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Topological insulators and superconductors are characterized by their gapless boundary modes. In this paper,
we develop a recursive approach to the boundary Green function, which encodes this nontrivial boundary physics.
Our approach describes the various topologically trivial and nontrivial phases as fixed points of a recursion and
provides direct access to the phase diagram, the localization properties of the edge modes, as well as topological
indices. We illustrate our approach in the context of various familiar models such as the Su-Schrieffer-Heeger
model, the Kitaev chain, and a model for a Chern insulator. We also show that the method provides an intuitive
approach to understand recently introduced topological phases which exhibit gapless corner states.
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I. INTRODUCTION

There is currently considerable interest in topological
phases of matter and topological quantum phase transitions.
The best studied and simplest variety of topological phases are
the independent-fermion phases [1–3] collected and classified
in the periodic table and its extensions [4–10]. These topolog-
ical phases can be characterized in terms of bulk topological
indices and, by the bulk-boundary correspondence, exhibit
gapless modes localized at the sample boundaries.

Here, we present a simple and intuitive recursive approach,
which provides access to these topological phases and their
transitions. Our approach focuses on the boundary Green func-
tion [11,12], which encodes the presence or absence of gapless
surface modes in an immediate manner. Focusing on tight-
binding models, we imagine that the bulk system is constructed
by iteratively adding boundary sites (in one dimension) or
boundary layers (in higher dimensions). We can then exploit
that the boundary Green function can be computed recursively
and, by virtue of the bulk gap, becomes invariant under this
recursion in the thermodynamic limit. Thus the boundary
Green function can be obtained as fixed points of the recursion.

For a typical model which exhibits topologically trivial
and nontrivial phases, the recursion will generate several
fixed-point boundary Green functions. The physical boundary
Green function and hence the phase diagram can be identified
from a stability analysis. The various phases correspond to the
stable fixed points of the recursion and the approach to the
fixed point contains information about the spatial localization
of the boundary mode away from the boundary as well as
the bulk gap. This has some similarities with a real space
renormalization group approach.

The fixed-point boundary Green function provides access to
various observables of interest such as the tunneling density of
states. Most importantly, it immediately contains information
on the topological invariants by virtue of the fact that it encodes
the full boundary spectrum. We can relate our approach more
systematically to the general classifications of free-fermion
topological phases by establishing a connection to their
classification in terms of scattering matrices [9]. This can be
done by expressing the reflection matrix describing reflection
from a gapped phase in terms of its boundary Green function.
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In this way, we immediately obtain explicit expressions for the
topological invariants in terms of the boundary Green function.

Our approach can be applied to a wide variety of models.
Here, we illustrate the method on a number of popular models.
For simple cases such as the Su-Schrieffer-Heeger model [13],
the recursion is conveniently implemented in a direct manner.
To make the approach more systematic and to simplify its
implementation, we find it helpful to introduce an approach
based on the transfer matrix [14–17]. This is illustrated in one
dimension for the Kitaev chain [18] and in two dimensions for
a model of a Chern insulator [3].

Very recently, it was pointed out [19] that some 2D
and 3D models exhibit topologically protected excitations
at corners. These models have boundary Green functions
which are regular, reflecting the fact that the boundary is
gapped. Nevertheless, it is natural to interpret the inverse of the
boundary Green function at the Fermi energy as an effective
boundary Hamiltonian which can by itself be topologically
trivial or nontrivial. We show for a model discussed in
Ref. [19] that this effective boundary Hamiltonian is indeed
topologically nontrivial when the model exhibits topological
corner states. Our boundary Green function method may
thus open the path to a more systematic analysis of such
higher-order topological phases.

The paper is organized as follows. In Sec. II, we introduce
the principal idea of this work and illustrate it with the
Su-Schrieffer-Heeger model. We also show how to relate
the boundary Green function to the reflection matrix which
connects our approach with the systematic classification
of free-fermion systems. In Sec. III, we show how the
transfer matrix can be employed for computing the fixed-point
boundary Green function. This is used in Sec. IV to compute
the boundary Green function for the Kitaev chain and a model
of a Chern insulator. For both models, we show how the
topological invariants can be extracted from the fixed-point
boundary Green function. A 2D model with topological corner
states is investigated in Sec. V. We conclude in Sec. VI. Some
aspects are relegated to appendices.

II. BASIC CONSIDERATIONS

A. Boundary Green function

Consider a d-dimensional tight-binding Hamiltonian,
which is translationally invariant along d − 1 directions.
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FIG. 1. Schematic representation of the quasi-one-dimensional
Hamiltonian with N unit cells.

Assuming periodic boundary conditions in these directions,
we can define a (d − 1)-dimensional crystal momentum k⊥
to label the Hamiltonian. In the remaining dimension, we
apply open boundary conditions and retain a real-space
representation. By choosing a sufficiently large unit cell,
a Hamiltonian with a finite hopping range can always be
brought into a form which couples only neighboring unit cells.
Thus, without loss of generality, we can consider a family of
quasi-1D Hamiltonians, which are labeled by the transverse
momentum k⊥ and take the form

H (k⊥) =
N∑

n=1

(ψ†
nhnψn + ψ

†
n+1Vnψn + ψ†

nV
†
n ψn+1). (1)

Here, n = 1,2, . . . ,N labels the unit cells along the direction
with open boundary conditions, and ψn (ψ†

n) is a column
(row) vector of electron annihilation (creation) operators in
the nth unit cell. These vectors have M entries, reflecting the
dimension of the local Hilbert space associated with each unit
cell and a given k⊥. The intra- and inter-unit-cell couplings
are described by M × M matrices hn and Vn, respectively.
Note that we suppressed the k⊥ dependence of ψn, hn, and
Vn for notational simplicity. The structure of this quasi-1D
tight-binding Hamiltonan is illustrated in Fig. 1.

More explicitly, the corresponding first-quantized Hamil-
tonian can be written as an NM × NM block tridiagonal
Hamiltonian matrix H(k⊥) which takes the form

H =

⎛
⎜⎜⎜⎜⎜⎝

h1 V
†

1

V1 h2 V
†

2
. . .

. . .
. . .

VN−2 hN−1 V
†
N−1

VN−1 hN

⎞
⎟⎟⎟⎟⎟⎠. (2)

Both the spectrum and the eigenfunctions of the system are
encoded in the Green function (or resolvent operator) G(ω) of
this Hamiltonian, which is defined through

(ωI − H)G(ω) = I. (3)

Here, I is the identity matrix of dimension NM .
The low-energy excitations of topological insulators and

superconductors are localized near their boundary. This moti-
vates us to consider the boundary Green functions G1 = G11

and GN = GNN , which correspond to the 1,1 and N,N blocks
of the full Green function matrix G. Thus these boundary
Green functions are M × M matrices.

By virtue of the tridiagonal structure of the first-quantized
Hamiltonian (2), we can compute the boundary Green function
recursively, extending the system unit cell by unit cell in the
direction with open boundary conditions. In this way, we can
relate the boundary Green function GN of a chain with N unit

cells to the boundary Green function GN−1 of a chain with
N − 1 unit cells. Indeed, the two boundary Green functions
are simply related by the Dyson equation

(g−1
N − VN−1GN−1V

†
N−1)GN = I. (4)

Here, g−1
N (ω) = Iω − hN is the bare Green function of the

N th unit cell. Similar recursions were used in the context of
topological phases in Refs. [20,21].

When considering insulators and superconductors with a
gapped bulk, be they topological or not, we expect that the
boundary Green function becomes independent of the number
of layers in the limit of large N . Hence the boundary Green
function should approach a fixed point G which satisfies the
fixed-point equation

(g−1 − V GV †)G = I. (5)

Here, we have assumed that the system is uniform along the
chain, so that we can drop the indices of g and V . This closed
equation for the boundary Green function (a matrix quadratic
equation) is the central starting point of our considerations.

B. The Su-Schrieffer-Heeger (SSH) model:
An illustrative example

It should be evident that the boundary Green function
encodes much information of interest in the context of
topological insulators and superconductors. Most importantly,
it knows about gapless end, edge, or surface states, and can thus
be used to derive their properties (including their extension
into the bulk) as well as the topological phase diagram of the
model. It is useful to illustrate this statement in the context of
the Su-Schrieffer-Heeger model. This model is well known to
exhibit topologically distinct phases and is sufficiently simple
so that we can implement the recursive approach in a rather
straightforward manner, without relying on the more powerful
methods developed in the next sections.

The Su-Schrieffer-Heeger (SSH) model describes a 1D
chain of spinless fermions with one orbital per site and
alternating hopping strengths between neighboring sites. For
a chain with 2N sites and open boundary conditions, the
Hamiltonian takes the form

H =
∑

n

(−t1c
†
2nc2n−1 − t2c

†
2n+1c2n + H.c.), (6)

where cj (c†j ) annihilates (creates) a fermion at site j , and
t1 and t2 are the hopping amplitudes (taken to be real for
simplicity). While the model is gapless for |t1| = |t2|, the
dimerization opens a gap around E = 0 when the hopping
amplitudes differ in magnitude. The gapless point separates
a topological phase for |t1/t2| < 1 from a trivial phase for
|t1/t2| > 1. In the topological phase, there is a midgap state
localized at each end of the chain in the thermodynamic limit.

For the SSH model, we have g−1
N = ω and

VN =
{
t1 odd N

t2 even N
(7)

from Eq. (6). In view of the dimerization of the hopping
amplitudes, it is convenient to iterate the recursion Eq. (4)
and to obtain a recursion for chains with an even number of

235143-2



BOUNDARY GREEN FUNCTIONS OF TOPOLOGICAL . . . PHYSICAL REVIEW B 95, 235143 (2017)

sites,

G2N = [
ω − t2

1

(
ω − t2

2 G2N−2
)−1]−1

. (8)

To analyze this recursion, we write it as

G2N − G2N−2 = β(G2N−2) (9)

with the β function

β(x) = [
ω − t2

1

(
ω − t2

2 x
)−1]−1 − x. (10)

The fixed-point boundary Green function G follows from the
zeros of the β-function. Solving the corresponding quadratic
equation, we find the two solutions

Gtriv = ω

t2
2 − t2

1

+ O(ω3), (11)

Gtop = t2
2 − t2

1

t2
2 ω

+ O(ω), (12)

where we have restricted attention to the limit of small ω.
These two fixed-point boundary Green functions corre-

spond to the topological and nontopological phases of the
model. In the topological phase, the midgap state makes the
boundary Green function singular for ω → 0. In contrast, there
is no such singularity in the trivial phase where the end remains
gapped and the boundary Green function is regular. These
statements are an immediate consequence of the Lehmann
representation for the Green function.

The phase diagram of the model emerges when studying
the stability of the fixed-point Green functions under the
recursion (8). A fixed point is stable when β ′(x) < 0. A simple
calculation yields

β ′(Gtop) = t2
1

t2
2

− 1, (13)

β ′(Gtriv) = t2
2

t2
1

− 1 (14)

for ω = 0. This implies that the singular boundary Green
function Gtop corresponding to the topological phase is stable
for |t1/t2| < 1, while the regular boundary Green function Gtriv

corresponding to the trivial phase is stable for |t1/t2| > 1.
The fixed-point analysis also provides information about

the gap, the correlation length of the model, and their behavior
near the topological critical point t1 = t2. The correlation
length of the phase with fixed-point Green function G is given
by ξ = 4/|β ′(G)|. (Notice that we define ξ as the decay length
of a wave function; the diagonal elements of the Green function
decay on half of this scale.) Thus we find the result

ξ = 4[max(t1,t2)]2∣∣t2
1 − t2

2

∣∣ , (15)

which is written in a way that applies to both phases. The
correlation length diverges at the topological critical point
|t1| = |t2|. It is also interesting to note that this result is
consistent with the quasiparticle weight Z of the fixed-point
Green function. In the topological phase, one expects Gtop �
Z/ω for small ω and Z = 4/ξ reflecting the fact that the
midgap state is rapidly oscillating and decays exponentially
into the bulk on the scale of the correlation length.

To extract the spectral gap �, we note that it is related to
the correlation length through � = h̄vF /ξ (assuming that the
gap is small compared to the bandwidth, i.e., |t1 − t2| � t1,t2).
Here, the Fermi wavelength should be taken at the center of
the band with t = t1 = t2, i.e., vF = 2t/h̄. This yields � =
|t1 − t2| in agreement with a direct evaluation of the spectrum.

C. Topologial invariants

The boundary Green function contains direct information
on the topological nature of the phases through the gapless
end, edge, or surface states described by the boundary Green
function. As for the SSH model above, this can be read off
directly from the boundary Green function at energies ω below
the bulk gap. In 1D, the topological phase is signaled by
midgap end states and hence by a contribution to the Green
function which is singular for ω → 0. In higher dimensions,
there are edge or surface modes with a linear dispersion at low
energies. We will discuss this in more detail below.

A systematic connection to the periodic table of topological
phases can be established by relating the boundary Green
function to the reflection matrix. Reference [9] derived the
periodic table based on the reflection matrix rN and provided
explicit expressions for the topological invariants in terms of
the rN . With the relation between the reflection matrix and
the boundary Green function, the topological invariants can
alternatively be written in terms of the latter.

Start with a tight-binding model of the kind discussed above
and attach a lead to one end with M propagating channels
for each k⊥. In the spirit of the tight-binding model, the
channels are only coupled to the last site of the chain, with
the matrix W denoting the coupling between the lead channels
and the adjacent site of the system. By the gapped nature
of the system, the incoming wave is fully reflected. Based
on the Mahaux-Weidenmüller formula, the corresponding
scattering—or reflection—matrix rN can then be written as
[22]

rN = I − 2iW
1

G−1
N + iW †W

W †. (16)

Note that the Green function GN appearing in this expression
is indeed the boundary Green function since the coupling is to
the last site of the chain only. Some rearranging then leads to
the relation [23]

rN = I − iWGNW †

I + iWGNW † . (17)

We include an alternative and more detailed derivation of this
relation in Appendix A. Moreover, we couch the scattering-
matrix approach to the periodic table and the topological
invariants in terms of the boundary Green function in Ap-
pendix B.

Before concluding this section, we briefly consider systems
with a trivial bulk topological invariant and thus without a
gapless boundary mode. In this case, the boundary Green
function evaluated at ω = 0 is generally invertible. This can
be used to define an effective boundary Hamiltonian

Hbound = −[G(ω = 0)]−1. (18)
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Even if the original model does not have a nontrivial bulk
topological invariant, this boundary Hamiltonian can still be
topologically nontrivial, leading to a second order topological
phase. We use this observation to extend our approach to
describe higher-order topological phases in Sec. V B.

III. BOUNDARY GREEN FUNCTION AND
TRANSFER MATRIX

In this section, we introduce a more efficient method
to compute the fixed-point boundary Green function which
comes in handy when discussing models which are more
complicated than the SSH model. The method is based on
the transfer matrix [14,15] and effectively provides an explicit
construction of the fixed-point boundary Green function.

We start by reviewing the transfer matrix based on the
Schrödinger equation for the Hamiltonian in Eq. (1),

g−1
n (ω)ψ(n) − Vn−1ψ(n − 1) − V †

n ψ(n + 1) = 0. (19)

Here, �(n) is an M-component wave function. The site index
n takes on values n = 1, . . . ,N , and we impose the open
boundary conditions ψj (0) = 0 = ψj (N + 1).

As usual for tight-binding Hamiltonians, we can relate the
two-component quantities �(n) = [ψ(n + 1)T ,ψ(n)T ]T via
�(n) = Mn(ω)�(n − 1), where the matrix Mn(ω) takes the
form

Mn(ω) =
(

(V †
n )−1g−1

n (ω) −(V †
n )−1Vn−1

I 0

)
. (20)

Here and in the following, we assume Vn to be invertible.
Notice that V0 and VN do not appear in the Hamiltonian and
can be chosen as any invertible matrix in order to define M0

and MN . The matrix Mn(ω) is sometimes called a transfer
matrix. Here, we reserve this terminology for the matrix

MN = MNMN−1 . . . M1, (21)

connecting the two ends of the chain.
If ω0 is an eigenenergy of the Schrödinger equation (19),

the transfer matrix MN (ω0) connects the eigenfunctions ψ(n)
at sites n = 1 and n = N ,(

0
ψ(N )

)
= MN (ω0)

(
ψ(1)

0

)
. (22)

If the state corresponding to the eigenenergy is k-fold
degenerate, �p(n) with p = 1, . . . ,k, then

detMN,11(ω0) = 0 (23)

and

kerMN,11(ω0) = span{ψ1(1), . . . ,ψk(1)}. (24)

Here, the subscript 11 denotes the blocks under the partition of
MN into a 2 × 2 block matrix. One immediate consequence
of this is that k � M , namely the degeneracy is bounded by
the number of internal degrees of freedom per unit cell.

We now show how the boundary Green function GN can be
expressed in terms of the transfer matrix MN , starting directly
from the recursion in Eq. (4). Defining Xn = GnV

†
n , we can

rewrite the recursion as

(V †
N )−1g−1

N XN − (V †
N )−1VN−1XN−1XN = I, (25)

or equivalently (
I

XN

)
= MN

(
I

XN−1

)
XN, (26)

where MN is defined in Eq. (20).
This relation can be applied iteratively to obtain(

I
XN

)
= MN

(
I
0

)
X1 . . . XN . (27)

The first row of this equation implies that

X1 . . . XN = M−1
N,11. (28)

Then, the second row yields

XN = MN,21X1 . . . XN = MN,21M−1
N,11. (29)

Hence we obtain the desired expression

GN = MN,21M−1
N,11(V †

N )−1 (30)

for the boundary Green function in terms of the transfer matrix.
This formula was also derived in the broader context of block
Toeplitz matrices in Ref. [24].

It is useful to exploit the symplectic structure of the transfer
matrix. Notice that the matrix Mn has the property

M†
n�nMn = �n−1 (31)

in terms of the anti-Hermitian matrix

�n =
(

0 −Vn

V
†
n 0

)
. (32)

As a consequence, the transfer matrix MN obeys the relation

M†
N�NMN = �0. (33)

Remember that the choice of matrices VN and V0 at the
boundary is arbitrary as long as they are invertible. If we
choose V0 = VN , then the transfer matrix obtains a symplectic
structure as it satisfies the relation

M†
N�0MN = �0. (34)

As usual for symplectic matrices, this implies that the
eigenvalues ofMN appear in pairs of λ and 1/λ∗. In particular,
if v is a right eigenvector of MN with eigenvalue λ,

MNv = λv, (35)

then (�0v)† is a left eigenvector of MN with eigenvalue 1/λ∗,

(�0v)†MN = 1

λ∗ (�0v)†. (36)

This separates the 2M eigenvalues of the transfer matrix into
M eigenvalues λj (j = 1, . . . ,M) with |λj | > 1, and another
M eigenvalues 1/λ∗

j with modulus smaller than unity. The
Lyapunov exponents 1/ξj are then defined through

1

ξj

= lim
N→∞

1

N
ln |λj | (37)

and are strictly positive at the Fermi energy (ω = 0) for a
gapped bulk [25]. At the topological phase transition, the
bulk gap closes and therefore at least one Lyapunov exponent
vanishes for some j , corresponding to |λj | = 1 or a diverging
ξj . This is explicitly shown in Appendix C.
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So far, we did not assume that the system is uniform
along the direction with open boundary conditions. Let us
now consider models with translational invariance of period a.
(In the SSH model discussed above, this period was equal to 2
due to the dimerization of the hopping.) Considering a chain
of length Na, the transfer matrix becomes

MaN = T N, (38)

where we defined the matrix

T = MaMa−1 . . . M1 (39)

associated with one period of length a.
In the translationally invariant case, the evaluation of the

boundary Green function can be simplified by diagonalizing
the matrix T . Again, T satisfies a symplectic structure and its
eigenvalues can be separated into 
 = diag(λ1, . . . ,λM ) with
|λj | > 1, and a second set (
−1)∗. Thus we can write

T

(
U11 U12

U21 U22

)
=

(
U11 U12

U21 U22

)(

 0
0 (
−1)∗

)
. (40)

We can use this to express T and hence MaN , and insert this
expression into the Eq. (30) for the boundary Green function.
Upon taking the thermodynamic limit N → ∞ and using that
the system is gapped (see Appendix D for details), this yields
the desired explicit expression

G = lim
N→∞

GaN = U21U
−1
11 (V †

0 )−1, (41)

for the fixed-point boundary Green function (see also
Ref. [24]). While we have suppressed the argument ω in this
expression, it is valid for any ω which falls inside the bulk gap.

For a homogeneous system in which the on-site potential hn

and the hopping amplitude Vn are independent of the site index
n along the chain, i.e., a system with a = 1, the evaluation of
the boundary Green functions can be simplified further. In this
case, the columns of the matrix U in Eq. (41) consist of the
right eigenvectors of

T =
(

(V †)−1g−1 −(V †)−1V

I 0

)
. (42)

The simple structure of T implies that the right eigenvector
with eigenvalue λi can be written as (λiz

T
i ,zT

i )T , where the
vector zi obeys (

V

λ i
+ V †λi − g−1

)
zi = 0. (43)

Let us also denote the eigenvectors corresponding to eigen-
values |λi | > 1 as xi and the corresponding eigenvectors
with eigenvalues 1/λ∗

i as yi . We can now identify U21 =
(x1, . . . ,xM ) and U11 = (λ1x1, . . . ,λMxM ). Then, Eq. (41)
implies

G = (x1, . . . ,xM )
−1(x1, . . . ,xM )−1(V †)−1. (44)

for the fixed-point boundary Green function. The essential
steps in evaluating G thus reduce to solving the nonlinear
eigenvalue problem Eq. (43) and inserting the result into
Eq. (44).

For later use, it is useful to collect expressions for all
right and left eigenvectors of T for a = 1. We write the
right eigenvectors of T as vi = (xT

i ,xT
i /λi)T for |λi | > 1

and as vM+i = (yT
i ,yT

i λ∗
i )T for the corresponding eigenvalues

1/λ∗
i with modulus less than unity. The symplectic nature

of T implies then that the corresponding left eigenvectors
take the form wT

i = (−y
†
i V

†λi,y
†
i V ) with eigenvalue λi and

wT
M+i = (−x

†
i V

†/λ∗
i ,x

†
i V ) with eigenvalue 1/λ∗

i .

IV. APPLICATION TO 1D AND 2D MODELS

In this section, we apply the formalism developed in the
previous section to two homogeneous tight-binding models
with a = 1. We consider the Kitaev chain as an example of a
1D model and a Chern insulator as an example of a 2D model.

A. Perturbation theory

We are mainly interested in the fixed-point boundary Green
function for small ω as this limit captures the topological
properties and the effective low-energy excitations. This limit
can be most directly treated by means of perturbation theory.
Denoting T0 = T (ω = 0), we have

T = T0 + ωA, A =
(

(V †)−1 0
0 0

)
. (45)

For small ω, we can treat ωA in first-order perturbation theory
(properly generalized to non-Hermitian matrices, for which
left and right eigenvectors are no longer identical).

If we denote by wT
i and vi the left and right eigenvectors

of M0 with eigenvalues λi (not restricted in magnitude), we
obtain the first-order corrections

δλi = ω
wT

i Avi

wT
i vi

, δvi = ω
∑
j 	=i

vj

λi − λj

wT
j Avi

wT
j vj

. (46)

These expressions are evident generalizations of the corre-
sponding results in quantum mechanics.

We can now use the explicit structure of the vi discussed at
the end of the previous section as well as the simple form of
A. This yields

δλi = − ωλiy
†
i xi

y
†
i (V/λi − V †λi)xi

(47)

for the shift in the eigenvalues with |λi | > 1 and

δvi = ω

(
δri

δsi

)
, (48)

with

δri = −
∑
j 	=i

y
†
j xi

(λiλ
∗
j − 1)y†

j (V/λj − V †λj )xj

xj

−
∑

j

x
†
j xi

(λiλ
∗
j − 1)x†

j (V λ∗
j − V †/λ∗

j )yj

yj , (49)

for the corresponding first-order corrections to the right
eigenvectors. In the last expression, the sum is only over those
indices j with |λj | > 1.

At small ω, the fixed-point boundary Green function in
Eq. (44) then becomes

G = (x1, . . . ,xM )
−1

× (x1 + ωδr1, . . . ,xM + ωδrM )−1(V †)−1. (50)
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Notice that we retain the correction due to a nonzero ω

only in the matrix inverse because this is where a singular
ω dependence can originate from. Notice also that δsi does not
enter this expression so that we refrain from giving an explicit
expression.

B. Kitaev chain

1. Model and boundary Green function

As a first example, consider the Kitaev chain which is
a lattice model for a spinless p-wave superconductor. The
Hamiltonian for a chain of N sites takes the form

H = −μ

N∑
j=1

c
†
j cj +

N−1∑
j=1

[tc†j+1cj + �c
†
j+1c

†
j + H.c.],

(51)

where cj (c†j ) is the fermion annihilation (creation) operator
at site j . We assume below that both the hopping t and the
pairing � are real.

This model has trivial and topological phases, with the latter
hosting Majorana zero modes at both ends of the chain. The
trivial phase occurs for |μ| > 2|t | when the chemical potential
μ falls outside the normal-state band. The topological phase
occurs for |μ| < 2|t |. The model supports a chiral symmetry
US = τx , so that it falls into class BDI. Indeed, in addition to
the topological phase transition lines at |μ| = 2|t |, the model
also becomes gapless in the absence of pairing correlations,
� = 0, and the topological phases with � > 0 and � < 0 have
topological indices ±1.

To apply the approach developed in Sec. III, we introduce
a Nambu spinor ψ

†
j = (c†j ,cj ). Then, we can identify

g−1(ω) = ω + μτz, (52)

V = tτz + i�τy, (53)

where τx,y,z are Pauli matrices in Nambu space.
Applying the perturbative approach developed in Sec. IV A,

we first determine the eigenvalues and eigenvectors of T for
ω = 0. The eigenvalues follow from the condition

det[V/λ + V †λ − g−1(ω = 0)] = 0, (54)

which yields

(t ∓ �)λ2 − μλ + (t ± �) = 0. (55)

Denote the pair of roots for the upper sign as λ1,2, the roots
for the lower sign as λ3,4, and fix the labeling by imposing
λ1λ

∗
4 = 1 = λ2λ

∗
3. The corresponding eigenvectors fulfilling

Eq. (43) are

z1 = z2 =
(

1
1

)
, z3 = z4 =

(
1

−1

)
. (56)

To determine the two eigenvectors corresponding to eigenval-
ues with |λ| > 1, we consider the quantity

(
λ2

1 − 1
)(

λ2
2 − 1

) = (λ1λ2 + 1)2 − (λ1 + λ2)2 = 4t2 − μ2

(t − �)2

(57)

Thus |λ1| and |λ2| are both larger than or both smaller than
unity when |2t | > |μ|.

Let us first consider the situation that |λ1| and |λ2| are
both larger than unity. This occurs for |2t | > |μ| and �t < 0.
Then, the matrix (x1,x2) = 1 + τx is noninvertible and the
fixed-point boundary Green function G becomes singular in
the limit ω → 0. This is in agreement with expectations as the
model exhibits a topological phase for these parameters.

Including the first-order corrections in ω, we find

G(ω) = (1 + τx)

2ω(t − �)a12
, (58)

where

a12 = 1

(|λ1|2 − 1)(λ2 − λ4)(λ∗
1(t − �) − λ4(t + �))

+ 1

(|λ2|2 − 1)(λ1 − λ3)(λ∗
2(t − �) − λ3(t + �))

.

(59)

Thus the fixed-point boundary Green function takes a form
which implies the existence of a zero-energy end state. The
rank of the numerator 1 + τx confirms that there is one zero-
energy end state at each end, and the matrix structure imposes
that the end-state wavefunction has particle-hole symmetry as
it should for a Majorana bound state. The boundary Green
function of the Kitaev chain was also derived in Ref. [26] by a
different method.

As for the SSH model, the quasiparticle weight of the fixed-
point boundary Green function (58) encodes information on
the localization length of the Majorana end state. In particular,
one expects that the Majorana localization length diverges at
the topological phase transition. For the parameters of Eq. (58),
we have either |λ1| → 1 or |λ2| → 1, so that a12 is dominated
by one of the two terms and does indeed diverge.

Similarly, we find |λ3,4| > 1 for |2t | > |μ| and �t >

0. Then, the matrix (x1,x2) = 1 − τx (exploiting that the
eigenvectors are only defined up to an overall prefactor) and
we find

G(ω) = (1 − τx)

2ω(t + �)a34
, (60)

where a34 follows from the expression for a12 by the replace-
ments (1,2) ↔ (3,4). As expected, this expression is again
consistent with the particle-hole symmetry of Majorana end
states.

Now, consider the nontopological phase in the complemen-
tary parameter range |2t | < |μ|. Assuming for definiteness
that |λ1,3| > 1, we have the relation

λ1

t + �
− λ3

t − �
= 0 (61)

and find that all λj are real. We then observe that the matrix
(x1,x2) is invertible and we can evaluate the fixed-point
boundary Green function for ω = 0. This yields

G(ω = 0) = 2λ1

t + �
τz, (62)

which is nonsingular indicating that there are no zero-energy
end states.
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2. Topological index

The Kitaev chain with the Hamiltonian given in Eq. (51)
belongs to symmetry class BDI, as it has a chiral symmetry
operator US = τx . For 1D systems, class BDI is characterized
by a topological Z-invariant which is given by

Q = ν

(
lim
ω→0

US

I − iV GV †

I + iV GV †

)
− M

2
. (63)

Here, M is even and ν(F ) counts the number of negative
eigenvalues of a matrix F . This expression follows from
Ref. [9] in conjunction with the relation (17) between reflection
matrix and boundary Green function (see Appendix B for a
summary).

The existence of zero-energy boundary modes implies that
for ω → 0, the boundary Green function has the form

G ∼ K

ω
(64)

with a singular Hermitian matrix K whose rank corresponds
to the number of zero modes. This general form for symmetry
class BDI is consistent with the expressions (58) and (60),
which we found above for the Kitaev chain. The chiral
symmetry implies thatUS anticommutes with the Hamiltonian,
so that [US,V KV †] = 0 (see Appendix B for more details).
Thus we can choose a basis in which the Hermitian matrices
US and V KV † are simultaneously diagonalized and order the
eigenvalues such that

US = diag(IM/2, − IM/2) (65)

with In the identity matrix of dimension n, and

V KV † = diag(D+,p,0M/2−p,D−,q ,0M/2−q ) (66)

with D±,p a diagonal matrix containing the nonzero eigenval-
ues of V KV †. Here, p (q) denotes the number of zero-energy
modes with positive (negative) chirality. We also use the
notation 0n for an n × n zero matrix.

Using the asymptotic form of the boundary Green function
in Eq. (64), we thus find

F = lim
ω→0

US

I − iV GV †

I + iV GV †

= diag(−Ip,IM/2−p,Iq, − IM/2−q ), (67)

and, therefore,

Q = ν(F ) − M/2 = p − q. (68)

Thus the topological index of symmetry class BDI can be
computed as the difference between the numbers of zero-
energy modes with positive and negative chiralities.

In the absence of zero modes, limω→0 G(ω) = G(0) is
generically an invertible, full-rank matrix. Then, chiral sym-
metry implies {US,V G(0)V †} = 0. (Notice that unlike for the
singular boundary Green function in the topological phase, the
leading contribution to G for ω → 0 is independent of, and
thus even in, ω.) Hence we can choose a basis in which

US = σx ⊗ IM/2 (69)

and

V G(0)V † = σz ⊗ DM/2, (70)

where the diagonal M/2 × M/2 matrix DM/2 collects eigen-
values of V G(0)V †. We obtain the matrix

F = lim
ω→0

US

I − iV GV †

I + iV GV †

= (σx ⊗ IM/2)
IM − i(σz ⊗ DM/2)

IM + i(σz ⊗ DM/2)
. (71)

As {σz ⊗ IM/2,F } = 0, the spectrum of F must be symmetric
with respect to zero. Hence, we conclude Q = 0 as expected.

For the Kitaev chain in the topological phase, the asymptotic
form of the boundary Green function is G ∼ (1 ± τx)/ω. This
leads to the topological invariant Q = ±1, corresponding to
the existence of one Majorana zero mode with chirality ±1.
When this model is in its trivial phase, we have G ∼ τz and
the topological invariant becomes Q = 0.

In realistic 1D topological superconductors, the chiral
symmetry will typically be absent. This lowers the symmetry
class from BDI to D, which has a Z2 topological invariant.
In this case, there can be at most one zero-energy boundary
mode when the system is in the topological phase. Then, the
asymptotic Green function G ∼ K/ω involves a matrix K

of rank one. The topological invariant for this case is (see
Appendix B for details)

Q = det

(
lim
ω→0

I − iV GV †

I + iV GV †

)
, (72)

which takes the value +1 in the trivial phase and −1 in the
topological phase.

In the presence of one boundary zero mode, diagonalizing
the matrix V KV † results in only one nonzero eigenvalue. In
this diagonal basis, one finds

lim
ω→0

I − iV GV †

I + iV GV † = diag(−1,IM−1). (73)

which leads to Q = −1.
In the trivial phase, limω→0 G(ω) = G(0) is generically

a full rank matrix. Because of particle-hole symmetry (see
Appendix B for further details), the spectrum of V G(0)V † is
symmetric about zero, which leads to Q = 1. As an aside, this
implies that the topological invariant for class D signals the
presence or absence of Majoranas in the Kitaev chain despite
its being in class BDI.

C. Chern insulator

1. Model and boundary Green function

In this section, we consider a Chern insulator as an example
of a 2D topological phase. A simple model Hamiltonian for a
Chern insulator on a square lattice is given by [3]

H = sin kxσx + sin kyσy + B(2 − M − cos kx − cos ky)σz.

(74)

The corresponding spectrum is gapped except for M = 0,2,4,
and the model exhibits topological phases for 0 < M < 2—
with edge states around k = 0—and for 2 < M < 4—with
edge states around k = π .

To compute the boundary Green function, we rewrite the
Hamiltonian in real space along the x direction (and retain
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the momentum representation in the y direction with periodic
boundary conditions). This yields

H (ky) =
N∑

n=0

[
1

2i
c
†
n+1σxcn − B

2
c
†
n+1σzcn + H.c.

+ c†n(sin kyσy + B
(ky)σz)cn

]
(75)

with 
(ky) = 2 − M − cos ky . We can then readily read off

g−1(ky,ω) = ω − sin kyσy − B
(ky)σz (76)

V = 1

2i
σx − B

2
σz. (77)

It is useful to compute the fixed-point boundary Green
function in a perturbation theory in (ω − sin kyσy), starting
with

T = T0 + A(ω − sin kyσy), A =
(

(V †)−1 0
0 0

)
, (78)

where T0 = T (sin ky = 0,ω = 0). For ω − sin kyσy = 0, the
eigenvalues satisfy

λ2(1 ± B) ∓ 2B
λ − (1 ∓ B) = 0. (79)

We denote the roots for the upper sign as λ1,2 and for the lower
sign as λ3,4, and fix the labeling by imposing λ1λ

∗
4 = 1 = λ2λ

∗
3.

The corresponding eigenvectors are

z1 = z2 =
(

1
i

)
, z3 = z4 =

(
1
−i

)
. (80)

Similar to the Kitaev chain, we expect a topological phase
when |λ1| and |λ2| are either both larger or both smaller than
unity. The relevant parameter ranges can again be deduced
from the quantity

(
λ2

1 − 1
)(

λ2
2 − 1

) = 4B2

(1 + B)2
(1 − 
2). (81)

Thus the topological phase requires 
2 < 1, which implies
|λ1,2| > 1 for B < 0 and |λ3,4| > 1 for B > 0. Using that
cos ky = ±1 when sin ky = 0, we recover that the model is
topological for 0 < M < 4.

We can now evaluate the fixed-point boundary Green
function in perturbation theory by following essentially the
same steps as for the Kitaev chain. When |λ1,2| > 1, a
straight-forward calculation yields

G(ky,ω) = (1 + σy)

2(B + 1)(ω + sin ky)a12
(82)

with

a12 = 1

[−(B + 1)λ∗
1 + (B − 1)λ4](|λ1|2 − 1)(λ2 − λ4)

+ 1

[−(B + 1)λ∗
2 + (B − 1)λ3](|λ2|2 − 1)(λ1 − λ3)

.

(83)

Similarly, when |λ3,4| > 1, we have

G(ky,ω) = (1 − σy)

2(B − 1)(ω − sin ky)a34
, (84)

where

a34 = 1

(|λ3|2 − 1)(λ4 − λ1)[(1 − B)λ∗
4 + (B + 1)λ1]

+ 1

(|λ4|2 − 1)(λ3 − λ2)[(1 − B)λ∗
3 + (B + 1)λ2]

.

(85)

Thus we find that when 0 < M < 2, the system has a
gapless chiral boundary mode near ky = 0 with dispersion
ω = sgn(B) sin ky . When 2 < M < 4, the gapless chiral
boundary mode occurs around ky = π with dispersion ω =
sgn(B) sin ky .

In the nontopological phase for M < 0 or M > 4, we have

2 > 1 and can thus choose |λ1|,|λ3| > 1. As for the Kitaev
chain, the λj are all real and obey the relation

λ1

1 − B
+ λ3

1 + B
= 0. (86)

The boundary Green function is nonsingular and can hence be
evaluated approximately for ω − sin ky = 0. This yields

G(ky → 0,π,ω → 0) = − 2λ1

1 − B
σz. (87)

2. Topological index

The Chern insulator with Hamiltonian (74) belongs to class
A. The topological invariant for a two-dimensional system in
this symmetry class takes the form [9] (see also Appendix B)

Q = 1

2πi

∫ 2π

0
dk

d

dk
Tr ln r(k), (88)

where the zero-energy reflection matrix is expressed in terms
of the boundary Green function as

r(ky) = lim
ω→0

I − iV G(ky,ω)V †

I + iV G(ky,ω)V † . (89)

In line with Laughlin’s argument [27] and the familiar
expression for quantum pumping of charge [28], this can
be viewed as the pumped charge in units of the electron
charge when threading the effectively cylinder-shaped sample
(periodic boundary conditions in the y direction) by one flux
quantum.

When 0 < M < 2, the boundary Green function diverges
at ky = 0 and has rank one,

G(ky,ω → 0) ∼ 1 + σy

ky

. (90)

Away from ky = 0, the boundary Green function is invertible
and finite. This yields a winding number Q = 1.

When 2 < M < 4, the boundary Green function diverges
at ky = π and has rank one,

G(ky,ω → 0) ∼ − 1 + σy

ky − π
. (91)

Away from ky = π , the boundary Green function is well
behaved. We thus obtain the opposite winding number Q =
−1. When M < 0 or M > 4, the boundary Green function is
well behaved at all ky and the winding number is zero.
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tx,2

· · ·

· · ·

···

tx,1

ty,2

ty,1

FIG. 2. Tight-binding model for a second-order topological in-
sulator on a square lattice. Solid and dashed lines in the x and
y directions denote alternating nearest-neighbor hoppings tx,1, tx,2

and ty,1, ty,2. The hopping amplitudes for the bonds colored in
brown include a relative minus sign. The effective Hamiltonian of
the highlighted boundary parallel to the x direction is topologically
equivalent to an SSH model.

V. HIGHER-ORDER TOPOLOGICAL INSULATORS

A. Model

Recent work introduced higher-order topological insulators
[19]. In 2D, these phases have gapped edges but gapless corner
states. In this section, we show that our approach readily
accommodates such systems and provides a rather transparent
picture.

The model investigated in Ref. [19] takes the form

H =
∑
n,j

(tx,1c
†
2n,j c2n−1,j + tx,2c

†
2n+1,j c2n,j )

−
∑
i,m

(−1)i(ty,1c
†
i,2mci,2m−1 + ty,2c

†
i,2m+1ci,2m). (92)

This square-lattice Hamiltonian has dimerized hopping am-
plitudes in the x and y directions and an added π -flux per
plaquette, as illustrated in Fig. 2. The hopping amplitudes
tα,j (α = x,y and j = 1,2) are assumed to be real. As a
consequence of the π flux, the model has an insulating bulk
which makes it amenable to our boundary Green function
approach.

While the edges of this model are gapped, there are
zero-energy corner states [19]. In the presence of C4 symmetry,
these corner states can be characterized by a quadrupole

moment which is a Z2 topological index. In the absence of C4

symmetry, there is a Z2 × Z2 topological index which can be
associated with the edge polarizations.

The main observation underlying the current section is
that even if the fixed-point boundary Green function is
gapped, it defines a low-energy boundary Hamiltonian in a
natural manner. This boundary Hamiltonian can be either
trivial or topological. Gapless corner states (or corresponding
generalizations to higher dimensions) appear if this boundary
Hamiltonian is topological.

B. Effective boundary Hamiltonian

We now derive the fixed-point boundary Green function
of this model. The dimerization of the hopping amplitudes
makes this a model with period a = 2, with T = M2M1 being
the product of two matrices. As described in Sec. III, we
can deduce the fixed-point boundary Green function from the
eigenvectors and eigenvalues of T .

Consider a system with 2N × 2N sites and focus on the
Green function for a boundary parallel to the x direction
(in which we thus assume periodic boundary conditions).
Introducing a two-component spinor ψT

n,j = (cT
2n−1,j ,c

T
2n,j )

and its Fourier transform

ψn,j = 1√
N

∑
k

einkψj (k), (93)

the Hamiltonian can be rewritten as

H =
∑

k

⎧⎨
⎩

2N∑
j=1

ψ
†
j (k)hj (k)ψj (k)

+
2N−1∑
j=1

[ψ†
j+1(k)Vjψj (k) + H.c.]

⎫⎬
⎭. (94)

Here, we define

hn(k) = tx,1τx + tx,2(e−ikτ+ + eikτ−), (95)

and

Vj =
{
ty,1τz odd j

ty,2τz even j
. (96)

The matrices τx,y,z are Pauli matrices in the sublattice space
of even and odd sites along the x direction, with τ± = (τx ±
iτy)/2.

With these ingredients, we can construct the transfer matrix
T = M2M1 using Eq. (20). As the edge is gapped, we can set
ω = 0 from the outset. This yields

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− t2
x,1+t2

x,2+t2
y,1+2tx,1tx,2 cos k

ty,1ty,2
0 0 tx,1

ty,1
+ tx,2

ty,1
e−ik

0 − t2
x,1+t2

x,2+t2
y,1+2tx,1tx,2 cos k

ty,1ty,2
− tx,1

ty,1
− tx,2

ty,1
eik 0

0 − tx,1

ty,1
− tx,2

ty,1
e−ik − ty,2

ty,1
0

tx,1

ty,1
+ tx,2

ty,1
eik 0 0 − ty,2

ty,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (97)
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(a) (b)

(c) (d)

FIG. 3. Wave function (modulus squared) of the single-particle
excitation closest to zero energy for the second-order topological
insulator in Eq. (92), evaluated on a finite-size lattice. Darker color
indicates larger magnitude of the wave functions. The parameters
are chosen as (a) tx,1 = 0.7, ty,1 = 0.6; (b) tx,1 = 1.2, ty,1 = 1.5;
(c) tx,1 = 1.2, ty,1 = 0.7; and (d) tx,1 = 0.7, ty,1 = 1.5. We choose
tx,2 = ty,2 = 1 in all cases.

The matrix T decomposes into two independent 2 × 2 blocks,
which we can treat separately. Both blocks have the same
eigenvalues λ (with |λ| > 1) and 1/λ∗. We find that λ fulfills
the equation

λ2 + λ
t2
x,1 + t2

x,2 + t2
y,1 + t2

y,2 + 2tx,1tx,2 cos k

ty,1ty,2
+ 1 = 0.

(98)

Evaluating the corresponding eigenvectors, we can then
compute the fixed-point boundary Green function based on
Eq. (41). This yields

G(0,k) = 1

ty,2(ty,2 + λty,1)

×
(

0 tx,1 + tx,2e
−ik

tx,1 + tx,2e
ik 0

)
, (99)

which is invertible and purely real, reflecting the fact that this
describes the gapped edge of a gapped bulk.

We can now define an effective boundary Hamiltonian

Heff = −[G(0,k)]−1

= fk

(
0 tx,1 + tx,2e

−ik

tx,1 + tx,2e
ik 0

)
(100)

from the fixed-point boundary Green function. Here, the
prefactor

f (k) = ty,2(ty,2 + λty,1)

t2
x,1 + t2

x,2 + 2tx,1tx,2 cos k
(101)

has a fixed sign as a function of k. It is our central observation
that up to the prefactor fk , this is just the Hamiltonian
of the SSH model (6). Thus the boundary Hamiltonian is
topologically equivalent to the bulk Hamiltonian of the SSH
model, with t1 and t2 replaced by tx,1 and tx,2.

A similar analysis can be performed for the edge parallel to
the y direction. In view of the fact that the π flux can be equally
included via the hopping amplitudes in the x direction, the
calculation is entirely equivalent and just results in exchanging
the subscripts x and y. Thus the edge along the y direction can
also be characterized by a Z2 invariant. Altogether, model is
thus characterized by a Z2 × Z2 invariant, which encodes the
polarizations of the edges in the two directions [19].

The various cases can be illustrated by plotting the wave
function (modulus squared) of the excitation which is closest
to zero energy, see Fig. 3. When the boundary Hamiltonians
for both the x and the y edges are in the topological phase,
the model exhibits corner states [panel (a)]. The excitation
corresponds to a pure bulk state when both edge Hamiltonians
are in the nontopological phase [panel (b)]. When only one
of the two boundary Hamiltonians is in the topological phase,
the excitations are localized at the boundary in the topological
direction, but delocalized in the other one [panels (c) and (d)].

VI. CONCLUSION

The boundary Green function is a natural quantity to charac-
terize topological insulators and superconductors as it directly
encodes the boundary modes and hence the topological phase
diagram as well as the topological indices. In this paper, we
have developed a systematic approach to compute boundary
Green functions of topological insulators and superconductors
by relying on a recursive approach. We show for several
familiar models that our approach can be applied in a rather
straight-forward manner.

Though simpler, our recursive approach has some similar-
ities with a real-space renormalization group approach. For
the noninteracting fermion lattice problems discussed in this
paper, we find that the recursion relation can be solved ex-
plicitly in terms of the transfer matrix which greatly facilitates
analytical calculations. When attaching leads to the sample,
we can relate the boundary Green function to the reflection
matrix. In view of earlier work on deriving the periodic table
of topological phases of free fermions from the reflection
matrix [9], this provides us with explicit expressions for the
topological indices in terms of the boundary Green functions.

As an interesting application, we show that for insulators
with trivial bulk topology, the boundary Green function defines
a boundary Hamiltonian in a natural manner. Remarkably,
even if the bulk is nontopological, this boundary Hamiltonian
can still be topologically nontrivial which, say in 2D, is
reflected in gapless corner states. We show this explicitly for
a model that was recently proposed. This not only provides
an intuitive approach to these recently introduced topological
systems, but also has some potential to serve as a starting
point for a more systematic investigation of these higher-order
topological insulators.

While we restricted ourselves to clean and noninteracting
models, the recursive approach should be extendable to include
disorder and possibly interactions. For instance, in the presence
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of disorder, the recursion for the boundary Green function
remains valid. While for a fixed disorder configuration,
the boundary Green function would no longer approach a
fixed-point Green function in the thermodynamic limit, the
distribution of boundary Green functions over the disorder
ensemble should still have such a fixed point.
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APPENDIX A: BOUNDARY GREEN FUNCTION
AND REFLECTION MATRIX

In this appendix, we present an alternative derivation of the
relation (17) between reflection matrix and boundary Green
function. We start by noting that if we multiply ψ

†
n from the

left in Eq. (19), we find that Imψ
†
nV

†
n ψn+1 is independent of

n. Thus we can define the current operator

În = i�n = i

(
0 −Vn

V
†
n 0

)
, (A1)

so that the current I = �(n)†În�(n) becomes independent of
n. Here, we use the notation �(n) = [ψ(n + 1)T ,ψ(n)T ]T .

It is more convenient to have a current operator which is
independent of cell index n. To this end, we introduce the
transformation

�(n) → On�(n), În → (O†
n)−1ÎnO

−1
n = σy ⊗ I (A2)

with On = diag(1,Vn). Here, the Pauli matrices σx,y,z act in
the two-component space of �(n). In the transformed basis,
the matrix Mn defined in Eq. (20) becomes

Mn → OnMnO
−1
n−1 =

(
(V †

n )−1g−1
n −(V †

n )−1

Vn 0

)
, (A3)

so that the relation �(n + 1) = Mn�(n) remains
unchanged.

We can further diagonalize the current operator by intro-
ducing a unitary transformation

P = 1√
2

(
1 −i

1 i

)
, (A4)

such that

�(n) → P�(n), Mn → PMnP
†. (A5)

Then, the current operator becomes

Î = σz ⊗ I. (A6)

In this new basis, the upper and lower components (of length
M each) of �(n) describe the right- and left-moving states at
unit cell n.

If we attach normal metal leads from left and right to the
first and the last unit cell of the quasi-1D system of N cells,
we can define the scattering matrix

SN =
(

r ′
N tN

t ′N rN

)
, (A7)

where the 2 × 2 block structure reflects the two leads, rN ,r ′
N

are reflection matrices and tN ,t ′N are transmission matrices.
The scattering matrix relates the outgoing states on left and
right to the incoming states. After the basis transformations,
we have

�(n) =
(

ψ(n + 1) − iVnψ(n)
ψ(n + 1) + iVnψ(n)

)
. (A8)

Here the upper and lower components are outgoing (incoming)
and incoming (outgoing) states on the right (left).

In the new basis, the transfer matrix can be written as [29]

MN =
(

t ′N − rN t−1
N r ′

N rN t−1
N

−t−1
N r ′

N t−1
N

)
. (A9)

If we add one unit cell to the system, we have MN+1 =
MN+1MN , where MN in the new basis becomes

MN = 1

2

(
(V †

N )−1g−1
N − iVN − i(V †

N )−1 (V †
N )−1g−1

N − iVN + i(V †
N )−1

(V †
N )−1g−1

N + iVN − i(V †
N )−1 (V †

N )−1g−1
N + iVN + i(V †

N )−1

)
(A10)

by straightforward algebra. We then find the recurrence relations

rN+1t
−1
N+1 = 1

2

[
(V †

N+1)−1g−1
N+1 − iVN+1

]
(rN + I)t−1

N − i

2
(V †

N+1)−1(rN − I)t−1
N , (A11)

t−1
N+1 = 1

2

[
(V †

N+1)−1g−1
N+1 + iVN+1

]
(rN + I)t−1

N − i

2
(V †

N+1)−1(rN − I)t−1
N . (A12)

for the reflection and transmission matrices. By adding and
subtracting these two equations, we find

(rN+1 + I)t−1
N+1 = (V †

N+1)−1g−1
N+1(rN + I)t−1

N

− i(V †
N+1)−1(rN − I)t−1

N , (A13)

(rN+1 − I)t−1
N+1 = −iVN+1(rN + I)t−1

N . (A14)

From the last equation, we have

t−1
N = i(rN + I)−1V −1

N+1(rN+1 − I)t−1
N+1. (A15)

Inserting this expression back into the previous one, we find

(rN+1 + I)t−1
N+1 = i(V †

N+1)−1
[
g−1

N+1(rN + I) − i(rN − I)
]

× (rN +I)−1V −1
N+1(rN+1−I)t−1

N+1. (A16)
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Multiplying tN+1 from the right, we obtain

(rN+1 + I)(rN+1 − I)−1

= i(V †
N+1)−1

[
g−1

N+1 − i(rN − I)(rN + I)−1
]
V −1

N+1. (A17)

Defining

RN = (rN − I)(rN + I)−1, (A18)

we have

iRN+1 = VN+1
[
g−1

N+1 − iRN

]−1
V

†
N+1. (A19)

Comparing with Eq. (4), we find that the boundary Green
function can be written as

GN = V −1
N iRN (V †

N )−1. (A20)

Solving for rN , we recover the relation (17) between the
reflection matrix rN and the boundary Green function GN .

APPENDIX B: TOPOLOGICAL INVARIANTS

Single-particle Hamiltonians can be classified based on
nonspatial and nonunitary symmetries, i.e., the time-reversal,
particle-hole, and chiral symmetries. This defines the ten
Altland-Zirnbauer symmetry classes [30]. Reference [9] dis-
cussed the topological classification of the ten symmetry
classes in terms of the reflection matrix at the Fermi energy.
In this section, we adapt this discussion to the language of the
boundary Green functions and provide explicit expressions for
the topological indices.

1. Bott periodicity

a. Symmetries

Time-reversal symmetry requires the existence of an an-
tiunitary operator T̂ = UT K̂ with a unitary matrix UT and
complex conjugation operator K̂, such that

T̂ O(k⊥) = O(−k⊥)T̂ , O = hn,Vn ∀n. (B1)

Correspondingly, the boundary Green function obeys the
relation

T̂ Gn(k⊥,ω) = Gn(−k⊥,ω∗)T̂ , (B2)

which can be proven iteratively using the Dyson equation [see
Eq. (4)]. If we apply the time-reversal operator twice, we obtain

[U∗
TUT ,hn] = [U∗

TUT ,Vn] = [U∗
TUT ,V †

n ] = 0, ∀n. (B3)

By Schur’s lemma, we conclude that U∗
TUT = exp(iα)I is

a multiple of the identity matrix. Moreover, because of the
unitarity of UT , we find exp(2iα) = ±1. Thus there are two
types of time-reversal symmetries,

U∗
TUT = ±I (B4)

or T 2 = ±1.
Particle-hole symmetry requires the existence of an antiu-

nitary operator Ĉ = UCK̂ such that

ĈO(k⊥) = −O(−k⊥)Ĉ, O = hn,Vn ∀n. (B5)

Here, UC is a unitary matrix. The constraint of particle-hole
symmetry on the boundary Green function is

ĈGn(k⊥,ω) = −Gn(−k⊥, − ω∗)Ĉ. (B6)

TABLE I. Periodic table of topological insulators and supercon-
ductors in d = 0, . . . ,7 dimensions. The first column denotes the ten
symmetry classes of fermionic Hamiltonians, characterized by the
absence (0) or presence (± or 1) of time-reversal (T̂ ), particle-hole
(Ĉ), and chiral symmetries (Ŝ). Time-reversal and particle-hole
symmetry exist in two types denoted by ±. Classes that support
only trivial phases are denoted by “−”, while classes with nontrivial
topological classifications are indicated by the type of topological
invariant (Z,2Z,Z2).

Class T̂ Ĉ Ŝ 0 1 2 3 4 5 6 7

A 0 0 0 Z – Z – Z – Z –
AIII 0 0 1 – Z – Z – Z – Z

AI + 0 0 Z – – – 2Z – Z2 Z2

BDI + + 1 Z2 Z – – – 2Z – Z2

D 0 + 0 Z2 Z2 Z – – – 2Z –
DIII – + 1 – Z2 Z2 Z – – – 2Z
AII – 0 0 2Z – Z2 Z2 Z – – –
CII – – 1 – 2Z – Z2 Z2 Z – –
C 0 – 0 – – 2Z – Z2 Z2 Z –
CI + – 1 – – – 2Z – Z2 Z2 Z

Similar to the case of time-reversal symmetry, we find that
there are two types of particle-hole symmetries given by

U∗
CUC = ±I. (B7)

or Ĉ2 = ±1.
Chiral symmetry requires the existence of a unitary operator

Ŝ = US represented by a unitary matrix US , such that

{Ŝ,hn} = {Ŝ,Vn} = {Ŝ,V †
n } = 0, ∀n. (B8)

Because of chiral symmetry, the boundary Green function
fulfills

USGn(k⊥,ω) = −Gn(k⊥, − ω)US. (B9)

Applying chiral symmetry twice, we find that U2
S = exp(iα)I.

Redefining US → US exp(−iα/2), we have

U2
S = I, (B10)

which impliesUS = U†
S . When both time-reversal and particle-

hole symmetry exist, the system also has chiral symmetry with
US = UTU∗

C . If either time-reversal or particle-hole symmetry
is absent, chiral symmetry is also absent. However, chiral
symmetry can exist when both time-reversal and particle-hole
symmetry are absent.

The absence or presence of time-reversal (T̂ ), particle-hole
(Ĉ), and chiral symmetries (Ŝ) of the various kinds according
to Eqs. (B4), (B7), and (B10) leads to the ten Altland-Zirnbauer
symmetry classes, as summarized in the first two columns of
Table I.

b. Dimensional reduction

In all symmetry classes with a chiral symmetry, the
reflection matrix (the subscript N is omitted for simplicity)
satisfies the constraint

USr(k⊥,ω) = r†(k⊥, − ω)US, (B11)
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which follows from Eqs. (17) and (B9). This implies that in
the limit ω → 0, the matrix USr is Hermitian where we use
the shorthand r = limω→0 r(ω). This enables one to define an
effective Hamiltonian in d − 1 dimensions as [9]

Hd−1 = USr = lim
ω→0

US

I − iV GV †

I + iV GV † . (B12)

This Hamiltonian is again gapped as it has eigenvalues ±1 and
has no chiral symmetry.

In the absence of chiral symmetry, the eigenvalues of the
reflection matrix r at the Fermi energy are in general complex.
One can then construct an effective Hamiltonian in d − 1
dimensions by doubling the degrees of freedom [9]:

Hd−1 =
(

0 r

r† 0

)

= lim
ω→0

(
0 I−iV GV †

I+iV GV †
I+iV GV †

I−iV GV † 0

)
. (B13)

Because of the identity

{Hd−1,σz ⊗ I} = 0, (B14)

the effective Hamiltonian acquires a chiral symmetry with
US = σz ⊗ I.

Classes A and AIII. Hamiltonians in classes A and AIII
are thus transformed into one another under this process of
dimensional reduction. This is referred to as complex Bott
periodicity (mod 2).

Now we take time-reversal and particle-hole symmetries
into account, in order to reproduce the real Bott periodicity for
the remaining eight classes of the ten-fold table.

Classes AI and AII. We first focus on classes AI and AII
with only time-reversal symmetry. Let us denote r(k⊥) =
limω→0 r(k⊥,ω). By Eqs. (B1) and (B2), time-reversal sym-
metry restricts the reflection matrix at the Fermi energy to obey

r†(k⊥)UT = UT r∗(−k⊥). (B15)

Taking the Hermitian conjugate and multiplying by UT from
both sides, we obtain

r(k⊥)UT = UT rT (−k⊥). (B16)

According to Eq. (B13), the effective Hamiltonian Hd−1 has
chiral symmetry. In addition, we can confirm using Eqs. (B15)
and (B16) that is also acquires time-reversal symmetry with
T̂ = (σx ⊗ UT )K̂ since

(σx ⊗ UT )Hd−1(−k⊥)∗ = Hd−1(k⊥)(σx ⊗ UT ), (B17)

and particle-hole symmetry with Ĉ = (iσy ⊗ UT )K̂ since

(iσy ⊗ UT )Hd−1(−k⊥)∗ = −Hd−1(k⊥)(iσy ⊗ UT ). (B18)

Notice that time-reversal and particle-hole symmetries com-
bine into the chiral symmetry as expected. The type of
time-reversal and particle-hole symmetry of the effective
Hamiltonian Hd−1 can be determined from

(σx ⊗ UT )∗(σx ⊗ UT ) = I2 ⊗ (U∗
TUT ), (B19)

(iσy ⊗ UT )∗(iσy ⊗ UT ) = −I2 ⊗ (U∗
TUT ). (B20)

Hence dimensional reduction transforms the classes AI and
AIII into CI and DIII, respectively.

Classes C and D. Next, consider classes C and D with only
particle-hole symmetry. Similar to the previous case, particle-
hole symmetry implies that the reflection matrix at the Fermi
energy obeys

r(k⊥)UC = UCr∗(−k⊥), (B21)

r†(k⊥)UC = UCrT (−k⊥). (B22)

The effective Hamiltonian Hd−1 according to Eq. (B13) has
chiral symmetry. In addition, we can establish using Eqs. (B21)
and (B22) that Hd−1 has time-reversal symmetry with T̂ =
(I2 ⊗ UT )K̂ since

(I2 ⊗ UC)Hd−1(−k⊥)∗ = Hd−1(k⊥)(I2 ⊗ UC) (B23)

and particle-hole symmetry with Ĉ = (σz ⊗ UT )K̂ since

(σz ⊗ UC)Hd−1(−k⊥)∗ = −Hd−1(k⊥)(σz ⊗ UC). (B24)

Time-reversal and particle-hole symmetries combine as

(I2 ⊗ UC)(σz ⊗ UC)∗ = ±σz ⊗ I, (B25)

and hence produce the chiral symmetry as expected.
The types of the new time-reversal and particle-hole

symmetry are determined from

(I2 ⊗ UC)(I2 ⊗ UC)∗ = I2 ⊗ (UCU∗
C), (B26)

(σz ⊗ UC)(Iz ⊗ UC)∗ = I2 ⊗ (UCU∗
C). (B27)

Hence classes C and D transform into CII and BDI, respec-
tively, under the procedure of dimensional reduction.

Classes CI, CII, DIII, and BDI. Finally, we focus on
the symmetry classes where time-reversal, particle-hole, and
chiral symmetries are all present. In this situation, we have
US = UTU∗

C . Then, U2
S = 1 implies U∗

TUCU∗
S = 1. This can be

used to show that

USUC = UCU∗
S (U∗

CUC)(U∗
TUT ). (B28)

Notice that U∗
CUC = ±1 and U∗

TUT = ±1 are just numbers.
The effective Hamiltonian Hd−1, in this case defined by

Eq. (B12), has no chiral symmetry and can thus have either
time-reversal or particle-hole symmetry, but not both. Using
Eq. (B28), we find that Hd−1 has the property

Hd−1(k⊥)UC = (U∗
CUC)(U∗

TUT )UCHd−1(−k⊥)∗. (B29)

Thus UCK̂ defines a time-reversal symmetry or particle-hole
symmetry for Hd−1, depending on whether the quantity
(U∗

CUC)(U∗
TUT ) takes on the value +1 or −1, respectively.

Whether this symmetry squares to +1 or −1 is determined by
U∗

CUC . This implies that under the procedure of dimensional
reduction, classes CI, CII, DIII, and BDI transform into C, AII,
D, and AI, respectively.

Using this procedure of dimensional reduction, a d-
dimensional Hamiltonian in one symmetry class is related to a
(d − 1)-dimensional Hamiltonian Hd−1 in another symmetry
class. Yet, both Hamiltonians have the same topological invari-
ants [9]. This reproduces the Bott periodicity of the topological
classification of symmetry classes [4–6]. In particular, classes
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A and AIII are transformed into one another, producing the
complex Bott periodicity (mod 2). The remaining eight classes
with antiunitary symmetries are shifted by one in Table I,
giving rise to the real Bott periodicity (mod 8). This is
summarized in Table I.

2. Topological invariants

From 1D Hamiltonians, dimensional reduction produces
0D Hamiltonians. For classes without symmetry between
positive and negative eigenenergies (classes A, AI, and AII),
the topological invariant in 0D is given by the imbalance be-
tween positive and negative eigenenergies (measured relative
to the Fermi energy). This corresponds to a Z index, except
in class AII, where this number is always even because of
Kramers degeneracy (2Z index). Of the remaining classes with
symmetry between positive and negative-energy spectra, D and
BDI are special as there is no level repulsion between the levels
of a pair with positive and negative energies [30,31]. These
classes have a Z2 topological invariant, which is associated
with fermion parity and can be expressed as the sign of a
Pfaffian,

Q = sgn[Pf(iH0)], (B30)

where the Hamiltonian H0 is the zero-dimensional Hamil-
tonian, which is antisymmetric in an appropriate basis. The
remaining five symmetry classes are always topologically
trivial.

a. 1D systems

The dimensional reduction implies that in one dimension,
there are topological phases in symmetry classes AIII, BDI,
CII, DIII, and D. The topological invariants in 0D immediately
provide explicit expressions for boundary topological invari-
ants in 1D.

Dimensional reduction connects the classes AIII, BDI, and
CII in 1D to classes with Z or 2Z indices in 0D. Using
Eq. (B12), the 1D classes are therefore characterized by the
boundary topological invariant

Q = ν

(
lim
ω→0

US

I − iV GV †

I + iV GV †

)
− M

2
, (B31)

where ν(A) denotes the number of negative eigenvalues of
the Hermitian matrix A. The constant M/2 ensures that the
trivial phase has topological invariant Q = 0. This invariant
indeed counts the imbalance between positive and negative
eigenenergies of Hd−1.

By the bulk-boundary correspondence, these topological
invariants can also be computed from the bulk 1D Hamiltonian
H (k). Due to the presence of chiral symmetry, the bulk
Hamiltonian can be written as

H (k) =
(

0 h(k)
h†(k) 0

)
, (B32)

and the corresponding bulk topological invariant is given by
[32,33]

Q = 1

2πi

∫ 2π

0
dk

d

dk
ln det h(k), (B33)

which is a winding number.

In class DIII, Hd−1 has particle-hole symmetry realized
via a unitary matrix UC with U∗

CUC = 1. This implies that
UC = UT

C , so that it is possible to write UC = VCVT
C with a

unitary matrix VC . By the unitary transformation

Hd−1 → V†
CHd−1VC,

Hd−1 becomes antisymmetric and purely imaginary. Accord-
ing to Eq. (B30), the boundary topological invariant for class
DIII can thus be expressed as

Q = Pf(iHd−1) = Pf

(
lim
ω→0

iV†
CUS

I − iV GV †

I + iV GV † VC

)
.

(B34)

Again, this invariant can also be computed from the bulk
Hamiltonian H (k) as [34]

Q = Pf(UT h(π ))

Pf(UT h(0))

√
det h(0)√
det h(π )

, (B35)

where h(k) is defined as in Eq. (B32).
Class D also allows us to transform Hd−1 as

Hd−1 →
(
VC 0
0 iVC

)†
Hd−1

(
VC 0
0 iVC

)

=
(

0 iV†
CrVC

−iV†
Cr†VC 0

)
, (B36)

where V†
CrVC is purely real. Thus the boundary topological

invariant takes the form

Q = Pf(iHd−1) = det

(
lim
ω→0

I − iV GV †

I + iV GV †

)
(B37)

according to Eq. (B30). The corresponding bulk topological
invariant is [18]

Q = sgn

(
PfH (0)

PfH (π )

)
. (B38)

b. 2D systems

By the procedure of dimensional reduction, the boundary
invariants of 2D topological phases correspond to bulk
invariants of 1D Hamiltonians. Using the 1D bulk invariant
for classes AIII, BDI, and CII in Eq. (B33), we obtain the
boundary topological invariants for 2D systems in classes A,
C, and D expressed in terms of the boundary Green function,

Q = 1

2πi

∫ 2π

0
dk

d

dk
Tr ln

(
lim
ω→0

I − iV GV †

I + iV GV †

)
. (B39)

These boundary topological invariants can again alternatively
be computed from a bulk topological index expressed in terms
of the bulk Hamiltonian. This bulk topological index takes the
form of a Chern number [10],

Q = 1

2π

∫
dkxdkyFkx,ky

, (B40)

where the Berry curvature is defined as

Fkx,ky
=

∑
α∈occ.

i∂kx
〈uα(k)|∂ky

|uα(k)〉 − (kx ↔ ky). (B41)
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Here, |uα(k)〉 denotes the Bloch wave function of the α band.
Note that in computing the Berry curvature, one sums over
occupied bands only.

For 2D system in class DIII, the boundary topological
invariant follows from the 1D bulk invariant for class D in
Eq. (B37). This yields

Q = sgn

⎛
⎝ lim

ω→0

Pf
(
V†

CUS
I−iV G(0)V †

I+iV G(0)V † VC

)
Pf

(
V†

CUS
I−iV G(π)V †

I+iV G(π)V † VC

)
⎞
⎠. (B42)

The corresponding bulk topological invariant of the bulk
Hamiltonian H (k1,k2) can be written as a product of topo-
logical invariants of 1D Hamiltonians [34]:

Q(H (k1,k2)) = Q(H (k1,0))Q(H (k1,π )), (B43)

where Q(H (k1,k2)) with k2 = 0,π is given in Eq. (B35).
Finally, the topological invariant of 2D system in class AII

is given by

Q = lim
ω→0

Pf
(
UT

I−iV G(π)V †

I+iV G(π)V †

)
Pf

(
UT

I−iV G(0)V †

I+iV G(0)V †

)
√

det I−iV G(0)V †

I+iV G(0)V †√
det I−iV G(π)V †

I+iV G(π)V †

, (B44)

according to the 1D bulk topological invariant for class DIII
in Eq. (B35). This topological invariant can be computed from
the bulk via [35]

Q =
∏

K

Pf(w(K))√
det (w(K))

, (B45)

where the matrix element of w is defined as

wmn(k) = 〈um(−k)|T̂ |un(k)〉, (B46)

with occupied Bloch bands |un(k)〉.

c. 3D systems

The 3D topological invariant in class AII, which
transforms into DIII under dimensional reduction, takes

the form

Q = Q(0)Q(π ) (B47)

with

Q(k) = lim
ω→0

Pf
(
UT

I−iV G(π,k)V †

I+iV G(π,k)V †

)
Pf

(
UT

I−iV G(0,k)V †

I+iV G(0,k)V †

)
√

det I−iV G(0,k)V †

I+iV G(0,k)V †√
det I−iV G(π,k)V †

I+iV G(π,k)V †

. (B48)

The topological invariants in classes AIII, CI, DIII, and CII
can be written in terms of 2D bulk topological invariants. For
simplicity, we do not write them down explicitly here.

APPENDIX C: CONDITION FOR A VANISHING BULK GAP

In this appendix, we show that when the bulk band gap
vanishes, the matrix T defined in Eq. (42) has at least
one eigenvalue with unit modulus and thus one vanishing
Lyapunov exponent. This implies that the topological phase
transition with its associated gap closing is signalled by at
least one vanishing Lyapunov exponent.

Consider a homogeneous, quasi-1D system with periodic
boundary conditions. According to the Bloch theorem, we
can write the wave function as as ψ(n) = eiknu, where u is
an M-component column vector. Using Eq. (19), we find a
zero-energy eigenstate when

[g−1(ω = 0) − V e−ik − V †eik]u = 0. (C1)

This implies

det[g−1(ω = 0) − V e−ik − V †eik] = 0. (C2)

Thus λ = e−ik is an eigenvalue of T (ω = 0) defined in
Eq. (42), which implies that the corresponding Lyapunov
exponent vanishes.

APPENDIX D: DERIVATION OF EQ. (41)

From Eqs. (38) and (40), we have

MaN

(
U11 U12

U21 U22

)
=

(
U11 U12

U21 U22

)(

N 0
0 (
−N )∗

)
, (D1)

which gives

MaN,11 = U11

N (U−1)11 + U12(
∗)−N (U−1)21, (D2)

MaN,21 = U21

N (U−1)11 + U22(
∗)−N (U−1)21. (D3)

Hence

MaN,21M−1
aN,11 = [U21


N (U−1)11 + U22(
∗)−N (U−1)21][U11

N (U−1)11 + U12(
∗)−N (U−1)21]−1

= [U21

N (U−1)11 + O(
−N )]

[
(U−1)−1

11 
−NU−1
11 + O(
−2N )

]
= U21U

−1
11 + O((
−2N ). (D4)

Taking the thermodynamic limit N → ∞, we have 
−2N → 0 and thus arrive at Eq. (41).
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