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M. Malki* and G. S. Uhrig
Lehrstuhl für Theoretische Physik 1, TU Dortmund, Germany

(Received 29 November 2016; revised manuscript received 25 April 2017; published 9 June 2017)

The interest in the properties of edge states in Chern insulators and in Z2 topological insulators has increased
rapidly in recent years. We present calculations on how to influence the transport properties of chiral and helical
edge states by modifying the edges in the Haldane and in the Kane-Mele model. The Fermi velocity of the chiral
edge states becomes direction dependent as does the spin-dependent Fermi velocity of the helical edge states.
Additionally, we explicitly investigate the robustness of edge states against local disorder. The edge states can be
reconstructed in the Brillouin zone in the presence of disorder. The influence of the width and of the length of
the system is studied as well as the dependence of the edge states on the strength of the disorder.
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I. INTRODUCTION

A. General context

Since the discovery of the integer and the fractional
quantum Hall effect [1,2] topological phenomena have become
an important field of research in condensed matter physics.
The edge states [3] occurring in the quantum Hall effect
are localized exponentially at the boundaries of the sample.
They are protected by the topological properties of the band
structure in the bulk. As shown by Thouless et al. [4] the
number of edge states corresponds to the Chern number ν of the
filled electronic bands and implies the famous quantized Hall
conductivity σxy = νe2/h. The description of the quantum
Hall effect by topological invariants [5–8] is based on the
Berry phase [9].

In order to mimic the integer quantum Hall effect in a lattice
model without external magnetic field Haldane has proposed
the first Chern insulator [10]. In addition to nearest-neighbor
hopping on a honeycomb lattice, the proposed Haldane
model comprises a staggered magnetic flux which induces
complex next-nearest-neighbor hopping elements while the
translational symmetry is preserved. Averaged over a unit
cell of the lattice the magnetic flux vanishes. However, for
certain values of the phases a finite magnetic field cannot
be distinguished from a vanishing average magnetic field
because phases of multiples of 2π cannot be distinguished
from vanishing phases [11].

In order to realize a Chern insulator the time-reversal
symmetry (TRS) must be broken. Nontrivial Chern numbers
imply chiral edge states also in the absence of an external
magnetic field extending the concept of the usual quantum Hall
effect. In the context of topologically protected edge states the
term ‘chiral’ means that the electrons only propagate in one
direction along one edge. If no magnetic field is involved this
effect is called the anomalous quantum Hall effect [12–14].

The Kane-Mele model [15–17] represents a crucial ex-
tension of the Haldane model including the spin degree of
freedom. This renders the preservation of the TRS possible
because one spin species realizes the time-reversed replica of
the other. The Kane-Mele model was suggested to describe
the effect of spin-orbit interaction on the electronic band
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structure of graphene in the low-energy regime, but it turned
out that the spin-orbit interaction in graphene is too weak
to produce noticeable effects. Nevertheless, the Kane-Mele
model provides fascinating theoretical insights.

Due to the preservation of the TRS in the Kane-Mele model
it cannot display a net charge current at the edges. Instead, a net
spin current is possible. This phenomenon is referred to as the
quantum spin Hall effect (QSHE) which can be attributed to
the topological Z2 invariant [16,18,19] implying helical edge
states [20]. These topologically protected edge states are called
‘helical’ because they have a spin filtering property, i.e., the
spins ↑ propagate in one direction while the spins ↓ propagate
in the opposite direction along the same edge. As a result,
the QSHE implies a quantization of the spin Hall conductivity.
Basically, materials displaying the QSHE and characterized by
the Z2 topological invariant are referred to as Z2 topological
insulators [17,21].

Since the QSHE is too weak in graphene to be measurable,
Bernevig, Hughes, and Zhang proposed a model [22] for
the QSH phase in HgTe quantum wells where the spin-
orbit coupling is much stronger. Soon after the theoretical
proposal the QSH phase has been observed experimentally in
a 2D HgTe/CdTe quantum well [23,24]. Another experimental
observation of the QSHE was realized in InAs/GaSb quantum
wells [25,26]. The discovered QSHE is only measured at low
temperatures up to 40 K. Theoretical calculations [27] predict
a possible realization of the QSHE in germanium with a large
energy gap corresponding to 277 K. The calculated energy gap
of the low-buckled honeycomb structure of germanium results
from the stronger spin-orbit coupling so that this system is a
candidate for detecting the QSHE at higher temperatures.

Historically, the QSHE was measured first in 2D topological
insulators. A Chern insulator was considered unlikely to be
realized. But very recently, progress has been achieved towards
2D Chern insulators. The first observation of the anomalous
quantum Hall effect was made in thin ferromagnetic Chern
insulators [28–30]. It could be observed up to temperatures of
a few Kelvin. Theoretical proposals indicate that Chern insula-
tors near room temperature are possible in thin ferromagnetic
Chern insulators [31] or in superlattices of gold atoms on
single-vacancy graphene [32,33].

An alternative realization has been achieved using ultracold
fermionic 40K atoms in a periodically modulated optical lattice
[34]. This method could implement the Haldane model in
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an experimental setup. A particular asset of this route is the
tunability of the physical properties.

B. Present objectives

Due to their topological protection, edge states may carry
currents without dissipation and they are protected against
disorder to some extent, see below. This robustness makes
them attractive to applications. With this long-term goal in
mind, we set out to study the influence of controllable external
parameters on the transport behavior of topological edge state
as well as to study the effect of noncontrollable features such
as disorder. We do not focus on the DC conductivity as has
been done before, see for instance Refs. [35,36]. We choose
the Fermi velocity vF as the measurable quantity of interest
in order to gain understanding which is complementary to the
existing literature.

The Fermi velocity is a key quantity in transport behavior
representing the group velocity of a transmitted charge or
spin signal. Thus, we aim at tuning the Fermi velocity
which quantifies how fast a signal is transmitted. A previous
observation in the Kagome lattice [11] revealed that the Fermi
velocity depends on the chosen shape of the edge. Further
investigations in the Haldane model [37] showed that by
decorating one edge of the honeycomb lattice the Fermi
velocity can be influenced strongly. We extend this observation
by considering decorating both edges.

Next, we transfer the idea of decoration to the Kane-Mele
model, i.e., to helical edge states. An explicit Rashba coupling
[38] and its effect on the Fermi velocity is also studied.
The decoration of the edges of the Kane-Mele model leads
to a tunable spin-dependent Fermi velocity which suggests
the applicability of tunable transmission speeds in spintronics
[39,40].

Finally, we study the influence of local disorder on the
edge states. Since edge modes are due to nontrivial topological
invariants it is assumed that they are protected against disorder.
However, various experiments show that the signatures of
topological phases are much more prominent in high-purity
samples [17] than in samples of lower quality. Thus, we intend
to investigate the influence of disorder by explicit calculations.
For simplicity, we study the robustness of the chiral edge states
in the Haldane model on the honeycomb lattice.

Local disorder breaks the translational invariance. By cal-
culating the modulus squared of the overlap of the eigenwave
functions of the disordered system with the eigenedge modes
in the clean system we define a transition probability. The
maximization of this quantity is used to reconstruct the
momenta of the edge states. The dependence of the transition
probability on the width, the length of the system, as well as on
the strength of the local disorder is examined. We find that the
disorder may not exceed certain thresholds in order to preserve
the characteristic transport properties of the edge modes.

II. DECORATION OF THE HALDANE MODEL

For the sake of completeness, we recap results for decorated
edges in the model without spin [37]. The results are important
for the comparison with the results in the modified and
extended models with spin. Moreover, they serve as reference

FIG. 1. Sketch of a strip in the honeycomb lattice with NN
hopping (black bonds). The green (light shaded) area displays a
unit cell in the x direction which consists of 2N + 2 sites including
the decorating sites. The honeycomb with blue arrows illustrates
the complex hopping elements to NNN sites with phase φ while the
honeycomb with red arrows illustrates the hopping elements with
phase −φ, see Eq. (2). The top and the bottom edge are decorated by
additional sites which are coupled weakly (λγ < t) to the bulk sites.
These decorating sites are subject to a local potential δγ . The index
γ takes the value t (top) or b (bottom). The lattice constant a is set to
unity.

for the disordered Haldane model which we investigate in
Sec. IV.

The complete Hamiltonian of the model can be divided into
two contributions

H = Hstrip + Hdecor (1a)

with

Hstrip = t
∑

〈i,j〉
c
†
i cj + t2

∑

〈〈i,j〉〉
eiνij φc

†
i cj (1b)

Hdecor =
∑

iγ

[λγ (c†d(i)ci + c
†
i cd(i)) + δγ c

†
d(i)cd(i)]. (1c)

The corresponding honeycomb lattice with decorated edges
is shown in Fig. 1. The Hamiltonian Hstrip comprises a real
hopping element between nearest neighbor (NN) sites and
a complex hopping element between next-nearest-neighbor
(NNN) sites. The symbol 〈i,j 〉 denotes a pair of NN sites while
〈〈i,j 〉〉 denotes a pair of NNN sites. The hopping parameter t is
real and serves as energy unit henceforth. The lattice constant
a is set to unity. The complex hopping element is given by the
combination of the positive real parameter t2 and a phase φ.
The inclusion of the nonvanishing phase breaks the TRS as is
necessary for obtaining nontrivial Chern numbers.

The sign of the phase is determined by

νij = sgn (d̂1(ij ) × d̂2(ij ))z = ±1, (2)

where one reaches site j from site i by a NN hop to site i ′
and a second NN hop from i ′ to j . Then, d̂1(ij ) stands for the
unit vector from i to i ′ and d̂2(ij ) for the unit vector from i ′ to
j . The complex hopping elements with phase φ are shown in
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blue (dark gray) while the hopping elements with phase −φ

are shown in red (light gray) in Fig. 1.
The Hamilton operator of the decorating sites Hdecor

consists of two parts. One part describes the additional sites at
the top whereas the other part describes the bottom sites (γ ∈
{t,b}). If the outermost sites of the undecorated honeycomb
lattice are denoted by j the adjacent decorating sites are labeled
d(j ). The hopping elements between the outermost sites and
the attached decorating sites are modified by the factor λγ .
Generically, we consider an attenuation so that 0 � λγ � t

holds. The on-site energy of the decorating sites are denoted
by δγ . It can be thought to be generated by a gate voltage which
changes the electric potential of the decorating sites [37].

The phase diagram of the Haldane model on a bulk
honeycomb lattice without boundaries can be found for
instance in Refs. [10,19]. Calculating the dispersion on a finite
strip, see Fig. 1, of the system provides the chiral edge states.
Coupling the decorating sites to the honeycomb strip does not
alter the topological characteristics of the system. The phase
φ is set to π/2 in order to maximize the gap. To create rather
flat energy bands we set t2 = 0.2t as in Ref. [37]. The Fermi
level is set to εF = 0.

To illustrate the impact of the modification we calculate
the dispersion of both edge modes and compare it to the
dispersion in the undecorated Haldane model. In the following,
we investigate a strip of finite height in the y direction whereas
the strip is infinitely extended in the x direction, see Fig. 1.
Due to the translational symmetry in the x direction, the wave
number kx represents a good quantum number. At fixed kx ,
one obtains a (2N + 2) × (2N + 2) one-particle matrix which
can be diagonalized numerically. The dispersive modes within
the gap of the bulk Haldane model are the edge modes. Due
to their exponential localization at the edges their dispersion
converges quickly upon increasing the number N of units in
the strip. The calculations in this work are based on strips with
N = 60 units which turns out to be sufficiently wide.

An example of a dispersion with different parameters for
both edges is shown in Fig. 2. The filled areas represent the
continua stemming from the modes for all possible values of
ky . Our main focus lies on the investigation of the edge modes
of which the energies are between the lower band edge of the
upper continuum (blue, darker shading) and the upper band
edge of the lower continuum (red, lighter shading).

Upon coupling the decorating sites to the honeycomb strip,
i.e., λγ �= 0, the dispersions of the edge modes display an
‘avoided crossing’ (or ‘level repulsion’) due to the hybridiza-
tion with the local modes from the decorating sites. In the
case of small values of λ, see right mover in Fig. 2, the edge
states have a rather flat band. Increasing λ leads to a stronger
repulsion between the edge modes near the zone boundary
kx = π so that the dispersion acquires stronger momentum
dependence, see left mover in Fig. 2.

Besides the coupling λγ , the decorating sites can be
influenced by the local potentials δγ . Increasing the local
energy of the decorating sites counteracts the hybridization
because the tendency of an electron to visit the decorating
sites is decreased if these sites differ in energy from the bulk
sites. In this way, the decorating sites can be smoothly switched
off. Then, the Fermi velocity converges to the Fermi velocity
vF0 without decoration.

FIG. 2. Dispersion of the edge states with t2 = 0.2t , φ =
π/2, λt = 0.2t, δt = 0.1t, λb = 0.6t , and δb = −0.1t . The right-
moving edge state marked in orange (light gray) is located at the
top edge while the left-moving edge state marked in green (dark
gray) is located at the the bottom edge. The filled areas indicate the
continua of the bulk states. The Fermi velocity vF = ∂ω/∂kx |εF of
both edges modes are independent of each other.

The dependence of the Fermi velocity on the parameters
of the decorated model has been studied quantitatively for a
single decorated edge [37]. To prove the independence of the
chiral edge modes explicitly we calculated the Fermi velocity
of both edges while tuning parameters of only one edge. The
Fermi velocity of the unaltered edge remains unaffected to
the tenth digital. We stress that the relative coupling λγ and
the local potential δγ provide controllable parameters to tune
the Fermi velocity of the edge mode independent from the
other edge mode. Furthermore, different decorations at the
top and at the bottom edge enable us to realize different Fermi
velocities vF,γ so that the velocities become direction sensitive.

III. DECORATION OF THE KANE-MELE MODEL

Here, we investigate the impact of decorated edges on the
helical edge states of the Kane-Mele model which includes
the spin degree of freedom in such a fashion that it preserves
the TRS. The Hamiltonian reads

H = Hstrip + Hdecor (3a)

with

Hstrip = t
∑

〈i,j〉α
c
†
iαcjα + it2

∑

〈〈i,j〉〉αβ

νij c
†
iασ z

αβcjβ

+ itr
∑

〈i,j〉αβ

c
†
iα(σαβ × d̂ij )zcjβ (3b)

and

Hdecor =
∑

iγ α

[λγ (c†d(i)αciα + c
†
iαcd(i)α) + δγ c

†
d(i)αcd(i)α] (3c)

on the honeycomb lattice similar to the decorated Haldane
model from the previous section, see Fig. 1. In the Kane-
Mele model, each site can host two electrons with spin
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quantum number denoted by α,β ∈ {↑ , ↓}. The Hamilton
operator of the strip contains three contributions. The first
term describes the usual tight-binding hopping t between NN
sites. As before the hopping parameter t is real and used as the
energy unit.

Kane and Mele [15] argued that the second hopping
term ∝ t2 is induced by spin-orbit interaction. The hopping
parameter t2 is real and the sign depends on the NNN sites i

and j as given by νij defined in (2). The NNN term is closely
related to the NNN hopping in the Haldane model. Considering
each spin species separately, the corresponding Hamiltonian
with NN and NNN hopping violates the TRS. It equals the
Haldane Hamiltonian at φ = ±π/2 for either Sz = +1/2 or
Sz = −1/2. The Kane-Mele model comprises two decoupled
Haldane models with opposite phases. Since the time-reversal
transformation T = exp(−iπSy)K maps one onto the other
their combination preserves the TRS [19].

The last term in Hstrip proportional to tr describes a Rashba
term [15,38] which can also result from spin-orbit coupling
in the presence of a perpendicular electric field or a certain
interaction with a substrate. The hopping element parameter
tr of the Rashba term is real. The Rashba term violates the
conservation of the total Sz component so that the two Haldane
models for Sz = ±1/2 are coupled for tr �= 0.

The Hamiltonian of the decorating sites at the edge is chosen
to be spin independent for simplicity, similar to the decoration
of the Haldane model. So the notation will be the same except
that an additional index is used to denote the spin.

The topological phases of the Kane-Mele model are
classified by a Z2 invariant. The phase diagram of the bulk
Kane-Mele model including the Rashba coupling is known
[16,19]. We detect the presence of helical edge states by
calculating the dispersion on a strip of finite width as before.

First, we set the Rashba coupling to zero so that our results
can be directly linked to the results for the decorated Haldane
model. For λγ = δγ = 0, the original Kane-Mele model on a
strip is retrieved. The corresponding Hamiltonian consists of
two decoupled Haldane Hamiltonian each of which displays
its own chiral edge states. The chiral edge states of the spin
↑ part move in the opposite direction to the chiral edge states
of the spin ↓ part because the phase of their NNN hopping
element is opposite. The two chiral edge states with opposite
spins constitute a pair of counterpropagating edge modes at
each edge. As shown in the previous section, the top edge can
be modified independently of the bottom edge. This also holds
true for the Kane-Mele model. Therefore, we only consider
the decoration of the top edge in the following for brevity.

In the Kane-Mele model, the Fermi velocities of the edge
modes are spin dependent. Except for this difference, one can
carry over the basic considerations that we developed for the
decorated Haldane model. Figure 3 illustrates this point. The
helical edge states of the bottom edge are the same edge states
as in an undecorated Kane-Mele strip because the bottom edge
is undecorated. The dispersion of the modes at the top edge
display the effect of the ‘avoided crossing’ combined with a
certain shift of the dispersion due to the local potential. This
is in line with the results for the Haldane model.

Due to TRS, the dispersions display two mirror planes at the
momenta invariant under time reversal: kx = 0 or kx = π . This
property is based on Kramer’s theorem [41]. Kramer’s theorem

FIG. 3. Dispersion of the edge states with t2 = 0.2t , λt = 0.2t ,
and δt = 0.1t . The filled areas indicate the continua of the bulk states.
The edge states located at the top edge are shown in color (gray).
The spin ↑ mode propagating to the right is marked in orange (light
gray) while the spin ↓ mode counterpropagating to the left is marked
in green (dark gray). The dispersion of the edge states at the lower
boundary are displayed in black. The schematic sketch in the inset
clarifies the assignments.

predicts crossing points of the counterpropagating edge states
at the time-reversal invariant momenta. The two crossing
modes represent the famous Kramer’s pairs. Their degeneracy
is robust against time-reversal symmetric perturbations. The
level repulsion of the ‘avoided crossing’ leads to a Kramer
doublet located at kx = 0. The number of Kramer’s doublets
at one edge must be odd in the topologically nontrivial phase
because it is related to the Z2 topological invariant [17].

The inclusion of a finite Rashba coupling tr �= 0 violates the
Sz conservation and the two Haldane models hybridize. The
Rashba coupling alone without the imaginary NNN hopping
does not lead to a topologically nontrivial phase [19] which
means that the imaginary NNN hopping is indispensable for
the anomalous QSHE in the Kane-Mele model. But the Rashba
coupling reduces or enhances the bulk gap and influences the
edge states in this way. An exemplary dispersion of the helical
edge states in the Kane-Mele model is depicted in Fig. 4 where
the Rashba coupling tr has been chosen fairly large in order to
show its influence on the bulk and on the edge states. For not
too large values of the Rashba coupling the qualitative features
of the bulk and of the helical edge states remain unaltered.

The counterpropagating edge modes forming a Kramer’s
pair still cross each other as long as the TRS is preserved and
the bulk gap does not close. If the gap is reduced by tuning tr
the bulk states repel the edge modes. The effect can be seen in
Fig. 4 where the energies of the Kramer’s pair at the bottom
edge are shifted downwards. As a result, vF can increase or
decrease upon switching on the Rashba coupling as shown
in Fig. 5. Since the particle-hole symmetry is broken by the
Rashba coupling the inclusion of the local potentials at the
decorating sites is no longer symmetric so that the effect of a
negative potential differs from the one of a positive potential.
Even the sign of the effect can change.

In a system preserving TRS the addition of a finite amount
of unpolarized charge at one edge does not lead to a net
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FIG. 4. Dispersion of the edge states at finite Rashba coupling at
t2 = 0.2t , tr = 0.8t, λt = 0.2t , and δt = 0.2t . The filled areas indicate
the continua of the bulk states. The edge states located at the top
edge are shown in color (gray). The spin ↑ mode propagating to
the right is marked in orange (light gray) while the spin ↓ mode
counterpropagating to the left is marked in green (dark gray). The
dispersions of the edge states at the lower boundary are displayed in
black.

charge current because the two counterpropagating modes
compensate in charge due to their equal Fermi velocities. In
order to create a net charge current the TRS must be broken.
One possible way is to include a spin-dependent decoration.
This can be accomplished for example by proximity-induced
ferromagnetic exchange at the interface with a magnetic
insulator [42]. To demonstrate this basic idea we replaceHdecor

by

Hdecor =
∑

i,γ,α

[
λγ (c†d(i)αciα + c

†
iαcd(i)α) + δγ c

†
d(i)ασ z

ααcd(i)α

]
.

(4)

The change relative to Eq. (3c) is that the local potential
depends on the Pauli matrix σz. To illustrate the difference to

FIG. 5. Fermi velocity vF = ∂ω/∂kx |εF of the right-moving edge
modes relative to the original vF0 without decorated edges vs the
Rashba coupling tr at t2 = 0.2t for various decorations of the top
edges and undecorated bottom edges.

the previous decoration we depict the resulting dispersion in
Fig. 6(a) keeping all other parameters as before. Due to the
spin-dependent decoration of the top edge the corresponding
Kramer’s doublets do no longer exist. Furthermore, the
counterpropagating edge modes do not cancel each other.
Hence, a net charge and spin current is possible.

Another possible way to break the TRS is to split the two
spin states by adding a ferromagnetic exchange field

HFMX = hz

∑

i,α

(
c
†
iασ z

ααciα + c
†
d(i)ασ z

ααcd(i)α

)
(5)

to the decorated model in Eq. (3a). In contrast to the previous
example, the exchange field is present at all sites. This may be
realized by magnetic doping [43–45]. For vanishing Rashba
coupling tr = 0, the influence of the exchange field can be
easily understood by regarding the Kane-Mele model as two
decoupled decorated Haldane models of which the chemical
potentials are shifted in opposite directions. Kramer’s doublets
do no longer exist, see Fig. 6(b).

IV. ROBUSTNESS OF THE EDGE STATES AGAINST
POTENTIAL DISORDER

So far, we analyzed how an important transport property of
the edge states, the Fermi velocity, can be controlled by tuning
parameters. But there are also uncontrollable properties of a
solid state system. For instance, imperfections of all kinds such
as impurities, defects, or vacancies in the lattice structure can
never be fully excluded. We cannot consider them exhaustively
here. But we aim at a first study of the robustness of the edge
states with respect to disorder. To this end, we consider disorder
in the local potentials.

The edge states emerge as a result of the discontinuity
of topological invariants at the edges of a system. Since a
topological invariant is a global property of the bulk system
it is expected that the edge states are protected as long as the
disorder does not change the global properties of the bulk
system. We want to study this explicitly. To this end, we
investigate the Haldane model (1b) on a finite strip of the
honeycomb lattice as shown in Fig. 7. We consider a strip of
Nx columns of a finite width of Ny units so that there are
2NxNy sites. We add a random local potential at each site to
the Haldane model (1b) to simulate the disorder. The random
energies are taken from a continuous uniform distribution in
the interval [−√

3σ,
√

3σ ] where the standard deviation is
given by σ . This is the control parameter for the strength of the
local disorder. We also investigated random local potentials
which are Gaussian distributed, but the results do not differ
fundamentally.

The translation symmetry in the x direction is no longer pre-
served due to disorder. In order to establish a link to the system
without disorder we continue to consider periodic boundary
conditions. By diagonalizing the (2NyNx) × (2NyNx) matrix
encoding hopping and local energies we obtain the eigenen-
ergies. The corresponding eigenvectors cannot be classified
directly according to their momenta kx . The eigenstates are
given in spatial representation by

|ψ〉 =
∑

x,y

c(x,y)|x,y〉, (6)
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FIG. 6. (a) Dispersion of the edge states at t2 = 0.2t ,tr = 0, λt = 0.2t , and δt = 0.1t . The filled areas indicate the continua of the bulk states.
The edge states located at the top edge are shown in color (gray). The spin ↑ mode propagating to the right is marked in orange (light gray)
while the spin ↓ mode counterpropagating to the left is marked in green (dark gray). The dispersion of the edge states at the lower boundary
are displayed in black. (b) Dispersion of the edge states at t2 = 0.2t , tr = 0, hz = 0.3t in Eq. (5), λt = 0.2t , and δt = 0.1t .

where x and y correspond to the discrete coordinates of the
lattice sites. In order to map the eigenstates of the disordered
system to the eigenstates of the clean system we express the
edge states, right- and left-moving ones, of the clean system
in real space. Denoting the wave function of an edge state by
|ψcl〉(kx) it reads

|ψcl〉(kx) =
∑

y

d(kx,y)|kx,y〉

=
∑

x,y

d(kx,y)
e−ikxx

√
N

|x,y〉 . (7a)

In comparison to the representation (6) we deduce

ckx
(x,y) = d(kx,y)

e−ikxx

√
N

. (7b)

The possible momenta are given by kx = 2πnx/Nx with
nx = {0,1, . . . ,Nx − 1}.

FIG. 7. Sketch of a finite strip of honeycomb lattice consisting of
Nx columns of finite width of Ny units. Each column is enclosed by
thin black lines. The different sizes of the dots illustrate the random
local potentials of a disorder configuration.

In order to assign a momentum kx to an energy of an edge
state of the disordered system we search for the largest overlap
with a clean edge mode, i.e., we maximize |〈ψ |ψcl〉|2(kx) by
varying kx . The momentum kx which maximizes this overlap
is the one assigned to the eigenstate of the disordered system.
The overlap can be interpreted as transition probability and is
calculated by

|〈ψ |ψcl〉|2(kx) =
∣∣∣∣∣
∑

x,y

c∗(x,y)ckx
(x,y)

∣∣∣∣∣

2

. (8)

Following this procedure, we reconstruct the dispersion of
the edge state in the Brillouin zone as shown in Fig. 8 for σ =
0.1t . Typically, we consider a system of Ny = 50 and Nx = 21
leading to 2NyNx = 2100 eigenenergies from which we select
the energies corresponding to the edge state by maximizing the
transition probability (8). The dispersions of the edge modes
of the clean system computed from the infinite strip (Nx =
∞) are shown as solid lines for the sake of comparison. To
test the maximization of the transition probability we assign
momenta to eigenstates computed for a finite clean system.
The results are depicted by black diamonds in Fig. 8 and match
the continuous lines perfectly. The red (gray) circles display
the eigenenergies at the assigned momenta in a disordered
system with σ = 0.1t . They are still located close to the solid
lines but do not match them perfectly due to the disorder.

We conclude that the qualitative features of the edge states
are indeed robust against disorder. The gaplessness of the edge
modes is preserved as was to be expected from the topological
protection. But also the quantitative aspects are not drastically
altered by disorder, at least as long as the disorder strength is
not too large.

An important point to study is the influence of the
disorder on the bulk gap. If the bulk gap becomes small or
even vanishes the topological properties disappear. Increasing
disorder reduces the bulk gap. An estimate for this reduction
can be derived by assuming that the disorder strength σ

behaves similar to an on-site inversion-symmetry breaking
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FIG. 8. Dispersion of the edge states with t2 = 0.2t and φ = π/2

of the Haldane model. The filled areas indicate the continua of the
bulk states. The right-moving edge state marked in orange (light gray)
is located at the top edge while the left-moving edge state marked in
green (dark gray) is located at the bottom edge. The symbols indicate
the energies of eigenstates of which the momenta are determined from
maximizing the transition probability in (8). The black diamonds are
calculated for a clean system with Ny = 50 and Nx = 21 while the
red (gray) circles result from a disordered system with σ = 0.1t .

term εi Mc
†
i ci . Here εi takes the values ±1 depending on

whether site i belongs to one sublattice or to the other. The
energy gap � of the bulk system decreases upon increasing
M . Similarly, � decreases upon increasing σ as we illustrate
in Fig. 9 where the lower band edge ωunoc = �/2 of the
unoccupied states and the upper band edge ωoccu = −�/2
of the occupied states are shown. The black solid lines
depict the bulk gap as a function of M according to � =
2|M ± 3

√
3t2 sin φ| [10,45,46]. The symbols show the bulk

gap in the disordered sample determined in the following way.

FIG. 9. The lower band edge of the conduction band (blue, dark
gray) and the maximum energy of the valence band (red, light gray)
vs the disorder strength σ in a system with Ny = 50 and Nx = 21.
The energies are averaged over 60 randomly chosen configurations.
The error bars represent a standard deviation. The black lines show
the band edges in a clean system as a function of a local inversion-
symmetry breaking term ∝ M , see main text.

FIG. 10. Transition probability |〈ψ |ψcl〉|2(kx) of the right-moving
edge state averaged over 50 random configurations in a system with
Ny = 50 and Nx = 21 as a function of the momentum kx . The error
bars indicate the standard deviation. The dashed lines indicate at
which momenta the energy of the edge mode enters the bulk continua.

For the lower band edge we compute the minimum energy of
the eigenstates which cannot be assigned to an edge mode of
the clean system. Similarly, the upper band edge is determined
from the maximum energy of the eigenstates which cannot
be assigned to an edge mode of the clean system. Of course,
this way of determining the bulk gap in the disordered system
is a heuristic one and not mathematically rigorous. But the
comparison to ωoccu(M) and ωunoc(M) shows good agreement
so that we conclude that the estimate works very well.

The energy gap disappears at M = 3
√

3t2 sin φ [10,45,46].
Thus, the estimate predicts that the topological properties will
definitely cease to exist for a disorder strength

σ ≈ 3
√

3t2 sin φ . (9)

We stress that the decreasing bulk gap reduces the energy inter-
val in which the edge mode can be identified. Concomitantly,
the interval in momentum kx in which the edge mode can be
identified is reduced as well.

Next, we study how well the edge mode can be identified
close to the bulk continua. Figure 10 displays the transition
probability |〈ψ |ψcl〉|2(kx) of the edge states in the Brillouin
zone. The vertical dashed lines indicate the thresholds where
the edge modes enter the bulk continua, i.e., where the energies
of the edge modes exceed the estimated bulk gap. It is obvious
that around kx = π the transition probability between the edge
mode in the disordered system and in the clean system is
large. Thus, in particular for low disorder, the identification
of the edge mode works reliably. For increasing disorder,
the overlap decreases gradually. Approaching the band edges
at fixed disorder strength, i.e., approaching the dashed line,
the overlap decreases rapidly and a clear identification of the
edge modes becomes more and more difficult until it becomes
impossible. This data shows the breakdown of the edge modes
under the influence of disorder. Clearly, there are limits to the
topological protection, even though the feature of a vanishing
energy of the edge modes persists as required.
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FIG. 11. (a) Transition probability |〈ψ |ψcl〉|2(kx) at two values
of kx for the right-moving edge state as a function of the disorder
strength σ in a system with Ny = 50 and Nx = 21. The probability
is averaged over 50 configurations. The error bars represent the
standard deviation. The dashed lines depict where the edge modes
enter the continuum of the bulk states. (b) Complete energy spectrum
for an exemplary configuration. The energies highlighted in color
correspond to the two values of kx displayed in (a).

The quantitative behavior of |〈ψ |ψcl〉|2(kx) as a function of
σ is studied in Fig. 11(a). The transition probability decreases
upon increasing σ . Beyond a certain value of σ the transition
probability saturates at a small residual value. If the energy
of the edge mode in the clean system is far away from the
band edges of the continua (red curve, symbol 1) the transition
probability decreases more slowly than if its energy is close to
one of the continua (green curve, symbol 2).

In Fig. 11(b) we depict the dependence of the complete
energy spectrum on the disorder strength. The modes assigned
to the two momenta shown in Fig. 11(a) are highlighted by
the two lines. There are regions where the eigenenergies are
dense corresponding to the continua. The energies between
the two dense regions at low and at high energies belong to
the edge modes. The energies assigned to the two momenta
evolve upon increasing σ . At some value of σ , which is
specific for the momentum kx of the mode, they enter the
bulk continuum. The corresponding values of σ are indicated

FIG. 12. Transition probability |〈ψ |ψcl〉|2 at kx = 2π 8/21 as a
function of the width Ny of the strip of the Haldane model with
t2 = 0.2t , φ = π/2, and a length of Nx = 21. The probability is
averaged over 50 configurations for σ = 0.1t . The error bars represent
a standard deviation. The effect of local disorder on all sites is shown
by black circles. The blue (gray) circles depict the effect if disorder
is only present in the bulk, but not at the edges. As to be expected,
the edge modes are much less influenced in this case.

approximately by vertical dashed lines in both panels of
Fig. 11. Beyond these disorder strengths it can no longer be
decided whether the modes are true edge modes or whether
they belong to the continuum states.

Yet even beyond the dashed lines the transition probability
is large enough to assign energies to the momenta kx . But it
happens that the assigned energies jump as can be seen for
kx = 2π 8/21 where kinks occur beyond the dashed line. This
indicates that the assignment energy ↔ momentum based on
the transition probability is no longer reliable.

Next, we address the dependence of the modes on the width
Ny and the length Nx of the system. Larger Ny increases
the width of the strip. Since the edge modes are localized
at the boundaries increasing the width separates them more
and more and makes them independent from each other. We
focused on wide enough strips anyway so that the edge modes
are essentially independent of Ny . This is supported clearly
by Fig. 12. The width Ny of the strip plays no important
role once it is large enough. Furthermore, Fig. 12 shows that
|〈ψ |ψcl〉|2 crucially depends on the characteristics of the edges.
If the edges are unaffected by the local disorder the transition
probability takes significantly larger values than in the case
where all sites are subject to random potentials.

Increasing the length Nx of the system has a pronounced
effect on the transition probability as shown in Fig. 13. Note
the logarithmic scale of the y axis. Though the numerical data
for the transition probability |〈ψ |ψcl〉|2(kx) is a bit noisy, it
agrees well with an exponential dependence

|〈ψ |ψcl〉|2(kx) ∝ exp(−γ (σ )Nx), (10)

where the rate γ depends on the disorder strength. Naturally,
the overlap decreases more rapidly if the disorder strength is
larger.

The observed dependence on Nx can be understood as
follows. Let us view a system of given length Nx to be formed
by concatenating a number r of short subsystems of length nx
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FIG. 13. The logarithm of the transition probability at the
momentum kx = 2π 10/21 vs the length Nx of the system at t2 =
0.2t, φ = π/2, and the width Ny = 20. The transition probability is
averaged over 50 random configurations for various disorder strengths
σ . The error bars represent the standard deviation of the average.

with Nx = r · nx . If the subsystems are still long enough, the
physics inside of each of them is only negligibly influenced by
the boundaries between them. Then, the transition probability
of the total system is given by the product of all the transition
probabilities of the subsystems

|〈ψ |ψcl〉(Nx)|2 =
r∏

j=1

|〈ψ |ψcl〉(nx,j )|2. (11)

On average, the transition probabilities of all the subsystems
are the same so we denote them by psub < 1. Thus we have

|〈ψ |ψcl〉(Nx)|2 = pr
sub (12a)

= exp(−γ̃ r) (12b)

= exp(−γNx), (12c)

where we set psub = exp(−γ̃ ) and γ = γ̃ /nx .
Inspecting Fig. 13 reveals that the exponential decay does

not apply for short systems but only beyond a certain minimum
length. Thus, the above argument is only approximately
true because the assumption of negligible influence of the
boundaries is not perfectly justified for short systems. Thus a
linear fit a − γ Nx of the logarithm of |〈ψ |ψcl〉(Nx)|2 as shown
in Fig. 13 works well, but the offset a is not zero in contrast
to what our simple argument suggests in Eq. (12c). The fitted
values are given in Table I.

Finally, we study the effect of disorder on the edge mode
at a decorated edge. It has been advocated that the decoration
and a tunable gate voltage shifting the potential at the edges
render the realization of tunable, direction-dependent delay
lines possible [37]. If we recall the extension to the Kane-Mele
model a dependence on the spin is also possible. This makes
the fundamental idea interesting for spintronics as well. But
for all applications the robustness towards imperfections is
decisive. This motivates the investigation of disorder.

The purpose of the decoration is to reduce the Fermi
velocity by design, i.e., to introduce fairly flat regions in the

TABLE I. Fitted values of the linear fits ln |〈ψ |ψcl〉(Nx)|2 ≈ a −
γ Nx in Fig. 13.

σ a ± �a γ ± �γ

0.1 −0.00174 ± 0.00458 0.00080 ± 0.00004
0.2 −0.02261 ± 0.01491 0.00276 ± 0.00012
0.3 −0.14242 ± 0.02713 0.00479 ± 0.00023
0.4 −0.40515 ± 0.03240 0.00532 ± 0.00027
0.5 −0.52846 ± 0.04800 0.00654 ± 0.00040

dispersion. This implies that there are many eigenstates of
very similar energies. From perturbation theory one knows that
such systems are susceptible to generic perturbations such as
disorder. We investigate a system of size Ny = 50 and Nx = 21
with a decorated upper boundary. Since the decorating sites
are not excluded from disorder we also add a random local
potential to the additional sites. In the reconstruction of the
dispersion of the edge modes we require a certain minimum
transition probability in order to obtain a reliable mapping
between momenta and eigen states. From the above results
for systems of the considered size we set this threshold to
0.3, cf. Figs. 10 and 11. For weak disorder the successfully
reconstructed dispersion is displayed in Fig. 14(a).

For stronger disorder, a complete reconstruction of the
dispersion of the edge states turns out to be impossible, see
Fig. 14(b). For instance for σ = 0.1t ,the eigenstates with
energies within the flat dispersion in the center of the gap
cannot be mapped reliably to the corresponding momenta
because their overlap falls below the threshold. As expected
from our perturbative argument, the states in the flatter regions
of the dispersion are not particularly robust against disorder.

For a complete understanding, we also studied the case
where there is no disorder at the decorating sites. This is a
realistic scenario if the technique which creates the decorating
sites is a different one from the one growing the bulk. Clearly,
this kind of disorder has much less detrimental effects on the
edge modes, see for instance Fig. 12. The edge modes are
rather localized at the decorating sites so that they are less
exposed to disorder. This holds in particular for the states
with rather flat dispersion because they differ only slightly
from the completely local states on the decorating sites. For
instance the same configuration as used in Fig. 14(b) can be
reconstructed up to much stronger disorder σ = 0.5t if the
disorder is restricted to the bulk.

Note that the above observations do not contradict the
general idea of topological protection because there are modes
at arbitrary small energies. But for transmitting signals one
needs a clearly defined dispersion ω(kx) which yields the group
velocity ∂ω/∂kx . If this is not the case as we found here for
stronger disorder we presume that the system is not suitable
for applications based on signal transmission. This sets certain
limits to the general idea of topological protection which
should not be misunderstood as a guarantee that dispersion
and group velocity are well defined.

V. SUMMARY

In this paper, we concentrated on the Fermi velocity of
the edge states of topologically nontrivial fermionic lattice
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FIG. 14. Dispersion of the edge states in a decorated system with t2 = 0.2t, λt = 0.2t , and φ = π/2. The filled areas indicate the continua
of bulk states. The right-moving edge state marked in orange (light gray) is located at the top edge while the left-moving edge state marked in
green (dark gray) is located at the bottom edge. For reference, the black diamonds depict the reconstructed dispersion in the clean system with
Ny = 50 and Nx = 21 while the red (gray) circles depict the reconstructed dispersion for σ = 0.001t in panel (a) and for σ = 0.1t in panel
(b). Note that in panel (b) the flat part of the dispersion could not be reconstructed because the transition probabilities fall below the required
threshold, see main text.

systems. The Fermi velocity is the group velocity with which
signals can be transmitted through the edge states. The
tunability of the edge states can be used to create delay lines
based on interference, see Ref. [37]. Thus it is a measurable
quantity very important for transport behavior, but which is
different from DC conductivity studied previously [35,36].

First, in Sec. II, we presented the decorated Haldane
model to be able to compare later to the extended Kane-Mele
model and to the decorated Haldane model with disorder. We
discussed the effects that various parameters of the decoration
have on the properties of the edge states, most notably on their
dispersion. The Fermi velocity is direction dependent if the
different edges are decorated and tuned independently.

Second, in Sec. III, the results for the spinless Haldane
model were extended to the spinful Kane-Mele model. In
this model, the dispersions of the edge modes depend on
the combination of direction and spin. The model in its
entire composition does not break TRS. So for each right (or
left)-moving spin ↑ mode there is a left (or right)-moving spin
↓ mode with equal energy. The full control of the dispersions
and their dependence on direction and spin separately can
be achieved by realizing spin-dependent exchange couplings
at the edges. Candidates for the realization of such terms in
the Hamiltonian are the proximity effect of a ferromagnet
in hybrid structures or magnetic doping in the bulk of
the system. In addition, we studied the effect of Rashba
coupling.

Third, in Sec. IV, we addressed the effect of disorder on
the edge states as motivated by the fundamental paradigm of
topological effects that the edge states are particularly robust
against any kind of perturbation. For clarity, we performed this
study for the spinless Haldane model. Indeed, the existence
of gapless states at the edges is guaranteed by topological
protection. But there is no guarantee for the preservation of a
well-defined dispersion of the edge modes. Thus, the transport
properties are likely to be influenced significantly by disorder.

We reconstructed the dispersion of the edge modes in
disordered systems by comparing them with the edge modes
of the clean system. The transition probability between the
edge state in the clean system and the one in the disordered
system served as criterion to identify the modes. In this way,
one can link the eigenstates in the disordered systems to certain
momenta and re-define a dispersion. The approach works very
well for edge states of which the energy is far away from
the continua. But if the energies approach the band edges,
the mapping becomes ambiguous so that its application is no
longer reliable. Thus, for stronger disorder only small parts of
the original dispersions can be reconstructed. Increasing the
disorder even further eventually destroys the edge modes com-
pletely. In addition, we established an approximate formula for
the reduction of the bulk gap due to disorder in the Haldane
model.

Furthermore, we clarified how the transition probability
depends on the width and the length of the system under study.
The width does not have a significant impact once the sample
is wide enough so that the two edge modes do not interact
anymore. The increasing of the length leads to an exponential
decrease of the transition probability.

Finally, we addressed the robustness of the edge states at
decorated edges which allow us to design small and tunable
Fermi velocities. Applying the reconstruction procedure we
could cope with small disorder strengths. But we found our
expectation confirmed that the flat regions of the dispersions
are particularly susceptible to perturbations. We conclude that
in order to realize and to apply the ideas of tunable group
velocities one has to resort to clean samples or, at least, to
samples were the decorating sites are not subject to disorder.
The edge modes displaying a large dispersion and staying away
from the band edges of the bulk modes are those which are
most robust to disorder.

Further studies are necessary in order to investigate the
influence of other kinds of disorder or imperfections. On the
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one hand, it is conceivable that spatially correlated disorder is
less harmful to the edge modes than the completely local one
we studied here. The edge modes may flow around smoother
regions of disorder or imperfections, for an example on the
surface of a topological insulator, see Ref. [47]. On the other
hand, imperfections such as vacancies can behave like a local
infinite potential, i.e., having very drastic effects on the edge
modes. Extending such investigations to other kinds of systems

displaying topological order constitutes another broad field of
research.
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