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Magnetic phases of spin-1 lattice gases with random interactions
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A spin-1 atomic gas in an optical lattice, in the unit-filling Mott insulator (MI) phase and in the presence
of disordered spin-dependent interaction, is considered. In this regime, at zero temperature, the system is well
described by a disordered rotationally invariant spin-1 bilinear-biquadratic model. We study, via the density matrix
renormalization group algorithm, a bounded disorder model such that the spin interactions can be locally either
ferromagnetic or antiferromagnetic. Random interactions induce the appearance of a disordered ferromagnetic
phase characterized by a nonvanishing value of the spin glass order parameter across the boundary between a
ferromagnetic phase and a dimer phase exhibiting random singlet order. We also study the distribution of the
block entanglement entropy in the different regions.
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I. INTRODUCTION

The interest for quantum magnetism has grown recently
together with the possibility to simulate a huge variety of
spin models with ultracold atoms trapped in optical lattices
[1,2]. The magnetic properties of the gas derive from their
low-energy hyperfine level structure which provides an extra
spin degree of freedom F = I + J , where I is the nuclear
spin and J is the total electronic angular momentum. Several
experiments have been realized with spinor atomic gases
[3,4], especially with alkali atoms, having electronic angular
momentum 1/2 and two hyperfine levels with F = |I ± 1/2|.
Here, we are interested in bosonic particles with lower energy
hyperfine manifold corresponding to F = 1; this is the case,
for example, of 23Na, 87Rb, 41K, and 7Li [4].

A system of bosons trapped in a deep optical lattice potential
is well described by a Bose-Hubbard model, consisting of two
competing terms: the hopping between lattice sites and the
repulsive interaction produced by local scattering. If the spin
orientation is fixed by an external magnetic field, as happens
when the gas is confined in a magnetic trap, a scalar model
is sufficient to describe the system [5,6]. Conversely, if the
spin orientation is not externally constrained, as in the case of
optical trapping, the spinor character of the gas has to be taken
into account.

Bosonic interactions, due to two-body s-wave collisions,
are sensitive to the spin degree of freedom and contribute to the
ordering properties at zero temperature. For spin-1 particles,
two possible scattering channels open, one with total spin s =0
and one with total spin s = 2, corresponding respectively to
a scattering length a0 and a2. This leads to a spin-dependent
interaction [7–9] which, depending on the scattering lengths
a0 and a2, can be ferromagnetic or antiferromagnetic. Spin-1
condensates have been observed in Refs. [10,11] and the two-
body interaction has been studied in Refs. [12–14].

At zero temperature, the phase diagram of interacting spin-1
bosons on a lattice consists of the Mott insulator (MI) lobes
as in the scalar case while for smaller interactions the system

is superfluid (SF) [9]. In the MI phase, density fluctuations
are suppressed while the spin degrees of freedom give rise
to a variety of possible magnetic phases. In order to explore
the magnetic behavior inside the MI phase, it is possible to
map the problem into a spin Hamiltonian by a perturbative
expansion in the hopping parameter. For unit filling, the MI
phase has one boson per site, so the Bose-Hubbard spin-1 chain
is mapped onto the bilinear-biquadratic spin-1 Hamiltonian
[15–21], preserving the SO(3) symmetry of the hyperfine
atomic splitting.

Among all the opportunities ultracold atoms can offer,
there is the possibility to produce a disordered potential
in a controlled way by extra speckle potentials [22,23],
optical superlattices of incommensurate frequencies [24–31],
holographic masks [32,33], or adding different atomic species
randomly trapped in sites distributed across the sample and
acting as impurities [34–36]. In the so-called dirty bosons
problems, the competition between the local disorder and
the interactions gives rise to a Bose glass (BG) between the
MI and SF which exhibits localization but, unlike the MI, is
compressible and gapless. The phase diagram in the presence
of this type of disorder has been studied both for spinless
[5,26,37–40] and for spinful bosons [4,41–46].

On the other hand, disorder can also be present in the
interaction terms of the Hamiltonian. Such a possibility is
more difficult to control and reproduce experimentally since
it requires, for example, varying the scattering length of
the s-wave collision at random. Recently, the Bose-Hubbard
model in the presence of random interactions has been
analyzed numerically in the context of many-body localization
[47]. Magnetic Feshbach resonances can be exploited for this
purpose [48,49]; nevertheless, for spinor bosons, an external
magnetic field would freeze the spin degrees of freedom
and it would map the system into a spinless one. However,
from a theoretical point of view, disorder in the interaction is
especially interesting for spin-1 bosons, where different spin
phases emerge inside the MI phase, contrary to the spinless
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case, where the BG separates MI to SF. Therefore, in order to
implement random local interactions without freezing the spin
degrees of freedom, different techniques are in order. Adopting
optical Feshbach resonances could be a possible route. This
technique employs a laser tuned near a photoassociation
transition with an excited molecular level. The method was
developed theoretically [50–53] and has been proposed to
quantum simulate frustrated magnetism with spinor Bose
gases in 2D lattices [54]. Experimental observations of optical
Feshbach resonances have recently been carried out with
alkali-metal atoms [55,56] and alkali-earth-metal-like atoms
[57–60], where atom losses have been shown to be reduced
as suggested in Ref. [61]. Nevertheless, atomic losses are still
limiting the lifetime of the gas below the millisecond regime
and novel ways to address Feshbach resonances for spinor
condensates are highly desirable.

In this paper, we study the case of a spin-1 system in the
MI phase with one boson per site, when disorder mixes locally
ferromagnetic and antiferromagnetic interactions. By mapping
the spin-1 Bose-Hubbard system into the corresponding spin
model (bilinear-biquadratic), we find numerically the ground
state of the system for each disorder realization using the
density matrix renormalization group (DMRG) [62,63]. To
identify the possible phases of the model, we analyze the
ferromagnetic and the dimer order parameters, together with
a normalized Edwards-Anderson (EA) order parameter [64].
Our results indicate that the phase diagram consists of
three phases: a ferromagnetic phase, a random singlet phase
with a nonzero dimer order parameter, and an intermediate
phase between the first two phases. This intermediate phase
exhibits nonvanishing EA parameter and we argue that it can
be identified as a disordered “large-spin” regime [65]. By
studying the entanglement entropy between two half chains,
we exclude the existence of random singlet ordering in the
large-spin phase. A linear scaling with the system size of
the ferromagnetic domain walls suggests that the intermediate
phase could be a locally disordered ferromagnet containing
microscopic magnetized droplets.

The paper is organized as follows: In Sec. II, we describe the
spin-1 Bose-Hubbard model and the corresponding bilinear-
biquadratic spin-1 model for the MI phase and unit density.
Starting from disordered two-body atomic interactions, we
derive the corresponding random coefficients of the spin
model. In Sec. III, we present numerical results for local order
parameters, showing the existence, together with the ferromag-
netic and the dimer phases, of a large-spin phase. In Sec. III D,
we analyze the entanglement properties of the system by
studying the block entanglement entropy. In Sec. III E, we
study the scaling of the domain walls with the system size, and
finally in Sec. IV, we summarize and present open questions.

II. MODEL

We consider a one-dimensional chain of spin-1 bosons in
an optical lattice. The effective Bose-Hubbard Hamiltonian for
spin-1 bosons is [7,9]

H = U0

2

∑
i

ni(ni − 1) + 1

2

∑
i

U2i

(
S2

i − 2ni

) − μ
∑

i

ni

− t
∑
i,σ

(a†
i,σ ai+1,σ + a

†
i+1,σ ai,σ ) (1)

with a
†
i,σ and ai,σ being the creation and annihilation operators

for site i, spin component σ = 0,±1, respectively,

ni =
∑

σ

a
†
i,σ ai,σ (2)

is the total numbers of particles on site i, and

Si =
∑
σ,σ ′

a
†
i,σ Tσ,σ ′ai,σ ′ (3)

the total spin on site i with Tσ,σ ′ the spin-1 angular momentum
matrix elements. The on-site interactions are described by
the first two terms of Eq. (1). The local density coupling is
assumed to be site independent with coupling constant U0. The
second interaction term takes into account the local spin and
we assume its coupling constant U2i to be disordered and site
dependent. The third term is an on-site energy, with μ being
the chemical potential, and finally the fourth term of (1) is the
tunneling term describing hopping between nearest-neighbor
sites with tunneling amplitude t . Our focus is on the strong
interaction regime (t � U0); further, we set U0 as the energy
scale unit (U0 = 1). Our analysis is restricted to the first Mott
lobe with unit filling factor that extends, as it is easy to see in
the atomic limit, in the interval U2 ∈ (−1; 0.5) [41,42].

By considering a spin-1 chain of L sites with open boundary
conditions, deep in the Mott insulator, with strong interactions
and unit filling per site, ni = 1, the Hamiltonian of Eq. (1) can
be mapped into a spin-1 bilinear-biquadratic Hamiltonian:

H =
L−1∑
i=1

Hi =
L−1∑
i=1

[J1i(Si · Si+1) + J2i(Si · Si+1)2], (4)

where Si = (Sxi,Syi,Szi) are the ith site angular mo-
mentum operators and J1i = f (U0,U2i ,U2(i+1)) and J2i =
g(U0,U2i ,U2(i+1)) [see Appendix A for the derivation of this
mapping] are the linear and quadratic exchange coefficients
between spin sites i and i + 1.

For fixed U0, distinct values of U2i and U2(i+1) in the region
of interest correspond to a unique value of the ratio J2i to J1i ,
which is conveniently parametrized by the angle θi defined as

θi = arctan

(
J2i

J1i

)
− π. (5)

A. Homogeneous coupling constants

In the case of homogeneous exchange constants (U2i =
U2,∀ i), the Hamiltonian of Eq. (4) becomes the general
bilinear-biquadratic Hamiltonian [15–20]:

HBB = J

L−1∑
i=1

[cos θ (Si · Si+1) + sin θ (Si · Si+1)2], (6)

where J1 and J2 have been replaced using Eq. (5) and J =√
J 2

1 + J 2
2 .

The ground-state phase diagram for the model with HBB

is as follows: For π/2 < θ � π and −π � θ < −3π/4, the
system is in the ferromagnetic phase characterized by a net
spontaneous magnetization along a direction which breaks
spontaneously space isotropy. For −3π/4 < θ < −π/4, the
system is in the dimerized phase, characterized by a non-
vanishing dimer order parameter. In this phase, translational
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invariance is broken and imperfect singlets of neighboring
spins appear. For −π/4 < θ < π/4, the system is in the
gapped Haldane phase exhibiting absence of any local order,
a nonzero string order parameter and entanglement spectrum
with even number of degeneracies. Finally, for π/4<θ <π/2,
the system is in the so-called critical phase characterized by
quasi-long-range quadrupolar order.

The region of interest for ultracold atoms, U2 ∈ (−1; 0.5),
corresponds thus to the region θ ∈ (−π + arctan(1/3); −π/2)
which encompasses part of the ferromagnetic phase, part of
the dimer phase, and the transition between them, occurring at
U2 = 0. The full phase diagram could be realized by preparing
the highest energy state of 1D optical lattices or by using spin
ladders [66].

The phase transition that occurs at U2 = 0, which corre-
sponds to θ = −3π/4, is the focus of this paper. Chubukov
conjectured [67] that the ferromagnetic and dimerized phases
were separated by a possible spin nematic phase, but due to an
abnormal divergence in correlation length this transition was
extremely hard to categorize. The existence of the nematic
phase was widely studied numerically [9,16,18,20,68] and
it is now accepted that the extension of the nematic phase
is extremely small, suggesting a direct first-order transition
between the ferromagnetic and dimer phase.

B. Disordered coupling constants

We implement disorder in the spin system by considering
random exchange coefficients J1i and J2i obtained by random
interaction constants U2i . The resulting Hamiltonian has the
form

HBB =
L−1∑
i=1

Ji(cos θi(Si · Si+1) + sin θi(Si · Si+1)2), (7)

with Ji =
√
J 2

1i + J 2
2i . In this work, disorder is confined to a

range around a central point, U2C , of width η. Thus U2i is
generated for i = 1,2, . . . ,L via

U2i = U2C + η(2ζi − 1), (8)

where ζi is a uniformly distributed random variable between
0 and 1, leading to U2i being uniformly distributed between
[U2C − η,U2C + η]. To enforce locally the constraint U2 ∈
(−1; 0.5), we choose U2C ∈ (−1 + η; 0.5 − η). Throughout
this paper, the value of η is fixed at η = 0.1. A situation where
disorder appears mostly on U2 can be realized by considering
anticorrelated fluctuations of the scattering lengths. Since the
coupling constants depend on the s-wave scattering lengths
as (s = 0,2) as U0 ∝ a0 + 2a2 and U2 ∝ a2 − a0 (details are
given in Refs. [12–14]), it is sufficient to consider a fluctuation
δi in the scattering lengths such that a

(i)
2 = a2 + δi and a

(i)
0 =

a0 − 2δi .

III. NUMERICAL RESULTS

Results were obtained using the finite-size DMRG with
open boundary conditions; 500 random configurations of
exchange coefficients were used. In order to reduce stability
issues related to the degeneracy of the ground state, a weak
magnetic field (−10−5 Sz1) was added to the first spin in
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FIG. 1. Correlations for disordered spin-1 chains of length
L = 48, fully in the ferromagnetic regime (circles), fully in the dimer-
ized regime (squares), and close to the transition point (triangles).
(a) Local correlation 〈Szi〉. (b) Nearest-neighbor correlation
〈SziSzi+1〉. Diagrams plotted against chain site i.

the chain in order to promote one of the almost degenerate
ground states. It is important to stress that even if the total
angular momentum commutes with the random bilinear-
biquadratic Hamiltonian Eq. (4), the minimum energy state
can assume values between −L and L of the projection of
the total angular momentum Mz = ∑

i Szi , depending on the
disorder configuration. In the DMRG simulations, we used five
complete sweeps and kept 80 states during the renormalization
procedure corresponding to a maximum discarded weight of
10−5. For all figures presented, the results obtained from
a Hamiltonian with homogeneous exchange coefficients are
labeled H and those with disordered exchange coefficients are
labeled D.

A. Local magnetization and nearest-neighbor correlations

We start our analysis by computing the local magneti-
zation 〈Szi〉 and the nearest-neighbor spin-spin correlations
〈SziSzi+1〉, shown in Fig. 1 for a single configuration of {ζi}.
For U2C = −0.2, the system is deep in the ferromagnetic phase
and the local magnetization is everywhere equal to +1 (thanks
to the negative-symmetry-breaking field mentioned above),
while the correlations are exactly 1, showing perfect spin
alignment. For U2C = 0.2, the system has zero magnetization
and an overall negative, thus antiferromagnetic, nearest-
neighbor correlations. The plot also shows an even-odd effect
that can be explained, as we show in the next section, assuming
that the ground state is dimerized. Finally for U2C = 0.02
there is an intermediate behavior: The system is not fully
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magnetized but exhibits islands of nonzero magnetization
with large nearest-neighbor correlations surrounded by regions
of very small magnetization with overall negative nearest-
neighbor correlations. This is our first evidence of a disordered
intermediate region between the dimer and ferromagnetic
phases.

B. Dimerization versus ferromagnetism

To characterize the dimer phase, a common choice is the
local dimer order parameter [16,18]:

D = [〈Hi − Hi+1〉]D, (9)

where 〈 〉 is the quantum ground state average and [ ]D is the
disorder average. Because of the disordered nature of the chain
we consider, we prefer to use a similar dimer order parameter
Dε defined in Ref. [69]

Dε = − 1

L

∑
mn

sin

[
π

2
(m + n)

]
[Gz(m,n)]D, (10)

where Gz(m,n) is the two-point correlation function:

Gz(m,n) ≡ 〈
Szm

Szn

〉 − 〈
Szm

〉〈
Szn

〉
. (11)

While for the homogeneous model D and Dε have been shown
to be equivalent [69], for the model with disorder, Dε converges
faster thanks to a self-averaging effect due to the summation
on all sites. Moreover, Dε can be observed experimentally with
a quantum nondemolition measurement based on the Faraday
effect [69].

As is customary, the average magnetization along the z axis
is defined as

mA = 1

L

∑
i

[〈Szi〉]D. (12)

Figure 2(a) shows the average dimer order parameter and
Fig. 2(b) shows the average magnetization of the spin-1 chain
throughout the region of interest for both the homogeneous
and disordered cases. For short lengths, we observe nonzero
dimerization below the first-order transition point for the
homogeneous model (U2C = 0). Disorder slightly suppresses
the dimer order parameter, which has a fairly large finite-size
effect. On the other hand, magnetization does not show
strong finite-size effects, but it is considerably affected by the
presence of disorder which rounds the sudden jump observed
in the homogeneous case. In Fig. 2(c), we show the results
for the average dimer order parameter and magnetization after
a finite-size extrapolation to infinite lengths (see details in
Appendix B). In contrast to the homogeneous case, the results
clearly show that the magnetization is continuous at U2C = 0.

C. Spin glass order parameter in the intermediate phase

To ascertain the nature of the intermediate phase, we
compute the Edwards-Anderson order parameter, defined
as [70]

q = 1

L

∑
i

[〈Szi〉2]D − [〈Szi〉]2
D. (13)

The term subtracted in Eq. (13) takes into account the possibil-
ity of finite magnetization in the disordered magnetic phase.
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FIG. 2. (a) Dimer order parameter Dε against U2C for differing
lengths L = 12,24,48. The label H is for the homogeneous system
(filled symbols) and D is for the disordered case (empty symbols). The
lines (solid for homogeneous and dashed for the disordered model)
connect the points and are only a guide to the eyes. (b) Average
magnetization mA along the z axis; color codes are the same as
in panel (a). (c) Dimer order parameter and magnetization of the
disordered systems extrapolated to infinite length.

It is clear that this parameter is zero in the homogeneous case
and takes into account correlations of the local magnetization
with the disorder variables. This parameter is shown in Fig. 3
for different chain lengths. The spin glass order parameter
is not affected by finite-size effects and its behavior shows
that the maximum of correlations between local magnetization
and disorder occurs for U2C > 0. From the Edwards-Anderson
order parameter, we infer a range for the intermediate phase
of −0.051 � U2C � 0.073.

The question thus arises as to whether the intermediate
phase that spans from the vanishing of the ferromagnetic phase
to the onset of the dimer phase is a new phase that can be

U2C

-0.1 -0.05 0 0.05 0.1

q

0

0.01

0.02

0.03

0.04

0.05
L = 12 D
L = 24 D
L = 48 D

FIG. 3. Edwards-Anderson order parameter q against U2C for
the disordered system for L = 12,24,48. Lines are only a guide to
the eye.
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characterized, for example, by random singlet order or by
disorder induced magnetic domains.

In a previous work, Quito et al. [65], using the strong-
disorder renormalization group (SDRG) [71], found a large-
spin phase separating the ferromagnetic phase and the random
singlet phase. The term large-spin is in reference to the
renormalization procedure to find the ground state of the spin
chain.

Here we summarize the renormalization group procedure
of Quito et al. [65]. The SDRG uses a decimation procedure
similar to the procedure originally pioneered by Dasgupta
and Ma [72,73]. Each decimation replaces the spin pair
corresponding to the largest energy gap between the ground
state and the first excited state of the local Hamiltonian, Hi ,
with a new effective spin. For a spin-1 chain, the Hamiltonian
Hi corresponds to a spin pair located at sites i and i + 1. If their
coupling is ferromagnetic, i.e., U2i , U2(i+1) ∈ (−1; 0), the pair
of spins is replaced by a new effective spin of size spin 2 and
new effective couplings are produced between the new spin and
the spins on sites i − 1 and i + 2. For U2i , U2(i+1) ∈ (0; 0.5),
corresponding in the homogeneous model to the dimer phase,
the two spins form a singlet. In the decimation procedure, a
spin pair of this type is removed and a new effective coupling
between the spins on sites i − 1 and i + 2 is found. Repeating
this decimation procedure will eventually reduce a chain in
which all U2i lie in the range (−1; 0) to a single effective
spin of size L, whereas a chain in which all U2i lie in the
range (0; 0.5) will reduce to an effective spin of size 0. This
large-spin phase describes a region in which a chain may have
a final effective spin which lies somewhere between 0 and
L, indicating that it is neither fully ferromagnetic nor fully
dimerized.

Our DMRG calculations also show that in the intermediate
phase different instances of disorder exhibit a wide distribution
of total magnetization, precisely as predicted in Ref. [65].
This indicates that the intermediate phase could coincide with
the large-spin phase found in Ref. [65]. It should be noted,
however, that Quito et al. [65] modeled their disorder in such a
way that the random coefficients J1i and J2i were independent
of each other, while in this work J1i and Ji2 are both dependent
on U2i and U2(i+1).

D. Entanglement entropy

Further to the three order parameters discussed previously,
we consider the block entanglement entropy. The advantage
of this bipartite entanglement measure is that as well as being
discontinuous at a first-order transition [74,75] its spatial
distribution in a disordered model can give insight into the
bonds existing between blocks of spins. In the so-called
random singlet phase, found for instance in the random
coupling XX model and in the random transverse-field Ising
model for spin-1/2 [76,77], the probability distribution of the
entanglement entropy is characterized by pronounced peaks
at integer values, indicating the occurrence of maximally
entangled states of pairs of spins belonging each to one side of
the partition. Very recently the scaling of the entanglement
entropy distribution away from integer points has been
studied in Refs. [78]. Finding the probability distribution of
the entanglement entropy is particularly interesting for our
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FIG. 4. Average von Neumann entropy [E]D against U2C for
variable chain lengths with the same color-coding as in Fig. 2. The
lines (solid for homogeneous and dashed for the disordered model)
connect the points and are only a guide to the eyes.

problem because we can confirm the existence or absence of
a random singlet phase in this model. The block entanglement
entropy measures the entanglement between two blocks of
lengths 	 and L − 	 and can be calculated as the von Neumann
entropy of the reduced density matrix of one of the two blocks
[79]:

E = −Trρ	 log2 ρ	 (14)

with

ρ	 = TrL−	|ψG〉〈ψG|, (15)

where |ψG〉 is the ground state of Hamiltonian (4) and we set
	 = L/2.

In Fig. 4, we show the results for the average entanglement
entropy in the disordered model and the entanglement entropy
for the homogeneous case. In agreement with the magnetiza-
tion reported in Fig. 2, E exhibits a strong discontinuity at
U2C = 0 in the homogeneous case while varying continuously
in the presence of disorder. It is interesting to note that while
the disordered system is unable to reach the entropy values
obtained in the weak dimerized regime 0 < U2C � 1, the
disordered system has on average a nonzero entropy in the
ferromagnetic phase. This confirms the results Fig. 2 suggests:
For negative U2C the chain is not fully magnetized and spins
show strong correlations signaled by a nonzero entanglement
entropy.

In Fig. 5, we show histograms of the entanglement entropy
for U2C = 0.05,0.1,0.2,0.39. These values correspond in
the homogeneous system to the dimer phase. Since we are
interested in detecting the random singlet phase, we plot
the histogram so that the horizontal axis displays the ratio
E/ES , where ES = log2(3) 
 1.585 is the entanglement of
a spin-1 singlet (which is maximally entangled state as for
spin-1/2 particles). We find that the entanglement distribution
exhibits a broad peak for E > ES , whose midpoint decreases
for increasing U2C and increases for increasing L. For U2C =
0.39, the distribution is much wider. In the cases considered,
we observe the major peak tending towards a value of ES

as predicted for the random singlet phase for the model
presented in Ref. [65]. However, probably because of the finite
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FIG. 5. Distribution of entanglement entropy values normalized
by the entropy of a single spin-1 singlet for U2C values (a) 0.05,
(b) 0.1, (c) 0.2, (d) and 0.39. Same color-coding as in Fig. 3.

lengths considered in our simulations, we do not observe peaks
occurring at other integer multiples of ES .

E. Domain walls

Thus far we have shown that, through the introduction of
disorder, an intermediate phase can be observed between the
ferromagnetic and dimer phases. This phase is characterized
by a nonzero EA order parameter coexisting with a nonzero
magnetization and a possible exponentially small dimer order
parameter. Let us concentrate on the local magnetization
properties. From our analysis in Sec. III A, we know that in
the ferromagnetic phase neighboring spins are aligned, thus
having 〈SziSzi+1〉 > 0. Conversely, in the dimer phase, spins
tend to form imperfect singlets and thus have a tendency to
antialign, giving rise to a negative value of 〈SziSzi+1〉. Thus
in both of these phases, the sign of 〈SziSzi+1〉 is constant and
by observing sign changes in its value we can detect a domain
wall.

Figure 6 shows the average density of domain walls,
ρ̄d , occurring in a given chain of length L for different
L. A thermodynamically large number of domain walls,

U2C
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ρ
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0.04

0.06

0.08

0.1

0.12

FIG. 6. Average density of domain walls ρ̄d against U2C . A value
of 0 indicates that the entire spin chain is in a ground state associated
with either the ferromagnetic or dimerized phase. Same color-coding
as in Fig. 3.

corresponding to small droplets of magnetized spins, is found
in the intermediate region with the maximum density reached
around U2C 
 0.017, indicating that the dimer phase is more
susceptible to disorder than the ferromagnetic phase. This
could be ascribed to the much smaller gap in the dimer phase
as U2C → 0+. By comparing Fig. 6 and Fig. 3, we see that the
density of domain walls and the EA order parameter follow
the same qualitative behavior. In other words, they are indeed
markers of the intermediate phase. It is easy to show that
within small disorder expansion, the EA order parameter is
proportional to the local susceptibility with respect to changes
in the local spin-spin coupling. On the other hand, a sizable
amount of domain walls measure how the ground state locally
changes from antiferromagnetic to ferromagnetic short-range
correlations due to different values of the spin couplings,
which qualitatively explains the similar behavior of the two
quantities.

IV. CONCLUSIONS

In conclusion, we analyzed the zero-temperature phase
diagram of spin-1 bosons in one-dimensional optical lattices
with disordered interactions generated with uniformly dis-
tributed random scattering lengths. We found that between
the ferromagnetic and dimer phases occurring in the clean
case, there exists an intermediate phase showing features
of a disordered ferromagnet and characterized by a finite
EA order parameter. It displays disorder-induced magnetized
microscopic droplets whose concentration, as well as the EA
parameter, does not show a strong dependence on the system
size. The strength of the local magnetization in each droplet is
locally correlated with the disorder interactions for each site.
We cannot exclude that a vanishingly small dimer order is still
present in this disordered phase. If this were the case, there
exists the possibility that a weak local dimer order parameter
is present in the regions where the magnetization is smaller.
Thus we cannot exclude the existence of a Griffiths-type
phase between the intermediate phase and the random singlet
phase.

We thus conjecture that this intermediate phase coincides
with the large-spin phase predicted by Quito et al. [65] by
observing that the average magnetization per particle has an
intermediate value between zero and one.

The intermediate disordered phase could potentially be
close to the nematic region conjectured by Chubukov [67].
It would therefore be interesting to analyze the stability of
the intermediate phase with respect to the appearance of the
nematic phase when a uniaxial field is added [19]. This study
is beyond the scope of the current paper and we leave it for
future investigations.

In analogy with the classical version of the bilinear-
biquadratic spin-1 model [80], which for infinite range
interactions exhibits a spin glass phase, one can ask if also
in the present case the disordered ferromagnet displays some
nonequilibrium properties typical of spin glasses. It remains an
open problem to determine if the replica symmetry is actually
broken and in order to give a precise answer a further study of
the long-time dynamics would be in order. We think this is an
interesting subject for a subsequent project.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
SPIN-HAMILTONIAN

In this Appendix, we explain how to derive the bilinear-
biquadratic Hamiltonian Eq. (4) from the spin-1 Bose-Hubbard
Hamiltonian Eq. (1) in the MI phase by second-order pertur-
bation theory with respect to the tunneling amplitude.

In the MI phase, at zero temperature and without any
disorder, the zero-order ground state of (1) is given by
the degenerate ground state of the unperturbed interaction
Hamiltonian

H0 = U0

2

∑
i

ni(ni − 1) + U2

2

∑
i

(
S2

i − 2ni

) − μ
∑

i

ni

(A1)

given by the product state

|{m}〉 =
∏

i

|ni = n; si = s; mi〉, (A2)

where n and s are fixed and the same for each site and mi is
free to change. The configuration of all the mis in the lattice is
denoted with {m} and

H0|{m}〉 = E0|{m}〉. (A3)

We focus on the case with filling n = 1 and s = 1: A small
amount of hopping does not affect the on-site density so we
can construct an effective Hamiltonian Heff acting only in this
subspace. To determine Heff , one can perform a second-order
perturbation expansion in the hopping term

T = −t
∑
i,σ

(a†
i,σ ai+1,σ + a

†
i+1,σ ai,σ ), (A4)

following the procedure described in Ref. [81]

Heff = H0 +
∑

{m},{m}′
|{m}′〉〈{m}|

∑
α

〈{m}|T |α〉〈α|T |{m}′〉
α

,

(A5)

where |α〉 are intermediate eigenstates of H0 with

H0|α〉 = Eα|α〉 (A6)

and

α = E0 − Eα. (A7)

The effective Hamiltonian is expected to maintain the same
SO(3) symmetry of the original model, so it must have the form

of the bilinear-biquadratic Hamiltonian HBB (4) with J1i and
J2i depending on t , U0, U2i , and U2(i+1). Following Ref. [7],
the coefficients J1i and J2i are determined by comparing HBB

with (A5).
In our case, the spin interaction U2i is a site-dependent

disordered variable, thus giving rise to coefficients J1i and J2i

dependent on the bond (i; i + 1). To determine them explicitly,
we consider a two-site system (only one bond) with a vector
basis |{m}〉 = |m1,m2〉 and calculate the matrix elements

〈m1 + 1,m1 − 1|Heff|m1,m2〉 = D1(m1,m2),

〈m1 + 2,m1 − 2|Heff|m1,m2〉 = D2(m1,m2), (A8)

with

D1(m1,m2) = W (m1,m2)

2
[J1 + J2W1(m1,m2)],

D2(m1,m2) = J2

4
W (m1,m2)W (m1 + 1,m2 − 1), (A9)

and

W (m1,m2) =
√

(1 − m1)(2 + m1)(1 + m2)(2 − m2),

W1(m1,m2) = 2m1m2 + m2 − m1 − 1. (A10)

To our purpose, it is sufficient to consider only two elements:

〈1, − 1|Heff|0,0〉 = D1(0,0) = J1 − J2,

〈1, − 1|Heff| − 1,1〉 = D2(−1,1) = J2. (A11)

For the calculation of the matrix elements, we use (A5), taking
into account that the creation and annihilation operators act as

a†
σ |n; s; m〉 = Ā|n + 1; s + 1; m + σ 〉

+B̄|n + 1; s − 1; m + σ 〉,
aσ |n; s; m〉 = A|n − 1; s + 1; m − σ 〉

+B|n − 1; s − 1; m − σ 〉.

with coefficients A, B, Ā, and B̄ given in Ref. [8]. There are
four involved intermediate states:

|α1,2〉 = |n1 = 2; n2 = 0; s1 = 0,2; s2 = 0; m1 = 0; m2 = 0〉,
|α3,4〉 = |n1 = 0,n2 = 2; s1 = 0 : s2 = 0,2; m1 = 0; m2 = 0〉,

with

α1 = U0 − 2U2 1,

α2 = U0 + U2 1,

α3 = U0 − 2U2 2,

α4 = U0 + U2 2, (A12)
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from which one obtains

D1(0,0) = 2t2

3

(
1

U0 − 2U2 1
+ 1

U0 − 2U2 2
− 1

U0 + U2 1
− 1

U0 + U2 2

)
, (A13)

D2(−1,1) = − t2

3

(
2

U0 − 2U2 1
+ 2

U0 − 2U2 2
+ 1

U0 + U2 1
+ 1

U0 + U2 2

)
. (A14)

The same calculation can be done for every bond and, putting together (A9), (A13), and (A14), one obtains

J1i

t2
= −

(
1

U0 + U2i

+ 1

U0 + U2(i+1)

)
,

J2i

t2
= −1

3

(
2

U0 − 2U2i

+ 2

U0 − 2U2(i+1)
+ 1

U0 + U2i

+ 1

U0 + U2(i+1)

)
.

The general relations for the coefficients with fixed odd n and s = 1 are

J1i

t2
= − (2 + n)(4 + n)

15

(
1

U0 + U2i

+ 1

U0 + U2(i+1)

)

+ 4(−1 + n)(4 + n)

75

(
1

U0 + U2i + 3U2(i+1)
+ 1

U0 + U2(i+1) + 3U2i

)

− (−1 + n)(1 + n)

15

(
1

U0 − 2U2i + 3U2(i+1)
+ 1

U0 − 2U2(i+1) + 3U2i

)
, (A15)

J2i

t2
= − (2 + n)(4 + n)

45

(
1

U0 + U2i

+ 1

U0 + U2(i+1)

)
− (2 + n)(1 + n)

9

(
1

U0 − 2U2i

+ 1

U0 − 2U2(i+1)

)

− (−1 + n)(4 + n)

225

(
1

U0 + U2i + 3U2(i+1)
+ 1

U0 + U2(i+1) + 3U2i

)

− (−1 + n)(1 + n)

45

(
1

U0 − 2U2i + 3U2(i+1)
+ 1

U0 − 2U2(i+1) + 3U2i

)
. (A16)

APPENDIX B: SUPPLEMENTARY FIGURES

In this section of the Appendix, we show an example
of the extrapolation analysis for the dimer order parameter,
mentioned in Sec. III B. The piecewise cubic Hermite interpo-
lating polynomial (pchip) extrapolation method in MATLAB

is used to extrapolate the values of the order parameters
obtained for 1/L = 1/12,1/24, and 1/48 to the case where

1/L
1/48 1/24 1/12

D

0

0.05

0.1

0.15

0.2

FIG. 7. Dimer order parameter Dε extrapolation to infinite length
for U2C = 0.1 for the homogeneous (circles) and disordered (squares)
cases. Lines represent the extrapolating cubic polynomial fitting the
data points for L = 12,24,48.

1/L = 0, therefore obtaining the corresponding value for the
order parameter at infinite chain length. Figure 7 shows how
the extrapolated values of the dimer order parameter were
obtained for both the homogeneous and disordered cases at
U2C = 0.1.

Figure 8 shows the results of this method when applied to
the dimer order results from Fig. 2. These results, as previously
discussed, show a significant reduction when compared to the
values obtained for the dimer order parameter at finite lengths.

U2C

-0.1 -0.05 0 0.05 0.1 0.15 0.2

D

0

0.02

0.04

0.06

0.08

0.1

FIG. 8. Dimer order parameter Dε against U2C extrapolated to
infinite length. The lines (solid for homogeneous and dashed for the
disordered model) connect the points and are only a guide to the eye.
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