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Spin-liquid Mott quantum criticality in two dimensions: Destabilization of a spinon Fermi
surface and emergence of one-dimensional spin dynamics
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Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality
with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landau’s Fermi-liquid state
to a U(1) spin-liquid phase with a spinon Fermi surface in two dimensions. Unfortunately, we fail to approach
the spin-liquid Mott quantum critical point from the U(1) spin-liquid state within the dimensional regularization
technique. Self-interactions between charge fluctuations called holons are not screened, which shows a run-away
renormalization group flow, interpreted as holons remain gapped. This leads us to consider another fixed point,
where the spinon Fermi surface can be destabilized across the Mott transition. Based on this conjecture, we reveal
the nature of the spin-liquid Mott quantum critical point: Dimensional reduction to one dimension occurs for
spin dynamics described by spinons. As a result, Landau damping for both spin and charge dynamics disappear
in the vicinity of the Mott quantum critical point. When the flavor number of holons is over its critical value,
an interacting fixed point appears to be identified with an inverted XY universality class, controlled within the
dimensional regularization technique. On the other hand, a fluctuation-driven first order metal-insulator transition
results when it is below the critical number. We propose that the destabilization of a spinon Fermi surface and the
emergence of one-dimensional spin dynamics near the spin-liquid Mott quantum critical point can be checked
out by spin susceptibility with a 2kF transfer momentum, where kF is a Fermi momentum in the U(1) spin-liquid
state: The absence of Landau damping in U(1) gauge fluctuations gives rise to a divergent behavior at zero
temperature while it vanishes in the presence of a spinon Fermi surface.
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I. INTRODUCTION

Hertz-Moriya-Millis theory is a standard theoretical frame-
work for quantum criticality in metals [1–3]. Within the
self-consistent random-phase-approximation (RPA) analysis,
critical order-parameter fluctuations become overdamped,
referred to as Landau damping. As a result, the dynamical
critical exponent is enhanced to result in the fact that critical
dynamics of order parameter fluctuations is essentially mean-
field-like since the critical field theory is above the upper
critical dimension. Such mean-field-type critical dynamics
does not respect the hyperscaling relation due to the presence
of a dangerously irrelevant operator [4]. This gives rise to
the violation of the ω/T scaling behavior of the dynamical
susceptibility for critical fluctuations, where ω is frequency
and T is temperature. Even if low-energy critical electrons
are taken into account fully self-consistently in the RPA
level, the mean-field-type scaling theory with a dangerously
irrelevant operator remains essentially unchanged. On the
other hand, the scaling dimension of the dangerously irrelevant
operator becomes more positive and thus, more irrelevant in
the presence of low-energy critical electrons.

The Yukawa coupling between low-energy electrons and
critical order-parameter fluctuations is marginal at the critical
point within the self-consistent RPA analysis. Then, such an
approximation scheme can be dangerous in the case when
the fixed-point value does not reside within the convergence
area for the self-consistent RPA analysis. In order to justify
this approximation scheme, one may increase spin degeneracy
from σ =↑ , ↓ to σ = 1, . . . ,N . Then, the interaction vertex
is reduced from g to g/

√
N , and the self-consistent RPA

analysis seems to be justified in the N → ∞ limit. Any vertex
corrections give rise to higher order contributions in O(1/N)

and thus, self-energy corrections turn out to be in the leading
order, referred to as the 1/N expansion [5].

Recently, S.-S. Lee has shown that the self-consistent RPA
analysis cannot be justified even in the N → ∞ limit [6].
He starts from the Hertz-Moriya-Millis fixed point in the
self-consistent RPA framework: Critical boson dynamics is
described by Landau damping with the dynamical critical
exponent z = 3 and the dynamics of low-energy critical
electrons is given by the following non-Fermi liquid self-
energy correction, �(iω) ∼ i(g2/N)sgn(ω)|ω|2/3. Performing
the scaling analysis that makes the self-consistent RPA critical
theory scale-invariant, he finds two essential aspects [7]:
First, the angular part of the momentum integral acquires
an anomalous scaling dimension. Second, such an anomalous
scaling exponent justifies the double-patch construction as a
minimal effective field theory. In particular, the overlapping
region between two different patches is shown to vanish in
the infrared (IR) limit [8]. Based on this effective critical field
theory, S.-S. Lee investigated the stability of the self-consistent
RPA fixed point. It turns out that the presence of the 1/N

factor in the non-Fermi-liquid self-energy correction spoils the
structure of the 1/N expansion [6]. In particular, he suggests
the double-line representation for Feynman diagrams, where
boson fluctuations are given by double lines and fermion
excitations are described by single lines. As a result, he reveals
that the number of decoupled fermion loops corresponds to the
enhancement factor of N , originating from the 1/N factor of
the self-energy correction and identified with Fermi surface
fluctuations. Although this counting rule turns out to break
down beyond the single-patch approximation [9,10], this study
proposes that vertex corrections should be taken into account
properly in order to describe critical dynamics of low-energy

2469-9950/2017/95(23)/235133(22) 235133-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.235133


JAE-HO HAN, YONG-HEUM CHO, AND KI-SEOK KIM PHYSICAL REVIEW B 95, 235133 (2017)

order-parameter fluctuations and fermion excitations. We do
not know how to incorporate such vertex corrections into
the quantum criticality of the Hertz-Moriya-Millis fixed point
systematically based on the field theoretical approach.

In order to make the physical description of metallic
quantum criticality mathematically controllable, theoreticians
have tried to find another expansion parameter beyond the
N → ∞ limit [11–13]. Here, we focus on the dimensional reg-
ularization technique [11,12]. The dimensional regularization
technique is well known for bosonic quantum criticality [14].
Although its conceptual aspect is completely clear, a concrete
manipulation has not been performed for the Fermi-surface
problem. In Refs. [11,12], S.-S. Lee proposed an interesting
field-theoretical setup for the dimensional regularization tech-
nique to the Fermi-surface problem. We would like to call it
“graphenization” of the Fermi-surface problem. Maintaining
the dimension of a Fermi surface with one dimension, he
devises how to put the problem of spatially two-dimensional
metallic quantum criticality into d dimensions. Here, d counts
only the spatial part. Suppose Ising nematic quantum criticality
in two dimensions. In order to maintain the shape of the one-
dimensional Fermi surface in three dimensions for example,
one should gap out the band structure of electrons along
the z dimension. The resulting band structure turns out to
describe pz-wave superconductivity in thee dimensions [11].
Within the dimensional regularization technique, the nematic
quantum criticality in two dimensions can be achieved from
the band structure of pz-wave superconductivity in three
dimensions. In this situation the upper critical dimension
of the Yukawa coupling between low-energy electrons and
critical Ising nematic fluctuations is dc = 5/2. Although it is
questionable whether or not we are solving the same problem
as the originally suggested one, the physical description is now
completely justified at least mathematically, performing the
renormalization group analysis in a slightly lower dimension
than the upper critical dimension, i.e., d = dc − ε with dc =
5/2 and ε = 1/2.

The “graphenized” effective field theory of the double
patch construction in d dimensions allows an interacting fixed
point for the Yukawa coupling constant. Critical dynamics
of order-parameter fluctuations and non-Fermi liquid physics
of low-energy electrons are described by the renormaliza-
tion group analysis based on the dimensional regularization
technique. Solving Callan-Symanzik equations gives scaling
theories for correlation functions, identifying the nature of
this novel interacting fixed point. The resulting interacting
fixed point differs from the Hertz-Moriya-Millis critical point
given by the self-consistent RPA analysis [11,12]. An essential
point of the dimensional regularization technique is that the
dynamical critical exponent is much less than the value of the
self-consistent RPA theory. This is certainly expected due to
the presence of pseudogap in the graphenization technique,
responsible for the appearance of an interacting fixed point.
However, it is not completely clear at all whether or not such
an interacting fixed point reflects the nature of the originally
proposed metallic quantum critical point, frankly speaking.
Suppose the Kondo problem. It is well understood that the
nature of the quantum critical point between the local moment
phase and the local Fermi-liquid state in the pseudogap Kondo
model [15] differs from that in a normal metallic host [16],

where such a quantum critical point does not exist in the
latter case. However, we reach the same renormalization group
equation for the Kondo coupling constant if the pseudogap
density-of-states parameter sets to vanish and recover the finite
density of states as in normal metals.

Here, we adopt the dimensional regularization technique for
the renormalization group analysis. In this study, we consider
an insulator-metal transition from a U(1) spin-liquid state with
a spinon Fermi surface to a Fermi-liquid phase, given by the
Higgs transition of bosonic charge degrees of freedom referred
to as holons [17]. The effective field theory for this spin-liquid
Mott quantum criticality is as follows: First, critical spin
dynamics is described by spin doublets interacting through
low lying spin-singlet fluctuations, where spin doublets form
a Fermi surface of spinons and low lying spin singlets are
expressed by U(1) gauge fluctuations. This Fermi-surface
problem is exactly the same as that solved before by the dimen-
sional regularization technique [11]. Second, critical charge
dynamics is described by sound modes interacting via low
lying spin-singlet fluctuations, where sound modes are given
by bosonic holons with the relativistic spectrum. This critical
charge dynamics has never been taken into account on equal
footing with the Fermi-surface problem in a controllable way.

We start from the U(1) spin-liquid interacting fixed point
as intensively discussed above, which occurs from the di-
mensional regularization technique for the sector of the
spinon-gauge field problem, essentially the same as the Ising
nematic quantum criticality problem [11]. The appearance of
such an interacting fixed point is based on the assumption
for the stability of the spinon Fermi surface. Since it is a
fixed point for critical spinon dynamics, one may investigate
the stability of such a fixed point, introducing the role of
critical charge fluctuations into the spin-liquid fixed point.
The self-interaction constant λ for the holon dynamics turns
out to be relevant at the spin-liquid fixed point, where the
upper critical dimension is dc = 7/2. We recall that the
upper critical dimension of the Yukawa coupling constant (the
gauge charge) is dc = 5/2. As a result, the self-interaction
constant cannot be renormalized by their self-interactions
at this fractional dimension dc = 5/2 within the scheme of
dimensional regularization. This does not mean that there
do not exist renormalization effects on the self-interaction
constant. Gauge-field fluctuations can lead holon quasiparticle
excitations to decay into a bunch of incoherent particle-hole
continuum spectra. However, we find that such effects do not
occur at least in the one-loop order for holon self-energy
corrections. There are screening effects for the holon self-
interaction term, given by anisotropic quantum critical scaling
of space and time at the U(1) spin-liquid fixed point. However,
this screening is not enough to make the renormalization
group flow of λ irrelevant at least in the one-loop order,
more strongly speaking, in the limit of ε → 0. This run-away
renormalization group flow of λ leads us to conclude that such
holon excitations remain gapped at the spin-liquid fixed point
with a stable spinon Fermi surface. In other words, we fail
to reach the spin-liquid to Fermi-liquid Mott critical point,
given by the condensation of holons. Critical spin dynamics
is given by the U(1) spin-liquid interacting fixed point as
the spinon Fermi-surface problem in the absence of charge
fluctuations [11].
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In this study we focus on another possibility, giving up the
stability of the spinon Fermi surface in order to describe the
Mott metal-insulator transition. Since the spin-liquid to Fermi-
liquid insulator-metal quantum phase transition is described
by the Higgs condensation transition in the holon dynamics, it
may be natural to keep the boson dynamics as a fixed-point en-
semble at spin-liquid Mott quantum criticality. In other words,
the relativistic holon spectrum in both x and y directions is
assumed as our starting fixed point of scale invariance. Then,
we find that the spinon Fermi surface cannot be stabilized
at this boson fixed point, where the curvature part of the
spinon spectrum becomes irrelevant and the spinon dispersion
shows the one-dimensional relativistic spectrum. The spinon
dynamics remains itinerant along the direction of the Fermi
velocity while spinons become localized along the direction
of the Fermi surface. Critical spinon dynamics at ultraviolet
(UV) is given by Luttinger liquid theory [18]. The effective
field theory is as follows: First, critical spinons are described by
the one-dimensional Dirac spectrum, coupled with U(1) gauge
fluctuations. Second, critical holons are described by the two-
dimensional relativistic spectrum with their self-interactions,
coupled to U(1) gauge fluctuations. This critical field theory
shows an emergent enhanced symmetry than that of the U(1)
spin-liquid fixed point, that is, the emergent Lorentz symmetry
at UV beyond the U(1) spin-liquid fixed point.

We emphasize that the rotational symmetry does not break
down although the spectrum is localized along one direction.
We recall that the effective field theory is represented in the
double-patch construction. The double-patched effective field
theory should be taken into account for all angles of the Fermi
surface, where other double-patched effective field theories do
not communicate with each other as discussed before, thus
regarded to be independent [8]. As a result, the rotational
symmetry is preserved.

Now, it is straightforward to apply the dimensional regular-
ization technique for the renormalization group analysis to this
Lorentz-invariant critical field theory. The one-dimensional
spinon Fermi surface with a flat band along the direction
of the Fermi surface remains unchanged in the dimensional
regularization scheme. The upper critical dimension of the
Yukawa coupling constant, i.e., the gauge charge is the same
as the self-interaction coupling constant, given by dc = 3.
As a result, not only the gauge coupling constant but also
the self-interaction coupling constant is screened to show
an interacting fixed point at IR beyond the U(1) spin-liquid
fixed point discussed before. More importantly, the emergent
Lorentz symmetry does not allow the appearance of the Landau
damping term in the dynamics of U(1) gauge fluctuations. As
a result, an interacting fixed point appears to be identified with
an inverted XY universality class [19], controlled within the
dimensional regularization technique when the flavor number
of holons is over its critical value. On the other hand, a
fluctuation-driven first order transition [20,21] results when
it is below the critical number. In particular, we propose
that the destabilization of a spinon Fermi surface and the
emergence of one-dimensional spin dynamics near the spin-
liquid Mott quantum critical point can be checked out by spin
susceptibility with a 2kF transfer momentum, where kF is a
Fermi momentum in the U(1) spin-liquid state: The absence
of Landau damping in U(1) gauge fluctuations gives rise to a

divergent behavior at zero temperature while it vanishes in the
presence of a spinon Fermi surface [11].

Recently, emergence of localized magnetic moments from
itinerant fermions has been discussed in the critical field
theory of fermions and order-parameter fluctuations with their
Yukawa coupling interactions [22]. An important assumption
in this renormalization group analysis is that the Landau
damping term does not arise due to a certain reason, not
clarified in these previous studies. The present field theoretical
construction serves more transparent physical mechanism for
the absence of the Landau damping term, where the emergent
Lorentz symmetry plays an important role in the localization
phenomenon.

II. EFFECTIVE FIELD THEORY FOR SPIN-LIQUID MOTT
QUANTUM CRITICALITY

A. U(1) slave-rotor theory for the Hubbard model

We start from the Hubbard model as an effective Hamilto-
nian for κ-class organic salts [23]

S =
∫ β

0
dτ

⎧⎨
⎩
∑

i

c
†
iσ (∂τ − μ)ciσ

− t
∑
ij

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓

⎫⎬
⎭. (1)

ciσ = ciσ (τ ) is an electron annihilation operator at site i with
spin σ = ↑,↓, niσ = c

†
iσ ciσ is electron density with spin σ , t

is a hopping parameter between nearest neighboring sites, U is
an on-site Hubbard interaction, μ is a chemical potential, and
β is an inverse temperature. The summation over the repeated
spin indices is assumed in this and all expressions hereafter.

This effective Hamiltonian has an SUs(2) × SUc(2) global
symmetry at half filling, where the former and latter are
involved with rotations in the spin and particle-hole spaces,
respectively [24]. Here, we take into account the spin-singlet
channel only, where the charge SUc(2) symmetry is involved.
Actually, interactions of both particle-hole and particle-
particle channels can be incorporated to respect the SUc(2)
symmetry, realized in the SU(2) slave-rotor representation: Not
only density fluctuations but also superconducting correlations
are described on equal footing in the strong coupling approach
[25]. In this study we focus on density fluctuations only and
leave the role of the particle-particle channel in spin-liquid
Mott quantum criticality as a future problem. Performing
the Hubbard-Stratonovich transformation for the density-
fluctuation channel, we obtain

S =
∫ β

0
dτ

⎧⎨
⎩
∑

i

c
†
iσ (∂τ − μ + iφi)ciσ

− t
∑
ij

(c†iσ cjσ + H.c.) + 1

U

∑
i

φ2
i

⎫⎬
⎭, (2)

where φi is Hubbard-Stratonovich field.
A question is how to obtain a metal-insulator transition

without any symmetry breaking based on this effective
action. A direction would be to gap out zero sound modes
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without introducing local order parameters. This is completely
nonperturbative. Nobody succeeded in such a nonperturbative
task, starting from a Landau’s Fermi-liquid state, as far as we
know. An idea is to decompose an electron field as follows
[17]:

cjσ = e−iθj fjσ . (3)

A fermion field fjσ carries only the spin quantum number
σ , referred to as spinon. A boson field θj represents the

conjugate variable of the density field nj = c
†
jσ cjσ . Thus, their

correlations reflect collective behaviors of density fluctuations.
When such charged bosons are condensed, the spectrum of the
θj field corresponds to that of the zero sound mode. This
description is consistent with Landau’s Fermi-liquid theory,
where the condensation amplitude represents the quasiparticle
weight. When holons become gapped, increasing the Hubbard
interaction, both electron quasiparticles and zero sound modes
disappear. Introducing the U(1) slave-rotor representation of
Eq. (3) into Eq. (2) and shifting the φj field as φj + ∂τ θj , we
obtain

S =
∫ β

0
dτ

⎧⎨
⎩
∑

i

f
†
iσ (∂τ − μ + iφi)fiσ − t

∑
ij

(f †
iσ eiθi e−iθj fjσ + H.c.) + 1

U

∑
i

(∂τ θi + φi)
2

⎫⎬
⎭. (4)

In order to describe the Higgs transition of the boson field, it is convenient to adopt the nonlinear σ -model field-theory approach
[17], replacing eiθj with bj , where the unimodular constraint of b

†
j bj = 1 should be incorporated. We write down ∂τ θi = −ib

†
i ∂τ bi

with the following term
∫ β

0 dτ i
∑

i λi(b
†
i bi − 1) to impose the rotor constraint, where λi is a Lagrange multiplier field. The next

step is to decompose the kinetic energy term in an appropriate way. Based on experimental results for κ-class organic salts [23],
we assume the presence of a spinon Fermi surface. In order to keep the existence of the spinon Fermi surface, we adopt the
following ansatz for the mean-field solution [26]:

〈fiσ f
†
jσ 〉 = −χbe−iaij , 〈bib

†
j 〉 = χf e−iaij (5)

with iλi = λ and φi = 0, where the latter gives the condition of half filling. Here, we include a phase-fluctuation field aij = aij (τ )
for both 〈fiσ f

†
jσ 〉 and 〈bib

†
j 〉, which satisfies a relation aij = −aji .

The resulting effective theory for the insulator-metal quantum phase transition from a U(1) spin-liquid state to a Landau’s
Fermi-liquid phase is as follows:

S =
∫ β

0
dτ

⎧⎨
⎩
∑

i

f
†
iσ (∂τ − μ)fiσ − tχf

∑
ij

(f †
iσ e−iaij fjσ + H.c.) +

∑
i

b
†
i

(
− 1

U
∂2
τ + λ

)
bi

− tχb
∑
ij

(b†i e
−iaij bj + H.c.) + N (ztχf χb − λ)

⎫⎬
⎭. (6)

z is the coordination number (e.g., z = 6 for a triangular lattice in two dimensions), and N is the total number of lattice sites. It
is interesting to notice that this effective action has the following gauge symmetry:

fiσ → eiαi fiσ , bi → eiαi bi, aij → aij − αi + αj , (7)

where the phase field of the hopping parameter plays the role of the spatial component of the U(1) gauge field. Physically,
such U(1) gauge fluctuations describe low lying spin-singlet fluctuations, expected to appear when excited spin states are rather
“degenerate” due to special entangled patterns of spins and such entangled dynamics gives rise to spin-singlet excitations
as low-energy fluctuations instead of spin-triplet excitations. Interestingly, these spin-singlet excitations couple to density
fluctuations in the way of minimal coupling, affecting critical charge dynamics seriously, compared with the case of the absence
of gauge fluctuations in the mean-field level. Potential fluctuations described by φj are gapped due to the presence of a spinon
Fermi surface, referred to as Debye screening. In the Coulomb gauge the temporal component decouples with the spatial part
and thus is safely ignored at low energies.

In the continuum limit we reach the following expression

S =
∫ β

0
dτ

∫
d2x

{
f †

σ (∂τ − μ − tχf 
∇2)fσ + itχf 
a · (f †
σ


∇fσ − 
∇f †
σ fσ ) + tχf 
a2f †

σ fσ

+ b†
(

− 1

U
∂2
τ + λ − tχb 
∇2

)
b + itχb
a · (b† 
∇b − 
∇b†b) + tχb
a2b†b + 1

4e2
fμνfμν

}
+ βN (ztχf χb − λ). (8)

fσ = fσ (τ,
x), b = b(τ,
x), and 
a = 
a(τ,
x) are field variables
in the continuum limit. The free part (Maxwell dynamics)

of the gauge field results from the procedure of renormal-
ization integrating over high-energy fluctuations, given by
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fμν = ∂μaν − ∂νaμ (μ,ν = 0,1,2) with a coupling constant
e at a given UV scale. λ plays the role of mass in the
holon spectrum, determined self-consistently in the mean-field
analysis. Neglecting U(1) gauge fluctuations in the mean-field
approximation (e → 0), it is straightforward to solve the
resulting Gaussian-type action. One can obtain self-consistent
equations for three order parameters of χf , χb, and λ. In
U > Uc one finds a gapped spectrum of holons given by λ > 0,
where the quasiparticle weight vanishes, identified with a U(1)
spin-liquid state with a spinon Fermi surface. Decreasing the
Hubbard interaction, λ becomes also reduced to touch zero at
U = Uc, identified with a Mott critical point in the mean-field
analysis. Further reduction of U does not change λ = 0 in
U < Uc. But, the holon condensation should occur in order
to satisfy the rotor constraint of 〈b†(τ,
x)b(τ,
x)〉 = 1, giving
rise to finite quasiparticle weight in the electron spectrum and
recovering a Landau’s Fermi-liquid state. In this study we
discuss how this mean-field structure is modified beyond the
mean-field approximation, introducing the role of U(1) gauge
fluctuations and λ-field fluctuations in the spin-liquid Mott
transition.

B. Effective field theory for spin-liquid Mott quantum criticality

We construct an effective field theory in the double-patch
description, regarded to be a minimal model for spin-liquid
Mott quantum criticality and justified in the IR limit since com-
munications between different patches are renormalization-
group irrelevant [7,8]. When linearizing the spinon dispersion
perpendicular to the Fermi surface, we have

− iω − μ + tχf 
k2 → −iω + vF kx + tχf k2
y, (9)

where vF = 2tχf KF is a Fermi velocity, KF is a Fermi wave
vector, and the chemical potential μ is tuned to give half filling.
Here, the momentum is redefined from the Fermi surface.
Then, Eq. (8) can be written as follows in the double-patch
construction

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

f †
σs(k)

(
ik0 + svF kx + tχf k2

y

)
fσs(k),

Sb =
∫

k

b†(k)

(
1

U
k2

0 + tχb
k2 + λ

)
b(k),

Sa = 1

2

∫
q

a(−q)
(
q2

0 + 
q2
)
a(q),

Sf a = −vF e

∫
k,q

sa(q)f †
σs(k + q)fσs(k)

+ tχf e2
∫

k,p,q


a(−p + q) · 
a(p)f †
σs(k + q)fσs(k),

Sba = −2tχbe

∫
k,q


k · 
a(q)b†(k + q)b(k)

+ tχbe2
∫

k,p,q


a(−p + q) · 
a(p)b†(k + q)b(k). (10)

See Fig. 1. We rescaled the gauge field as 
a → e
a and
abbreviated the integral as

∫
k

= ∫ d3k/(2π )3. s = ± is a patch

FIG. 1. Patch construction for a two-dimensional Fermi-surface
problem. The paraboloid represents spinon dispersion; the red and
the blue lines are the dispersion along the kx and ky , respectively.
In the minimal model, only two patches on the opposite side of the
Fermi surface (the shaded regions in the kxky plane) are considered.

index. We note that the integration region in the gauge-spinon
field coupling Sf a is given by a narrow strip as shown in Fig. 2.

Following D. Dalidovich and S.-S. Lee [11], we introduce
a Dirac spinor for dimensional regularization, combining the
two spinon fields of opposite patches as

ψσ (k) =
(

fσ+(k)

f
†
σ−(−k)

)
. (11)

Then, the spinon part of the above effective action can be
written in the form of the (1 + 1)-dimensional Dirac theory

Sf =
∫

k

ψ̄σ (k)(iγ0k0 + iγ1δk)ψσ (k),

Sf a = ivF e

∫
k,q

a(q)ψ̄σ (k + q)γ5γ1ψσ (k), (12)

where γ0 = σy , γ1 = σx , γ5 = iγ0γ1 = σz, δk = vF kx +
tχf k2

y is the dispersion of spinons near the Fermi surface,
and ψ̄ = ψ†γ0. Although the second term in Sf a is not shown

FIG. 2. Cutoffs in a two-dimensional Fermi-surface problem. �

and �a are cutoffs of spinon and gauge field, respectively.
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explicitly here, its role is incorporated to preserve the U(1)
gauge symmetry in the renormalization group analysis.

Now, it is straightforward to construct the setup for
dimensional regularization. Extending the co-dimension of the
spinon Fermi surface, we obtain

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

ψ̄σ (k)(i� · K + iγd−1δk)ψσ (k),

Sb =
∫

k

b†a(k)

(
1

U
K 2 + tχb
k2

)
ba(k),

+ λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p)

Sa = 1

2

∫
q

a(−q)( Q2 + 
q2)a(q),

Sf a = ivF e√
N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k),

Sba = −2tχbe√
N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+ tχbe2

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k).

(13)

Here,
∫
k

is now a (d + 1)-dimensional integral
∫
k

=∫
dd+1k/(2π )d+1. The bold-faced vector K is a (d −

1)-dimensional vector K = (k0,k1, · · · ,kd−2), and the ar-
rowed vector 
k is a 2-dimensional vector 
k = (kd−1,kd ).
δk = vF kd−1 + tχf k2

d is an equipotential surface near the
Fermi surface. The unimodular constraint of b†b = 1 is
softened by the b4-interaction term with λ. In particular,
we point out that the flavor number of holons shown in the
subscript of ba(k) is generalized from a = 1 to a = 1,2, . . . ,N .
It is natural to consider that the number of holon flavors control
the strength of quantum fluctuations, for example, screening
of effective interactions.

III. RENORMALIZATION GROUP ANALYSIS I:
A SPIN-LIQUID FIXED POINT WITH A STABLE

SPINON FERMI SURFACE

In this section we perform the renormalization group
analysis, based on the stability of the spinon Fermi surface.
It is convenient to simplify the spinon sector, rescaling both
fields and coupling constants:

K → vF K ,

ψσ → ψσ/v
d
2
F , b → b/

(
vd−1

F tχb
) 1

2 ,
(14)

a → a/v
d−1

2
F ,

e → e/v
d−1

2
F , λ → λ(tχb)2/vd−1

F .

Now, the effective action can be written as

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

ψ̄σ (k)(i� · K + iγd−1δk)ψσ (k),

Sb =
∫

k

b†a(k)
(
ζ 2
b K 2 + 
k2

)
ba(k)

+ λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p),

Sa = 1

2

∫
q

a(−q)
(
ζ 2
a Q2 + 
q2

)
a(q),

Sf a = ie√
N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k),

Sba = − 2e√
N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+ e2

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k), (15)

where δk = kd−1 + κk2
d , κ = tχf /vF , ζ 2

b = v2
F /(Utχf ), and

ζ 2
a = v2

F . We choose the unit such that κ = 1.

A. Scaling analysis: Multiple interaction-energy scales

As discussed in the introduction, this Fermi-surface fixed
point turns out to be too stable to allow a metal-insulator
transition within the perturbative renormalization group anal-
ysis. We consider the scaling transformation that preserves the
spinon dispersion:

K = K ′

s
, kd−1 = k′

d−1

s
, kd = k′

d√
s
. (16)

Here, s is now a scaling factor, not the path index as in previous
section. In order to make the spinon sector invariant under this
scaling transformation, we introduce

ψσ (k) = s�ψ ψ ′
σ (k′) (17)

into Sf in Eq. (15), and obtain �ψ = d
2 + 3

4 . For the free part
of the gauge field, only the q2

d term is marginal and others are
irrelevant when the gauge field scales as

a(q) = s�aa′(q ′), �a = d

2
+ 3

4
, (18)

the same as the scaling dimension �ψ of the spinon field.
Then, the gauge coupling e scales as

e = s�ee′, �e = d

2
− 5

4
, (19)

read from the spinon-gauge field coupling. The gauge charge
e is relevant in d < 5

2 , irrelevant in d > 5
2 , and marginal at

d = 5
2 . We concentrate on the dimension d = 5

2 − ε with small
ε > 0 for the controllable renormalization group analysis in
the ε expansion.

The scale transformation of the boson field b is not
independent, since the coupling constant e of the boson-gauge
field vertex should be the same as that of the spinon-gauge
field vertex, resulting from the gauge symmetry. Therefore,
we have the scaling transformation

ba(k) = s�bb′
a(k′), �b = d

2
+ 5

4
. (20)

As a result, both the K 2 term and the k2
d−1 term in the free part

of the boson field are marginal, while the k2
d term is relevant,
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regardless of the dimension. This b-field scaling leads the
self-interaction λ to scale as

λ = s�λλ′, �λ = d − 7

2
, (21)

which is relevant in d = 5
2 − ε.

The above scaling analysis gives us the renormalized
effective field theory

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

ψ̄σ (k)(i� · K + iγd−1δk)ψσ (k),

Sb =
∫

k

b†a(k)
(
ζ 2
b K 2 + 
k2

)
ba(k)

+ λμ1+ε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p),

Sa = 1

2

∫
q

q2
da(−q)a(q),

Sf a = ieμ
ε
2√

N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k),

Sba = −2eμ
ε
2√

N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+ e2με

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k), (22)

where we introduced the parameter μ identified with a mass
scale (not the chemical potential as in the previous section)
and dropped the irrelevant terms in Sa .

B. Renormalization group analysis

For the renormalization group analysis, we rewrite the
effective bare action in terms of bare field variables and
coupling parameters as the renormalized effective action
and counter terms in terms of renormalized field variables
and interaction parameters:

SB = S + SCT , (23)

where the bare action is given by

SB =
∫

kB

ψ̄Bσ (kB)
(
i� · KB + iγd−1δkB

)
ψBσ (kB)

+
∫

kB

b
†
Ba(kB)

(
ζ 2
bB K 2

B + 
k2
B

)
bBa(kB)

+ λB

4N

∫
kB,pB,qB

b
†
Ba(kB + qB)bBa(kB)

× b
†
Bb(pB − qB)bBb(pB)

+ 1

2

∫
qB

q2
BdaB(−qB)a(qB)

+ ieB√
N

∫
kB,qB

aB(qB)ψ̄Bσ (kB + qB)γ5γd−1ψBσ (kB)

− 2eB√
N

∫
kB,qB


kB · 
aB(qB)b†Ba(kB + qB)bBa(kB)

+ e2
B

N

∫
kB,pB,qB


aB(−pB + qB) · 
aB(pB)

× b
†
Ba(kB + qB)bBa(kB) (24)

and the counter terms are described by

SCT =
∫

k

ψ̄σ (k)(Aψ1i� · K + Aψ2iγd−1δk)ψσ (k)

+
∫

k

b†a(k)
(
Ab1ζ

2
b K 2 + Ab2
k2

)
ba(k)

+Aλ

λμ1+ε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p)

+Aa2
1

2

∫
q

q2
da(−q)a(q)

+Aψa

ieμ
ε
2√

N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k)

−Aba1
2eμ

ε
2√

N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+Aba2
e2με

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k).

(25)

The renormalized effective action is given by Eq. (22). We
note that the term with ζb is allowed to flow.

The relation between bare and renormalized quantities are

K = Zψ2

Zψ1
KB, 
k = 
kB,

ψσ (k) = Z
− 1

2
ψ ψBσ (kB), Zψ = Zψ2

(
Zψ2

Zψ1

)d−1

,

ba(k) = Z
− 1

2
b bBa(kB), Zb = Zb2

(
Zψ2

Zψ1

)d−1

,

a(q) = Z
− 1

2
a aB(qB), Za = Za2

(
Zψ2

Zψ1

)d−1

, (26)

eB = eμ
ε
2 Z

− 1
2

a2

(
Zψ2

Zψ1

) d−1
2

,

λB = λμ1+εZλZ
−2
b2

(
Zψ2

Zψ1

)d−1

,

ζ 2
bB = ζ 2

b

Zb1

Zb2

(
Zψ2

Zψ1

)2

,

where Zi = 1 + Ai are renormalization constants with i =
ψ1,ψ2,b1,b2,a2,ψe,ba1,ba2,λ. Here, we used the Ward
identity,

Zψ2 = Zψe, Zb2 = Zba1 = Zba2. (27)

It is straightforward to perform the renormalization group
analysis, as shown below. An essential point beyond the
previous study is that there exist multiple interaction-energy
scales, whose upper critical dimensions differ from each other.
The upper critical dimension of the gauge-field coupling
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is d
g
c = 5/2 while that of the self-interaction parameter of

the Higgs field is dλ
c = 7/2. As a result, the self-interaction

parameter is relevant in d = 5
2 − ε, discussed before. It is

almost obvious to expect the screening effect from holon
fluctuations. However, it turns out that the screening effect
cannot occur. The 1/ε pole or logarithmic divergence from
quantum corrections does not appear in such a fractional
dimension for the renormalization of the self-interaction
parameter, just originating from the property of the Gamma
function. As a result, we obtain Zλ = 1. Of course, this
does not mean that there do not exist renormalization effects
on the self-interaction constant. Gauge-field fluctuations can
lead holon quasiparticle excitations to decay into a bunch of
incoherent particle-hole continuum spectra, described by Zb2.
However, we find that such effects do not occur at least in the
one-loop order for holon self-energy corrections. There are
screening effects for the holon self-interaction term, given
by anisotropic quantum critical scaling of space and time
at the U(1) spin-liquid fixed point. However, this screening
is not enough to make the renormalization group flow of
λ irrelevant at least in the one-loop order, more strongly
speaking, in the limit of ε → 0. Although we believe that
this nonrenormalization of the self-interaction parameter is an
artifact of the dimensional regularization, we do not exclude
the possibility that it can be fundamental, guaranteeing the
stability of the spinon Fermi surface. Since the self-interaction
parameter flows to infinity in this ansatz, holons remain gapped
due to such strong correlations. In other words, we fail to
reach the spin-liquid to Fermi-liquid Mott critical point, given
by the condensation of holons. Critical spin dynamics is
given by the U(1) spin-liquid interacting fixed point just as
the spinon Fermi-surface problem in the absence of charge
fluctuations [11].

Renormalization group equations for both coupling con-
stants of e and λ result from μdeB/dμ = 0 and μdλB/dμ = 0,
given by

βe ≡ μ
de2

dμ
= e2

[
− ε + μ

Za2

dZa2

dμ

− (d − 1)
μ

Zψ2/Zψ1

dZψ2/Zψ1

dμ

]
,

βλ ≡ μ
dλ

dμ
= λ

[
− (1 + ε) − μ

Zλ

dZλ

dμ
+ 2

μ

Zb2

dZb2

dμ

− (d − 1)
μ

Zψ2/Zψ1

dZψ2/Zψ1

dμ

]
. (28)

The renormalization constants of Zψ1, Zψ2, Zb2, and Za2

are obtained from the self-energy corrections of spinons
[Fig. 3(a)], holons, and gauge fields [Fig. 3(b)], respectively.
For the evaluation of these self-energies, see Appendix A.
Recall Zλ = 1, given by vertex corrections [Fig. 3(c)]. As
shown in Appendix A, the 1/ε divergence turns out to be absent
in both holon and gauge-field self-energies. For the spinon
self-energy, only the Zψ2 constant has the 1/ε divergence. As
a result, the β function for the gauge coupling e is given by

βe = e2

(
−ε + 3 − 2ε

3
u1e

4
3

)
, (29)

FIG. 3. Self-energy corrections of spinons (a) and holons (b)
and λ-vertex corrections (c) in the one-loop order. The thick line
represents the spinon propagator, and the dashed line describes
the holon Green’s function. The wavy line gives the gauge-field
propagator.

where u1 ≈ 0.0625. Therefore, we have an unstable fixed point
at e = 0 and a stable fixed point at e = e∗, given by

e
4
3∗ = 3ε

u1(3 − 2ε)
. (30)

At this stable fixed point, the β function for the self-interaction
constant λ becomes

β∗
λ = −(1 + ε)λ + 3 − 2ε

3
u1e

4
3∗ λ = −λ. (31)

This shows that the self-interaction constant of holons is not
screened at all up to the one-loop level, irrespective to the
dimension.

Let us summarize the renormalization group analysis for
the metal-insulator transition from a Landau’s Fermi-liquid
state to a U(1) spin-liquid phase with a spinon Fermi surface,
assuming the stability of the spinon Fermi surface. We found
that the U(1) spin-liquid fixed point with a spinon Fermi
surface is too stable to allow critical charge fluctuations. As a
result, we cannot reach the Mott quantum critical point, where
the nature of critical spinon dynamics remains essentially
the same as that of the U(1) spin-liquid state with a finite
fixed-point gauge coupling constant.

IV. RENORMALIZATION GROUP ANALYSIS II: A
SPIN-LIQUID MOTT QUANTUM CRITICAL POINT

A. Scaling analysis: Emergent Luttinger-liquid dynamics
of spinons at UV

In this section we perform the renormalization group
analysis, based on the stability of the holon dynamics. The
relativistic spectrum of holons makes the curvature effect of
the spinon Fermi surface become irrelevant, giving rise to
localization along the direction of the Fermi surface. As a
result, the spinon dynamics is described by the Luttinger-liquid
spectrum at UV.
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We consider the scaling transformation that preserves the
holon dispersion:

K = K ′

s
, 
k =


k′

s
. (32)

Taking into account the scaling transformation for the holon
field as

ba(k) = s�bb′
a(k′), (33)

we obtain �b = d+3
2 . Accordingly, the scaling transformation

of the self-interaction parameter is given by

λ = s�λλ′, �λ = d − 3. (34)

The gauge field follows essentially the same scaling relation
as b field,

a(q) = s�aa′(q ′), �a = d + 3

2
. (35)

Then, the coupling constant e scales as

e = s�ee′, �e = d − 3

2
. (36)

Both the self-interaction and gauge-interaction parameters are
relevant in d < 3, irrelevant in d > 3, and marginal in d = 3,
identified with the upper critical dimension in this ansatz. We
concentrate on the dimension d = 3 − ε.

The scaling transformation of the spinon field from the
spinon-gauge field coupling is given by

ψσ (k) = s�ψ ψ ′
σ (k′), �ψ = d

2
+ 1. (37)

The scaling transformation of Eq. (32) leads the k2
d term in

the free part of the spinon dynamics irrelevant. The dynamics
of spinons becomes localized along the direction of the Fermi
surface. Therefore, we start with the following effective action:

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

ψ̄σ (k)
(
i� · K + ivF γd−1kd−1

)
ψσ (k),

Sb =
∫

k

b†a(k)

(
1

U
K 2 + tχb
k2

)
ba(k)

+ λμε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p),

Sa = 1

2

∫
q

a(−q)( Q2 + 
q2)a(q),

Sf a = ivF eμ
ε
2√

N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k),

Sba = −2tχbeμ
ε
2√

N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+ tχbe2με

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k).

(38)

Here, we introduced the mass parameter μ. Rescaling mo-
menta, fields, and couplings as

K →
√

tχbU K ,

b → b/
[
(tχbU )

d−1
2 tχb

] 1
2 , ψ → ψ/

[
(tχbU )

d−1
2 vF

] 1
2 ,

a → a/(tχbU )
d−1

4 ,

e → e/(tχbU )
d−1

4 , λ → (tχbU )
d−1

2 (tχb)4λ, (39)

we reach the following expression as our starting point:

S = Sf + Sb + Sa + Sf a + Sba,

Sf =
∫

k

ψ̄σ (k)(iζψ� · K + iγd−1kd−1)ψσ (k),

Sb =
∫

k

b†a(k)(K 2 + 
k2)ba(k)

+ λμε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p),

Sa = 1

2

∫
q

a(−q)
(
ζ 2
a Q2 + 
q2

)
a(q),

Sf a = ieμ
ε
2√

N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k),

Sba = −2eμ
ε
2√

N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+ e2με

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k).

(40)

We would like to emphasize that the spinon Fermi surface
may not be stable during the Higgs transition. Indeed, as long
as the Lorentz-invariant holon spectrum or the relativistic spec-
trum of the zero sound mode is preserved across the Landau
Fermi liquid to the U(1) spin-liquid transition, we confirmed
that the spinon Fermi surface cannot be stabilized. The spinon
dynamics is given by QED2 [quantum electrodynamics in
(1 + 1) dimensions] and the holon dynamics is described by
Abelian Higgs model in (2 + 1) dimensions. As a result, the
effective field theory shows an enhanced emergent symmetry
at UV near the spin-liquid Mott quantum critical point.

B. Renormalization group analysis

1. Renormalized effective action and counter terms

For the renormalization group analysis, we rewrite the
effective bare action in terms of bare field variables and
coupling parameters as the renormalized effective action
and counter terms in terms of renormalized field variables
and interaction parameters. Recall SB = S + SCT , where
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the bare action isgiven by

SB =
∫

kB

ψ̄Bσ (kB)(iζψB� · KB + iγd−1kd−1B)ψBσ (kB) +
∫

kB

b
†
Ba(kB)

(
K 2

B + 
k2
B

)
bBa(kB)

+ λB

4N

∫
kB,pB,qB

b
†
Ba(kB + qB)bBa(kB)b†Bb(pB − qB)bBb(pB) + 1

2

∫
qB

aB(−qB)
(
ζ 2
aB Q2

B + 
q2
B

)
aB(qB),

+ ieB√
N

∫
kB,qB

aB(qB)ψ̄Bσ (kB + qB)γ5γd−1ψBσ (kB) − 2eB√
N

∫
kB,qB


kB · 
aB(qB)b†Ba(kB + qB)bBa(kB)

+ e2
B

N

∫
kB,pB,qB


aB(−pB + qB) · 
aB(pB)b†Ba(kB + qB)bBa(kB) (41)

and the counter terms are described by

SCT =
∫

k

ψ̄σ (k)(Aψ1iζψ� · K + Aψ2iγd−1kd−1)ψσ (k) +
∫

k

b†a(k)(Ab1 K 2 + Ab2
k2)ba(k)

+Aλ

λμε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p) + 1

2

∫
q

a(−q)
(
Aa1ζ

2
a Q2 + Aa2 
q2

)
a(q)

+Aψa

ieμ
ε
2√

N

∫
k,q

a(q)ψ̄σ (k + q)γ5γd−1ψσ (k) − Aba1
2eμ

ε
2√

N

∫
k,q


k · 
a(q)b†a(k + q)ba(k)

+Aba2
e2με

N

∫
k,p,q


a(−p + q) · 
a(p)b†a(k + q)ba(k). (42)

Relations between bare and renormalized quantities are given by

K =
(

Zb2

Zb1

) 1
2

KB, 
k = 
kB, b(k) = Z
− 1

2
b bB(kB), Zb = Zb2

(
Zb2

Zb1

) d−1
2

, ψσ (k) = Z
− 1

2
ψ ψBσ (kB), Zψ = Zψ2

(
Zb2

Zb1

) d−1
2

,

a(q) = Z
− 1

2
a aB(qB), Za = Za2

(
Zb2

Zb1

) d−1
2

, e2
B = e2μεZ−1

a2

(
Zb2

Zb1

) d−1
2

, λB = λμεZλZ
−2
b2

(
Zb2

Zb1

) d−1
2

,

ζ 2
ψB = ζ 2

ψ

(
Zψ1

Zψ2

)2
Zb2

Zb1
, ζ 2

aB = ζ 2
a

Za1

Za2

Zb2

Zb1
. (43)

The spinon propagator is

G
ψ

0 (k) = −i
ζψ� · K + γd−1kd−1

ζ 2
ψ K 2 + k2

d−1

, (44)

the boson propagator is

Gb
0(k) = 1

K 2 + 
k2
, (45)

and the gauge-field propagator is

Ga
0(q) = 1

ζ 2
a Q2 + 
q2

. (46)

An essential point is that Landau damping does not occur in
gauge fluctuations. The absence of Landau damping originates
from the emergent Lorentz invariance. Such well propagating
spin-singlet fluctuations cause much stronger effects on the
Luttinger-liquid dynamics of spinons.

2. Evaluation of counter terms in the one-loop level

It is straightforward to evaluate quantum corrections in the
one-loop level based on the dimensional regularization. First,

we consider the role of U(1) gauge fluctuations in both the
spinon and holon dynamics. The fermion self-energy given by
the Fock diagram [Fig. 4(a)] is

�f (k) =
(

ieμ
ε
2√

N

)2 ∫
dd+1q

(2π )d+1

× γ5γd−1G
ψ

0 (k + q)γ5γd−1G
a
0(q)

= e2

8π2N

1

ε
[−Aiζψ� · K + Biγd−1kd−1] + O(ε0),

(47)

where

A = A(ζψ,ζa) =
∫ 1

0
ds

s
1
2 ζ 2

a[
sζ 2

a + (1 − s)ζ 2
ψ

]2 ,

(48)

B = B(ζψ,ζa) =
∫ 1

0
ds

s
1
2

sζ 2
a + (1 − s)ζ 2

ψ

.
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FIG. 4. Quantum corrections in the one-loop order. Self-energy
corrections for spinons (a) and holons (b). Polarization bubbles from
spinons and holons (c). λ-vertex corrections (d).

The boson self-energy given by the Fock diagram [Fig. 4(b),
left] is

�b(k) =
(

−2eμ
ε
2√

N

)2 ∫
dd+1q

(2π )d+1

× (
k · t̂q)2Gb
0(k + q)Ga

0(q)

= e2

4π2Nε

log ζ 2
a

ζ 2
a − 1


k2 + O(ε0), (49)

where t̂q is a unit vector perpendicular to 
q. Recall that
ζψ and ζa describe anisotropic scaling between frequency
and momentum in the spinon and gauge-field dispersions,
respectively.

For the self-energy correction in U(1) gauge fluctuations,
given by polarization functions, there are two contribu-
tions, the spinon bubble (�ψ ) and the boson bubble (�b).
The fermion polarization function [Fig. 4(c), first] is given
by

�ψ (q) = −2 ×
(

ieμ
ε
2√

N

)2 ∫
dd+1k

(2π )d+1

× tr[Gψ

0 (k)γ5γd−1G
ψ

0 (k + q)γ5γd−1]

= e2με

N
�d

1

12ζ 2
ψ

(
ζ 2
ψ Q2 + q2

d−1

) 1
2 + O(ε). (50)

Here, the minus sign comes from the spinon loop, and
the factor 2 is due to the σ summation. tr denotes trace
over Dirac gamma matrix space, and �d is a cutoff in
the kd direction. Note that there is no 1/ε divergence.
The holon polarization function [Fig. 4(c), second] is given

by

�b(q) = N ×
(

−2eμ
ε
2√

N

)2 ∫
dd+1k

(2π )d+1

×(
k · t̂q)2Gb
0(k + q)Gb

0(k)

= − e2

24π2ζ 2
a ε

ζ 2
a Q2 − e2

24π2ε

k2 + O(ε0). (51)

Second, we take into account the role of self-interactions
in the holon dynamics. There are no quantum corrections in
the self-energy of holons up to the one-loop level. Only vertex
corrections [Fig. 4(d)] appear, given by

�
(1)
λ (k,p; q) = −N + 5

2

(
λμε

N

)2 ∫
dd+1k′

(2π )d+1

×Gb
0(k′)Gb

0(k′ + q)

= − (N + 5)λ2

16π2N2ε
+ O(ε0), (52)

�
(2)
λ (k,p; q) = −

(
e2με

N

)2 ∫
dd+1k′

(2π )d+1

×Ga
0(k′)Ga

0(k′ + q)

= − e4

2π2N2ζ 2
a ε

+ O(ε0). (53)

Until now, we calculated the spinon self-energy correction
from scattering with U(1) gauge fluctuations, the holon self-
energy correction from scattering with U(1) gauge fluctua-
tions, the gauge-field self-energy correction from scattering
with both spinons and holons, and the vertex correction
of the self-interaction term in the holon dynamics. Both
interaction vertices between spinons and U(1) gauge fields and
between holons and U(1) gauge fluctuations are determined
straightforwardly, taking into account the Ward identity. As a
result, we found the following counter terms

Ab1 = 0, Ab2 = e2

4π2Nε

log ζ 2
a

ζ 2
a − 1

,

Aψ1 = − e2

8π2Nε
A(ζψ,ζa), Aψ2 = e2

8π2Nε
B(ζψ,ζa),

Aa1 = − e2

24π2ζ 2
a ε

, Aa2 = − e2

24π2ε
, (54)

Aλ = (N + 5)λ

16π2Nε
+ e4

2π2Nλζ 2
a ε

,

Aψa = e2

8π2Nε
B(ζψ,ζa), Aba = e2

4π2Nε

log ζ 2
a

ζ 2
a − 1

.

We note Aψ2 = Aψa and Ab2 = Aba1 = Aba2 ≡ Aba , which
result from the Ward identity.

3. Renormalization group equations

It is straightforward to express all the scaling equations of
Eq. (43) in the form of differential equations, given by the
fact that all bare quantities do not change under the scaling
transformation varying the mass scale of μ. As a result, we
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obtain general expressions for flow equations of interaction
parameters and dispersion coefficients as follows:

μ

e2

de2

dμ
= −ε + μ

Za2

dZa2

dμ
− 2 − ε

2

μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
,

μ

λ

dλ

dμ
= −ε − μ

Zλ

dZλ

dμ
+ 2

μ

Zb2

dZb2

dμ

− 2 − ε

2

μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
,

μ

ζ 2
ψ

dζ 2
ψ

dμ
= − μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
+2

μ

Zψ2/Zψ1

d(Zψ2/Zψ1)

dμ

μ

ζ 2
a

dζ 2
a

dμ
= − μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
+ μ

Za2/Za1

d(Za2/Za1)

dμ
,

(55)

which show how such parameters scale as a function of μ.
Inserting renormalization factors given by counter terms of
Eq. (54) into the above, we find β functions in two dimensions
(ε = 1)

βe ≡ μ
de2

dμ
= e2

(
−1 + e2

24π2
+ e2

8π2N

log ζ 2
a

ζ 2
a − 1

)
,

βλ ≡ μ
dλ

dμ
= λ

(
−1 + (N + 5)λ

16π2N
+ e4

2π2Nλζ 2
a

− 3e2

8π2N

log ζ 2
a

ζ 2
a − 1

)
,

βζψ
≡ μ

dζ 2
ψ

dμ
= ζ 2

ψ

(
e2

4π2N

log ζ 2
a

ζ 2
a − 1

− e2

4π2N
[A(ζψ,ζa) + B(ζψ,ζa)]

)
,

βζa
≡ μ

dζ 2
a

dμ
= ζ 2

a

(
e2

4π2N

log ζ 2
a

ζ 2
a − 1

+ e2

24π2
− e2

24π2ζ 2
a

)
.

(56)

Renormalization group flows are summarized in Fig. 5.
Figure 5(a) shows the evolution of the gauge charge as
a function of the scaling parameter. The tree-level scaling
analysis shows the relevance of the gauge coupling, regarded
to be a trivial result below the upper critical dimension. On
the other hand, such gauge fluctuations should be screened
by quantum corrections given by polarizations of spinons and
holons, resulting in a finite critical value of the interaction
parameter. Figure 5(b) shows the flow of the self-interaction
parameter λ. The evolution of the self-interaction parameter
λ as a function of the scaling parameter μ is consistent with
many previous results [19–21]. When the flavor number N

of holons is smaller than a critical value, here Nc = 58,
the βλ function is always positive, which shows that the
self-interaction constant flows into a negative value, implying
the first-order condensation transition of holons. This is well
known to be either the Coleman-Weinberg mechanism in high
energy physics [21] or the fluctuation-driven first-order phase
transition in condensed matter physics [20]. On the other hand,
when the holon flavor number is larger than the critical value,
the βλ function allows a stable critical fixed point, given by the
second zero between 3 and 4 in the case of N = 80. The first
zero point around 1, regarded to be an unstable fixed point, is
suggested to be a tricritical point, which distinguishes the first

FIG. 5. Renormalization group flows from Eq. (56) for spin-liquid Mott quantum criticality.
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TABLE I. Fixed point values, critical exponents, and anomalous
scaling dimensions.

N = 1 N = 80 N → ∞
e2
∗/(4π 2) 0.5744 5.775 6

λ∗/(4π 2) 3.094 4
ζ 2
a 0.05027 0.9278 1

ζ 2
ψ 1.164 1.578 1.601

z∗ 1.904 1.004 1
ηψ∗ −0.7882 −0.02907 0
ηb∗ −1.356 −0.05620 0
ηa∗ −0.4043 0.4625 1/2

order transition from the second order one [19]. Figure 5(c)
shows the change of the anisotropy between frequency and
momentum or inverse of velocity of holons. This flows to
a stable fixed point, given by ζa = ζa∗. The renormalization
group flow for the scaling anisotropy between frequency and
momentum in the free part of the spinon field, Fig. 5(d), also
gives rise to a stable fixed point of ζψ = ζψ∗ in the IR limit.
The scaling anisotropy between frequency and momentum in
the free part of the U(1) gauge field and the spinon field turns
out to be not important at low energies, regarded to still show
the relativistic invariance approximately.

In order to clarify the existence of the second-order phase
transition, we take into account the N → ∞ limit, where the
beta functions become

βe = e2

(
−1 + e2

24π2

)
, βλ = λ

(
−1 + λ

16π2

)
,

(57)

βζψ
= 0, βζa

= ζ 2
a

(
1

6
− 1

6ζ 2
a

)
,

which result in a fixed point, given by e2
∗/(4π2) = 6,

λ∗/(4π2) = 4, and ζ 2
a∗ = 1. Here, ζ 2

ψ is marginal. The fixed
point values are summarized in Table I.

4. Callan-Symanzik equation

In order to understand physical properties near the spin-
liquid Mott critical point, we should find the scaling theory
for correlation functions. The scaling theory is given by
the solution of the Callan-Symanzik equation, a differential
equation for correlation functions to satisfy, describing the
evolution of correlation functions as a function of the scaling
parameter μ [27].

The Callan-Symanzik equation for our model is
(Appendix B)[

zK i · ∇K i
+ 
ki · ∇
ki

−βe

∂

∂e2
− βλ

∂

∂λ
− βζψ

∂

∂ζψ

− βζa

∂

∂ζa

− 2m

(
−5 − ε

2
+ ηψ

)
− 2n

(
−6 − ε

2
+ ηb

)

− 2l

(
−6 − ε

2
+ ηa

)
− {z(2 − ε) + 2}

]

×G(m,n,l)({ki}; e,λ,ζψ,ζa,μ) = 0, (58)

where G(m,n,l) is renormalized (m + n + l)-point Green’s
function given by

〈ψ̄(k1) · · · ψ̄(km)ψ(km+1) · · · ψ(k2m)

× b†(k2m+1) · · · b†(k2m+n)b(k2m+n+1) · · · b(k2m+2n)

× a(k2m+2n+1) · · · a(k2m+2n+2l)〉
= G(m,n,l)({ki}; e,λ,ζψ,ζa,μ) δ(d+1)({ki}). (59)

The beta functions βg , g = e,λ,ζψ,ζa are defined in Eq. (56).
The dynamical critical exponent z and anomalous scaling
dimensions ηi , i = ψ,b,a are given by

z = 1 − 1

2

μ

Zb2/Zb1

∂Zb2/Zb1

∂μ
,

ηψ = 1

2

μ

Zψ

∂Zψ

∂μ
, ηb = 1

2

μ

Zb

∂Zb

∂μ
, ηa = 1

2

μ

Za

∂Za

∂μ
.

(60)

These values are evaluated in the one-loop level at the fixed
point, summarized in Table I.

Solving the Callan-Symanzik equation at the fixed point,
we obtain the spinon Green’s function

Gψσ (K ,kd−1) = 〈ψ̄σ (k)ψσ (k)〉

= 1

|kd−1|2−z∗−2ηψ∗
fψσ

( |K |1/z

|kd−1|
)

, (61)

where fψσ is a nonsingular function, which can be determined
by a direct calculation. Here, no σ summation is performed.
The exponent of |kd−1| is

2 − z∗ − 2ηψ∗ ≈
⎧⎨
⎩

1.672 (N = 1),
1.054 (N = 80),
1 (N → ∞),

(62)

positive regardless of N .

C. Renormalization of a q = 2kF vertex

In order to clarify effects of the disappearance of a
spinon Fermi surface on physical responses, we consider a
renormalization group flow for a 2kF vertex with its strength
of r , given by

Sr = −2rμ

∫
d3k

(2π )3
(f †

σ+(k)fσ−(k) + f
†
σ−(k)fσ+(k))

→ irμ

∫
dd+1k

(2π )d+1
(ψT (k)γ0ψ(−k) + ψ̄(k)γ0ψ̄

T (−k)),

(63)

where the dimensional regularization has been introduced in
the last line. Then, the renormalization of this vertex is given
by

�r = r

(
ieμ

ε
2√

N

)2 ∫
dd+1q

(2π )d+1
Ga

0(q)(γ5γd−1)T

× [Gψ

0 ]T (k + q)γ0G
ψ

0 (−k − q)γ5γd−1 (64)

in the one-loop level Fig. 6.
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FIG. 6. Renormalization of a 2kF vertex with its strength of r .

When the U(1) spin-liquid state with a spinon Fermi surface
is considered, the βr (μ) function is given by [11]

βr (μ) ≡ μ
dr

dμ
= r

[
− 1 − μ

Zr

dZr

dμ
+ μ

Zψ2

Zψ2

dμ

]
≈ 0.0772r, (65)

where the vertex renormalization constant is

Zr = 1 + u1
e

4
3

ε
, u1 ≈ 0.1346. (66)

This shows irrelevance of the 2kF scattering channel in the
presence of a spinon Fermi surface.

On the other hand, if the spin-liquid Mott quantum critical
point is taken into account, the βr (μ) function is given by

βr (μ) ≡ μ
dr

dμ
= r

[
−1 − μ

Zr

dZr

dμ
+ μ

Zb2

Zb2

dμ

]

≈
⎧⎨
⎩

−1.440r (N = 1),
−1.004r (N = 80),
−1.000r (N → ∞),

(67)

respectively. Here, the vertex renormalization constant is

Zr = 1 + e2

16π2Nε
Cr (ζψ,ζa),

Cr (ζψ,ζa) =
∫ 1

0
ds

1 − s

s
1
2
[
sζ 2

a + (1 − s)ζ 2
ψ

] . (68)

As a result, one-dimensional spinon dynamics gives rise to the
enhancement of spin correlations for the 2kF channel.

V. RENORMALIZATION GROUP ANALYSIS III:
BOSONIZATION FOR SPINONS

A. Bosonization for spinons

The curvature term with k2
2 in the spinon spectrum is

irrelevant in the scaling analysis, being set to be zero. In other
words, the dispersionless dispersion along the k2 direction tells
that the spinon dynamics is localized in the x2 direction. As a
result, we start from the following effective field theory in two
dimensions

S =
∫

d2x �̄σ (k)(γ0∂0 + γ1∂1)�σ (k)

+ ie

∫
d2x A(x)�̄σ (x)γ5γ1�σ (x)

+
∫

d3x |(∂μ − ieaμ(x))b(x)|2 + λ

4

∫
d3x |b(x)|4

+ 1

2

∫
d3x (∂μa(x))2. (69)

Here, ψσ (x0,x1,x2) = �σ (x0,x1)δ(x2) and a(x0,x1,x2 = 0) =
A(x0,x1) are effective one-dimensional spinons and U(1)
gauge fields, which emerge at low energies near the spin-liquid
Mott quantum critical point. We recall μ = 0,1,2 with a0 = 0
in the holon sector.

Since the critical dynamics of spinons are effectively de-
scribed by Luttinger-liquid physics, we can use the bosoniza-
tion technique [18] to solve the spinon sector. Performing the
bosonization for �σ , we obtain

S = 1

2π

∫
d2x

[
(∂μ�c(x))2 + (∂μ�s(x))2− 2ieA(x)∂1�c(x)

]

+
∫

d3x |(∂μ − ieaμ(x))b(x)|2

+ λ

4

∫
d3x |b(x)|4 + 1

2

∫
d3x (∂μa(x))2. (70)

Here, �c(x) represents neutral density fluctuations (sound
modes) and �s(x) describes collective spin density excitations
of the Ising type. U(1) gauge fluctuations couple to neutral
density excitations as expected. Integrating over �c(x), we
obtain

S = 1

2π

∫
d2x (∂μ�s(x))2

+
∫

d3x |(∂μ − ieaμ(x))b(x)|2 + λ

4

∫
d3x |b(x)|4

+ 1

2

∫
d3x (∂μa(x))2 + e2

2π

∫
d2x A2(x). (71)

Now, the �s field is decoupled to the rest of the fields. The
critical spin dynamics is described by the Luttinger liquid
theory. Recall that we performed the Abelian bosonization.
If we resort to the non-Abelian bosonization technique,
respecting the spin SU(2) symmetry, we obtain SU(2) k = 1
Wess-Zumino-Witten (WZW) theory [18] for the critical spin
dynamics near the spin-liquid Mott quantum critical point,
where k denotes the level of the theory. On the other hand,
U(1) gauge fluctuations look “massive.” However, one should
be more careful to reach such a conclusion since the A(x) field
exists only at x2 = 0.

In order to take into account the delta function masslike
term, it is convenient to use the following scattering basis for
the gauge field a:

u+(x2; k2) =
⎧⎨
⎩

eik2x2 − iαk

1+iαk
e−ik2x2 (x2 < 0),

1
1+iαk

eik2x2 (x2 > 0),
(72)

u−(x2; k2) =
⎧⎨
⎩

1
1+iαk

e−ik2x2 (x2 < 0),

e−ik2x2 − iαk

1+iαk
eik2x2 (x2 > 0),

(73)
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where u± orthonormal;∫
dx2 u∗

+(x2; k′
2)u+(x2; k2) = (2π )δ(k2 − k′

2),∫
dx2 u∗

−(x2; k′
2)u−(x2; k2) = (2π )δ(k2 − k′

2), (74)∫
dx2 u∗

−(x2; k′
2)u+(x2; k2) = 0.

Expanding a(x) in terms of these eigenfunctions, we obtain

a(x) =
∫

d3q

(2π )3
[a+(q)u+(x; q) + a−(q)u−(x; q)]. (75)

As a result, we reach the following expression (extending the
number of components of b field to N )

S = 1

2π

∫
d2x (∂μ�s(x))2

+
∫

k

(
k2

0 + k2
1 + k2

2

)
b†a(k)ba(k)

− e

2
√

N

∫
k,q

(2kμ + qμ)[a+
μ (q) + a−

μ (q)]b†a(k + q)ba(k)

+ e2

2N

∫
k,p,q

[a+(−p + q)a+(p) + a−(−p + q)a−(p)]

× b†a(k + q)ba(k)

+ λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p)

+ 1

2

∫
q

(
q2

0 + q2
1 + q2

2

)
[a+(−q)a+(q) + a−(−q)a−(q)],

(76)

which remains essentially the same as the Abelian Higgs
model. We conclude that U(1) gauge fluctuations are not
massive for the role in critical holon dynamics.

B. Renormalization group analysis for the holon sector

It is straightforward to perform the renormalization group
analysis for the holon sector based on the dimensional
regularization technique. Taking into account the scaling
transformation

k = k′

s
, (77)

we obtain

b(k) = s
d+3

2 b′(k′), a±(q) = s
d+3

2 a′
±(q ′) (78)

for field variables and

e′ = s
3−d

2 e, λ′ = s3−dλ. (79)

for interaction parameters. Both coupling parameters are
marginal at dc = 3, and the renormalization group analysis
is performed in d = 3 − ε.

The (d + 1)-dimensional effective field theory (bare action)

SB =
∫

kB

(
K 2

B + 
k2
B

)
b
†
Ba(kB)bBa(kB)

− eB√
N

∫
kB,qB


kB · [
a+,B(qB) + 
a−,B (qB)]

× b
†
Ba(kB + qB)bBa(kB)

+ e2
B

2N

∫
kB,pB,qB

[a+,B(−pB + qB)a+,B(pB)

+ a−,B (−pB + qB)a−,B(pB)]b†Ba(kB + qB)bBa(kB)

+ λB

4N

∫
kB,pB,qB

b
†
Ba(kB + qB)bBa(kB)

× b
†
Bb(pB − qB)bBb(pB)

+ 1

2

∫
qB

(
ζ 2
aB Q2

B + 
q2
B

)
[a+,B (−qB)a+,B(qB)

+ a−,B (−qB)a−,B(qB)] (80)

is separated into the renormalized action

SR =
∫

k

(K 2 + 
k2)b†a(k)ba(k)

− eμ
ε
2√

N

∫
k,q


k · [
a+(q) + 
a−(q)]b†a(k + q)ba(k)

+ e2με

2N

∫
k,p,q

[a+(−p + q)a+(p)+a−(−p + q)a−(p)]

× b†a(k + q)ba(k)

+ λμε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p − q)bb(p)

+ 1

2

∫
q

(
ζ 2
a Q2 + 
q2

)
[a+(−q)a+(q) + a−(−q)a−(q)]

(81)

and counter terms

SCT =
∫

k

(Ab1 K 2 + Ab2
k2)b†a(k)ba(k)

−Aba1
eμ

ε
2
∫

k,q

(
k · t̂q)[a+(q) + a−(q)]b†(k + q)b(k)

+Aba2
e2με

2

∫
k,p,q

[a+(−p + q)a+(p)

+ a−(−p + q)a−(p)]b†(k + q)b(k)

+Aλ

λμε

4

∫
k,p,q

b†(k + q)b†(p − q)b(p)b(k)

+ 1

2

∫
q

(
Aa1ζ

2
a Q2 + Aa2 
q2)[a+(−q)a+(q)

+ a−(−q)a−(q)], (82)

where ε = 3 − d and introduced mass scaling dimension μ.
The Ward identity guarantees Ab2 = Aba1 = Aba2.
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The relation between bare and renormalized quantities are
given by

K =
(

Zb2

Zb1

) 1
2

KB, 
k = 
kB,

ba(k) = Z
− 1

2
b bBa(kB), Zb = Zb2

(
Zb2

Zb1

) d−1
2

,

a±(q) = Z
− 1

2
a a±,B(qB), Za = Za2

(
Zb2

Zb1

) d−1
2

,

(83)

e2
B = e2μεZ−1

a2

(
Zb2

Zb1

) d−1
2

,

λB = λμεZλZ
−2
b2

(
Zb2

Zb1

) d−1
2

,

ζ 2
aB = ζ 2

a

Zb2

Zb1

Za1

Za2
.

C. Evaluation of counter terms in the one-loop level

The self-energy correction of the gauge field is given by the
polarization function of the holon field, given by

�a± (q) = N ×
(

−eμ
ε
2√

N

)2 ∫
dd+1k

(2π )d+1

× (
k · t̂q)2Gb
0(k)Gb

0(k + q)

= − e2

96π2ε
( Q2 + 
q2) + O(ε0), (84)

where the holon propagator is

Gb
0(k) = 1

K 2 + 
k2
. (85)

The holon self-energy correction is described by the Fock
diagram, given by

�b(k) = 2

(
−eμ

ε
2√

N

)2 ∫
dd+1q

(2π )d+1
(
k · t̂q)2Ga

0(q)Gb
0(k + q)

= e2

8π2Nε

log ζ 2
a

ζ 2
a − 1


k2 + O(ε0), (86)

where the gauge-field propagator is

Ga(q) = 1

ζ 2
a Q2 + 
q2

, (87)

the factor 2 comes from summation of two kinds of gauge
fields.

The vertex correction in the holon-gauge vertex can be
found, resorting to the Ward identity. The renormalization
effect for the holon self-interaction vertex is well known to
follow a textbook level. As a result, we obtain counter terms
as follows

Ab1 = 0, Ab2 = e2

8π2Nε

log ζ 2
a

ζ 2
a − 1

,

Aa1 = − e2

96π2ζ 2
a ε

, Aa2 = − e2

96π2ε
,

Aλ = (N + 5)λ

16π2Nε
+ e4

16π2Nλζ 2
a ε

,

Aba1 = Aba2 = e2

8π2Nε

log ζ 2
a

ζ 2
a − 1

. (88)

D. Renormalization group equations

Considering that bare quantities do not evolve with respect
to the scaling parameter μ, it is straightforward to find general
expressions of renormalization group equations

μ

e2

de2

dμ
= −ε + μ

Za2

dZa2

dμ
− 2 − ε

2

μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
,

μ

λ

dλ

dμ
= −ε − μ

Zλ

dZλ

dμ
+ 2

μ

Zb2

dZb2

dμ

− 2 − ε

2

μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
,

μ

ζ 2
a

dζ 2
a

dμ
= − μ

Zb2/Zb1

d(Zb2/Zb1)

dμ
+ μ

Za2/Za1

d(Za2/Za1)

dμ
.

(89)

Introducing counter terms into renormalization factors in the
above equations, we obtain β functions in d = 2

βe ≡ μ
de2

dμ
= e2

(
−1 + e2

96π2
+ e2

16π2N

log ζ 2
a

ζ 2
a − 1

)

βλ ≡ μ
dλ

dμ
= λ

(
−1 + (N + 5)λ

16π2N
+ e4

16π2Nλζ 2
a

− 3

16π2N

log ζ 2
a

ζ 2
a − 1

e2λ

)

βζa
≡ μ

dζ 2
a

dμ
= ζ 2

a

(
e2

8π2N

log ζ 2
a

ζ 2
a − 1

+ e2

96π2
− e2

96π2ζ 2
a

)
,

(90)

which show how renormalized parameters flow as a function
of the scaling parameter μ. Comparing these renormalization
group equations with those of both holon and gauge-field parts
in Eq. (56), we find that they are essentially identical in the
physical point of view. See Fig. 7. We note that the coupling
constant λ has a stable fixed point in the case of N > Nc. Here,
the critical holon flavor number is Nc = 111. All fixed point
values are summarized in Table II.

VI. JUSTIFICATION OF THE LUTTINGER-LIQUID
PHYSICS IN THE CRITICAL SPINON DYNAMICS: SU(2)

GAUGE THEORY POINT OF VIEW

As discussed in Sec. III A, we took into account only the
particle-hole channel for the decomposition of the Hubbard
interaction, referred to as the U(1) slave-rotor theory. If
the particle-particle channel is also introduced, we obtain
an effective theory, referred to as the SU(2) slave-rotor
representation [25]. Using the Nambu-spinor representation
ψi = (ci↑,c

†
i↓)T and performing the Hubbard-Stratonovich

transformation for both the particle-particle and particle-hole
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FIG. 7. Renormalization group flows from Eq. (90). They are essentially the same as those in Fig. 5.

channels, we arrive at the following action:

S =
∫ β

0
dτ

⎡
⎣∑

i

ψ
†
i (∂τ − μτz − i 
�i · 
τ )ψi

− t
∑
ij

(ψ†
i τzψj + H.c.) + 3

4U

∑
i

tr( 
�i · 
τ )2

⎤
⎦, (91)

where 
τ = (τx,τy,τz) are Pauli matrices, and 
�i is a Hubbard-
Stratonovich field.

Similar to the U(1) slave-rotor theory, we decompose the
Nambu-spinor field ψi as

ψi = Z
†
i Fi, (92)

where

Fi =
(

fi↑

f
†
i↓

)
, Zi =

(
zi↑ −z

†
i↓

zi↓ z
†
i↑

)
∈ SU (2). (93)

fiσ is a fermion field and ziσ is a bosonic field with
the unimodular constraint of |zi↑|2 + |zi↓|2 = 1. Introducing
this projective representation into Eq. (91), redefining the
Hubbard-Stratonovich field 
�i as Zi( 
�i · 
τ )Z†

i → 
�i · 
τ , and
then shifting it as 
�i · 
τ → 
�i · 
τ − iZi∂τZ

†
i , we reach the

following effective action

S =
∫ β

0
dτ

[∑
i

F
†
i

(
∂τ − μZiτzZ

†
i − i�a

i τa

)
Fi

− t
∑
ij

(F †
i ZiτzZ

†
jFj + H.c.)

+ 3

4U

∑
i

tr
(
�a

i τa − iZi∂τZ
†
i

)2

+
∑

i

λi tr (Z†
i Zi − 1)

]
, (94)

TABLE II. Fixed point values.

N = 1 N = 150 N → ∞
e2
∗/(8π 2) 0.4841 11.52 12

λ∗/(8π 2) 1.581 2
ζ 2
a 0.02029 0.9232 1

where a = x,y,z with the Einstein convention for the sum-
mation of a. The last term comes from the rotor constraint of
|zi↑|2 + |zi↓|2 = 1, where λi is a Lagrange multiplier field. For
details in the derivation, we would like to refer to Ref. [25].

Similar to the U(1) case, we consider the following mean-
field ansatz:

〈ZiτzZ
†
j 〉 = Xτze

−iAa
ij τa , 〈FiF

†
j 〉 = −Yτze

−iAa
ij τa , (95)

where X and Y are amplitudes of hopping parameters,
determined by self-consistent equations of order parameters,
and e−iAa

ij τa ’s are SU(2) gauge fluctuations in the lattice
construction, taken into account beyond the mean-field ap-
proximation. Substituting this ansatz into the action Eq. (94),
we obtain

S =
∫ β

0
dτ

⎡
⎣∑

i

F
†
i

(
∂τ − μ̃τz − i�a

i τa

)
Fi

− tX
∑
ij

(
F

†
i τze

−iAa
ij τaFj + H.c.

)

+ 3

4U

∑
i

tr
(
�a

i τa − iZi∂τZ
†
i

)2 + λ̃
∑

i

trZ†
i Zi

− tY
∑
ij

tr
(
Z

†
i τze

−iAa
ij τaZj τz + H.c.

)⎤⎦
−λβN − 2zXYβN, (96)

where λi is chosen to be uniform. z in the last line is
the coordination number. μ̃ and λ̃ are modified values for
the chemical potential of spinons and the mass of holons,
respectively, due to the on-site interaction −μ

∑
i F

†
i ZiτzZ

†
i Fi

in the first line of Eq. (94).
Taking into account the continuum limit, we reach the

following expression for the SU(2) slave-rotor theory in the
spin-liquid ansatz

S =
∫ β

0
dτ

∫
d2x

[
F †(∂τ − μ̃τz − ig�aτa)F

− tXF †τz( 
∇ − ig 
Aaτa)2F

− 3

4U
tr(Z†∂τZ − ig�aτa)2 + λ̃ trZ†Z

− tY tr{Z†τz( 
∇ − ig 
Aaτa)2Zτz} − 1

4
Fa

μνF
a
μν

]
. (97)
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Here, we dropped the last two terms in Eq. (96), assuming that
the mean-field values of λ, X, and Y are determined to give
constant contributions. In addition, we include the kinetic term
of gauge-field fluctuations, expected to result from high-energy
fluctuations of spinons and holons, where Aa

μ (μ = 0,1,2) with
Aa

0 = �a and rescaling of A → gA. Fa
μν = ∂μAa

ν − ∂νA
a
μ +

gf abcAb
μAc

ν is a field strength with an interaction coupling
constant g. f abc is a structure constant defined by commutators
of generators [Ta,Tb] = if abcTc, where Ta = τa/2 in our case,
and thus f abc is given by the Levi-Civita symbol εabc. The
spatial dimension is two and the arrowed vector is a two-
dimensional vector.

In order to quantize the non-Abelian gauge theory, we take
into account both terms involved with gauge fixing and ghost
fields [27]:

Sadd = − 1

2ξ

∫
d3x
(
∂iA

a
i

)2 −
∫

d3x c̄a∂iD
ac
i cc, (98)

where ξ is a parameter that fixes the gauge field propagator,
ca are fermion ghost fields, and Dac

i = δac∂i + gf abcAb
i .

Following the U(1) slave-rotor theory, we write down
an effective field theory in a double-patch construction.
Expanding the dispersion near the Fermi surface, we obtain
the free-part of the spinon dynamics as follows

S =
∫

d3k

(2π )3
F †

s (k)
[
ik0 + (svF k1 + tXk2

2

)
τz

]
Fs(k), (99)

where s = ± is the patch index, vF = 2tXKF , and KF is
Fermi wave vector. In order to construct (1 + 1)D-type Dirac
representation, we combine two patches as

�(k) =
(

F+(k)
(F †

−)T (−k)

)
, (100)

where T is the transpose operator. (F †
−)

T
(−k) means a column

vector with the components of f
†
−(−k) and f−(k). Resorting

to this nonminimal representation, we rewrite the above action
in the (1+1)-dimensional Dirac form:

S =
∫

d3k

(2π )3
�̄(k)(iγ0k0 + iγ1δk)�(k), (101)

where

γ0 =
(

0 −iI2

iI2 0

)
, γ1 =

(
0 τz

τz 0

)
(102)

with a two by two identity matrix I2, δk = vF k1 + tXk2
2.

The interaction term of the spinon-gauge field in the patch
description is

SFA = −vF g

∫
k,q

sF †
s (k + q)τzA

a(q)τaFs(k), (103)

where we imposed the Coulomb gauge condition on 
Aa so
that 
q · 
Aa(q) = 0. Then, 
Aa(q) has only one component in
two dimensions, denoted by Aa(q). Resorting to the spinor
representation of �, the interaction term can be written as

SFA = ivF e

∫
k,q

�̄(k + q)γ0γ1(Ax(q)τx Ī4

+Ay(q)τyI4 + Az(q)τzI4)�(k), (104)

where I4 is a four by four identity matrix and Ī4 =
diag(I2,−I2).

Now, it is straightforward to consider the dimensional
regularization. Extending the co-dimension of the spinon
Fermi surface, and performing the tree-level scaling analysis,
we obtain the following scaling transformation:

K = K ′

s
, kd−1 = k′

d−1

s
, kd = kd√

s
,

�(k) = s�� � ′(k′), �� = d

2
+ 3

4
,

Aa(q) = s�AAa ′(q ′), �A = d

2
+ 3

4
,

c(k) = s�cc′(k′), �c = d

2
+ 3

4
,

g = s�gg′, �g = d

2
− 5

4
, (105)

essentially the same as the U(1) case. Here, the scaling trans-
formation of the coupling g is deduced from the spinon-gauge
field coupling term. However, the difference of SU(2) theory
to U(1) theory is that the gauge fields are interacting with
themselves given by the same coupling constant g. In order
to have a consistent description, the scaling transformation
obtained from the self-interaction term of the gauge field
should be the same as that in the above equation, even in the
tree level. From both the A3 and A4 interaction terms, we have

g = s�g3g′, �g3 = d

2
− 1

4
,

g = s�g4g′, �g4 = d

2
− 3

4
. (106)

As a result, �g3, �g4, and �g are all different from each other
in any dimensions. We also find

g = s�cAg′, �cA = d

2
− 1

4
(107)

in the ghost-gauge field coupling term, different from �g .
These observations lead us to conclude that the scaling
transformation to preserve the spinon Fermi surface cannot
be consistent with the SU(2) gauge symmetry. On the other
hand, releasing the stability condition for the spinon Fermi
surface, the critical spinon dynamics is described by the
one-dimensional Luttinger-liquid physics. The critical holon
dynamics is still described by the two-dimensional band
description. An important point is that the Lorentz invariance
is fully respected when we preserve the holon dispersion
relation across the metal-insulator transition. As a result, the
inconsistency between the scaling transformation and the
SU(2) gauge symmetry does not occur. The SU(2) gauge
symmetry seems to suggest one-dimensional Luttinger-liquid
physics for critical spinon dynamics at UV although this
question should be addressed more carefully in the near future.

VII. SUMMARY AND DISCUSSION

A. Summary

In this study we investigated how a spinon Fermi sur-
face becomes destabilized to result in the emergence of
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one-dimensional spin dynamics, based on the perturbative
theoretical framework. Actually, we could obtain such a
nonperturbative phenomenon based on the renormalization
group analysis within the scheme of graphenization of the
Fermi-surface problem. An essential point is that the spinon
Fermi surface becomes flattened along the direction of
the Fermi surface already at the tree level near the spin-
liquid Mott quantum criticality. As a result, quantum critical
dynamics of spinons is described by one-dimensional rela-
tivistic spectrum at UV, i.e., the physics of Luttinger liquid.
Then, gapless low lying spin-singlet fluctuations described
by U(1) gauge fields cannot be damped due to the presence
of pseudogap physics. Interaction effects are much enhanced
to cause Luttinger-liquid physics to the spinon dynamics at
the spin-liquid Mott quantum critical point of IR. On the
other hand, critical charge fluctuations are governed by an
IXY fixed point above a critical value of the holon flavor
number.

We believe that essential ingredients in the effective field
theory are extra, or more precisely, actual critical degrees of
freedom in addition to “generic scale invariance.” Here, we use
the term of generic scale invariance in the sense of that used
in Ref. [28]. The generic scale invariance is a feature of the
U(1) spin-liquid state, where such a phase is identified with
an interacting stable fixed point in the renormalization group
analysis. Additional or actual critical degrees of freedom are
given by holon excitations, physically speaking, fluctuations of
zero-sound modes, describing a metal-insulator Mott transition
from a Fermi-liquid phase to a spin-liquid state. Here, we
ask possible UV fixed points that we should start from for
the renormalization group analysis. One may choose the
U(1) spin-liquid critical fixed point with a stable spinon
Fermi surface as a starting UV fixed point. However, we
are suggesting another possibility here in order to discuss the
metal-insulator transition: If we go to the Mott critical point
from the Fermi-liquid phase, it may be better to perform the
scaling analysis which fits to the critical holon sector. In other
words, we start from a different UV fixed point. As a result,
the Lorentz invariance emerges at the tree level, which does
not allow Landau damping. The absence of Landau damping
is responsible for the destabilization of a spinon Fermi
surface.

Now, the question is how generic this feature is. Suppose
two-dimensional interacting electrons in the presence of
nonmagnetic disorders. Then, this system flows into a diffusive
Fermi-liquid fixed point, where the generic scale invariance
occurs [28]. Reducing the density of electrons, experiments
tell us that ferromagnetic spin fluctuations seem to appear in
the vicinity of a metal-insulator transition. In order to describe
these ferromagnetic spin fluctuations, one may introduce an
additional order parameter as a critical theory. Here, a question
arises: How should we take the scaling analysis in the tree
level? Which fixed points should we resort to for the scaling
analysis: the diffusive fixed point or such a magnetic “quantum
critical” (more precisely, instability) point? We can consider
another situation. We revisit the U(1) spin-liquid state. Now,
we take into account a spin-density-wave instability inside the
spin-liquid phase for a generic spinon Fermi surface. Here, the
spin-density-wave transition can occur in the 2kF momentum
channel, where kF is a spinon Fermi momentum. Which

fixed points should we start from: the U(1) spin-liquid phase
or the spin-density-wave quantum critical point? We suspect
that spinons may become localized in the second case while
antiferromagnetic critical spin fluctuations can be itinerant. We
expect that this physical situation would realize a two-fluid
model description. This speculation should be investigated
more sincerely later.

B. Physical picture: A scenario for a renormalization group flow
from the U(1) spin-liquid fixed point with a stable spinon Fermi

surface to the emergent Luttinger-liquid physics of spinons

An essential question in the present study is how the
spinon Fermi surface disappears, approaching the spin-liquid
to Fermi-liquid Mott quantum critical point from the U(1)
spin-liquid state with the spinon Fermi surface. Here, we
did not find the renormalization group flow from the U(1)
spin-liquid fixed point of S.-S. Lee [11] to the spin-liquid
Mott quantum critical point of ours within the scheme of
graphenized dimensional regularization. In order to verify this
renormalization group flow, we suggest an idea to perform
the renormalization group analysis with the curvature term,
assuming the relativistic scaling transformation which leads
the holon dynamics to be invariant. Although the curvature
term is irrelevant in the tree-level scaling analysis, there may
appear quantum corrections of “antiscreening” to cause a
run-away flow. In other words, we speculate that there is
a critical value of the curvature term or effective band
mass: When the effective mass is more than a critical value,
the velocity is renormalized to vanish, i.e., showing Mott
localization along the transverse direction of the Fermi surface
near the quantum critical point. On the other hand, when
the effective mass is less than the critical value, the spinon
Fermi surface would be stabilized. This physical picture
may be possible if the Landau damping term in U(1) gauge
fluctuations is controlled by the evolution of the curvature
term.

C. A possible connection between dynamical mean-field
theory and U(1) spin-liquid theory

Dynamical mean-field theory assumes the emergence of
localized magnetic moments in the vicinity of a metal-insulator
transition [29]. An insulating state within this description
is given by self-consistently generated localized magnetic
moments decoupled from itinerant electrons. A metallic
phase is described by screening of such preexisting localized
magnetic moments, nothing but self-consistently describing
the pseudogaplike Kondo effect [30]. Such emergent localized
magnetic moments carry extensive entropy. Thus, they play the
role of the source of strong inelastic scattering in dynamics of
itinerant electrons, responsible for non-Fermi-liquid physics
near the local-moment Mott quantum criticality. Actually, the
dynamical mean-field theory could explain the mirror-shaped
quantum critical scaling behavior for electrical resistivity
in the vicinity of various metal-insulator transitions quite
surprisingly [31]. Unfortunately, such a theoretical frame-
work gives an unsatisfactory description on how emergent
localized magnetic moments are screened to reduce huge
entropy at low temperatures in the insulating phase. On the
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other hand, characteristic features of the insulating phase
in κ-class organic salts turn out to be well described by
spin-liquid physics, more precisely, the U(1) spin-liquid state
with a spinon Fermi surface [23]. It would be interesting to
investigate whether or not the emergence of one-dimensional
spinon dynamics at the spin-liquid Mott quantum criti-
cal point serves a meaningful connection from spin-liquid
theory to dynamical mean-field theory for Mott quantum
criticality.
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APPENDIX A: POLARIZATION FUNCTION �1, FERMION
SELF-ENERGY � f , AND BOSON SELF-ENERGY �b IN

RENORMALIZATION GROUP ANALYSIS I

In this appendix, we evaluate the self-energies and po-
larizations needed in RG analysis of Sec. III. There are
three diagrams for the polarization in the one-loop level,
but the fermion bubble is of the order of O(N0) while two
Boson bubbles are the order of O(1/N ). In this respect
we consider only the fermion bubble in the gauge field
propagator.

The spinon bubble diagram [Fig. 8(a)] is

�f (q) = −
(

ieμ
ε
2√

N

)2 ∫
dd+1k

(2π )d+1

× tr[Gψ

0 (k)γ5γd−1G
ψ

0 (k + q)γ5γd−1]

= −e2με

N
βd

| Q|d−1

|qd | , (A1)

where

βd = �2
(

d
2

)
2dπ

d−1
2

∣∣ cos πd
2

∣∣�( d−1
2

)
�(d)

. (A2)

FIG. 8. Polarization diagrams from spinons (a) and holons (b)
and (c).

FIG. 9. Self-energy corrections for spinons (a) and holons (b) and
(c).

The minus sign in the first line is due to the fermion loop.
The spinon self-energy [Fig. 9(a)] is given by

�f (k) =
(

ieμ
ε
2√

N

)2 ∫
dd+1q

(2π )d+1

×Ga
0(q)γ5γd−1G

ψ

0 (k + q)γ5γd−1

= − ie
4
3 μ

2ε
3

N
2
3

β
f

�

β
1
3
d

|K | 2d−5
6 (� · K ), (A3)

where

β
f

� = �
(

5−2d
6

)
�
(

d−1
3

)
�
(

d
2

)
3
√

3 2d−1π
d
2 �
(

d−1
6

)
�
(

5d−2
6

) . (A4)

This gives

�f (k) = − e
4
3

N
2
3

u1

ε
(i� · K ), (A5)

where

u1 = 1

2
3
2 3

3
2 π

3
4 �
(

3
4

)
β

1
3
5
2

. (A6)

The holon self-energy [Fig. 9(b)] is

�b1(k) = −
(

−2eμ
ε
2√

N

)2 ∫
dd+1q

(2π )d+1

×(
k · t̂q)2Ga
0(q)Gb

0(k + q). (A7)

Here, we show that this term does not give the 1/ε divergence.
Since the inner-product term in the integrand does not affect
the 1/ε divergence, we consider the following integral:

I ≡
∫

dd+1q

(2π )d+1

1

q2
d + e2μεβd

| Q|d−1

|qd |

× 1

ζb( Q + K )2 + (
q + 
k)2

= 1

2

∫
d Qdqd

(2π )d
1

q2
d + e2μεβd

| Q|d−1

|qd |

× 1

[ζb( Q + K )2 + (qd + kd )2]
1
2

. (A8)

If the q2
d term is more dominant than Landau damping in

the gauge-field propagator, we have no 1/ε divergence. On
the other hand, if Landau damping is dominant, qd is cut
off by | Q| d−1

3 . Considering the approximation of the gauge
propagator proportional to |qd |/| Q|d−1 and integrating over
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qd , we obtain

I ∼
∫

dQ Qd−2

√
Q2 + Q

2d−2
3

Qd−1

=
∫

dQ

√
1 + Q

2d−8
3 . (A9)

The first term is not regularized by the dimension d, allowing
us to neglect it. The second term can be regularized by the
dimension but near d = 7. So, the integral does not have the
1/ε divergence near d = 5

2 .
The second boson self-energy term [Fig. 9(c)] is given by

�b2(k) = e2με

N

∫
dd+1q

(2π )d+1

1

q2
d + e2μεβd

| Q|d−1

|qd |

= 2

3
√

3

e2με

N
�d−1

∫
dd−1Q

(2π )d−1

1

( Q2)
d−1

6

= 0, (A10)

which vanishes due to the Veltman’s formula [32]. �d−1 is
a momentum cutoff in the qd−1 direction. There is no 1/ε

divergence.

APPENDIX B: DERIVATION OF CALLAN-SYMANZIK
EQUATION

In this Appendix, we derive the Callan-Symanzik equation
for the model in Sec. IV. A bare (m + n + l)-point Green’s
function is defined as

〈ψ̄B(kB,1) · · · ψ̄B(kB,m)ψB(kB,m+1) · · · ψB(kB,2m)

× b
†
B(kB,2m+1) · · · b†B(kB,2m+n)bB(kB,2m+n+1)

· · · bB(kB,2m+2n)aB(kB,2m+2n+1) · · · aB(kB,2m+2n+2l)〉
= G

(m,n,l)
B ({kB,i}; eB,λB,ζψ,B,ζa,B ) δ(d+1)({kB,i}), (B1)

and a renormalized Green’s function is

〈ψ̄(k1) · · · ψ̄(km)ψ(km+1) · · · ψ(k2m)

× b†(k2m+1) · · · b†(k2m+n)b(k2m+n+1) · · · b(k2m+2n)

× a(k2m+2n+1) · · · a(k2m+2n+2l)〉
= G(m,n,l)({ki}; e,λ,ζψ,ζa,μ) δ(d+1)({ki}), (B2)

where the relation between bare and renormalized Green’s
functions is

G(m,n,l)({ki}; e,λ,ζψ,ζa,μ)

= Z−m
ψ Z−n

b Z−n
a

(
Zb2

Zb1

) d−1
2

×G
(m,n,l)
B ({kB,i}; eB,λB,ζψ,B,ζa,B ). (B3)

The bare correlation function should not depend on the
energy scale μ, given by μ d

dμ
GB = 0. Then, we obtain the

following differential equation for the renormalized correla-
tion function[

μ
∂

∂μ
+ (1 − z)K · ∇K

+βe

∂

∂e2
+ βλ

∂

∂λ
+ βζψ

∂

∂ζψ

+ βζa

∂

∂ζa

+ 2mηψ + 2nηb + 2lηa − (d − 1)(1 − z)

]

×G(m,n,l)({ki}; e,λ,ζψ,ζa,μ) = 0, (B4)

where the β functions βg , g = e,λ,ζψ,ζa are defined as βg =
dg/d log μ. The dynamical critical exponent z and anomalous
scaling dimensions ηi , i = ψ,b,a are given by

z = 1 − 1

2

μ

Zb2/Zb1

∂Zb2/Zb1

∂μ
,

ηψ = 1

2

μ

Zψ

∂Zψ

∂μ
, ηb = 1

2

μ

Zb

∂Zb

∂μ
, ηa = 1

2

μ

Za

∂Za

∂μ
.

(B5)

From the definition of (m + n + l)-point Green’s function, the
engineering scaling dimension of G(m,n,l) given by

G(sk; μ) = sDG(k; μ/s) (B6)

is

D = −2m
d + 2

2
− 2n

d + 3

2
− 2l

d + 3

2
+ (d + 1).

(B7)

As a result, we obtain(
K i · ∇K + 
k · ∇
k + μ

∂

∂μ
− D

)
G = 0. (B8)

Combining this equation with the previous equation (B4),
we reach the following expression of a differential equation
for a (m + n + l)-point correlation function, which shows the
evolution as a function of the energy scale,

[
zK i · ∇K i

+ 
ki · ∇
ki

−βe

∂

∂e2
− βλ

∂

∂λ
− βζψ

∂

∂ζψ

− βζa

∂

∂ζa

− 2m

(
−5 − ε

2
+ ηψ

)
− 2n

(
−6 − ε

2
+ ηb

)

− 2l

(
−6 − ε

2
+ ηa

)
− {z(2 − ε) + 2}

]

×G(m,n,l)({ki}; e,λ,ζψ,ζa,μ) = 0. (B9)

Here, the dimensions are d = 3 − ε. This is the Callan-
Symanzik equation for our model, Eq. (58) in the main text.
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