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Solid solution MAX phases offer the opportunity for further tuning of the thermomechanical and functional
properties of MAX phases, increasing their envelope of performance. Previous experimental results show that the
lattice parameters of Ti3(SixAl1−x)C2 decrease, while the Young’s modulus increases with increased Si content
in the lattice. In this work, we present a computational investigation of the structural, electronic, and mechanical
properties of Ti3(SixAl1−x)C2 (x = 0, 0.25, 0.5, 0.75, and 1). The solid solutions were modeled using special
quasirandom structures (SQS) and calculated using density functional theory (DFT), which is implemented in
the Vienna ab initio simulation package (VASP). The SQS structures represent random mixing of Al and Si in
the A sublattice of 312 MAX phase and their structural, electronic, and mechanical properties were calculated
and compared with experiments. We study the cleavage and slip behavior of Ti3(SixAl1−x)C2 to investigate the
deformation behavior in terms of cleavage and shear. It has been shown that the cleavage between M and A layers
results in increasing cleavage stress in Ti3(SixAl1−x)C2 as a function of Si content in the lattice. In addition, the
shear deformation of hexagonal close packed Ti3(SixAl1−x)C2 under 〈21̄1̄0〉{0001} and 〈01̄10〉{0001} results in
increasing unstable stacking fault energy (USFE) and ideal shear strength (ISS) in Ti3(SixAl1−x)C2 as the system
becomes richer in Si.
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I. INTRODUCTION

Mn+1AXn, or in short MAX, phases are nanolayered,
hexagonal compounds, wherein Mn+1Xn layers are interleaved
with A layers. In these crystal systems, M is typically an early
transition metal, A is an A-group element, and X is carbon
or nitrogen. MAX phases share some chemical similarities to
their MX binaries, as both are elastically very stiff with high
thermal and electrical conductivities and high thermal and
thermodynamic stability at elevated temperatures. However,
unlike binary MX carbides and nitrides, MAX phases are
relatively soft and readily machinable with good thermal shock
resistance and tolerance to damage. The unique combination
of strong M-X bonds with relatively weaker M-A bonds is
responsible for this unique combination of properties that
places MAX phases somewhat between typical metals and typ-
ical ceramic/refractory materials. The suite of properties that
MAX phases offer makes them attractive for applications in
the automotive and aerospace industries, among others [1–3].

Among the close to 70 pure MAX phases synthesized and
characterized to date, the Al-containing MAX phases such
as Ti2AlC and Ti3AlC2 are some of the most important and
technologically interesting members of the family as they are
considered to be promising materials for high-temperature
applications. Al-containing MAX phases are known to have
excellent oxidation properties due to the formation of a highly
passivating, continuous, alumina layer when exposed to high
temperature oxidizing environments [4–6]. Moreover, these
MAX phases exhibit self-healing behavior as cracks exposed
to oxidizing environments can heal due to the formation of
stable alumina intercrack films as Al migrates from the Al layer
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in order to react with atmospheric oxygen in high temperature
environments [7]. While many Al-containing MAX phases
have excellent oxidation resistance, their overall strength is
low compared to other MAX phases. In contrast, Ti3SiC2—one
of the most well characterized MAX phases to date—has
excellent mechanical properties compared to other MAX
phases [8,9]. Recently, the scientific community has started
to explore the composition space in the MAX phases beyond
the pure form, with the ultimate goal of tuning their properties
through alloying. In the context of the present research, the
combination of Si and Al in the A lattice in Ti-C 312 MAX
phases can result in MAX phases that not only have good
oxidation resistance and self-healing characteristics but that
also have high mechanical strength [10].

Previous experimental work has shown that
Ti3(SixAl1−x)C2 solid solutions are not only similar to
Ti3SiC2 in terms of their (good) mechanical properties
but are also similar to Ti3AlC2 due to the formation of a
continuous alumina layer. Zhou et al. [11] synthesized a
series of solid solutions of Ti3(SixAl1−x)C2, with x up to 0.25.
In their work, they found that while the c lattice parameter
decreased, the a lattice parameter remained almost invariant
as a function of composition. Incorporation of Si into the A
layer resulted in a marked increase in the Vickers hardness
(26%), flexural strength (12%), and compressive strength
(29%). More importantly, Zhou et al. found that additions to
Si had no deleterious effects on the oxidation resistance of
the compounds since a continuous Al2O3 layer still formed
when exposed to oxidizing environments at 1100 ◦C. While
these results are remarkable, they are limited to a relatively
narrow compositional range. More recently, Gao et al. [10]
fabricated Ti3(Al1−xSix)C2 solid solutions over the entire
composition range and found a significant hardening effect
at x = 0.5, while the structural and physical properties (a/c

lattice parameters, Young’s, bulk, and shear moduli) followed
Vegard’s Law.
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FIG. 1. Cleavage between M and A layer under loading mode I. The cleavage distance z (Å) for (a), (b), (c), and (d) is 0, 1, 2, and 3,
respectively.

In the computational arena, Wang et al. provided lattice
parameters and bulk modulus of Ti3(SixAl1−x)C2 based on
first principles calculation [12]. The calculations were limited
to the x = 0.75 composition, with the study focusing mostly
on the mechanical and electronic properties of the compounds.
Detailed analysis of the electronic structure led the authors
to conclude that the bonding character of Ti3(Si0.75Al0.25)C2

changes significantly, with the Ti-Si and Ti-Al bonds becom-
ing less covalent than the corresponding bonds in the end
members.

The available experimental and computational work on the
Ti3(SixAl1−x)C2 provides evidence to support the stability
of solid solutions in this system over the entire solubility
range. To expand upon prior work, we present an investigation
of the structural, electronic, and mechanical properties of
Ti3(SixAl1−x)C2 within a density functional theory (DFT)
formalism [13] and covering the entire composition range.

In this work, we focus on the cleavage and slip behaviors of
Ti3(SixAl1−x)C2 MAX solid solutions. These types of studies

have not been carried extensively in the literature and it is
hoped that insights derived from these theoretical calculations
can be used to shed light into experimental observations
showing a higher intrinsic hardness in Ti3SiC2 than in Ti3AlC2.
To study cleavage behavior, we investigate cleavage energy and
cleavage stress of Ti3(SixAl1−x)C2 (x = 0, 0.25, 0.5, 0.75, 1).
The system does not contain any defect or grain boundary
effects so that the predicted cleavage behavior corresponds to
the intrinsic behavior of these systems that result from changes
in the chemical bonding between the M and A layers as a result
of changes in composition of the A sublattice.

In order to study the slip behavior in these systems we
investigate the generalized stacking fault energy (GSFE)
surface of the pure MAX phases and an alloy corresponding
to 50-50 mixing in the A sublattice. The motivation for this
portion of the work presented here is to further elucidate
the influence of chemical mixing in the A sublattice on the
mechanical properties of MAX solid solutions. Specifically,
we are interested in understanding the barriers for dislocation

FIG. 2. Cleavage between M and A layer under loading mode I. The number of unit cells in the system before the cleavage of (a), (c), (e),
(g), and (i) are 1, 2, 3, 4, and 5, respectively. The number of unit cells in the system after the cleavage of (b), (d), (f), (h), and (j) is 1, 2, 3, 4,
and 5, respectively.
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FIG. 3. The orthorhombic super cell (dashed line) is used to
investigate 〈21̄1̄0〉{0001} and 〈01̄10〉{0001} shear deformation of
hexagonal close packed (solid line) Ti3(AlxSi1−x)C2 (x = 0, 0.5,
and 1).

slip along the basal plane of MAX phases. MAX phases,
which are layered hexagonal structures, have a limited number
of slip systems [14] and therefore the formation of stacking
faults and the energy required to nucleate dislocations are
important to study their behavior. The calculation of the GSFE
surface involves the quantification of the response to shearing
of specific crystal planes along specific slip directions. One
of the first instances in which the GSFE surface for MAX
phases was calculated was the work by Gouriet et al. [15]. In
that case, the GSFE was calculated by sliding (0001) planes
at different cutting levels (i.e., probing the shear strength of
M-A and M-X layers, respectively). The work by Gouriet
suggests that in their system under investigation—Ti2AlN—
plastic deformation was effectively governed by dislocation
slip within the M-A layer rather than the M-X layer as expected
by the much weaker chemical bonding between M-A species.
Their calculations, however, were somewhat limited as they
only considered relaxation along the z direction, keeping
the x and y coordinates fixed. In this work, by contrast,
we employ the method suggested by Jahnátek et al. [16],
in which the GSFE surface is calculated through uniform
shearing deformation of a structure. As will be described

below, we considered different constraints to the relaxation
of ions subject to this shear deformation and accounted for
affine (alias) deformation modes in which all the atoms move
(or not) along the deformed lattice vectors.

II. COMPUTATIONAL DETAILS

A. Density functional theory (DFT)

In this study, the calculations were carried out through
density functional theory (DFT) [17], with projected aug-
mented wave (PAW) pseudopotentials [18,19] as imple-
mented in the Vienna ab initio simulation package (VASP)
[20,21]. Exchange correlation was accounted for within the
Perdew-Burke-Ernzerhof (PBE) approximation [22] and the
electronic configurations for titanium, aluminum, silicon,
and carbon where chosen to be [Ar]3d34s1, [Ne]3s23p1,
[Ne]3s23p2, and [He]2s22p2, respectively. Relaxations were
done with the Methfessel-Paxton smearing method [23],
relaxing first the volume, the shape, and then all the
atoms.

B. Special quasirandom structures (SQS)

The fully disordered crystalline alloys have to be obtained
to investigate the solid solution of MAX phases. For a
given number of atoms per supercell, SQS is known as the
best periodic supercell approximation to the fully disordered
crystalline alloys, within a given coordination shell. In the
current work, the SQS structures are generated using the
ATAT [24] package. The SQS generation algorithm is based
on Monte Carlo simulated annealing relaxation of candidate
configurations, with the objective of matching the largest
number of random correlation functions derived from occu-
pancies of different sites within a given symmetrically unique
cluster/figure:

ρα(σ ) = 〈�α′(σ )〉α, (1)

where the σ , σi = 0,..., Mi−1 denotes chemical species that
occupy site i, the α, αi = αi = 0,..., Mi−1 considers particular
correlation called cluster, and 〈�α′ (σ )〉 is a cluster function,
defined as

〈�α′ (σ )〉 = �γαi,Mi
(σi). (2)

FIG. 4. Crystal structure of the Ti3SixAl1−xC2 with (a) x = 0, (b) x = 0.25, (c) x = 0.5, (d) x = 0.75, and (e) x = 1.
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(a) (b)

FIG. 5. (a) The a- and c-lattice parameter as a function of Si composition; the solid lines represent the calculated data using DFT while the
dashed lines are the experimental data retrieved from XRD [10]. (b) Bond length of M-A, M1-X, and M2-X, where M1 is an M element near
the A element, and M2 is an M element far from the A element.

Details of the approach can be found in Walle et al. [24]. In
this work, the SQS were generated to study Ti3(SixAl1−x)C2

solid solutions where x corresponds to 0.25, 0.5, and 0.75.

C. Elastic properties

The stress-strain approach was used to estimate the elastic
constants of the MAX alloys [25–27]. For a set of strains
(ε = ε1,ε2,ε3,ε4,ε5, and ε6) imposed on a crystal structure,
the deformed lattice vectors are expressed by the following
matrix:

Ā = A

∣∣∣∣∣∣∣
1 + ε1

ε6
2

ε5
2

ε6
2 1 + ε2

ε4
2

ε5
2

ε4
2 1 + ε3

∣∣∣∣∣∣∣
.

For the deformed crystals, a set of stresses (σ =
σ1,σ2,σ3,σ4,σ5, and σ6) is calculated using the DFT methods.
The elastic constants were calculated using Hooke’s law from
n set of strains and the resulting stresses, according to:

∣∣∣∣∣∣∣
C11 · · · C16

...
...

C61 · · · C66

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
ε1,1 · · · ε1,n

...
...

ε6,1 · · · ε6,n

∣∣∣∣∣∣∣

−1∣∣∣∣∣∣∣
σ1,1 · · · σ1,n

...
...

σ6,1 · · · σ6,n

∣∣∣∣∣∣∣
.

FIG. 6. (010) Plane view of electron localization function (ELF) of the Ti3SixAl1−xC2 with (a) x = 0, (b) x = 0.25, (c) x = 0.5,
(d) x = 0.75, and (e) x = 1.
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FIG. 7. (100) Plane view of charge density of the Ti3SixAl1−xC2 with (a) x = 0, (b) x = 0.25, (c) x = 0.5, (d) x = 0.75, and (e) x = 1.

The mechanical stability of the structures can be elucidated
from the dependence of the strain energy on lattice distortions:

E = E0 + 1

2
V0

6∑
i,j=1

Cij εiεj + O(ε3). (3)

Specifically, mechanical stability is ensured when the elastic
constant tensor is positive definite. For a hexagonal lattice,
the static, mechanical stability criterion is satisfied by the
following conditions:

C44 > 0,C11 > |C12|,
(C11 + 2C12)C33 > 2C2

13. (4)

D. Cleavage energy

We implement a model for understanding cleavage behavior
under loading mode I [28], which is shown in Fig. 1. In this
mode, the tensile stress is loaded normal to the plane of the
crack. In particular, we initiate a crack between the M and
A layers since the M-A bond is relatively weak in MAX
phases. The cleavage energy was then calculated using DFT,
accounting for relaxation in which the position of the atoms are
fixed in the x−y plane, while the z position of all the atoms
are relaxed, except for the atoms on the cleavage surface,
which were fixed in order to preserve the cleavage distance
during relaxation. Note that this constrained relaxation scheme
is required for the cleavage energy calculation but not for the

GSFE calculations. The cleavage energy over a surface area,
	E/A, and stress σ were obtained as follows:

	E/A = E(z)/A − E(0)/A, (5)

where z is the cleavage distance between M and A layers. The
stress σ (z) is defined by the first derivative,

σ (z) =
(

dE

dz

)
. (6)

The critical stress σc is the maximum value of the cleavage
stress, σc = max[σ (z)]. The critical stress is the tensile stress
needed to cut the bonds between the given cleavage planes
and is dependent on the direction since MAX phases are
anisotropic materials [29]. The critical stress along the c

direction is the minimum since the M-A bond is the weakest
bond in MAX phases. Zhou et al. [29] have reported that
the M-X slabs are structurally stable, while the weak M-A
bonds accommodate deformation at large strains. To clarify
the influence of cleavage direction, we calculated the critical
cleavage stress for Ti3AlC2 along the a and c directions. The
calculated critical stress along the c direction is 22.63 GPa
while the critical stress along the a direction is 249.28 GPa,
which basically implies that no cleavage along the a direction
is possible at all. To study cleavage behavior, we calculated
cleavage energy and critical stress of Ti3(SixAl1−x)C2.

Under the cleavage process, we studied the elastic response
of neighboring regions in the unit cell. In addition to the

TABLE I. The number of valence electrons is obtained by Bader analysis.

Phase Ti3AlC2 Ti3Si0.25Al0.75C2 Ti3Si0.5Al0.5C2 Ti3Si0.75Al0.25C2 Ti3SiC2

Ti (d3s1) 1.905 (−2.095) 1.896 (−2.104) 1.890 (−2.11) 1.885 (−2.115) 1.883 (−2.117)
Al (s2p1) 4.156 (+1.156) 4.093 (+1.093) 4.008 (+1.008) 3.826 (+0.826)
Si (s2p2) 5.573 (+1.573) 5.539 (+1.539) 5.499 (+1.499) 5.378 (+1.378)
C (s2p2) 6.564 (+2.564) 6.550 (+2.550) 6.530 (+2.530) 6.507 (+2.507) 6.486 (+2.486)

Ti (total) 45.72 45.504 45.36 45.24 45.192
Al & Si (total) 33.248 35.704 38.188 40.646 43.024
C (total) 105.024 104.8 104.48 104.112 103.776
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(a) (b)

(c) (d)

(e)

FIG. 8. Calculated electronic density of states (EDOS) for (a) Ti3AlC2, (b) Ti3(Si0.25Al0.75)C2, (c) Ti3(Si0.5Al0.5)C2, (d) Ti3(Si0.75Al0.25)C2,
and (e) Ti3SiC2. The bottom panel indicates total and atom-projected DOS. The upper panels indicate site-projected DOS. The dashed line
indicates the Fermi level.
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TABLE II. Elastic constants, bulk modulus (B), shear modulus (G), and Young’s modulus (E).

Phase C11 C33 C44 C12 C13 B G E

Ti3AlC2 355.45 292.89 119.03 84.63 76.03 163.02 125.17 298.98
Ti3Si0.25Al0.75C2 362.45 304.47 128.30 85.75 82.73 170.20 130.87 312.51
Ti3Si0.5Al0.5C2 365.02 317.32 136.93 90.32 90.99 176.88 133.91 320.79
Ti3Si0.75Al0.25C2 368.92 334.66 145.89 93.85 99.62 184.30 137.82 330.97
Ti3SiC2 370.47 349.71 155.43 97.22 112.11 192.61 140.78 339.60

relaxation scheme described above, we also consider a so-
called ideal brittle cleavage [28] scenario was considered in
which the M-A layer is cleaved along the c direction, without
allowing for any relaxation along the c direction. The cleavage
energy and stress of the ideal brittle model are compared to
those of the model considering relaxation to study the effect of
elastic relaxation on cleavage energy, as the latter consists of
two parts: the atomic de-cohesion energy and the strain energy
released in the crystal on either side of the cleavage surface. For
the relaxation model, two relaxation models are considered.
First, the cleavage energy and stress are calculated under
atomic relaxation along the c direction. Second, the cleavage
energy and stress are calculated under atomic relaxation along
all directions. The atomic relation is considered on atoms not
on the cleavage surfaces. In addition, the cleavage energy and
stress of systems with 1,2,3,4, and 5 unit cells, as shown in
Fig. 2, are calculated with all the systems containing one single
cleavage surface. Each of the systems with different numbers
of unit cells was cleaved along the c direction, with atoms
not belonging to the cleavage surfaces relaxed along the c

direction. The cleavage energy and stress are calculated by
Eqs. (5) and (6) to study the effect of system size.

E. Stacking fault energy (SFE)

The most active slip system of hexagonal close packed
structure is 〈21̄1̄0〉{0001} slip system. The dislocation gen-
erated by 〈21̄1̄0〉{0001} is described by the Burgers vec-
tor, b = 1/3 〈21̄1̄0〉{0001}. This dislocation can be sepa-
rated into two partial dislocations, which are 〈11̄00〉{0001}
and 〈101̄0〉{0001}, identical to 〈01̄10〉{0001}. We present
resultant energy curves under both of the 〈21̄1̄0〉{0001} and
〈01̄10〉{0001} shear deformations.

The orthorhombic super cell, shown in Fig. 3, has been
used to study shear deformation of the hexagonal close packed
(HCP) system for Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2.
The basal plane of the orthorhombic supercell is parallel to
the basal plan of the HCP system, which is {0001} plane. The
a, b, and c lattice vectors are parallel to the 〈21̄1̄0〉, 〈01̄10〉,
and 〈0001〉. Two different shear deformations, alias and affine,
are applied to the orthorhombic super cell [16]. While affine
shear deformation proportionally displaces all atoms along the
shear direction, alias shear deformation, in contrast, displaces
only the top layer along the shear direction. For both shear
deformations, we considered two types of shearing, simple
and pure shear. Simple shear does not relax shape, volume,
and atomic coordinates of the sheared system. On the other
hand, pure shear fully relaxes shape, volume, and atomic
coordinates while fixing the angle of shear, essentially relaxing

all internal stresses except for the component(s) corresponding
to the deformation process.

Currently, VASP does not allow one to carry on relaxations
under arbitrary constraints and we thus used the external
optimizer GADGET developed by Bucko et al. to carry out
full relaxation calculations by fixing the shear angle [30]
and allowing all the other degrees of freedom to relax. The
result of this constrained relaxation is the vanishing of all
stress components of the stress tensor that do not explicitly
correspond to the shear deformation applied on the structure
and thus can be considered to be a more realistic deformation
mechanism corresponding to dislocation slip along the basal
plane [16].

III. RESULTS & DISCUSSION

A. Structural and electronic properties

The optimized structures of the Ti3(SixAl1−x)C2 are shown
in Fig. 4, visualized using VESTA [31], in the form of hexag-
onal, nanolayered structures. The stability of Ti3(SixAl1−x)C2

is considered through the calculation of formation enthalpy
	H(Ti3(SixAl1−x)C2) as given by

	H (Ti3(SixAl1−x)C2) = E(Ti3(SixAl1−x)C2)

−nE(Ti) − nE(xSi) − nE((1 − x)Al) − nE(C),

(7)

where E is the total energy per atom, n is a fraction of element
in the Ti3(SixAl1−x)C2 system, and x is a fraction of silicon

FIG. 9. Comparison of Young’s modulus obtained by DFT
calculations (cal.) and RUS measurements (exp.) [10].
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FIG. 10. (a) Cleavage energy, (b) cleavage stress, and (c) critical stress of the Ti3(SixAl1−x)C2.

in the Ti3(SixAl1−x)C2 system. The calculated formation
enthalpy of Ti3(SixAl1−x)C2 with x = 0, 0.25, 0.5, 0.75, 1
is −0.812, −0.826, −0.838, −0.849, −0.861, respectively, in
the units of eV/atom.

The resultant lattice parameters of the Ti3(SixAl1−x)C2

are shown in Fig. 5(a) and compared to experimental results
[10]. As can be seen in Fig. 5(a), both of the calculated and
experimental results show that the c lattice parameter decreases
more than the a lattice parameter with increasing amount of
Si. Figure 5(b) shows that bond lengths of both M1-X and
M2-X are constant, while that of M-A is decreasing with
increasing amount of Si. The decreasing c lattice parameter can
be explained by stronger M-A bond with increasing amount of
Si. To demonstrate this, analysis of ELF, charge density, and
charge transfer were carried out and described in the following
sections.

Figure 6 corresponds to a two-dimensional representation
of the ELF for Ti3(SixAl1−x)C2 on the (100) plane [32]. The
ELF represents the sum of squares of the wave function, which

corresponds to the number of electrons. ELF is suitable for
the observation of electrons in real space, which corresponds
to chemical bonding of each atom, and it is scaled between
zero and one. As can be seen from the figure, distributions of
electrons between M-A and A-X bonds are getting higher and
higher with increasing Si content.

TABLE III. Calculated maximum cleavage stress (critical stress)
values of Ti3(SixAl1−x)C2 and experimentally reported intrinsic
hardness of Ti3AlC2 and Ti3SiC2.

x = 0 x = 0.25 x = 0.5 x = 0.75 x = 1

Critical stress calc 22.63 24.59 26.14 27.86 29.71
(GPa)

Intrinsic exp 11.4 [34] 26 [35]
hardness (GPa)
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FIG. 11. (a) and (b) show the cleavage energy of ideal brittle model with relaxation model along c direction and all directions, respectively.
(c) and (d) show the cleavage stress of ideal brittle model with relaxation model along the c direction and all directions, respectively.
(a) Cleavage energy, (b) Cleavage stress, (c) Cleavage energy, and (d) Cleavage stress.

The strength of the bond is related to the charge density, and
the (100) plane view of the charge density of Ti3(SixAl1−x)C2

is shown in Fig. 7. The charge density in Fig. 7 represents
the absolute value of the charge, for instance, both of the

FIG. 12. (a) Cleavage energy, (b) cleavage stress of 1, 2, 3, 4, and 5 unit cells in the Ti3AlC2 system with one cleavage surface.
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FIG. 13. Energy as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under 〈01̄10〉{0001} shear deformation for Ti3AlC2,
Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b), (d), and (f) are under 〈21̄1̄0〉{0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2,
respectively.

positively charged and negatively charged elements show the
positive value of charge density. High charge density of M and
Si elements compare to the Al element indicates that both M-A
and A-X bonds are stronger in the case of Si-contained MAX
phases.

The charge transfer of each atom is calculated by the
Bader code, and the number of valence electrons is shown
in Table I. In the Ti3(SixAl1−x)C2, the total charge density
of Ti and C change from 45.72 to 45.192, and 105.024 to
103.776, respectively. Both Ti and C total charge density are

almost constant. However, the total charge density of Al and Si
changes from 33.248 to 43.024. The increasing charge density
of Al and Si essentially affects the lattice parameter.

The total and atom-projected DOS for the Ti3(SixAl1−x)C2

are shown in Fig. 8. The total DOS of Ti3(SixAl1−x)C2 shows
that titanium mostly contributes to the DOS at Fermi level,
specifically d electrons. The conductivity of Ti3(SixAl1−x)C2

comes from the electronic density of states of titanium’s
d electrons. The atom-projected DOS shows that the peaks
around −2.5 eV correspond to hybridized p-C and d-Ti states,
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FIG. 14. Shear stress as a function of fraction of Burgers vector, fb. (a), (c), and (e) are under 〈01̄10〉{0001} shear deformation for Ti3AlC2,
Ti3Al0.5Si0.5C2, and Ti3SiC2, respectively. (b), (d), and (f) are under 〈21̄1̄0〉{0001} shear deformation for Ti3AlC2, Ti3Al0.5Si0.5C2, and Ti3SiC2,
respectively.

the peaks around −1.0 eV correspond to hybridized p-Al and
d-Ti states, and the peaks around −2.0 eV correspond to p-Si
and d-Ti states. The energy range of the hybridization shows
that the Ti-X bond is stronger than the Ti-A bond. Within Ti-A
bondings, the Ti-Si bond is stronger than the Ti-Al bond. This
essentially implies stronger elastic properties of Si-contained
MAX phases compared to those of Ti3AlC2. The detailed

investigation of such has been conducted and is presented
below.

B. Elastic properties

Under the ground state condition, the elastic constants were
calculated by the stress-strain approach based on DFT, then
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FIG. 15. Variation of (a) USFE and (b) ISS under〈01̄10〉 and 〈21̄1̄0〉 pure alias shear deformation as a function of Si content. (a) Unstable
Stacking Fault Energy (USFE). (b) Ideal Shear Strength (ISS).

related to mechanical properties using Voigt’s approximation.
In particular, B, G, and E of hexagonal structure are expressed
as follows [33]:

BV = 2(C11 + C12) + 4C13 + C33

9
, (8)

GV = M + 12C44 + 12C66

30
, (9)

M = C11 + C12 + 2C33 − 4C13, (10)

E = 9BG

3B + G
, (11)

where B, G, and E are bulk, shear, and Young’s modulus,
respectively. The resultant elastic constants, bulk, shear, and
Young’s modulus are summarized in Table II. Here, it can be
seen that the B, G, and E are increasing with an increasing
amount of Si on the A site. This could be attributed to the
charge density shown in Table I. In particular, the substitution
of Al with Si increases the total charge density of the A
element atoms from 33.248 to 43.024. However, the total
charge density of M and X element atoms does not change
significantly, i.e., only from 45.72 to 45.192, and 105.024
to 103.776, respectively. The increased charge density makes
the M-A bonds stronger, and thus harder to stretch. The
Young’s modulus, shown in Fig. 9, agrees well with the
available experimental data, which also linearly increase with
an increasing amount of Si on the A site. Moreover, in the
Ti3(SixAl1−x)C2, C11 changes from 355.45 GPa to 370.47 GPa,
and C33 changes from 292.89 GPa to 349.71 GPa. The large
change of C33 could be related to the large change of c lattice
parameter shown in Fig. 5.

C. Cleavage energy

As aforementioned, the focus of the current work is on
the cleavage and slip behavior of Ti3(Si,Al)C2 alloys. This
is to shed some light onto the experimental observations
regarding the increase in hardness in the case of Si-contained
MAX phases. The knowledge about cleavage and slip is also
found to be of interest developing constitutive models aimed
at predicting the mechanical properties of MAX phases in
the continuum limit as cleavage/slip energy as a function of
displacement and separation can be used to build cohesive
zone models that account for the highly anisotropic behavior
in these materials.

Here, we present the results of our investigation of the
cleavage energy in these MAX alloys. The results of the
calculated cleavage energies are shown in Fig. 10(a). As can
be seen from this figure, the cleavage energy sharply increases
up to 1 Å of cleavage distance, and it is almost constant
around the cleavage distance of 3 Å. The cleavage stress,
shown in Fig. 10(b), is derived from the cleavage energy, and
the maximum cleavage stress appears around the cleavage
distance of 0.9 Å. The critical stress (maximum cleavage
stress) of Ti3(SixAl1−x)C2 increases with increasing amount of
Si, and it is shown in Fig. 10(c). In Table III, we compared the
calculated critical stress values of Ti3AlC2 and Ti3SiC2 with
nanoindentation experimental data (intrinsic hardness) and not
the Vickers hardness. When a large force is applied, Vickers
hardness measurement (macroscopic hardness) captures the
effect of defect and grain boundary effects on the deformation,
and it is thus not surprising that the Vickers hardness is
underestimated when compared to the intrinsic hardness and
calculated cleavage stress [34]. One must consider, however,
that there might be a few defect and grain boundary effects on

TABLE IV. USFE in the unit of J/m2 under 〈01̄10〉{0001} and 〈21̄1̄0〉{0001} pure alias shear deformation and the anisotropy ratio for
Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2.

Ti3AlC2 Ti3(Al0.5Si0.5)C2 Ti3SiC2

USFE under 〈01̄10〉{0001} pure alias shear deformation 1.34 1.45 1.71
USFE under 〈21̄1̄0〉{0001} pure alias shear deformation 0.56 0.79 1.02
2C44/(C11 − C12) 0.879 0.997 1.138
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FIG. 16. (a) is unit cell angles of the Ti3AlC2 system under 〈01̄10〉{0001} pure alias shear deformation. (b), (c), and (d) are the Ti3AlC2

system under 〈01̄10〉{0001} pure alias shear deformation of fb = 0, 1.0, 2.0, respectively. (e) is unit cell angles of the Ti3AlC2 system under
〈21̄1̄0〉{0001} pure alias shear deformation. (f), (g), and (h) are the Ti3AlC2 system under 〈21̄1̄0〉{0001} pure alias shear deformation of fb = 0,
0.44, 1.0, respectively. Red, blue, and black atoms are Ti, Al, and C, respectively.

the intrinsic hardness measurement so that it is underestimated
when compared to the calculated cleavage stress. Also tension-
shear coupling would lower the upper limit of the cleavage
stress in an indentation experiment [36]. Our calculations do
not include the effects of defects and grain boundaries, so the
calculated cleavage energy and cleavage stress show purely
the chemical effect, which is related to the bond strengths in
the Ti3(SixAl1−x)C2 system.

To account for the effect of elastic relaxation upon cleavage,
we studied the elastic response of neighboring regions in the
unit cell of the Ti3AlC2 system. In Figs. 11(a) and 11(b),
the ideal brittle model shows higher cleavage energy and
stress than the relaxation model along the c direction as a
function of separation. The critical stress of the ideal brittle
model and relaxation model along the c direction is 23.02 GPa
and 22.63 GPa, respectively. In Figs. 11(c) and 11(d), the
ideal brittle model shows higher cleavage energy and stress
than the relaxation model along all directions as a function
of separation. The critical stress of the ideal brittle model
and relaxation model along all directions are 23.02 GPa and
22.63 GPa, respectively. The cleavage energy of the ideal
brittle model is composed of the decohesion energy and strain
energy in the system, while the relaxation model minimizes the

strain energy and the decohesion energy is dominant during
the cleavage process. In addition, the two different relaxation
models show equal cleavage energy and stress. This analysis
shows that the strain energy contributions to the cleavage
energy in these systems arises from atomic relaxations along
the c direction. The differences in energy and stress, however,
are rather small, and it can be safely assumed that relaxation
effects upon cleavage are not significant.

To further elucidate the effect of system size on our cleavage
calculations, we studied the cleavage behavior of Ti3AlC2

systems with 1, 2, 3, 4, and 5 unit cells, along the c direction.
The calculated cleavage energy and stress of each system is
shown in Figs. 12(a) and 12(b). Our results suggest that the
cleavage energy of all systems is increasing sharply around 1
Å and converging at 3 Å of cleavage distance. The cleavage
stress of systems is derived from the cleavage energy and
shows the maximum value around 0.9 Å of cleavage distance.
The critical stress of 1, 2, 3, 4, and 5 systems are 22.66, 22.60,
22.57, 22.54, and 22.52 GPa, respectively. These calculations
suggest that the size of the system does not affect the results
of the cleavage energy/stress calculations and thus one can
use a single unit cell and obtain results that correspond to the
intrinsic cleavage behavior in the large N limit.
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FIG. 17. (010) Plane view of electron localization function (ELF) under 〈21̄1̄0〉{0001} pure alias shear deformation of Ti3(SixAl1x)C2 with
(a) x = 0, (b) x = 0.5, (c) x = 1, and 〈01̄10〉{0001} pure alias shear deformation with (d) x = 0, (e) x = 0.5, (f) x = 1 at the level of USFE.

D. Stacking fault energy (SFE)

Energy and shear stress curves under 〈21̄1̄0〉{0001}
and 〈01̄10〉{0001} shear deformations for Ti3AlC2,
Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are presented in Figs. 13 and 14,
respectively. The energy variation is presented as a function
of fraction of the Burgers vector, fb. The maximum energy
corresponds to the unstable stacking fault energy (USFE),
which can be related to the energy needed for the dislocation
nucleation [37]. The minimum energy is the intrinsic stacking
fault energy (ISFE). The maximum shear stress corresponds
to the ideal shear stress (ISS), which is related to the stress
necessary for the formation of stacking faults. The pure
alias shear deformation is a more reliable description of
the dislocation generation mechanism, since displacement is
generated at the top layer, and relaxation leads to displacement
from top to lower layers. The USFE under pure alias shear
deformation for Ti3AlC2, Ti3(Al0.5Si0.5)C2, and Ti3SiC2 are
presented in Fig. 15 and Table IV. The USFE increases with
increasing Si so that the Ti3AlC2 is more ductile than Ti3SiC2.
This could be related to the anisotropy ratio shown in Table IV.

The anisotropy ratio, 2C44/(C11 − C12), quantifies how easy
or difficult the shear deformation is. The low anisotropy ratio
values in Table IV suggest that Ti3AlC2 is more ductile than
the Ti3SiC2.

Under 〈01̄10〉{0001} shear deformation, the USFE in-
creases with increasing Si. Up to 30% of shear deformation,
all the deformation modes are identical except for simple alias
shear. Beyond 30% of shear deformation, the energy of simple
affine shear is higher than that of pure affine and alias shear.
Investigation of pure shear deformation is important since it
allows all the atoms to be fully relaxed so that the system is
more stable than that of simple shear deformation. The unit cell
angles and atomic positions and lattice orientations at various
stages of shear are presented in Fig. 16. It can be seen in Fig. 16
that α is changing with constant β and γ unit cell angles, and
that the stacking fault has generated at 1.0 and 2.3 of fb under
pure alias shear deformation. The dashed line, presented in
Fig. 16(b), represents the cell containing M and A elements,
and the cell angle α′ is plotted in Fig. 16(a) to compare to
α. Under pure alias shear deformation α′ is decreasing like

FIG. 18. (010) Plane view of charge density under 〈21̄1̄0〉{0001} pure alias shear deformation of Ti3(SixAl1x)C2 with (a) x = 0, (b) x = 0.5,
(c) x = 1, and 〈01̄10〉{0001} pure alias shear deformation with (d) x = 0, (e) x = 0.5, (f) x = 1 at the level of USFE.
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TABLE V. The number of valence electrons per atom at the level of USFE under 〈21̄1̄0〉{0001} and 〈01̄10〉{0001} pure alias shear
deformations.

Phase Ti3AlC2 Ti3(Si0.5Al0.5)C2 Ti3SiC2

〈21̄1̄0〉 pure alias shear deformation
Ti 1.91 1.90 1.89

Al & Si 4.11 4.72 5.33
C 6.58 6.55 6.51

〈01̄10〉 pure alias shear deformation
Ti 1.92 1.90 1.89

Al & Si 4.07 4.68 5.27
C 6.59 6.56 6.53

α. However, α′ sharply increases at 1.0 and 2.3 of fb, and
it represents the generation of the stacking fault. The USFE
essentially results from the generation of the stacking fault and
not due to a change in Ti3AlC2 cell shape.

Under 〈21̄1̄0〉{0001} shear deformation, the USFE in-
creases with increasing Si. Up to 20% of shear deformation,
all the deformation modes are identical except for simple alias
shear. Beyond 20% of shear deformation, the energy of simple
affine shear is higher than that of pure affine and alias shear.
As mentioned above, pure shear leads to a more stable system
than simple shear. The unit cell angles at various stages of
shear are presented in Fig. 16. Unlike 〈01̄10〉{0001} shear
deformation, α changes around 0.5 of fb under 〈21̄1̄0〉{0001}
shear deformation, resulting in the USFE.

Both USFE under 〈21̄1̄0〉{0001} and 〈01̄10〉{0001} shear
deformation increase with an increasing amount of Si. In
addition, USFE under 〈21̄1̄0〉{0001} shear deformation is
lower than USFE under 〈01̄10〉{0001} shear deformation, thus
〈01̄10〉{0001} shear deformation will be preferable under the
deformation behavior. To demonstrate this, analysis of ELF,
charge density, and charge transfer were carried out. As shown
in Fig. 17, distributions of electrons between M-A and A-X
bonds are getting higher with increasing Si-content under
both 〈21̄1̄0〉{0001} and 〈01̄10〉{0001} shear deformations. This
causes A elements to be charged more negatively with increas-
ing Si content. Figure 18 shows the increased charge density
of A element under both 〈21̄1̄0〉{0001} and 〈01̄10〉{0001}
shear deformations, which makes the atomic bond between
the M-A layer stronger. The number of valence electrons per
atom are shown in Table V. The number of valence electrons
of M and X elements are almost constant, while that of A
element is increasing with increasing Si content. This results
in increasing USFE with increasing Si content. In addition,
the number of valence electrons of the A element under
〈21̄1̄0〉 shear deformation is higher compared to that of A
element under 〈01̄10〉 shear deformation. Under 〈21̄1̄0〉 shear
deformation, the strong atomic bond between the M-A layer
makes the system more stable than 〈01̄10〉 shear deformation,

thus 〈21̄1̄0〉 shear deformation will be preferable than 〈01̄10〉
shear deformation.

IV. CONCLUSION

In this paper, we investigated the ground state structural,
electronic, and mechanical properties of the Ti3(SixAl1−x)C2

using DFT. The lattice parameter decreases with increasing
Si, and the Young’s modulus increases with an increasing
amount of Si. This is due to the increasing charge density
near the A element atom with an increasing amount of
Si. The cleavage stress is calculated from cleavage energy
under the loading mode I. The cleavage stress is maximum
around the 0.9 Å of the cleavage distance, and the maximum
cleavage stress increases with increasing Si. The energy under
affine and alias shear deformation with (pure) and without
(simple) relaxation has been calculated. USFE increases with
increasing Si, and dislocation is preferably generated under
〈21̄1̄0〉 shear deformation. We have investigated cleavage
stress and shear stress to study how the system will be under
the deformation. The critical stress (the maximum cleavage
stress) of the Ti3(SixAl1−x)C2 is between 22.63 GPa and
29.71 GPa. The ideal shear stress (the maximum shear stress)
of the Ti3(SixAl1−x)C2 under 〈21̄1̄0〉 shear deformation is
between 7.16 GPa and 10.43 GPa, and under 〈01̄10〉 is between
8.10 GPa and 12.03 GPa. The cleavage and shear analysis
show that 〈21̄1̄0〉 shear deformation will be preferable under
deformation.

ACKNOWLEDGMENTS

This work was funded through NSF Grant No. DMR-
1410983. R.A. and A.T. acknowledge partial support from
Grant No. AFOSR-FA9550-16-1-0180 (Program Manager:
Ali Sayir). First-principles calculations were carried out in
the Texas A&M Supercomputing Facility at Texas A&M
University, and the Stampede Cluster at the Texas Advanced
computing Center at University of Texas, Austin.

[1] M. W. Barsoum, The MN+1AXN phases: A new class of solids:
Thermodynamically stable nanolaminates, Prog. Solid State
Chem. 28, 201 (2000).

[2] M. W. Barsoum and M. Radovic, Elastic and mechanical
properties of the max phases, Annu. Rev. Mater. Res. 41, 195
(2011).

[3] M. Radovic and M. W. Barsoum, Max phases: Bridging the gap
between metals and ceramics, Am. Ceram. Soc. Bull. 92, 20
(2013).

[4] M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy,
Alumina forming high temperature silicides and carbides,
Ceram. Int. 30, 1899 (2004).

235131-15

https://doi.org/10.1016/S0079-6786(00)00006-6
https://doi.org/10.1016/S0079-6786(00)00006-6
https://doi.org/10.1016/S0079-6786(00)00006-6
https://doi.org/10.1016/S0079-6786(00)00006-6
https://doi.org/10.1146/annurev-matsci-062910-100448
https://doi.org/10.1146/annurev-matsci-062910-100448
https://doi.org/10.1146/annurev-matsci-062910-100448
https://doi.org/10.1146/annurev-matsci-062910-100448
https://doi.org/10.1016/j.ceramint.2003.12.046
https://doi.org/10.1016/j.ceramint.2003.12.046
https://doi.org/10.1016/j.ceramint.2003.12.046
https://doi.org/10.1016/j.ceramint.2003.12.046


WOONGRAK SON et al. PHYSICAL REVIEW B 95, 235131 (2017)

[5] X. H. Wang and Y. C. Zhou, High-temperature oxidation
behavior of Ti2AlC in air, Oxid. Met. 59, 303 (2003).

[6] G. M. Song, Y. T. Pei, W. G. Sloof, S. B. Li, J. T. M. De
Hosson, and S. Van der Zwaag, Oxidation-induced crack healing
in Ti3AlC2 ceramics, Scr. Mater. 58, 13 (2008).

[7] H. J. Yang, Y. T. Pei, J. C. Rao, and J. T. M. De Hosson, Self-
healing performance of Ti2AlC ceramic, J. Mater. Chem. 22,
8304 (2012).

[8] M. Radovic, M. W. Barsoum, A. Ganguly, T. Zhen, P. Finkel,
S. R. Kalidindi, and E. Lara-Curzio, On the elastic properties
and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2,
and Ti2AlC in the 300–1573k temperature range, Acta Mater.
54, 2757 (2006).

[9] P. Finkel, M. W. Barsoum, and T. El-Raghy, Low temperature
dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8,
and Ti3SiC2, J. Appl. Phys. 87, 1701 (2000).

[10] H. Gao, R. Benitez, W. Son, R. Arroyave, and M. Radovic, Struc-
tural, physical and mechanical properties of Ti3(Al1−xSix)C2

solid solution with x = 0-1, Mater. Sci. Eng. A 676, 197 (2016).
[11] Y. C. Zhou, J. X. Chen, and J. Y. Wang, Strengthening of Ti3AlC2

by incorporation of Si to form Ti3Al1−xSixC2 solid solutions,
Acta Mater. 54, 1317 (2006).

[12] J. Y. Wang and Y. C. Zhou, First-principles study of equilibrium
properties and electronic structure of Ti3Si0.75Al0.25C2 solid
solution, J. Phys.: Condens. Matter 15, 5959 (2003).

[13] N. Harrison, An introduction to density functional theory, NATO
Science Sub Series, III: Computer and Systems Sciences 187,
45 (2003).

[14] M. W. Barsoum, T. Zhen, S. R. Kalidindi, M. Radovic, and
A. Murugaiah, Fully reversible, dislocation-based compressive
deformation of Ti3SiC2 to 1 GPa, Nat. Mater. 2, 107 (2003).

[15] K. Gouriet, P. Carrez, P. Cordier, A. Guitton, A. Joulain, L.
Thilly, and C. Tromas, Dislocation modeling in Ti2AlN max
phase based on the peierls–nabarro model, Philos. Mag. 95,
2539 (2015).

[16] M. Jahnátek, J. Hafner, and M. Krajčí, Shear deformation, ideal
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