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We successfully synthesize single crystals of the verdazyl radical α-2,3,5-Cl3-V. Ab initio molecular orbital
calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α = J2/J1 � 0.56), form
an S = 1/2 distorted square lattice. We explain the magnetic properties based on the S = 1/2 square lattice
Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice
distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe
anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron
spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and
the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a
mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at
approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides
supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the
lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect
the intrinsic behavior of the S = 1/2 square lattice Heisenberg antiferromagnet.
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I. INTRODUCTION

One of the key focus areas of condensed matter physics
is determination of the effect of quantum fluctuations on
macroscopic quantum phenomena. Since the discovery of
high-temperature superconductors in layered cuprates, con-
siderable attention has been devoted to their parent spin
system, i.e., the S = 1/2 two-dimensional (2D) square lattice
Heisenberg antiferromagnet (SLHAF). Extensive studies on
the S = 1/2 SLHAF have established that the ground state
exhibits a long-range Néel order at zero temperature [1].
The quantum fluctuations, however, reduce the magnetic
moment per site by approximately 40% with respect to the
classical value, and cause renormalization of the spin wave
energy [1–3]. In the high-field region for the S = 1/2 SLHAF,
it has been predicted that hybridization of the single-magnon
branch with the two-magnon continuum induces instability
of the single-magnon state [4–6]. Accordingly, the excitation
spectra exhibit significant deviations from the linear spin-wave
theory and form a rotonlike structure, the softening of which
suggests a phase transition to a modulated ground state [7].

Although the long-range order (LRO) is destroyed by the
quantum fluctuations in the Heisenberg case at any finite tem-
perature [8], reduction of the spin dimensionality suppresses
the quantum fluctuations and induces phase transitions at finite
temperatures. Further, the presence of easy-axis anisotropy
renders the spin system Ising-type and yields an Ising-like
phase transition to the Néel ordered state at a certain, critical
temperature [9]. For easy-plane anisotropy, the spin system
can be described as an XY-type antiferromagnet and exhibits a
Berezinskii-Kosterlitz-Thouless (BKT) transition at a critical
temperature TBKT [10,11]. Below TBKT, the spin vortices form
bound pairs and the spin-spin correlation function decays
algebraically. The application of a magnetic field to the 2D

Heisenberg antiferromagnet also induces the BKT transition,
where spin fluctuations along the field direction are sup-
pressed, yielding an effective easy-plane anisotropy [12,13].
However, as real materials inevitably possess finite interplane
interactions, observation of the BKT transition is difficult.
A second-order phase transition to a three-dimensional (3D)
LRO occurs at a higher temperature than TBKT in practice.
Nonmonotonic field dependence of the phase transition tem-
perature can evidence the correlation associated with the BKT
transition caused by the field-enhanced easy-plane anisotropy
in quasi-2D systems [13].

Many model compounds for the S = 1/2 SLHAF have
been reported to date, the majority of which are based on
a copper oxide, such as La2CuO4. Although experimental
studies have revealed the fundamental properties on such
compounds, the large exchange interactions of the copper
oxides have rendered complete examination of the field
dependence of the magnetic behavior difficult. Accordingly,
synthesis of materials with lower exchange-interaction energy
scales has been implemented, so as to realize alternative model
compounds. The molecular-based complexes (5CAP)2CuX4

and (5MAP)2CuX4, where X = Cl or Br, exhibit 2D layers
composed of CuX2−

4 anions [14–16]. Their relatively weak ex-
change interactions enable observation of the magnetic proper-
ties up to the saturation fields. Recently, materials based on 2D
arrays of magnetic Cu2+ ions linked by organic ligands have
been intensively studied [17–20]. In these studies, high two-
dimensionality was constructed through direct overlapping of
the orbitals between Cu and pyrazine, and some of the resultant
materials exhibited the expected nonmonotonic behavior of the
phase transition temperature [17–19]. Furthermore, it has been
reported that the two-dimensionality can be tuned through the
substitution of ligand between layers [20]. These experimental
studies on the Cu-based complexes have verified the quantum
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fluctuation effects on the S = 1/2 SLHAF and stimulated
investigation of the quantum nature of square-based lattices.

In this paper, we report a new model compound of
the S = 1/2 square-based lattice. We successfully synthe-
size single crystals of the verdazyl radical α-2,3,5-Cl3-
V [= 3-(2,3,5-trichlorophenyl)-1,5-diphenylverdazyl]. Then,
ab initio molecular orbital (MO) calculations indicate that
the two dominant antiferromagnetic (AF) interactions form
an S = 1/2 distorted square lattice. We explain the magnetic
properties based on the S = 1/2 SLHAF using the quantum
Monte Carlo (QMC) method and examine the effects of
the lattice distortion. In the low-temperature regions, we
observe anisotropic magnetic behavior accompanied by a
phase transition to an ordered state. In addition, we explain the
frequency dependence of the electron spin resonance (ESR)
fields in the ordered phase using a mean-field approxima-
tion with out-of-plane easy-axis anisotropy. The anisotropic
energy derived from the dipole-dipole interactions provides
supporting information regarding the presence of the easy-axis
anisotropy. Through analysis of the experimental results, we
evaluate the exchange and anisotropy constants and confirm
that α-2,3,5-Cl3-V is a new model compound with an S = 1/2
square-based lattice.

II. EXPERIMENTAL

Synthesis of 2,3,5-Cl3-V, the molecular structure of which
is shown in Fig. 1(a), was performed using a procedure
similar to that used to prepare the typical verdazyl radical
1,3,5-triphenylverdazy [21]. Recrystallization in acetonitrile
yielded deep-green crystals of α (block) and β (needle)

phases, which are defined based on the unit cell volume
per number of molecules (V/Z) at room temperature (RT).
X-ray intensity data were collected using a Rigaku AFC-7R
mercury CCD diffractometer and a Rigaku AFC-8R mercury
CCD RA-micro7 diffractometer at RT and 25 K, respectively,
with graphite-monochromated Mo Kα radiation and a Japan
Thermal Engineering cryogenic He gas flow (XR-HR10K).
The structure was determined via a direct method using the
SIR2004 [22] and was refined using the SHELXL97 crystal struc-
ture refinement program [23]. The structural refinement was
carried out using anisotropic and isotropic thermal parameters
for the nonhydrogen and the hydrogen atoms, respectively.
All the hydrogen atoms were placed at the calculated ideal
positions.

The magnetic susceptibility and magnetization curves were
measured using a commercial SQUID magnetometer (MPMS-
XL, Quantum Design). High-field magnetization measurement
in pulsed magnetic fields of up to approximately 50 T was
conducted using a nondestructive pulse magnet at the Center
for Advanced High Magnetic Field Science (AHMF), Osaka
University. The experimental results were corrected for the
diamagnetic contribution (−3.20×10−4 emu mol−1), which
was determined based on the QMC analysis and close to the
value calculated using the Pascal method. The specific heat was
measured with a commercial calorimeter (PPMS, Quantum
Design) using a thermal relaxation method. The ESR mea-
surements were performed utilizing a vector network analyzer
(ABmm) and a superconducting magnet (Oxford Instruments)
at AHMF, Osaka University. At approximately 19.6 GHz,
we used a laboratory-built cylindrical high-sensitivity cavity.
X-band (9.47 GHz) ESR measurements were conducted using
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FIG. 1. (a) Molecular structure of 2,3,5-Cl3-V. Molecular pairs associated with the magnetic interactions (b) J1, (c) J2, and (d) J3. The
broken lines indicate C-N and C-C short contacts. Crystal structure of α-2,3,5-Cl3-V viewed (e) almost perpendicular and (f) parallel to the
a axis. Hydrogen atoms are omitted for clarity. (g) Square lattice in the ab plane formed by J1 and J2 and (h) 3D lattice composed of the 2D
planes partially connected by interplane interaction J3.
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a Bruker EMX Plus spectrometer at the Institute for Molecular
Science. All experiments were performed using single crystals
with typical dimensions of 2.0×0.5×0.5 mm3.

Ab initio MO calculations were performed using the
UB3LYP method as broken-symmetry (BS) hybrid density
functional theory calculations. All calculations were per-
formed using the GAUSSIAN09 software package and 6-31G
basis sets. The convergence criterion was set to 10−8 hartree.
To estimate the intermolecular exchange interaction of the
molecular pairs within 4.0 Å, we employed a conventional
evaluation scheme [24].

The QMC code utilized in this study was based on the
directed loop algorithm in the stochastic series expansion rep-
resentation [25]. The calculation was performed on finite-size
lattices with a linear size up to L = 32, which involve under
a periodic boundary condition in total N = 4L2 spins, and it
is confirmed that there is no size dependence. All calculations
were conducted using the Algorithms and Libraries for Physics
Simulations (ALPS) application [26–28].

III. RESULTS

A. Crystal structure and magnetic model

The crystallographic data for the synthesized α-2,3,5-Cl3-
V are summarized in Table I [29], and the molecular structure
is shown in Fig. 1(a). The verdazyl ring (which includes
four N atoms), the upper two phenyl rings, and the bottom
2,3,5-trichlorophenyl ring are labeled R1, R2, R3, and R4,
respectively. The molecule is no longer planar owing to
electrostatic repulsion between the Cl and N atoms, and the
dihedral angles of R1-R2, R1-R3, R1-R4 are approximately 36◦,
22◦, and 82◦, respectively. The results of the MO calculations
indicate that approximately 66% of the total spin density is

TABLE I. Crystallographic data for α-2,3,5-Cl3-V.

Formula C20H14Cl3N4

Crystal system Monoclinic

Space group P 21/n

Temperature (K) RT 25(2)

Wavelength (Å) 0.7107

a (Å) 9.009(3) 8.925(3)

b (Å) 10.648(3) 10.567(4)

c (Å) 19.838(6) 19.428(7)

β (degrees) 101.821(4) 101.624(5)

V (Å
3
) 1862.7(10) 1794.7(11)

Z 4

Dcalc (g cm−3) 1.486 1.542

Total reflections 3248 2909

Reflection used 2840 2716

Parameters refined 244

R [I > 2σ (I )] 0.0373 0.0305

Rw [I > 2σ (I )] 0.0946 0.0854

Goodness of fit 1.045 0.951

CCDC 1530390 1530389

present on R1. Further, while R2 and R3 each account for
approximately 15% and 17% of the relatively large total
spin density, R4 accounts for less than 2% of the total spin
density. The extremely small value of the spin density on R4

originates from the discontinuity of the π orbitals, owing to
the large dihedral angle of 82◦. Therefore the intermolecular
interactions are caused by the short contacts of N or C related
to the R1-R3 rings. Note that, because this study focuses on
the low-temperature magnetic properties, the crystallographic
data obtained at 25 K are used hereafter.

We performed ab initio MO calculations to quantitatively
evaluate the dominant intermolecular magnetic interactions
on all molecular pairs within 4.0 Å. Consequently, we found
three types of AF interactions, i.e., J1, J2, and J3. These
interactions were evaluated to be J1/kB = 14.8 K, J2/kB =
8.3 K (α = J2/J1 � 0.56), and J3/kB = 3.5 K (β = J3/J1 �
0.24), where kB is the Boltzmann constant, which are defined
in the following Eq. (1). The molecular pairs related to J1

and J2 have C-N and C-C short contacts of 3.39 and 3.33 Å
[Figs. 1(b) and 1(c)], respectively, both of which are related
by a two-fold screw axis parallel to the b axis. The molecular
pair related to J3 has a C-C short contact of 3.71 Å [Fig. 1(d)],
which is doubled by an inversion symmetry. The two dominant
AF interactions, i.e., J1 and J2, form an S = 1/2 square lattice
in the ab plane, as shown in Fig. 1(e), and those 2D planes
are partially connected by the weak AF interaction J3, as
shown in Fig. 1(f). The corresponding 2D square lattice and
3D stacking of the planes are shown in Figs. 1(g) and 1(h),
respectively. As the interplane coordination number is smaller
than that for simple cubic stacking, two-dimensionality should
be enhanced in the present lattice. The lattice distortion in
the 2D plane, which is characterized by the value of α, can
be described as chain-type and induces an intermediate state
between the one-dimensional (1D) chain and the 2D square
lattice. Very recently, theoretical and experimental studies of
such lattice system with α = 0.35 is reported in the Cu-based
compound Cu(en)(H2O)2SO4 (CUEN) [30]. We discuss our
results comparing with those of the reported compound.

B. Magnetic and thermodynamic properties

Figure 2 shows the temperature dependence of the magnetic
susceptibility (χ = M/H ) for B⊥ab and B‖ab at 0.2 T.
We observed a broad peak at approximately 12 K for both
field directions, which indicates an AF short-range order
(SRO) in the 2D square lattice. Below 6.4 K, a significant
difference between B⊥ab and B‖ab appears, which indicates
that a phase transition to a 3D LRO occurs at TN = 6.4 K,
with the aid of the interplane coupling J3. For T > TN ,
there is no significant difference between the field directions
owing to the isotropic nature of organic radical systems. This
finding is also supported by isotropic g-values obtained via
ESR measurements, which are described below. The Weiss
temperature is estimated to be θW = −14(1) K above 100 K.
Because the anisotropic magnetic behavior appears only below
TN , the energy scale of the anisotropy should be quite small.
A dipole field accompanied by the phase transition to the LRO
and/or a small spin-orbit coupling in organic systems [31] is
considered as a possible cause of the anisotropic behavior.
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FIG. 2. Temperature dependence of magnetic susceptibility (χ =
M/H ) of α-2,3,5-Cl3-V for B⊥ab and B‖ab at 0.2 T obtained
in field-cooling regime. The solid line with squares represents the
calculated result for the S = 1/2 SLHAF with α = J2/J1 = 0.56.

The experimental result for the specific heat Cp at zero-
field clearly exhibits a λ-type sharp peak at TN , which is
associated with the phase transition to the LRO, as shown
in Fig. 3(a). The lattice contribution in the low-temperature
region can be approximated as Cl = a1T

3 + a2T
5 + a3T

7.
The magnetic specific heat Cm is obtained by subtracting
Cl with the constants a1 = 0.0087, a2 = −2.0 × 10−5, and
a3 = 1.9 × 10−8, which are determined to fit the following
calculated result by using the QMC method, as shown in
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FIG. 3. Specific heat of α-2,3,5-Cl3-V. (a) Total specific heat Cp

and its magnetic contribution Cm at 0 T. (b) Expansion of Cm at 0 T.
The solid line with squares represents the calculated result for the
S = 1/2 SLHAF with α = J2/J1 = 0.56. (c) Magnetic entropy at
0 T. (d) Expansion near the phase transition temperature at various
magnetic fields for B⊥ab. For clarity, Cm for 3, 5, and 7 T have been
shifted up by 1.0, 2.0, 3.0 J mol−1 K, respectively.

Fig. 3(b). The evaluated lattice contribution is similar to those
for some copper complexes forming the 2D SLHAF [32], and
the value of a1, which corresponds to Debye temperature of
61 K, is quite close to those for other verdazyl radical com-
pounds [33–35]. The shape of the obtained Cm demonstrates
that the quasi-2D character of the present system yields a
separation of the 3D ordering peak from the rounded behavior
arising from the 2D SRO [17,36]. The magnetic entropy
Sm, which can be obtained through integration of Cm/T ,
demonstrates that approximately 1/3 of the total magnetic
entropy of 5.76 (Rln2) is associated with the phase transition
at TN, while the residual entropy is almost consumed above
TN, as shown in Fig. 3(c). This behavior also indicates that the
present system has a quasi-2D character, yielding a sufficient
development of the SRO in the 2D square plane above
TN. Furthermore, application of magnetic fields induces an
increase in TN, as shown in Fig. 3(d). Such field dependence
of TN is predicted for the quasi-2D Heisenberg AF system
as a consequence of the field-enhanced effective easy-plane
anisotropy [12,13]. This behavior has actually been observed
in some model compounds for the S = 1/2 SLHAF [17–19].
CUEN, which has the same lattice distortion as the present
compound, also exhibits a nonmonotonic development of
transition temperature [30]. Thus the field dependence of the
specific heat also evidences the quasi-2D character for the
present system. No significant difference in Cp was found for
the results obtained for B⊥ab and B‖ab.

Figure 4 and its inset show the magnetization curves in a
pulsed field at 1.4 K and in a static field at 1.8 K, respectively.
We observed a distinct spin-flop phase transition at Bc ≈
0.4 T for B⊥ab, whereas the magnetization curve for B‖ab

apparently exhibits a monotonic increase, as shown in the inset
of Fig. 4. Such behavior is consistent with the temperature
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dependence of χ below TN and indicates the presence of
weak easy-axis anisotropy perpendicular to the ab plane,
which stabilizes an out-of-plane spin structure. Above Bc,
the magnetization curve for B⊥ab approaches that for B‖ab,
and these curves eventually become almost identical. The
high-field magnetization curve exhibits a slightly nonlinear
increase originating from the 2D quantum fluctuations, as
shown in Fig. 4. Given the isotropic g value of ∼ 2.00, the
saturation value of 0.96 μB/f.u. indicates that the radical purity
is approximately 96%. This small amount of impurity originate
from unoxidized molecules and has no effect on the intrinsic
magnetic properties owing to its nonmagnetic nature [37,38].
We consider this purity in the following analysis.

C. Electron spin resonance

Figures 5(a) and 5(b) show the temperature dependence of
the ESR absorption spectra for B⊥ab and B‖ab, respectively.
Sharp resonance signals characteristic of organic radical sys-
tems are observed, and the resonance spectra vary dramatically
in the vicinity of TN for both field directions. The temperature
dependencies of both the resonance field and the absorption
linewidth are shown in Figs. 6(a) and 6(b), respectively. The
resonance fields at 60 K were converted into g values, yielding
g⊥=2.0037 (B⊥ab) and g‖=2.0039 (B‖ab); these values
are almost temperature-independent down to TN and confirm
the isotropic nature of the present system. Below TN, the
resonance fields rapidly shift in opposite directions, reflecting
the local-field anisotropy accompanied by the phase transition.
The absorption linewidth increases rapidly below TN for both
directions. Although the linewidth values for T >TN are too
small to facilitate detection of general 2D critical broadening
toward the LRO [39,40], the rapid increases in the vicinity of
TN are certainly related to this critical behavior. Assuming a
conventional second-order phase transition, the ESR linewidth
is expected to decrease rapidly with decreasing temperature
below the transition temperature, reflecting the development
of uniform internal fields, which yields a sharp peak in the
linewidth [18,41,42]. While the obtained result for B‖ab
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(b) linewidth (full width at half maximum) obtained from the ESR
data at 71.77 GHz for B⊥ab and at 71.11 GHz for B‖ab. The solid
lines are guides for the eye. The vertical broken line indicates the
phase transition temperature.

indeed exhibits a peak structure close to TN, the linewidth
values remain large even at sufficiently low temperatures
(below TN) for both field directions, as shown in Fig. 6(b).
Additionally, a relatively large difference appears between the
results for B⊥ab and B‖ab below TN. The large ESR linewidth
indicates inhomogeneous internal fields, which suggests a
contribution of magnetic domains. The incidence of these
domains is strongly associated with the anisotropy energy in
the plane normal to the applied field direction. The significant
difference in the linewidth below TN for the two field directions
suggests that the in-plane anisotropy is significantly weaker
than the out-of-plane easy-axis anisotropy, both of which can
be derived from the dipole field as described in the following
calculations.

The frequency dependence of the ESR absorption spectra
in the ordered phase is presented in Figs. 7(a)–7(e). All the
resonance fields are plotted in the frequency-field diagram, as
shown in Fig. 8. The resonance signals at high frequencies in
Figs. 7(a) and 7(b) are almost proportional to the external
field. Conversely, those at low frequencies in Figs. 7(c)–
7(e) obviously deviate from the linear function of the field
and exhibit remarkable changes across the phase transition
temperature. At 19.56 GHz for B⊥ab [Fig. 7(c)], two sharp
signals appear, which are emphasized by arrows. We regard
these signals as intrinsic resonances associated with the same
resonance modes as those at other frequencies. Because the
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FIG. 7. Frequency dependence of ESR absorption spectra of α −
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indicate intrinsic sharp signals and anomalously broadened signals,
respectively. (e) ESR absorption spectra at 4.2 and 8.0 K at 9.47 GHz
(X band) for B⊥ab.

satellite peaks indicated by the crosses have anomalously
broadened shapes, they may have origins in inhomogeneous
internal fields caused by a coexistent state of two phases
across the first-order phase transition at Bc. Note that uncertain
ESR resonance signals in connection with a discontinuity of
the first-order phase transition are actually observed in some
AF compounds [42–44]. The resonance signals indicate a
zero-field gap of approximately 11 GHz, the energy scale of
which corresponds to that of Bc. Such behavior is reminiscent
of conventional AF resonance modes with easy-axis anisotropy
in a two-sublattice model [45,46].

IV. ANALYSIS AND DISCUSSION

A. Temperature and field dependence of magnetization

The MO calculation results indicate that the two dominant
AF interactions, J1 and J2, form S = 1/2 square lattices
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schematic views of the spin configurations.

partially connected by the weak AF J3, as shown in Figs. 1(g)
and 1(h). Despite the fact that the phase transition to the
3D LRO occurs, the experimental results of the magnetiza-
tions and specific heat reveal that the two-dimensionality is
enhanced in this spin model. Accordingly, we analyzed the
magnetic properties in terms of the S = 1/2 2D system. We
calculated the magnetic susceptibility and the magnetization
curve based on the S = 1/2 SLHAF using the QMC method.
The spin Hamiltonian is expressed as

H = J1

∑
〈ij〉

Si ·Sj + J2

∑
〈kl〉

Sk·Sl − gμBB
∑

i

Si , (1)

where S is the spin operator, g is the g factor, g = 2.00, and
μB is the Bohr magneton. The MO calculations incorporating
the crystallographic data at 25 K show that the exchange
interactions have the relation α = J2/J1 � 0.56. Assuming
this relation, good agreement was obtained between the
experimental and calculated results using the parameters
J1/kB = 16.5 K and J2/kB = 9.2 K (α = 0.56), as shown in
Figs. 2–4. The absolute values of the obtained parameters are
quite consistent with those evaluated from the MO calculation.
A deviation appears for χ below TN, which arises mainly
from the easy-axis anisotropy accompanied by the phase
transition, as shown in Fig. 2. For Cm, although a large
deviation accompanied by the 3D LRO appears near TN, the
rounded behavior at approximately 9 K is well reproduced by
the calculated result, as shown in Fig. 3(b). The experimental
magnetization curve also exhibits a slight deviation from the
calculated result in the vicinity of the saturation field, as shown
in Fig. 4. Since the small easy-axis anisotropy does not have a
large effect on the magnetization curves at sufficiently higher
fields than Bc, the observed deviation near the saturation
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FIG. 9. (a) Calculated magnetic susceptibilities, (b) magnetic
specific heats, and (c) magnetization curves at 0.5 K for the S = 1/2
SLHAF with various values of α = J2/J1. The inset shows the
expansion of the vicinity of the saturation fields.

field is expected to be a J3 contribution. The whole results
exhibit relatively large deviations from the experimental
data compared to those in CUEN with α = 0.35 [30]. The
deviations associated with the phase transition to the 3D LRO
should be enhanced in the present compound because the
interplane interaction is expected to be stronger than that for
CUEN as discussed below.

We examined the α dependence of the magnetic behavior.
Figures 9(a)–9(c) show the χ , Cm, and low-temperature

magnetization curves for representative values of α between
0 and 1, respectively. The lattice systems in the extreme
cases, i.e., for α = 0 and 1, correspond to a 1D chain and
a uniform 2D square lattice, respectively. It is confirmed that
the calculated results are consistent with those in Ref. [30]
with different values of α. The value of J1 was determined for
each α, so as to reproduce the experimentally observed broad
peak of χ associated with the SRO in the 2D plane. Hence
the following values were obtained: J1/kB = 20.7 K (α = 0),
20.1 K (α = 0.1), 18.6 K (α = 0.3), 17.0 K (α = 0.5), 15.4 K
(α = 0.7), and 13.2 K (α = 1). Although there is no distinct
α dependence of χ in the high-temperature region, clear
differences are apparent below the broad peak temperature,
as shown in Fig. 9(a). The value of χ tends to decrease
with increasing α, and the α dependence becomes almost
indistinguishable for 0.5 < α < 1.0. These results indicate
that the two-dimensionality is adequately enhanced to form
a ground state characteristic of 2D spin systems for α > 0.5.
Note that we cannot compare the low-temperature behavior of
χ with the experimental result, because the phase transition to
the 3D LRO occurs, along with the accompanying easy-axis
anisotropy at approximately 6.4 K. The Cm and magnetization
curves at 0.5 K, which were calculated using parameters
determined from the analysis of χ , exhibit clear α dependence
in their rounded peak and nonlinearity, respectively, as shown
in Figs. 9(b) and 9(c). With increasing α, the rounded peak
of Cm shows a higher value and shifts to lower temperature.
The nonlinear increase of the magnetization curves reflects
the strengths of the quantum fluctuations attributed to the low-
dimensionality of the lattice system. Further, this nonlinear
increase is actually enhanced as α approaches 0 (i.e., towards
the 1D AF chain). It is confirmed that the α dependence of both
Cm and magnetization curve become almost indistinguishable
for 0.5 < α < 1 as is the case with χ . These results suggest
that the small chain-like lattice distortion for 0.5 < α < 1 does
not affect the intrinsic properties of the S = 1/2 SLHAF. If we
assume small α, the experimental results deviates significantly
from the calculated ones. Therefore the present lattice system
is expected to have a distortion for 0.5 < α < 1, which
is consistent with the evaluation from the MO calculation
(α = 0.56).

Although a QMC calculation on the 3D lattice system
is beyond the scope of the present work, we can roughly
evaluate the interplane interaction from the TN and intraplane
interactions. The interplane interaction J ′ for an S = 1/2
square lattice with simple cubic stacking has a relation given
by TN = 0.732π (J/kB)/[2.43-ln(J ′/J )] [47], where J is a
uniform interaction of the square lattice. If we consider
J = (J1 + J2)/2, the mean field on the present distorted lattice
becomes identical to that on the uniform square lattice. Hence,
using J1/kB = 16.5 K, J2/kB = 9.2 K, and TN = 6.4 at zero
field, we obtain J ′/kB = 1.4 K. The interplane coordination
number is 1 in the present lattice [Fig. 1(g)], while the
cubic stacking has coordination number 2. Considering the
difference in the mean field in the 3D stackings, J3 corresponds
to 2J ′ = 2.8 K, which is almost consistent with the evaluation
obtained via the MO calculation. The evaluated interplane
interaction is stronger than that in CUEN, which causes
the difference in the two-dimensionality between the two
compounds. Accordingly, it is expected that some qualitative
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differences in the experimental behavior between the two
compounds originate from the interplane interactions rather
than the intraplane distortion α.

B. ESR resonance modes

In this section, we evaluate the magnetic anisotropy from
the frequency dependence of the ESR resonance signals. The
observed magnetizations indicate the existence of easy-axis
anisotropy, which stabilizes the out-of-plane spin structure and
induces a spin-flop phase transition, as shown in the schematic
picture presented in Fig. 8. The obtained resonance fields in
the frequency-field diagram (Fig. 8) are indeed reminiscent
of AF resonance modes with easy-axis anisotropy [45,46].
Accordingly, we analyze the experimental results in terms of a
mean-field approximation assuming a distorted SLHAF with
easy-axis anisotropy. Thus the spin Hamiltonian is expressed
as

H = J1

∑
〈ij〉

Si ·Sj + J2

∑
〈kl〉

Sk·Sl + Dsite

∑
i

(
Sz

i

)2

− gμB

∑
i

Si ·B, (2)

where Dsite is the anisotropy constant of easy-axis type (Dsite

<0) and the z axis is perpendicular to the ab plane. The on-site
anisotropy term given in Eq. (2) does not involve determination
of the ground state in genuine S = 1/2 quantum spin systems.
However, if such S = 1/2 systems exhibit a phase transition to
an ordered state, the conventional mean-field approximation
becomes effective and describes their ESR resonance modes
in the ordered phase [18,48–50]. There is no significant
difference in the mean-field approximation of the magnetic
behavior for two different types of anisotropy: the anisotropic
exchange interaction and the on-site anisotropy. For both types
of anisotropy, the out-of-plane spin structure is stabilized
at zero field, and a spin-flop phase transition occurs for
B⊥ab under the condition that anisotropy is much weaker
than exchange coupling. We adopt the on-site anisotropy
as the anisotropic term in the spin Hamiltonian to simplify
comparison of the anisotropy energy with that from the dipole
field, as described below. As the spin structure is described by
a two-sublattice model, the free energy F is expressed in the
following form, using the mean-field approximation:

F = (A + G)M1·M2 + K
(
Mz

1 + Mz
2

)2 − (M1 + M2)·B, (3)

where A, G, and K are given by

A = 2

N

2J1

(gμB)2
, G = 2

N

2J2

(gμB)2
, K = 2

N

Dsite

(gμB)2
, (4)

and M1 and M2 are the sublattice moments expressed as

M i = N

2
gμB Si . (5)

Here, N is the number of radicals, and Si is the spin on the ith
sublattice (i = 1 and 2). We derive the resonance conditions
by solving the equation of motion

∂ M i/∂t = γ [M i × Bi], (6)

where γ is the gyromagnetic ratio and Bi is the mean field
applied on the ith sublattice moment given by

Bi = −∂F/∂ M i . (7)

To solve the equation of motion, we use a method for the
analysis of ABX3-type antiferromagnets [51], the efficacy of
which has been confirmed for various types of antiferromag-
nets [52–54]. Assuming precession motion of the sublattice
moments around those equilibrium directions, we utilize the
following expressions, which represent the motion of the ith
sublattice moment:

M i = (�Mix́ exp(iωt),�Miý exp(iωt),|M i |), (8)

where �Mix́,�Miý�|M i |, and x́, ý, and ź are the principal
axes of the coordinate system on each sublattice moment. The
ź axis is defined as being parallel to the direction of each
sublattice moment, and the x́ and ý axes are perpendicular to
the ź axis.

We must consider the spin configuration for each applied
field direction in order to obtain the resonance modes ω as
functions of B. The spins are aligned along the easy-axis under
zero-field conditions, and the discontinuous spin-flop phase
transition occurs at Bc for B⊥ab (see Fig. 8). The value of Bc

is expressed as

Bc =
√

D2
site − 2(J1 + J2)Dsite

gμB

, (9)

which corresponds to a zero-field energy gap of resonance
modes. Above Bc, two sublattices are tilted from the 2D
plane with equivalent angles (see Fig. 8). For B‖ab, where
the external field is applied perpendicular to the easy-axis,
two sublattices are tilted from the easy-axis with equivalent
angles (see Fig. 8). The angles between the sublattice moment
and the external field for both directions are determined by
minimizing the free energy. Further, Dsite/kB = −0.0055 K is
obtained from Eq.(9), using Bc = 0.4 T, J1/kB = 16.5 K, and
J2/kB = 9.2 K (α = 0.56). Then, the ω values are obtained by
solving Eq. (6) numerically. The calculated results demonstrate
typical AF resonance modes with easy-axis anisotropy in a
two-sublattice model [45,46] exactly, and we obtain good
agreement between experiment and calculation, as shown
in Fig. 8. Although some field-independent ω are expected,
only field-dependent ω detectable via our field-sweep mea-
surements are displayed here. For B⊥ab, two gapped modes
appear below Bc. The lower-frequency mode becomes soft and
exhibits a discontinuous change at Bc. For B‖ab, one gapped
mode exhibits a gradual increase with increasing field.

The mean-field approximation with anisotropic exchange
interactions gives the same AF resonance modes as those
obtained with on-site anisotropy. In that case, the spin
Hamiltonian is written as

H = J1

∑
〈ij〉

(
Sx

i S
x
j + S

y

i S
y

j + δSz
i S

z
j

)

+ J2

∑
〈kl〉

(
Sx

kS
x
l + S

y

kS
y

l + δSz
kS

z
l

) − gμB

∑
i

Si ·B, (10)

where δ is the anisotropy constant for the z-components (δ >

1), and the z axis is perpendicular to the ab plane. The spin
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configuration for each applied field direction is identical to
those in the on-site case, and Bc is given by

Bc =
√

δ2 − 1(J1 + J2)

gμB

. (11)

A value of δ = 1.00021 is obtained using Bc = 0.4 T, J1/kB =
16.5 K, and J2/kB = 9.2 K (α = 0.56), and we obtain almost
the same resonance modes as those in Fig. 8 by solving the
equation of motion corresponding to Eq. (6) numerically.

C. Dipole field anisotropy

The magnetic anisotropy in organic radical systems is
known to be quite small and almost isotropic at experimental
temperatures. In the present material, the energy scale of the
magnetic anisotropy is also evaluated to be small from the
ESR analysis. Here, we consider dipole-dipole interactions
as a possible origin of the anisotropy. The anisotropic field
arising from the dipole-dipole interactions can be calculated
via a method used in the case of CuCl2·2H2O [55]. Assuming
the collinear spin configuration at zero-field described by the
two sublattice model, we regard each lattice point as having m1

or m2, which are oppositely oriented spin magnetic moments.
Then, each component of the magnetic dipole field B1 at a
lattice point with m1 is produced by the spins on the other
lattice points and given by

Bx
1 = �a1m

x
1 + �a2m

x
2,

B
y

1 = �b1m
y

1 + �b2m
y

2,

Bz
1 = �c1m

z
1 + �c2m

z
2, (12)

where the x, y, and z axes are defined as being parallel to the a

and b axes and perpendicular to the ab plane, respectively.
B2 is also derived through appropriate permutation of the
moments. �ai , �bi , and �ci are the dipole sums and expressed
as

�ai = −�
(i)
j

[
1 − 3

(
rx

1j

r1j

)2
]
r−3

1j ,

�bi = −�
(i)
j

⎡
⎣1 − 3

(
r

y

1j

r1j

)2
⎤
⎦r−3

1j ,

�ci = −�
(i)
j

⎡
⎣1 − 3

(
rz

1j

r1j

)2
⎤
⎦r−3

1j , (13)

where �
(i)
j is taken over all the distances r1j between one

lattice point with m1 and the neighboring lattice points j

with mi . We obtain a sufficient condition for convergence
considering the lattice points up to 120 sites. The anisotropy
energy arising from the dipole-dipole interactions Fdip =
−(m1·B1 + m2·B2) is expressed as

Fdip = (�a2 − �a1)
[(

mx
1

)2 + (
mx

2

)2]
+ (�b2 − �b1)

[(
m

y

1

)2 + (
m

y

2

)2]
+ (�c2 − �c1)

[(
mz

1

)2 + (
mz

2

)2]
. (14)

Accordingly, we can express the anisotropy energy as

Fdip = Ddip

∑
i

(
Sz

i

)2 + Edip

∑
i

[(
Sx

i

)2 − (
S

y

i

)2] + A, (15)

where A is a constant independent of the moment direction.
The on-site anisotropy constants per site Ddip and Edip are
expressed by

Ddip = 2
3 (�c2 − �c1)(gμB)2,

Edip = 1
2 [(�a2 − �a1) − (�b2 − �b1)](gμB)2. (16)

To calculate the dipole sums, we assume that each spin is
almost localized at the center of the verdazyl ring that contains
four N atoms, and we use the average position of the N atoms
as the lattice point. Substituting the calculated dipole sums
into Eq. (16), we obtain Ddip/kB = −0.030 K and Edip/kB =
−0.013 K. The calculated results indicate the presence of the
easy axis perpendicular to the ab plane (z axis), which is
consistent with the experimental evaluations.

Here, we discuss the cause of the difference in the value
of the easy-axis anisotropy constant between the calculation
and the evaluation via experiment. To calculate the dipole
sums exactly, it is necessary to consider the spin distribution
on the molecule [56]. However, we assumed localized spin
in our calculation because exact consideration of the spin
distribution in this molecule generates unnecessary difficulties
in the calculation due to the large atom numbers in the chemical
formula. Although it has been confirmed that the localized
spin model is effective for describing magnetic behavior in
verdazyl-based compounds [33–35,37,38,57], calculation of
the dipole field via this approximation may induce some
differences in such small anisotropy values. As a major
factor in this discrepancy, we must consider the fact that
our calculations for the dipole field are based on an ordered
moment size. The quantum fluctuations are expected to reduce
the magnetic moment by approximately 40% for an S = 1/2
SLHAF [1]. The nonlinear increase of the magnetization
curve observed in the ordered phase actually demonstrates the
magnetic moment reduction due to the quantum fluctuations
in this compound. Thus, if we assume reduction of the local
moment, the anisotropy energy Fdip, which decreases with the
square of the moment size, should be substantially reduced. For
instance, considering 40% reduction of the magnetic moment,
it is required to multiply the right side of Eq. (16) by 0.62.
Therefore we confirm that the reduced magnetic moment is
the main cause of the difference between the calculated and
actual values of the anisotropy constant.

V. SUMMARY

We have succeeded in synthesizing single crystals of the
verdazyl radical α-2,3,5-Cl3-V. Ab initio MO calculations
indicate that the two dominant AF interactions, J1 and J2 (α =
J2/J1 � 0.56), form S = 1/2 distorted square lattices partially
connected by the weak AF interaction J3. We performed
magnetization, specific heat, and multi-frequency ESR mea-
surements on the single crystals. The magnetic susceptibility
and the magnetization curve were explained based on the
S = 1/2 SLHAF using the QMC method, and the effect of the
lattice distortion and the interplane interaction contribution
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were clarified. It was confirmed that the chain-like lattice
distortion of the present model is approximately 0.5 < α < 1,
which is sufficiently small to avoid affecting the intrinsic
behavior of the uniform S = 1/2 SLHAF. Furthermore, it is
considered that the two-dimensionality should be enhanced in
the present lattice owing to the smallest interplane coordination
number. In the low-temperature regions, we observed a phase
transition to the AF ordered state at approximately TN = 6.4 K
for zero-field conditions and anisotropic magnetic behavior
for T <TN. The ESR resonance signals elucidated the corre-
sponding critical and anisotropic behavior in the temperature
dependence of the resonance field and the linewidth. The
frequency dependence of the ESR resonance fields for T <TN

was well explained by a mean-field theory considering the
out-of-plane easy-axis anisotropy, which causes a spin-flop
phase transition at Bc = 0.4 T for B⊥ab. The anisotropic
energy derived from the dipole-dipole interactions actually
indicates the presence of the easy-axis perpendicular to the

ab plane. These results demonstrate that α-2,3,5-Cl3-V is a
new model compound with an S = 1/2 square-based lattice.
The lattice distortion, anisotropy, and interplane interaction
in this model should have perturbative effects on the ground
state of the S = 1/2 SLHAF, and further investigations will
yield quantitative information regarding the related dynamical
properties.

ACKNOWLEDGMENTS

This research was partly supported by Grant for Basic
Science Research Projects from KAKENHI (Grants No.
15H03695, No. 15K05171, and No. 17H04850), the CASIO
Science Promotion Foundation. A part of this work was carried
out at the Center for Advanced High Magnetic Field Science
in Osaka University under the Visiting Researcher’s Program
of the Institute for Solid State Physics, the University of Tokyo
and the Institute for Molecular Science.

[1] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
[2] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
[3] W. Zheng, J. Oitmaa, and C. J. Hamer, Phys. Rev. B 71, 184440

(2005).
[4] M. E. Zhitomirsky and A. L. Chernyshev, Phys. Rev. Lett. 82,

4536 (1999).
[5] O. F. Syljuasen, Phys. Rev. B 78, 180413 (2008).
[6] A. Lüscher and A. M. Läuchli, Phys. Rev. B 79, 195102 (2009).
[7] Y. Kubo and S. Kurihara, Phys. Rev. B 90, 014421 (2014).
[8] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[9] A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia, and P. Verrucchi,

Phys. Rev. B 67, 104414 (2003).
[10] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys.

JETP 32, 493 (1971)].
[11] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[12] A. S. T. Pires, Phys. Rev. B 50, 9592 (1994).
[13] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi, Phys. Rev. B

68, 060402 (2003).
[14] P. R. Hammar, D. C. Dender, D. H. Reich, A. S. Albrecht, and

C. P. Landee, J. Appl. Phys. 81, 4615 (1997).
[15] F. M. Woodward, A. S. Albrecht, C. M. Wynn, C. P. Landee,

and M. M. Turnbull, Phys. Rev. B 65, 144412 (2002).
[16] F. C. Coomer, V. Bondah-Jagulu, K. J. Grant, A. Harrison, G. J.

McIntyre, H. M. Rønnow, R. Feyerherm, T. Wand, M. Meißner,
D. Visser, and D. F. McMorrow, Phys. Rev. B 75, 094424 (2007).

[17] P. Sengupta, C. D. Batista, R. D. McDonald, S. Cox, J. Singleton,
L. Huang, T. P. Papageorgiou, O. Ignatchik, T. Herrmannsdörfer,
J. L. Manson, J. A. Schlueter, K. A. Funk, and J. Wosnitza, Phys.
Rev. B 79, 060409 (2009).
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