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Effect of electron doping on lattice instabilities in single-layer 1H-TaS2
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Recent angle-resolved photoemission spectroscopy measurements of single-layer 1H -TaS2 grown on Au(111)
suggest strong electron doping from the substrate. In addition, scanning tunneling microscopy/spectroscopy
measurements on this system show suppression of the charge-density-wave (CDW) instability that occurs in bulk
2H -TaS2. We present results from ab initio density functional theory calculations of free-standing single-layer
1H -TaS2 to explore the effects of doping on the CDW. In the harmonic approximation, we find that a lattice
instability along the �M line occurs in the undoped monolayer, consistent with the bulk 3 × 3 CDW ordering
vector. Electron doping removes the CDW instability, in agreement with the experimental findings. The doping
and momentum dependences of both the electron-phonon coupling and of the bare phonon energy (unscreened
by metallic electrons) determine the stability of lattice vibrations. Electron doping also causes an expansion of
the lattice, so strain is a secondary but also relevant effect.

DOI: 10.1103/PhysRevB.95.235121

I. INTRODUCTION

A charge-density wave (CDW) is a common collective
phenomenon in solids consisting of a periodic modulation
of the electron density accompanied by a distortion of the
crystal lattice. For a one-dimensional system of noninteracting
electrons, the phenomenon is described by the Peierls insta-
bility, where a divergence in the real part of the electronic
susceptibility at twice the Fermi wave vector drives a metal-to-
insulator transition. In extensions of this idea to real materials
with anisotropic band structures and quasi-one-dimensional
(1D) Fermi surfaces, Fermi-surface nesting is often cited
to explain charge-ordering tendencies. However, geometric
Fermi-surface nesting (i.e., the existence of parallel regions of
the Fermi surface separated by a single wave vector q) is related
to the imaginary part of the noninteracting susceptibility rather
than the real part, so it is not directly connected to the Peierls
mechanism [1]. Indeed, calculations for a number of CDW
materials, including NbSe2, TaSe2, TaS2, and CeTe3, have
found little or no correlation between the CDW ordering vector
qCDW, and peaks in the geometric nesting function (imaginary
part of χ0) [1–5]. Nor does qCDW coincide with sharp features
in the real part of χ0 in most of these cases. Instead, these
studies pointed to the importance of the momentum-dependent
electron-phonon coupling, which softens selected phonon
modes to the point of instability.

Advances in the synthesis of low-dimensional materials
provide new opportunities to test these ideas. In going from
quasi-two-dimensional (2D) bulk NbSe2 to the 2D monolayer,
for example, the number of bands crossing the Fermi level
decreases from three to one, which could reveal information
about the role played by different bands in driving the CDW
instability. The stability and structure of the CDW phase in
monolayer NbSe2, however, remains under debate. Density
functional calculations predict that both the monolayer and
bilayer have CDW instabilities, but with a shifted qCDW

and a larger energy gain compared to the bulk [3]. A
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recent experimental study of bulk and 2D NbSe2 on SiO2

used the Raman signature of the CDW amplitude mode to
estimate the CDW transition temperature and reported an
increase of TCDW from about 33 K in the bulk to 145 K
in the monolayer [6]. This result, attributed in Ref. [6]
to an enhanced electron-phonon coupling due to reduced
screening in two dimensions, is qualitatively consistent with
the density functional theory (DFT) predictions, but does
not address the question of the CDW superstructure. On
the other hand, another study of single-layer NbSe2, this
time on bilayer graphene, reported scanning tunneling mi-
croscopy/spectroscopy (STM/STS) measurements showing a
CDW transition at a lower temperature than the bulk but with
the same qCDW ordering vector [7]. Discrepancies between the
two experimental studies and between experiment and theory
could be due in part to substrate effects, as 2D materials
tend to be highly sensitive to the environment and to the
substrate. Initial studies of 1T -TaS2, for example, suggested
that it completely loses the low-temperature commensurate
CDW phase upon thinning to about 10–15 layers [8], but
later it was shown that oxidation can suppress the formation
of the commensurate phase [9]. Raman signatures of the
commensurate CDW were later found in single-layer 1T -TaS2

samples with limited exposure to air [10]. In using 2D materials
to probe the CDW transition and the effect of dimensionality,
it is therefore crucial to differentiate behavior intrinsic to each
material from effects due to the environment.

In bulk form, TaS2 is a layered transition-metal dichalco-
genide for which the 1T and 2H polymorphs are competitive
in energy, and both can be synthesized. Both the 1T and
2H polymorphs undergo CDW transitions as the temperature
is lowered. Recently, it was reported that single-layer TaS2

grown epitaxially on a Au (111) substrate adopts the 1H

structure rather than 1T [11]. Low-energy electron diffraction
(LEED) and STM data indicate that on Au (111), single-
layer 1H -TaS2 does not undergo a CDW transition, at least
down to T = 4.7 K. This is in contrast to bulk 2H -TaS2,
which develops a 3 × 3 CDW periodicity below about 75 K.
In addition, a comparison of angle-resolved photoemission
spectroscopy (ARPES) data to the band structure calculated for
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a free-standing monolayer suggests that the substrate causes
the material to become n doped with a carrier concentration of
approximately 0.3 electrons per unit cell [11].

In this paper, we use DFT calculations to investigate
whether the observed suppression of the CDW in monolayer
1H -TaS2 is intrinsic or a consequence of its interaction with
the metallic substrate. In the harmonic approximation, we
find that a free-standing single layer of 1H -TaS2 has lattice
instabilities that are very similar to its bulk counterpart. When
the monolayer is electron doped, however, the 1H structure
becomes dynamically stable, implying that substrate-induced
doping is the likely reason for the suppression of the CDW
observed in Ref. [11]. The strong effect of doping and a
secondary effect of lattice strain on the CDW transition in this
material give insight on what drives the transition. We examine
the role of electron-phonon coupling by calculating the phonon
self-energy. We find that the contribution to the real part of the
phonon self-energy from the single band that crosses the Fermi
level is largely responsible for the momentum dependence of
the soft mode, but the bare phonon frequency (unscreened
from electrons at the Fermi level) also plays a role.

II. METHODS

We performed density functional theory calculations us-
ing the QUANTUM ESPRESSO [12] package. The exchange-
correlation interaction was treated with the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation [13].
To describe the interaction between electrons and ionic
cores, we used ultrasoft [14] Ta pseudopotentials and norm-
conserving [15] S pseudopotentials. Electronic wave functions
were expanded in a plane-wave basis with kinetic energy
cutoffs of 47 (53) Ry for scalar (fully) relativistic pseu-
dopotentials. Integrations over the Brillouin zone (BZ) were
performed using a uniform grid of 36 × 36 × 1 k points, with
an occupational smearing width of σ = 0.005 Ry.

To simulate electronic doping, electrons were added to
the unit cell along with a compensating uniform positive
background. A single layer of 1H -TaS2 was modeled using
a supercell with the out-of-plane lattice parameter fixed at
c = 12 Å, corresponding to about 9 Å of vacuum between
layers. This ensured that for the range of electron doping
explored, spurious vacuum states that originate from the
periodic boundary conditions stay well above the Fermi level.
The in-plane lattice constant and the atomic positions were
fully relaxed at each doping level.

Phonon spectra and electron-phonon matrix elements were
calculated with density functional perturbation theory [16] on a
q-point grid of 12 × 12 × 1 phonon wave vectors and Fourier
interpolated to denser grids. To test the effect of spin-orbit
coupling on the phonon frequencies, we used a less dense
grid of 8 × 8 × 1 q points. While this does not capture all
the fine structure in the phonon dispersions, it is sufficient
to test the effect of spin-orbit coupling. In fact, even Fourier
interpolation on the 12 × 12 × 1 q grid does not fully capture
the sharp features along certain directions in the Brillouin zone
where direct calculations of the phonon frequency are needed.
The real and imaginary parts of electronic susceptibilities and
phonon self-energies were calculated using dense k-point grids
of at least 72 × 72 × 1 points.

III. RESULTS AND DISCUSSION

The 1H -TaS2 lattice has point group D3h, reduced from D6h

in the bulk. Sulfur atoms adopt a trigonal prismatic coordina-
tion about each Ta site, and the crystal lacks inversion symme-
try. Our calculations for the undoped (x = 0) monolayer give a
relaxed in-plane lattice parameter of ax=0 = 3.33 Å and a sep-
aration between Ta and S planes of zS = 1.56 Å. These values
are similar to what we calculate for the bulk. For comparison,
the experimental in-plane lattice parameter for single-layer
1H -TaS2 on Au [11] and bulk 2H -TaS2 [17] are a = 3.3(1)
and 3.316 Å, respectively. With the addition of 0.3 electrons per
cell (x = −0.3), the lattice expands roughly 2.5% to ax=−0.3 =
3.41 Å, while the separation between Ta and S planes decreases
slightly to zS = 1.53 Å. In analyzing the impact of doping on
the CDW instability, we examine the effect of adding charge
carriers as well as the effect of the lattice expansion.

In single-layer 1H -TaS2, in the absence of spin-orbit cou-
pling (SOC), a single isolated band (twofold spin degenerate)
crosses the Fermi level, as shown in Fig. 1(a). This half-filled
band, which is about 1.4 eV wide, has a strong Ta d character
and is separated by about 0.6 eV from the manifold of S p

bands below. As a consequence, metallic screening is due to
a single band isolated from all the others. The Fermi surface
consists of a roughly hexagonal hole sheet of primarily a Ta dz2

character around � and a roughly triangular sheet of primarily
an in-plane Ta d character (dx2+y2 and dxy) around K . The
spin-orbit interaction splits the half-filled d band by as much
as ∼0.3 eV, except along the �M line where symmetry dictates
that the band remains degenerate. The number of Fermi sheets
around the � and K points doubles with SOC.

Electron doping of x = −0.3 causes a nearly rigid down-
ward shift of the partially occupied Ta d band by about 0.1 eV,
and a somewhat larger downward shift of the occupied S p

bands. This is shown in Fig. 1(c) for the scalar relativistic
bands. The fully relativistic bands behave similarly with
doping, as can be seen in Figs. 1(a) and 1(b). The hole
pocket around � thus gets slightly smaller while the one
around K shrinks more significantly. The doping-induced
lattice expansion, on the other hand, has a negligible effect
on the Fermi surface, as shown in Fig. 1(d).

Despite the non-negligible effect that SOC has on the
electronic structure, we find little difference between the
phonon spectra calculated with and without SOC. This is
shown in Fig. 2, where the phonon dispersion curves were
obtained from a Fourier interpolation on a 8 × 8 × 1 phonon
q grid. Hence, for the remainder of this paper, we focus on the
phonon properties calculated in the absence of SOC.

Figure 3(a) shows the phonon dispersion curves calcu-
lated for the undoped monolayer (x = 0) from a Fourier
interpolation on a 12 × 12 × 1 phonon q grid. An acoustic
phonon branch is found to be unstable over a large area of
the BZ surrounding the M point and even has a dip at K .
(Imaginary frequencies are plotted as negative.) This branch
involves in-plane Ta vibrations. This region of instability arises
primarily from softening of the phonon branch near the bulk
CDW wave vector ( 2

3 along the � to M line), but there is also
a secondary point of instability along the M to K line (close
to M) [18]. We will refer to these points as qCDW and qMK ,
respectively.
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FIG. 1. Electronic bands of single-layer 1H -TaS2. Effect of (a)
SOC for the undoped case, (b) SOC for the n-doped (x = −0.3) case,
(c) n doping (x = −0.3 vs x = 0), and (d) lattice constant relaxation
(ax=0 vs ax=−0.3) on the doped (x = −0.3) system. Internal atomic
coordinates were optimized in all cases.

When electrons are added while keeping the lattice constant
fixed at ax=0 but allowing zS to relax, the instabilities at qCDW

and qMK are progressively suppressed. With doping of x =
−0.3, a weak instability at the M point remains, as shown in
Fig. 3(b). Once the lattice constant is allowed to expand to its
optimal value at x = −0.3, the lattice becomes dynamically
stable, as seen in Fig. 3(c), though an anomalous dip in the
phonon dispersion remains near qMK . For both doped cases,
there is no longer a dip at K .

At intermediate values of electron doping, we find that
in going from x = 0 to x = −0.3, with the lattice constant
optimized at each level of doping, the point of strongest
instability shifts from qCDW( 2

3�M) to the M point as the
mode gradually hardens. In these harmonic calculations, the
mode becomes stable between x = −0.25 and x = −0.3.
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FIG. 2. Phonon dispersions of single-layer 1H -TaS2. Effect of
SOC for (a) the undoped case, and (b) the n-doped (x = −0.3) case. In
(b), the curves with and without SOC lie almost directly on top of each
other. Dispersion curves were obtained from Fourier interpolation
from a q grid of 8 × 8 × 1 points. Imaginary frequencies are shown
as negative.

With positive (hole) doping, the instability at qCDW shifts
in the other direction (close to 1

2�M for x = 0.3), and
various other strong instabilities appear throughout the BZ.
See Supplemental Material [19] for more information on
intermediate and positive doping values.

Since the unstable branch involves in-plane displacements
of Ta ions, it is likely that these phonons couple strongly to
in-plane Ta d states near the Fermi level. To investigate the
role of the electron-phonon interaction in the CDW transition
in this material, we consider the phonon self-energy due to
electron-phonon coupling. In the static limit, the real part of
the phonon self-energy for phonon wave vector q and branch
ν is given by

�qν = 2

Nk

∑
kjj ′

∣∣gν
kj,k+qj ′

∣∣2 f (εk+qj ′) − f (εkj )

εk+qj ′ − εkj

, (1)

while the phonon linewidth, which is twice the imaginary part
of the phonon self-energy, can be expressed as

γqν = 4πωqν

Nk

∑
kjj ′

∣∣gν
kj,k+qj ′

∣∣2
δ(εkj − εF )δ(εk+qj ′ − εF ).

(2)
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FIG. 3. Phonon dispersions of single-layer 1H -TaS2: (a) undoped
(x = 0), (b) n doped with unrelaxed lattice constant (x = −0.3, ax=0),
and (c) n doped with relaxed lattice constant (x = −0.3, ax=−0.3).
Dispersion curves were obtained from Fourier interpolation from a
q grid of 12 × 12 × 1 points. Imaginary frequencies are shown as
negative.

Here, Nk is the number of k points in the Brillouin zone, j and
j ′ are electronic band indices, f (ε) is the Fermi-Dirac function,
εF is the Fermi energy, and ωqν is the phonon frequency. The
electron-phonon matrix element is

gν
kj,k+qj ′ =

√
h̄

2ωqν

〈kj | δVSCF/δuqν |k + qj ′〉 , (3)

where uqν is the amplitude of the phonon displacement and
VSCF is the Kohn-Sham potential. Both the linewidth and the
product ωqν�qν are independent of ωqν , so they remain well
defined even when the frequency is imaginary.

FIG. 4. Brillouin zone maps of the phonon linewidth [(a)–(c)]
and the geometric Fermi-surface nesting function [(d)–(f)]: (a), (d)
undoped (x = 0), (b), (e) n doped with unrelaxed lattice constant
(x = −0.3, ax=0), and (c), (f) n doped with relaxed lattice constant
(x = −0.3, ax=−0.3). White (black) represents high (low) values, with
one scale used for all the linewidth plots (a)–(c) and another used
for all the nesting function plots (d)–(f). Dotted lines show high-
symmetry lines from � to K and from K to M . The plots in (a)–(c)
represent the sum of the phonon linewidths for the two acoustic
phonon branches with in-plane Ta displacements.

In Fig. 4, we show Brillouin zone maps of the phonon
linewidth (summed over the two acoustic modes with in-plane
Ta displacements). In the undoped material [Fig. 4(a)], the
linewidth is sharply peaked at qCDW. For comparison, the
geometric nesting function, which is defined as the Fermi
surface sum in Eq. (2) with constant matrix elements, does
not have a sharp structure near qCDW [Fig. 4(d)], and instead
has three sharp peaks surrounding the K point. This means
that the sharp peak in the linewidth at qCDW must be due
to large electron-phonon matrix elements between states on
the Fermi surface, rather than to the geometry of the Fermi
surface itself. With electron doping (x = −0.3), the maximum
values of the linewidth are much smaller and occur elsewhere
in the Brillouin zone, whether the lattice constant is allowed
to relax [Fig. 4(c)] or not [Fig. 4(b)]. This suggests that the
momentum dependence of the electron-phonon coupling of
states at the Fermi level plays an important role in picking out
the primary instability at qCDW. However, focusing on states
at the Fermi level is not sufficient to understand the broader
region of instability.

The real part of the phonon self-energy �qν is directly
related to the renormalization of phonon frequencies due to
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FIG. 5. Momentum dependence of the square of the self-consistent (ω2
q) and bare (�̃2

q) phonon energies for the branch with instabilities,
self-energy correction (2ωq�̃q) for that branch, and real part of the bare susceptibility [χ ′

0(q)]: (a) undoped (x = 0), (b) n doped with unrelaxed
lattice constant (x = −0.3, ax=0), and (c) n doped with relaxed lattice constant (x = −0.3, ax=−0.3). The red dashed lines in the top panels
represent the square of the bare phonon energies (�̃2

q), calculated using Eq. (4). Only the response of the band crossing the Fermi level is
included in 2ωq�̃q and χ ′

0(q).

electron screening. From perturbation theory,

ω2
qν = �2

qν + 2ωqν�qν, (4)

where �qν is the bare phonon frequency. While it is conceptu-
ally appealing to define the bare frequencies as the completely
unscreened ionic frequencies, such a starting point leads to
results that lie outside the range of validity of the perturbative
expression in Eq. (4). Instead, we define the bare frequencies to
be the frequencies obtained neglecting the metallic screening
due to electrons in the isolated Ta d band crossing the Fermi
level. It has been shown that this non-self-consistent definition
of the self-energy is equivalent to a fully self-consistent
solution of the linear response equations including both the
real and imaginary parts of the self-energy [20]. In this case, we
limit the sum in the phonon self-energy [Eq. (1)] to intraband
transitions within the band at the Fermi level and denote it as
�̃qν . The corresponding bare (in the sense of unscreened by
metallic electrons) frequencies are denoted �̃qν . While the bare
frequencies are not directly accessible, we can estimate them
from the fully screened frequencies ωqν (as obtained from
density functional perturbation theory) and the perturbative
correction 2ωqν�̃qν by inverting Eq. (4).

For the branch with instabilities, Fig. 5 shows the square
of the phonon frequencies and the self-energy correction
2ωqν�̃qν along high-symmetry directions in the Brillouin
zone. For comparison, χ ′

0(q), the real part of the bare electronic
susceptibility, given by Eq. (1) with constant matrix elements
and limited to the band at the Fermi level, is also plotted.

For the undoped material, χ ′
0 has a minimum at qCDW,

but the momentum dependence between qCDW and M does
not match that of the calculated frequencies. Similarly, the
momentum dependence of χ ′

0 does not correlate with the
phonon softening when the material is doped to x = −0.3,
with or without relaxation of the lattice constant. From
Fig. 5, we see, however, that the momentum dependence of
the phonon self-energy roughly follows that of the phonon
softening, indicating the importance of the electron-phonon
matrix elements in �̃qν . The self-energy includes contributions
from states throughout the band crossing the Fermi level, in
contrast to the linewidth, which provides information about
the electron-phonon coupling at the Fermi level.

The squares of the bare frequencies (�̃2
qν) estimated using

Eq. (4) are plotted with dashed lines in the top panels of
Fig. 5. Note that in the regions of instabilities, the self-energy
correction is comparable to or larger than the square of the
bare frequency, possibly raising into question the degree to
which the perturbative expression is valid. Nevertheless, if
we use the expression to estimate the bare frequencies, we
find some surprising results. For the undoped material, the
dispersion of the bare frequency has sharp dips at both qCDW

and qMK . Thus, while phonon softening due to screening of
the band at the Fermi level accounts for most of the momentum
dependence of the unstable modes, structure in the bare
frequencies contributes as well. Upon doping to x = −0.3, but
holding the lattice constant fixed at ax=0, the local minima at
qCDW and qMK disappear in both the self-energy and the bare
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frequency, stabilizing those modes. At M , however, neither
the self-energy nor the bare frequency change significantly
with doping, so a residual instability remains at M . When the
lattice constant of the doped system is relaxed, the self-energy
undergoes relatively minor changes, while the bare frequency
at M hardens significantly. Thus it is the lattice constant
dependence of the bare frequency that stabilizes the M point
phonon at a doping of x = −0.3. The dramatic hardening
of this mode upon a 2.5% lattice expansion is surprising, as
phonons usually soften with lattice expansion. Indeed, most of
the other phonon modes in the doped material soften slightly
with the lattice expansion.

To summarize, we find that the primary CDW ordering
vector coincides with very strong electron-phonon coupling at
the Fermi surface, but the full momentum dependence of the
phonons in the wide region of instability is described more
completely by the momentum dependence of ω�̃, the phonon
self-energy due to screening from the band crossing the Fermi
level. The momentum dependence of the corresponding bare
phonon frequencies, �̃, however, also plays a role. Regarding
the behavior of the instabilities with doping and lattice strain,
the bare frequencies provide the primary contributions, but
the changes in the phonon self-energy, especially with doping,
are essential. While recent studies of CDW materials have
focused on the role of electron-phonon coupling as the driving
mechanism, we find that, for monolayer 1H -TaS2, taking into
account screening arising from electron-phonon coupling in
the band crossing the Fermi level by itself is not enough,
and one must consider how the bare frequencies depend
on momentum and doping as well. Unfortunately it is not
possible to determine if the momentum, doping, and strain
dependencies deduced for the bare frequencies come from the
response of other bands away from the Fermi level or appear
as features in the completely unscreened ionic frequencies.
Nevertheless, our finding that screening by states near the
Fermi surface alone is not responsible for the CDW instability
means that the instability is generated by not only the long-
range part of the force constants but also the short-range part,
which is included in �̃.

IV. CONCLUSIONS

Our calculations show that in the harmonic approximation
the free-standing monolayer of 1H -TaS2 is unstable to CDW
distortions with the same ordering vector as the bulk. We also
find that electron doping stabilizes the lattice. These results
indicate that the CDW suppression found in experiments of
1H -TaS2 on Au is not intrinsic but rather induced by the
substrate [11]. According to our harmonic calculations, in

addition to increasing the number of charge carriers, electron
doping induces a lattice expansion. While the addition of
charge carriers itself stabilizes most of the soft phonon modes,
at the harmonic level a residual instability remains if the lattice
constant is not allowed to relax. In the experiments on the Au
(111) substrate, the uncertainty in the measured lattice constant
was about 3% [11], which is slightly larger than the lattice
expansion we predict for electron doping of x = −0.3. Hence
in the experimental system, it remains an open question as to
how much the substrate affects the lattice constant, and how
that in turn influences the lattice instabilities.

We believe that the suppression of the CDW by electron
doping is robust also against anharmonic effects. Indeed, in
metals, anharmonic effects tend to enhance phonon frequen-
cies and suppress CDW instabilities [21,22]. These effects, not
considered in this work, could reduce the tendency of CDW
formation at x = 0, but will not change the qualitative result
that electron doping removes the CDW in this system. It would
be interesting to explore the interplay between anharmonicity
and doping in future studies.

Recently, it was pointed out that for metallic 2D materials
on substrates, the shift in the bands measured in ARPES
experiments may not provide a reliable estimate of charge
transfer across the interface [23]. In particular, if there
is significant hybridization between the substrate and 2D
material, the actual charge transfer will be reduced. The impact
of substrate hybridization on the CDW instability in monolayer
1H -TaS2 warrants future investigation.

This system, like other transition-metal dichalcogenides,
offers an opportunity to better understand the intrinsic origins
of CDWs. Going beyond previous studies that emphasized
the importance of the momentum dependence of the electron-
phonon interaction in driving the CDW, we find that the mo-
mentum, doping, and strain dependencies of the bare phonon
frequencies also play a role. This system also underscores
the importance of disentangling environmental and intrinsic
effects in 2D materials, and provides an example of using the
substrate to tune the properties of the material.
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