. The superficial runaway
behavior of 
S triggers an instability of the Dirac fermion
system, which undergoes a quantum phase transition that
drives the Dirac fermions to move diffusively [54,55,76–80].
The Dirac fermions acquire a finite scattering rate γim in the
diffusive phase, and damp with time in the form [81]

G(t) ∝ e−iγimt .
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FIG. 7. (a) Flow diagram of 
S for RSP. There is only an unstable Gaussian fixed point 
S = 0. (b) Dependence of 
S on the running
scale l at different initial values of 
S/2
0

V . Here, 
0
V = 0.01.

It is interesting that such a diffusive transition occurs even if
RSP is arbitrarily weak. According to Eq. (42), we find that
this diffusive behavior already exists when there is only RM
in a Dirac fermion system. It turns out that adding RVP to the
system promotes the role of RM and catalyzes the diffusive
transition.

The rapid increase of 
S drives vF to vanish at the length
scale lc. To show this, we substitute Eq. (44) into Eq. (43), and
then get a solution

vF (l) = v0
F

√
−ts + e−4
0

V l(ts + 1), (45)

where ts ≡ 
0
S/2
0

V . It is easy to verify that

vF (l)
∣∣
l→lc

= 0, (46)

which can also be observed from Fig. 8. However, it is
necessary to emphasize that this limiting behavior is only
artificial. The expression of vF (l) is indeed unreliable because

FIG. 8. Dependence of vF (l) on the running scale l at different
initial values of 
S/2
0

V . Here, 
0
V = 0.01.

the perturbative RG method breaks down before l approaches
lc. To obtain a reliable expression for vF in the low-energy
regime, one should carefully study the diffusive phase [55,82],
which is very interesting but beyond the scope of the present
paper.

C. Random vector potential

There exists a peculiar time-independent gauge transfor-
mation in the presence of RVP [40,41], which renders the
parameter of RVP unrenormalized and insusceptible to the
gauge interaction and the other two types of random potential.
Due to this property, 
V can be regarded as a constant. Now
Eq. (26) is simplified to

dvF

dl
= −2
0

V vF , (47)

which has a solution

vF (l) = v0
F e−2
0

V l . (48)

The velocity depends on k as follows:

vF (k) ∝ kηv , (49)

with ηv = 2
0
V .

It is clear that RVP alone is able to induce unusual fermion
velocity renormalization with an anomalous dimension ηv =
2
0

V . In particular, the velocity vF is strongly suppressed by
RVP at low energies, which in turn increases the effective
strength of RM and RSP, as can be seen from Eq. (28).

D. Interplay between RM and RSP

We have thus far only considered how RM and RSP are
separately affected by the gauge interaction and RVP. We
finally consider the general case in which both RM and RSP
exist in the system, and study their mutual influence. The flow
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FIG. 9. Schematic flow diagram in the plane spanned by 
M and

S , where N = 4 and 
0

V = 0.07.

equations for 
M and 
M can be written as follows:

d
M

d ln b
= −2
M (
M + 
S − 2
V − 4ηψ ), (50)

d
S

d ln b
= 2
S(
M + 
S + 2
V ). (51)

The analytical solutions of these equations are hard to
obtain. We solve them numerically and present the schematic
RG flow diagram in Fig. 9. One interesting result is that the
stable infrared fixed point obtained in Sec. IV A in the case
of RM is eliminated by the coexisting RSP, irrespective of the
strength of RSP. Actually, RM flows to the trivial Gaussian
fixed point as long as RSP is present. It can be concluded
that RM is entirely suppressed by RSP even when the system
also contains the gauge interaction and RVP. Similar to the
case without RM, RSP still shows a runaway behavior and
drives a diffusive phase transition. It turns out that RSP plays
a dominant role at low energies and determines most of the
low-energy properties of the system, with RM and RVP being
nearly negligible.

V. SUMMARY AND DISCUSSION

In summary, we have studied the effects of three types
of random potential on the low-energy behaviors of Dirac
fermions in the context of QED3. After carrying out RG
calculations, we have showed that RM, RSP, and RVP can
substantially affect the properties of mass Dirac fermions.
Adding random potentials to the system explicitly breaks
the Lorentz invariance, and leads to fermion velocity renor-
malization. We have computed the renormalized velocity and
analyzed its low-energy asymptotic behaviors. The role played
by RM is significantly enhanced by the gauge interaction
but RSP and RVP seem to be insusceptible to the gauge
interaction at the one-loop order. RSP is a marginally relevant
perturbation to the system, and drives the system to undergo
a diffusive quantum phase transition. When three types of

random potentials coexist, RSP dominates and determines the
low-energy behavior of the system, with RM and RVP being
nearly ignorable. In the absence of RSP, RVP promotes RM to
become a marginally relevant perturbation, and also induces
an anomalous dimension for fermion velocity.

It is necessary to emphasize here that we are using a
different representation for the spinor field from that of
Ref. [36]. The standard 2 × 2 Pauli matrices were used in
Ref. [36], whereas 4 × 4 γ -matrices are adopted in this
paper. Therefore, the RVP considered here is physically not
equivalent to that studied in Ref. [36]. Another related issue is
that the combination of two types of random potentials might
give rise to a new type of random potential. To examine this
phenomena more carefully, it is interesting to make a complete
RG analysis of all the possible types of random potential,
which would allow us to obtain a closed set of RG equations
for all the disorder parameters.

After determining the infrared fixed-point structure of
QED3 with random potentials, the next task could be to
analyze the low-energy behaviors induced by the unusual
renormalization of fermion velocity. It is also interesting to
study the rich quantum critical phenomena at the diffusive
quantum critical point, and compute the associated critical
exponents and observable quantities [54–57,80,83–85].

In the condensed-matter applications, QED3 may need to be
properly modified. For example, in the effective QED3 theory
of high-Tc superconductors [24,25], the gauge boson couples
to massless Dirac fermions and additional scalar bosons. It
would be straightforward to include these additional degrees
of freedom into the RG analysis performed in this paper.

Note added. After the original version of this paper was
submitted for publication, we became aware of two related
works by Goswami et al. [86] and by Thomson and Sachdev
[87], who have studied the effects of certain sorts of quench
disorder in QED3. For the three sorts of disorder considered
in our paper, our RG equations are in accordance with those
of Ref. [87]. In particular, the same fixed-point structure for
the strength parameters of gauge interaction and disorder was
obtained in both of our works. Moreover, these three works all
have reached a common conclusion for RMP that there exists
a finite fixed point in the space spanned by the parameters for
gauge interaction and disorder. In the case of RSP, however, the
results obtained in our paper and in Ref. [87] are quite different
from Ref. [86], where it is claimed that RSP is screened and
that the fixed point for gauge interaction is stable against RSP.
This difference stems from the fact that both our paper and
Ref. [87] ignore the Feynman diagrams presented in Fig. 1 of
Ref. [86], which are free of divergence and thus should not
be incorporated in the RG analysis performed in exactly three
space-time dimensions. Moreover, in this paper we have made
a detailed analysis of the interplay between different types of
disorder, which have not been considered in Refs. [86,87].
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