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Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We
study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact
adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of
the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization
group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous
Joule law characterized by a universal Büttiker resistance quantum R0 = h/(2e2) for each spin channel. We show
that this law holds in the noninteracting as well as in the interacting system and also when the system is spin
polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions
and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.
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I. INTRODUCTION

The generation of electron currents by locally applying
time-dependent voltages in coherent conductors is a topic
of intensive research activity for some years now. Any
mechanism to be implemented with this goal is accompanied
by energy dissipation.

Quantum capacitors are prominent experimental realiza-
tions of these systems [1–3]. They were introduced by Büttiker,
Thomas, and Prêtre as quantum equivalents of the classical
linear RC circuits [4–6], by assuming a small amplitude of the
driving voltage. The corresponding ac complex impedance
depends on the driving frequency, the capacitance of the
quantum dot, and the resistance of the circuit. In the original
theory [4–6], transport coherence is assumed along the full
setup, and the only resistive element is the contact, which
results in a quantized electron relaxation resistance Rq =
R0/Nc where Nc is the number of transport channels and R0 =
h/(2e2) is the Büttiker resistance quantum. The universality of
this resistance remains robust in the low frequency regime
upon adding electron-electron interactions in the quantum dot
provided that the system behaves as a Fermi liquid (FL) [7–11].

While in some experiments the driving amplitudes were
within the range of linear response theory [1], further exper-
imental [2,3] and theoretical [12–15] contributions focused
on quantum capacitors as single-electron sources, implying
large amplitudes. In Ref. [12] a theory for the regime of
large amplitudes was proposed for noninteracting systems.
The effect of many-body interactions was later considered
within perturbation theory [16], mean-field approximations
[17], and exact approaches valid in the large-transparency limit
[18]. One of the goals of the present contribution is to study
the low-frequency nonlinear regime while fully taking into
account many-body interactions and spin-polarization effects
caused by external magnetic fields.

The setup consists of a quantum dot driven by a gate voltage
Vg(t) and connected to an electron reservoir, as sketched in
Fig. 1. We focus on the so-called adiabatic regime where
the time scale associated with a variation of Vg(t) is much

larger than the characteristic time scale for the dynamics of
the electrons inside the quantum dot.

As mentioned before, in linear response, it is usual to
represent this setup in terms of a resistance in series with a
capacitor, as sketched at the top of Fig. 1 [1–11]. In this paper,
we show that this representation with R = Rq is also sound
to describe the adiabatic dynamics of the interacting system
without magnetic field beyond linear response. In the case of a
magnetic field applied at the quantum dot, we analyze the setup
in the context of the circuit sketched in Fig. 2, where each spin
channel is regarded as a branch of a circuit with a capacitance
in series with a resistance accounting for a total voltage drop
Vg(t). For the quantum dot without many-body interactions,
we show that the resistance per spin channel is R0, while we
argue that for the interacting quantum dot with magnetic field,
the charge dynamics cannot be properly represented by this
circuit.

The quantum dot-reservoir system dissipates the energy
received from the ac source in the form of heat that flows
into the reservoir. For a noninteracting quantum dot connected
to a single-channel reservoir at zero temperature and for low
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance R0 [19,20],

PJoule(t) = R0

∑
σ

[IC,σ (t)]2, (1)

where IC,σ (t) is the instantaneous charge current of electrons
with spin σ flowing from the quantum dot to the reservoir. Here
we investigate to what an extent the Coulomb interaction at the
quantum dot affects this picture. We analyze this ingredient in
the framework of the Anderson impurity model. One of the
scenarios in this context is the Kondo effect, which takes place
below the so-called Kondo temperature TK when the quantum
dot is strongly connected to the reservoirs and occupied by an
odd number of electrons [21]. The electrons of the reservoir
and the effective spin 1/2 localized at the quantum dot form
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FIG. 1. Sketch of the setup. A quantum dot described by a single
electron level with Coulomb interaction U and is driven by an ac gate
voltage Vg(t) = V0 sin(�t) and is connected to a normal lead. Top:
representation of the setup in terms of a resistance connected in series
with a capacitor.

a many-body singlet state. Another scenario is the Coulomb
blockade, according to which it is necessary to overcome the
energy of the Coulomb interaction to introduce an additional
electron in the quantum dot once it is already filled with one
electron. In all the regimes, the single impurity Anderson
model behaves as a FL, even in the presence of a magnetic
field. We show that, due to this fact, the dynamics for the
energy dissipation in the adiabatic regime is ruled by the IJL
of Eq. (1) even beyond linear response. However, the mech-
anisms for the energy transport depend on the interactions
and the spin polarization. We show that in systems without
spin polarization (interacting and noninteracting), as well as
in noninteracting systems (with and without spin polarization),
electrons with each spin orientation separately dissipate energy
at a rate described by a Joule law PJoule,σ (t) = R0[IC,σ (t)]2.
Instead, the interplay between many-body interactions and
spin polarization leads to regimes where electrons with a
given spin orientation exchange energy with electrons with
the opposite spin orientation, although the total rate for the
energy dissipation is described by Eq. (1).

The paper is organized as follows. We present the theoreti-
cal treatment in Sec. II. In Sec. III we discuss the case where
the quantum dot is noninteracting. We show that the exact
description of the adiabatic dynamics is fully determined by
the behavior of the charge susceptibility of the frozen system
described by the equilibrium Hamiltonian frozen at a given
time. The effect of many-body interactions is discussed in

FIG. 2. Sketch of the circuit. Upper and lower branch corresponds
to ↑ and ↓ spin channels.

Sec. IV. In Sec. V we present numerical results obtained with
numerical renormalization group (NRG). For systems without
spin polarization, we also use exact results of static properties
obtained using the Bethe ansatz (BA). We present the summary
and conclusions in Sec. VI.

II. THEORETICAL TREATMENT

A. Model

We consider the system of Fig. 1. A driven quantum dot is
connected to a normal lead of free electrons at zero temperature
and chemical potential μ. The full setup is described by an
Anderson Hamiltonian,

H (t) = Hdot(t) + Hres + HT. (2)

The first term describes the dot

Hdot(t) =
∑

σ

εd,σ (t)ndσ + U

(
n↑ − 1

2

)(
n↓ − 1

2

)
, (3)

with ndσ denoting the number operator with spin σ = ↑,↓,
U is the Coulomb repulsion, and εd,σ (t) = ε0 + sσ

δZ

2 +Vg(t)
is the single-particle energy modulated by the applied gate
voltage Vg(t), with Vg(t) = eVg(t) = V0 sin(�t), δZ is the
Zeeman splitting due to the presence of an external magnetic
field, sσ = ±1 for σ = ↑,↓, and −e is the charge of the
electron. The reservoir is described by the Hamiltonian Hres =∑

σ,k εkc
†
kσ ckσ , which is assumed to have a constant density of

states within a bandwidth 2D. The coupling between dot and
reservoir is HT = Vc

∑
kσ [c†kσ dσ + H.c.].

B. Charge and energy adiabatic dynamics

The conservation of the charge in the full system implies

eṅd (t) = e
∑

σ

ṅdσ (t) =
∑

σ

IC,σ (t), (4)

where ndσ (t) ≡ 〈ndσ (t)〉 is the occupancy of the dot by
electrons with spin σ at time t , IC,σ (t) is the contribution
of the electrons with spin σ to the charge current flowing out
of the dot at time t , and e > 0 the elementary charge.

The power developed by the external ac source on the
electron system is defined as [22] Pac(t) = −〈∂H/∂t〉 =
−e

∑
σ ndσ (t)V̇g(t). This leads to a net heat production in

the electron system at a rate Q̇(t) = −Pac(t) [20]. We find it
convenient to define the power

P (t) = e
∑

σ

ndσ (t)V̇g(t), (5)

such that P > 0 implies work delivered from the electron
system against the ac sources. With this definition, the
rate for the heat production in the electron system reads
Q̇(t) = P (t) = Pcons(t) + Pdiss(t) [23]. This power contains a
purely ac component Pcons(t) associated to the reversible heat
produced by the conservative (Born-Oppenheimer) forces and
a dissipative component Pdiss(t) with a nonzero time average.

The dynamics of the heat production and the charge
current is fully determined by ndσ (t). For low frequencies,
the latter can be calculated within the adiabatic formalism of
Ref. [24], which corresponds to linear response in V̇g(t) (see
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Appendix A). The result is

ndσ (t) = nf σ (t) + e�σ (t)V̇g(t), (6)

where nf,σ (t) ≡ 〈ndσ 〉t is the snapshot occupancy of the
dot, evaluated with the exact equilibrium density matrix ρt

corresponding to the Hamiltonian H (t) frozen at the time t .
The coefficient of the second term is

�σ (t) = − lim
ω→0

Im[χσσ
t (ω) + χσσ

t (ω)]

h̄ω
, (7)

with ↑ = ↓ and ↓ = ↑. χσσ ′
t (ω) is the Fourier trans-

form of the charge susceptibility χσσ ′
t (t − t ′) = −iθ (t −

t ′)〈[ndσ (t),ndσ ′(t ′)]〉t evaluated with ρt .
In the case of the system with applied magnetic field, it is

appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ (t) = e
dnf,σ

dVg

V̇g(t) + e2 d[�σ (t)V̇g(t)]

dt
, (8)

where the first term is related to the static charge susceptibility
through dnf,σ /dVg = χσσ

t (0).
The frozen component nf,σ (t) contributes to the con-

servative component of this power, while the last term of
Eq. (6) contributes to the nonconservative one. They read,
respectively,

Pcons,σ (t) = enf σ (t)V̇g(t), Pσ (t) = e2�σ (t)[V̇g(t)]2. (9)

It is important to notice that the nonconservative components
Pσ (t) are not necessarily fully dissipative. They certainly
contribute to the total dissipation, but they may also contain
a nondissipative “exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t) + Pdiss,↑(↓)(t). The exchange component is associated
with time-dependent induced forces that are proportional to
V̇g(t). In this sense, these forces are akin to the “Lorentz”
forces discussed in Ref. [32]. However, in the present case
they may develop work only instantaneously while the average
over one period is zero.

The total power has conservative Pcons(t) = ∑
σ Pcons,σ (t),

and dissipative components Pdiss(t) = ∑
σ Pdiss,σ (t), which

read

Pcons(t) = e
∑

σ

nf σ (t)V̇g(t),

(10)
Pdiss(t) = e2

∑
σ

�σ (t)[V̇g(t)]2.

For later use we also define

�σσ ′(t) = − lim
ω→0

Im[χσσ ′
t (ω)]

h̄ω
,

(11)
Pσσ ′(t) = e2�σσ ′(t)[V̇g(t)]2.

When performing the averages over one period τ =
2π/� for these two contributions to the power, P cons,diss =
(1/τ )

∫ τ

0 dtPcons,diss(t), we find P cons = 0 and P diss � 0 in
accordance with the second law of thermodynamics. We see
that the full charge and energy dynamics in the adiabatic
regime is completely determined by the behavior of the frozen

charge susceptibility χσσ ′
t (ω), irrespective of the strength of

the interactions and the amplitude of the driving potential.

C. Analogy to the nonlinear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical nonlinear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ (t) in series with a resistance Rσ (t).

We assume that the equation relating the current through
each branch of the circuit with the potential Vg(t) is

IC,σ (t) = −Cσ (t)V̇g(t) + e2 d[Rσ (t)Cσ (t)2V̇g(t)]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the nonlinear low-
frequency regime satisfying �RσIσ 	 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ (t) = −e
dnf,σ (t)

dVg

= −eχσσ
t (0), Rσ (t)C2

σ (t) = e2�σ (t).

(13)
Here, unlike the linear case, the nonlinear capacitance Cσ (t)
and resistance Rσ (t) are, in general, functions of t . In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ (t)C2
σ (t)[V̇g(t)]2. (14)

We see that for the case where Rσ (t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝[V̇g(t)]2 to
Pdiss(t), since d�σ (t)/dt = (d�σ (t)/dVg(t))V̇g(t).

The above equations are exact and valid in general within
the adiabatic regime. However, in order to establish a meaning-
ful correspondence between the charge and energy dynamics
of the quantum system and the classical circuit of Fig. 2, the
coefficients defined in Eq. (13) should also verify Rσ (t) > 0
and Cσ (t) > 0. As we will discuss in detail in the next sections,
such a correspondence is valid in the system without spin
polarization (δZ = 0) for arbitrary Coulomb interaction U , as
well as in the noninteracting case (U = 0) with arbitrary δZ .
We also argue in Secs. IV and V that the dynamics of the
driven interacting quantum dot in the presence of a magnetic
field cannot be interpreted in terms of the circuit of Fig. 2.

III. NONINTERACTING ELECTRONS

A. Review of the spinless case

The expressions of the previous sections are completely
general and valid for arbitrary temperatures, for noninteracting
as well as interacting systems. We now relate them to the non-
interacting results for spinless electrons of Refs. [12,19,20,24].
This corresponds to the Hamiltonian (3) with U = δZ = 0 and
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with only one spin species. Following Refs. [19,20,25], we get

C(t) = −e

∫
dε

∂f

∂ε
ρf (t,ε),

(15)

�(t) = −h

2

∫
dε

∂f

∂ε
[ρf (t,ε)]2,

where ρf (t,ε) = (�/π )/[(ε − εd (t))2 + �2] is the noninter-
acting frozen density of states of the quantum dot connected to
a reservoir with constant density of states ν, � = πνV 2

c , and
f (ε) is the Fermi distribution function.

The resistance can be directly calculated from Eq. (13). At
T = 0, we have −∂f/∂ε = δ(ε − μ). Hence, the coefficients
simplify to C(t) = e2ρf (t,μ) and R(t) = R0 = h/(2e2). The
latter corresponds to the universal resistance quantum for a
single channel. By substituting these expressions in Pdiss(t)
and IC(t), and keeping terms up to O(V̇ 2

g ), we recover the
IJL of Eq. (1) as in Ref. [19]. Interestingly, we get the
same expression of the current IC(t) in the noninteracting
limit as the one of Ref. [12]. However the definition of R(t)
presented there differs from the definition of Eq. (13) with
�(t) given by Eq. (15). Such difference should be traced
back to the equation for the nonlinear circuit (12). Unlike
the one considered in Ref. [12], Eq. (12) includes the factor
RC inside the time derivative of the second term. The structure
of the latter equation is motivated by the adiabatic expansion
of the occupancy Eq. (6), by identifying the coefficient �(t)
as the dissipative contribution. Remarkably, our definition of
R(t) can be easily related to R0 in the limit of T = 0, and it
consistently leads to the Joule law of Eq. (1), while it is also in
agreement with the effective resistance defining the noise [12].

B. Spinful electrons

We now consider the case with U = 0 and arbitrary δZ .
Notice that for noninteracting electrons the “crossed suscep-
tibility” χ

σ,σ
t (ω) = 0. Hence the coefficient �σ (t) is fully

determined by the susceptibilities χ
σ,σ
t (ω). The calculations of

Refs. [12,19,20,24] can be easily extended to noninteracting
electrons with spin.

The frozen occupancy of the quantum dot with spin σ is

nf,σ (t) =
∫

dερf,σ (t,ε)f (ε), (16)

where ρf,σ (t,ε) = (�σ/π )/[(ε − εd,σ (t))2 + �2
σ ]. For this

model ∂ρf,σ (t,ε)/∂t = e(∂ρf,σ (t,ε)/∂ε)V̇g(t). Hence, after
integrating by parts the above equation, we get for T = 0

Cσ (t) = eρf,σ (t,μ). (17)

In addition, we get an expression like (15) for each spin
orientation σ . For T = 0, it reads

�σ (t) = h

2
[ρf,σ (t,μ)]2 = h

2

[
χσσ

t (0)
]2

, (18)

which is a special case of the Korringa-Shiba (KS) law
discussed in the next section. Inserting these expressions in
Eq. (13) we obtain Rσ (t) = R0. Substituting in (10), we see
that the dissipated power is ruled by the IJL of Eq. (1).

Therefore, for noninteracting electrons, Korringa-Shiba
law of Eq. (18) implies that there is a full one-to-one

correspondence between the charge and energy dynamics of
the driven electron system and the two-branch circuit sketched
in Fig. 2, with resistances Rσ (t) = R0, even when the electrons
are spin polarized. This also means that the ac forces associated
with the induced charge for each spin orientation dissipate heat
in the form of a Joule law, Pσ (t) = R0[IC,σ (t)]2 = PJoule,σ (t).
Hence, Pdiss(t) = ∑

σ PJoule,σ (t) = Rq[IC(t)]2, with IC(t) =∑
σ IC,σ (t) and Rq = R0/2.

IV. INTERACTING ELECTRONS

A. Exact results

For interacting electrons, the crossed susceptibility χ
σ,σ
t (ω)

contributes to the coefficient �σ (t), in addition to χ
σ,σ
t (ω).

For Fermi liquids, an important relation exists for the total
charge susceptibility χc

t (ω) = ∑
σ,σ ′ χ

σ,σ ′
t (ω), which receives

the name of Korringa-Shiba law [26]. In the noninteracting
case, it is expressed in Eq. (18). In the interacting case, it is a
nontrivial result, which was originally proved by Shiba in the
Anderson model [26] and later generalized by Fillipone et al.
when a magnetic field is also considered [10,11]. It reads

lim
ω→0

Im[χc
t (ω)]

h̄ω
= −h

2

∑
σ

[
χσσ

t (0)
]2

. (19)

This relation has been used to study the present problem within
the linear response regime [7–11]. Here, we show that the
Korringa-Shiba law Eq. (19) is equivalent to the instantaneous
Joule law Eq. (1), even in the presence of a magnetic field and
also in the nonlinear response regime.

In fact, from Eqs. (7) and (10) and taking into account that
Eq. (19) is satisfied, we have

Pdiss(t) = e2h

2

∑
σ

[
χσσ

t (0)
]2

V̇g(t)2. (20)

On the other hand, the up-to-O(V̇g(t)) charge current with spin
σ is given by the first term of Eq. (8) and reads

IC,σ (t) � e
∂nf σ (t)

∂Vg(t)
V̇g(t) = eχσσ

t (0)V̇g(t). (21)

Then, substituting in Eq. (20), we get

Pdiss(t) = h

2e2

∑
σ

[IC,σ (t)]2, (22)

which is, precisely, the IJL. This result holds for electrons with
and without spin polarization, in the nonlinear as well as in the
linear regimes.

B. Nonpolarized electrons and the representation by the
classical circuit

In the case of nonpolarized electrons, the two spin ori-
entations are equivalent. The total charge current IC(t) =∑

σ IC,σ (t) associated with the change in the dot occupancy
by up and down spins is given by [see Eqs. (8) and (13)]

IC(t) = −C(t)V̇g(t) + e2 d[�c(t)V̇g(t)]

dt
, (23)

with C(t) = ∑
σ Cσ (t), and �c(t) = ∑

σ �σ (t).
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The definition of the resistance given in Eq. (13), along
with C(t) = −e2χc

t (0) and the KS relation Eq. (19), lead to the
resistance R0 for each spin channel or an equivalent resistance
Rq = R0/2 for the equivalent circuit of Fig. 1. In fact, because
of the equivalence of both branches of the circuit of Fig. 2,
the voltage drop at the middle point between the resistance
and capacitance for each branch are the same. Therefore,
one can connect these two points with a cable carrying no
current and the circuit becomes equivalent to that at the top
of Fig. 1, with an effective resistance R−1

q = 2R−1
0 in series

with the effective capacitance C(t) = 2Cσ (t). In addition, the
arguments of the next section as well as the numerical results
will show that C(t) � 0. Hence, for nonpolarized electrons,
the behavior of the charge and energy dynamics is consistent
with the representation of the setup in terms of the parallel
circuit of Fig. 2 or the equivalent one of Fig. 1. The charge
dynamics is described by Eq. (23) with e2�c(t) = Rq[C(t)]2,
while the dissipated power obeys the IJL Eq. (22).

C. Polarized electrons in the random-phase approximation

In the case of polarized electrons, the two spin orientations
are not equivalent and it is not easy to analyze the dynamics by
simple analogy to the classical circuit. It is important to notice
that the Coulomb interaction effectively renormalizes the gate
voltage at a given time. At the mean field level, this can be
accounted for by an occupancy-dependent term U 〈nf,σ 〉 which
adds to Vg(t) in the effective local energy experienced by an
electron with spin σ at the quantum dot. Here, we will analyze
the consequence of this effect on the basis of the behavior of
the charge susceptibility in the “random phase approximation”
(RPA). In the next section we will present a more accurate
analysis based on NRG results.

RPA corresponds to calculating the dynamic susceptibility
from the summation of an infinite perturbative series of
“bubble” diagrams. The result in the present case is

χσσ
t (ω) = χ0σ

t (ω)
[
1 + Uχ0σ

t (ω)
]

1 − U 2χ0σ
t (ω)χ0σ

t (ω)
, (24)

where χ0σ
t (ω) is the susceptibility for U = 0. The latter is

a function of the gate voltage Vg(t) and satisfies the KS
relation (18). The static limit is given by Eq. (17), χ0σ

t (0) =
−ρf,σ (μ). In the case of nonpolarized electrons, where the
two spin orientations are equivalent, we have χσσ

t (ω) =
χ0σ

t (ω)/[1 + Uχ0σ
t (ω)]. Hence, the calculation of the capac-

itance gives Cσ (t) = Cσ,0(t)/[1 + UCσ,0(t)/e], where Cσ,0(t)
is the capacitance of the noninteracting system (17), which
indicates that Cσ (t) � 0.

In the case of polarized electrons we have situations where
|χ0σ

t (0)| 	 |χ0σ
t (0)| or vice versa, in which case Eq. (24) leads

to negative values of the coefficient Cσ (t) for large enough U .
This corresponds to a current between the reservoir and the
dot which opposes the sense of circulation imposed by the
voltage drop. Furthermore, after some algebra from (24) and
the KS relation for the noninteracting susceptibilities (18),
we can see that in such situations the signs of �σ (t) and
�σ (t) are opposite. This would correspond to instantaneous
exchange of power between the two spin species, Pσ (t) ∼
Pex(t) ∼ −Pσ (t). We can interpret this behavior as electrons
with spin σ receiving energy from the electrons with spin

σ to move against the external voltage drop. In addition to
this component, there is a dissipative component of the power
satisfying the IJL [see Eq. (22)]. Since the behavior explained
above is not expected in a capacitive circuit element, we
conclude that the representation of the dynamics of the driven
interacting quantum dot in the presence of a magnetic field
is not properly represented by a circuit like that of Fig. 2. In
the next section, we will verify that such a behavior indeed
takes place when the susceptibilities are exactly calculated
with NRG.

V. NUMERICAL RESULTS FOR THE NONLINEAR
INTERACTING REGIME

We now turn to further analyze the adiabatic fully interact-
ing case for arbitrary amplitudes of the driving on the basis of
numerical results. We use the numerical renormalization group
(NRG) algorithm of Ref. [27] to compute the frozen occupancy
of the dot nf σ (t) and the charge susceptibility χσ

t (ω). We stress
that the evaluation of these two quantities corresponds to an
equilibrium calculation with the Hamiltonian H (t) frozen at
the time t (for details see Appendix C). We also use analytical
expressions of the impurity occupancy obtained from Bethe
ansatz (BA) [28] using the procedure outlined in the appendix
of Ref. [29].

A. Results for zero magnetic field

In a system without spin polarization, the two spin ori-
entations are equivalent and the dynamics of the quantum
system is fully equivalent to that of the circuit of Fig. 2 or
that with the equivalent components sketched in Fig. 1. As
argued in the previous section, the two resistances can be
simply substituted by the resistance Rq = R0/2 in series with
the capacitance C(t) = 2C↑(t) = 2C↓(t). The total current
circulating through the single branch of the equivalent circuit
is given by Eq. (23). The total dissipated power is given by
Eq. (10) with �c(t) = ∑

σ �σ (t).

1. Benchmark

We start with a benchmark of the numerical results
calculated with NRG against exact analytical results calculated
with BA. In particular, we verify that the Korringa-Shiba law
Eq. (19) is satisfied. To this end, we analyze the Fourier
transform of the total charge susceptibility χc

t (t − t ′) =
−iθ (t − t ′)

∑
σσ ′ 〈[ndσ (t),ndσ ′(t ′)]〉t evaluated with the exact

equilibrium density matrix ρt . An example is shown in Fig. 3
for a fixed time. For the parameters of the figure we estimate
a Kondo temperature TK ≈ 2.94 × 10−4D, where D = 1 is
half the bandwidth used in the NRG calculations. The general
aspect of the curve is similar to that reported previously [8].
According to the Korringa-Shiba law Eq. (19) one has for
ω → 0

Imχc
t (ω) = −ω

h

4

[
χc

t (0)
]2 = −ω

h

2

∑
σ

[
χσ

t (0)
]2

. (25)

Fitting the results for ω 	 TK as shown in the bottom
panel of Fig. 3, we obtain −Imχc

t (ω)/π = 7.36h̄2ω /(DTK ),
or −Imχc

t (ω) = �ch̄ω, with �c = 7.36h/(2TKD) = 12520
h/D2. Calculating the charge susceptibility by numerical
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FIG. 3. Imaginary part of the dynamic susceptibility as a func-
tion of frequency for �t = π/2, � = 8x10−4D, ε0 = μ = 0, U =
0.05D, V0 = 0.024D, and T = 0.

differentiation of the total occupancy nf (t) = ∑
σ nf σ , ob-

tained with NRG from

χc
t (0) =

∑
σ

dnf σ (t)

dεd

, (26)

with εd ≡ εd,↑(t) = εd,↓(t) and using Eq. (25), we obtain �c =
12732h/D2, a value 1.7% larger. By numerical differentiation
of the BA occupancy we obtain �c = 12690h/D2, which
differs from the previous result by 0.3%. This deviation might
be due to the fact that in the BA procedure we take D → ∞.

We have also checked the Fermi liquid relation Eq. (25)
for other values of the parameters obtaining agreement with
the static results within about 2%. This confirms the validity
of these relations. The slight discrepancy between both NRG
results is likely to be due to larger numerical errors in the
dynamic calculation.

In Fig. 4 we represent the static susceptibility, proportional
to the total capacitance C(t) = −e2χc

t (0) in the nonlinear
circuit analog �c(t) and the total dissipated power Pdiss(t)
as a function of time. The total resistance is for all times
Rq = R0/2. The other parameters are the same as in the
previous case, which was limited to t = π/(2�). One sees
that the NRG and BA results agree very well for all times.

2. Charge and energy dynamics

From the practical point of view, it is easier to calculate
static properties than dynamic ones. In addition, static quanti-
ties can be calculated exactly with BA. Hence, in what follows
we calculate nf,σ (t). Then, we calculate the static susceptibility
from Eq. (26). Finally, we use the Korringa-Shiba relation
Eq. (25) to derive the dynamic response function �c(t).

Results for the total frozen occupancy of the dot as a
function of time nf (t) are shown in Fig. 5. These correspond to
a given driving amplitude and frequency and different values of
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FIG. 4. (a) Capacitance C(t), (b) dissipation coefficient �c(t),
and (c) dissipated power Pdiss(t) in the interacting nonlinear regime, as
a function of time, calculated with two techniques. Other parameters
as in Fig. 3.

the Coulomb repulsion. To analyze these results, let us start by
focusing on the plot with dashed-dot lines, corresponding to the
smallest U . At t = 0 the dot is at the half-filling configuration,
corresponding to a mean charge nf (0) = 1. As a function of
t , Vg increases and the occupancy of the dot decreases. In

0 0.5 1 1.5 2
Ωt/π

0

0.5

1

1.5

2

n f (t
)

U=12.5Δ
U=37.5Δ
U=62.5Δ

FIG. 5. Occupancy of the quantum dot as a function of time for
different values of the Coulomb interaction (indicated in the figure).
Other parameters as in Fig. 3.
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FIG. 6. Same as Fig. 4 calculated with BA for several values of U .

particular, when εd (t) ∼ U/2, the quantum dot becomes empty
and remains in that configuration while Vg passes through its
maximum at �t = π/2. As the time continues to increase,
the dot begins to get filled again with one electron. For larger
time, Vg continues to decrease and the single-particle energy
of the dot εd (t) reaches the value ∼−U/2. The dot gets filled
with two electrons and remains at this occupancy as Vg passes
through its minimum at �t = 3π/2. Finally, the occupancy
decreases to reach the half-filled configuration, as the gate
voltage completes the period. For the larger values of U shown
in the figure, we can observe similar features. For the largest
one, corresponding to the solid lines, the dot does not reach
the occupancy with zero and two electrons, since for all times
|εd (t)| < U/2.

The changes in the occupancy of the dot as a function
of time generate a charge current between the dot and
the reservoir, according to Eq. (23). The corresponding
capacitance C(t), the dissipation coefficient �c(t), and the
dissipated power Pdiss(t) are shown in Fig. 6, for the same
values of U shown in Fig. 5. We can identify features in the
capacitance associated with the static charge susceptibility
(26). Due to the Korringa-Shiba law, similar features are also
found in the dynamic coefficient �c(t). This determines also
the behavior of the dissipated power shown in the lowest
panel of the figure, where we can distinguish the peaks
corresponding to the IJL described by Eq. (1).

To close this section, we comment on the relation between
the features characterizing the charge and energy dynamics
and the behavior of the local frozen density of states at the
quantum dot as a function of time. For gate voltages close
to the symmetric configuration satisfying |εd (t)| ∼ 0 there
is one electron in the quantum dot and the density of states
has typically a resonant peak at the Fermi energy (the Kondo

resonance) and charge-transfer (or Coulomb-blockade) peaks
at high energies ∼±U/2 [21]. As the gate voltage moves
away from the symmetric configuration within the range
|εd (t)| � U/2 the dot remains filled with a single electron,
the Kondo resonance persists at the Fermi energy while the
high-energy peaks move rigidly following εd (t) (details of
the evolution of the spectral weight can be found in, e.g.,
Ref. [30]). When εd (t) ∼ ±U/2, one of these peaks becomes
aligned with the Fermi energy of the reservoir and the dot
changes its occupancy to 0 or 2 electrons for εd (t) = ±U/2,
respectively. At the time this happens, a current flows towards
or from the reservoir, respectively. This exchange of charge
between the dot and the reservoir is accompanied by an
instantaneous dissipation of energy in the form of a Joule
law, as described by Eq. (1). This is reflected in the peaks of
C(t), �c(t), and Pdiss(t) shown in Fig. 6.

In all the processes discussed, the Kondo resonance does
not play any significant role. Therefore, the behavior of
Figs. 5 and 6 is also representative of the Coulomb blockade
regime taking place at finite temperatures when the coupling
to the reservoir is very weak. Interestingly, this behavior
is also similar to what is observed in experiments of the
compressibility of strongly correlated quantum dots, which
are also related to the behavior of the charge susceptibility at
the Fermi energy [31].

B. Results for finite magnetic field

The behavior of the time-dependent occupancies for ↑ and
↓ spins in the presence of a Zeeman splitting δZ at the quantum
dot are shown in Fig. 7 for different values of U . The upper,
middle, and bottom panels correspond, respectively, to the
same parameters as the plot in dot-dashed, dashed, and solid
lines of Fig. 5, with the additional ingredient of a magnetic
field. In all the cases, the dot is in the half-filled configuration at
t = 0 (nf (0) = 1) and is predominantly occupied by electrons
with spins parallel to the direction of the magnetic field (in this
case ↓). The magnitude of the Zeeman splitting is chosen larger
than the Kondo temperature TK for all times. Hence, for one
electron in the dot, the system is in the local moment regime
of the Anderson model with a significant spin polarization.

Starting from the symmetric configuration at t = 0, the
energy of the localized electrons for both spin orientations
εd,σ (t) increases in time and the occupancy of the quantum dot
evolves to the empty configuration when εd,↓(t) ∼ U/2 (this
situation is however not reached for the largest U considered).
As this happens, of course also the local spin of the quantum
dot vanishes. After passing through its maximum at �t = π/2,
εd,σ (t) decreases and the quantum dot becomes again filled
with a ↓ electron when εd,↓(t) ∼ U/2. As εd,σ (t) continues
to decrease towards its minimum at �t = 3π/2, an additional
electron occupies the quantum dot when εd,↓(t) ∼ −U/2. This
implies again a vanishing total spin at the quantum dot and
as a consequence, the magnetic field does not lead to a spin
polarization. In fact, we see in all the panels of the figure that
the two occupancies differ only for values of the gate voltage
where the total mean occupancy is close to one electron, in
which case there is a finite spin polarization at the quantum
dot,

∑
σ nf,σ (t) �= 0,2.

We note that for ε0 = μ = 0 and any magnetic field the
Hamiltonian is invariant under the following transformation:
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FIG. 7. Frozen occupancies nf,↑(t) and nf,↓(t) for a Zeeman
splitting δZ = 10−3D and different values of U . Other parameters
are the same as in the previous figures.

t → −t and

d
†
↑ → d↓, d

†
↓ → −d↑, c

†
k↑ → −ck′↓, c

†
k↓ → ck′↑, (27)

assuming a symmetric conduction band such that for any
eigenstate k of the isolated band, there is another one k′
with εk′ = −εk . As a consequence of this symmetry, nf,↑(t) =
1 − nf,↓(−t) as can be seen in the figure.

Focusing on the interval 0 < �t < π/2 of Fig. 7, for which
the one-site energy of the dot increases, we see that the
expected decrease in the occupancy for the majority down spin
is accompanied by an increase in the occupancy of the minority
up spin, denoting a charge susceptibility of opposite sign for
spin up. As already mentioned in Sec. IV C, within a mean field
description, the effective local energy for spin up is εd,↑(t) =
ε0 + δZ

2 + Vg(t) + Unf ↓, and the increase in Vg(t) is over-

come by the decrease in Unf ↓ for large enough U and |χ↓↓
t |.

For other parts of the cycle similar arguments can be followed,
in particular using the symmetry transformation Eq. (27).

The behavior of the coefficients �σ , which determine the
nonconservative component of the power, is illustrated in Fig. 8
for the largest value of U shown in Fig. 7. These coefficients
display a very interesting behavior as functions of time. Both
exhibit features at those times where the occupancy of the
quantum dot experiences a significant fluctuation, implying
a finite charge current flowing between the reservoir and the
quantum dot. The coefficient �↓(t), associated with electrons
with the majority spin polarization, is always positive in the
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FIG. 8. Analysis of the Korringa-Shiba laws of Eqs. (18) and
(19). The functions �↑(t) and �↓(t) are compared with [χ↑↑

t (0)]2

and [χ↓↓
t (0)]2 for U = 0.05D. Other parameters are the same as in

Fig. 7.

interval of time shown. Note that the symmetry transformation
Eq. (27) implies that �↑(t) = �↓(−t). Instead, the coefficient
�↑(t), which is related to the minority spin orientation, can
be negative. Notice that this is in strong contrast to the
nonpolarized case, where the two coefficients are identical and
positive. The coefficients �σ (t) do not separately satisfy the
Korringa-Shiba law of the noninteracting system expressed by
Eq. (18). This can be seen by comparing the plots in symbols
with those in lines in the upper panel of the figure. However,
the total coefficient �c(t) obeys the Korringa-Shiba relation
(19), as shown in the bottom panel of the figure.

The corresponding behavior of the developed power is
presented in Fig. 9 for the smallest and largest value of
U considered in Fig. 7. We show in the upper panels the
coefficients �σ (t) and in the middle panels the corresponding
nonconservative powers Pσ (t). Note that P↑(t) = −P↓(−t)
as a consequence of the symmetry transformation Eq. (27).
For comparison, the lower panels show the IJL per spin,
PJoule,σ (t). All these quantities have features at those times
t where the occupancy of the dot changes and a charge current
is established between the dot and the reservoir.

As mentioned in the discussion of the previous figure, the
striking feature is the different sign of �↓(t) and �↑(t), and
the consequent opposite sign of the powers P↓(t) and P↑(t).
This means that the contributions of different spin to the
total power do not separately dissipate heat in the form of
a Joule law, as is the case of the unpolarized quantum dot,
but they can be decomposed as Pσ (t) = ξσPex(t) + PJoule,σ (t),
with ξσ = ±. Here, the component PJoule,σ (t) is associated
with the energy dissipated in the form of heat. Instead, Pex(t)
is associated with energy that is transferred in the form of
work done by the electrons with the minority spin component
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on the electrons with the majority spin component or vice
versa. The total dissipated power is given by the addition of
the Joule components, which is shown in the lower panels
of the figure. The mechanism of energy exchange leading to
Pex(t) is a consequence of the combined effect of many-body
interactions and the spin polarization due to the magnetic field.
In fact, we stress that in the noninteracting case with U = 0,
Pex(t) = 0, as shown in Sec. III B.

To understand the fundamental difference between the
noninteracting and interacting case, let us notice that in the
noninteracting case, electrons with the two spin components
behave independently of one another. Due to the Zeeman
splitting there is one energy level for electrons with ↑ spin and
one for electrons with ↓ spin, which are rigidly shifted upwards
and downwards in energy as the gate voltage changes. Every
time that one of these levels gets aligned with the Fermi energy
of the reservoir, the occupancy of the quantum dot changes
and a current sets between the quantum dot and the reservoir.
Such a process is accompanied by Joule heating in the form
of PJoule,σ (t) with resistance R0. Instead, in the interacting
regime, the single occupancy is dominated by spins aligned
with the magnetic field, while in the configurations with 0
and 2 electrons in the quantum dot, both spin orientations
are equally populated. For this reason, when the occupancy
changes from singly to double occupancy, there is a flux of
spins oriented opposed to the magnetic field following the gate
voltage, along with a smaller counter flow of electrons aligned
with the magnetic field against the gate voltage. Analogous
situations take place when the configuration changes from
double to single occupancy and from single occupancy to the
empty configuration. The energy to generate the current of
the electrons with one of the spin components that opposes
the direction dictated by the external gate voltage is pro-
vided by the electrons with the opposite spin component.
This is precisely what we have discussed within the RPA

approximation in Sec. IV C. In a full cycle, this energy ex-
change averages to zero and only the Joule dissipation remains.

In Fig. 10 we represent the average power over the cycle
for a given spin P̄σ . As a consequence of the symmetry
transformation Eq. (27) for the chosen parameters, P̄↓ = P̄↑.
We also represent in the figure the components P̄↑↑ and P̄↑↓,
which correspond to the contributions of the same and opposite
spin to the average total power for spin up, according to
Eqs. (9), (10), and (11). One can see that the crossed component
P̄↑↓, which vanishes for U = 0, decreases rapidly as U is
turned on and saturates when U reaches values much larger
than both � and the Zeeman splitting δZ . Instead, for small
U , P̄↑↑ increases but not so fast as the decrease in P̄↑↓, so that
the sum P̄↑ decreases for small U . For larger values of U after
a modest increase, P̄σ decreases because the charge-transfer
peaks in the spectral density (separated by U ) cross the Fermi
level with a smaller speed, so that the factor V̇g(t)2 is smaller

0 10 20 30 40 50 60
U/Δ

0

1

2

3

4

5

2π
(Ω

2 /h
)-1

P di
ss

Pdiss →
 

0 5 10-4

-2

0

2

4

6

8

P

→ →

P →

→

Pdiss →

FIG. 10. Power developed by the forces induced by electrons with
spin σ averaged over the cycle as a function of U . The inset denotes
the different components (see text) for small U . Other parameters are
the same as in Fig. 7.
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[see Eq. (20)] and when U becomes larger than 2V0, the
charge-transfer peaks cannot cross the Fermi energy during
the cycle and the power drops to zero.

VI. CONCLUSIONS

We have generalized the theory of the dynamic charge and
energy transport of an interacting quantum dot modeled by an
Anderson model, coupled to a reservoir and driven by an ac
gate voltage in the nonlinear adiabatic regime. We considered
the cases with and without spin polarization due to a Zeeman
splitting. We have shown that the exact adiabatic dynamics is
fully characterized by the behavior of the charge susceptibility
of the frozen system. We have presented analytical numerical
calculations obtained with NRG and BA techniques.

We have shown that, within and beyond linear response
and zero temperature, the energy is instantaneously dissipated
in the form of an instantaneous Joule law with a universal
coefficient R0 = e2/(2h) for each spin channel. In the case of
vanishing magnetic field or in the absence of electron-electron
interaction there is a one-to-one correspondence between the
dynamics of the driven quantum system and that of a classical
circuit sketched in Fig. 2 with R0 in each branch. In those cases,
electrons with a given spin orientation independently dissipate
energy as in the circuit of that figure. However, in the interact-
ing and spin-polarized case, an exchange of energy takes place
between electrons with different spin components, which can-
not be properly accounted for by this simple classical circuit.
This exchange of power is in some sense akin to the one be-
tween driving forces in quantum pumps discussed in Ref. [22].
However in that work, that mechanism takes place in nonin-
teracting electrons driven by two time-dependent parameters.
Instead, in the present case, it is a consequence of electron-
electron interactions in combination with Zeeman splitting in
a system driven by a single parameter. The forces involved are
nonconservative and proportional to V̇g(t), like the Lorentz
forces discussed in Ref. [32]. However, in the present case, the
energy exchange takes place only at time intervals and does
not lead to net work production when averaged over a cycle.

These predictions could be experimentally confirmed in
quantum capacitors, where, so far, only the dynamics of the
charge transport has been addressed [1–3]. In fact, the Kondo
regime has been realized in similar setups without driving
[33,34]. Hence, the combinations of the experimental arrays
of Refs. [1–3] and Refs. [33,34] with suitable fast thermometry
as in Refs. [35,36] should enable the measurement of the
concomitant heat generation.

The charge susceptibility has been measured recently in a
quantum dot inside an optical cavity in the Kondo regime [31].
Our setup provides an alternative way to study this quantity.
Furthermore our work predicts nontrivial results for the spin
resolved components in the presence of strong interactions.
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APPENDIX A: ADIABATIC RESPONSE FORMALISM

For completeness we review the treatment presented in
Ref. [24]. Taking into account that the time-dependent per-
turbation Vg(t)nd changes slowly in time, expanding H (t ′)
around t ′ = t , the evolution operator is approximated up to
linear order in V̇g(t) as follows

Û (t,t0) ≈ T exp

{
−iHt (t − t0) − i

∫ t

t0

dt ′(t − t ′)F V̇g(t)

}
,

(A1)
where F = −∂H (t)/∂Vg(t) is the “generalized force” in-
duced by the driving and Ht is the full Hamiltonian of the
system frozen at time t .

Hence, to first order in V̇g(t), using Vg(t) = eVg(t), the
expectation value of an observable A can be expressed in this
“adiabatic approximation” as:

〈A(t)〉 ≈ 〈A〉t − ie

h̄

∫ t

t0

(t − t ′)〈[A(t),F (t ′)]〉t dt ′V̇g(t), (A2)

with 〈A〉t = Tr[ρtA], and the operators F (t), A(t) evolving
according to the Heisenberg picture with respect to Ht ,
i.e., o(t) = e

iHt t

h̄ oe− iHt t

h̄ . From Eq. (A2), and using F (t) =
−nd (t), an adiabatic retarded susceptibility corresponding to
the frozen Hamiltonian Ht can be defined as χA

t (t − t ′) =
−iθ (t − t ′)〈[A(t),nd (t ′)]〉t . Hence,

〈A(t)〉 ≈ 〈A〉t + e�t V̇g(t), (A3)

with

�t = − 1

h̄

∫ ∞

t0

(t − t ′)χA
t (t − t ′)dt ′. (A4)

In Eq. (A4) let us make the change of variables τ = t − t ′. We
have, taking t0 = −∞,

�t = − 1

h̄

∫ ∞

−∞
τχA

t (τ )dτ. (A5)

We define the Fourier transform with respect to τ = t − t ′

χA
t (ω) =

∫
dτeiωτχA

t (τ ). (A6)

We can now use

∂χA
t (ω)

∂ω
= i

∫
dτeiωτ τχA

t (τ ) (A7)

along with the fact that �t is a real function to write

�t = − 1

h̄

dIm
[
χA

t (ω)
]

dω

∣∣∣∣∣
ω=0

= − 1

h̄
lim
ω→0

Im
[
χA

t (ω)
]

ω
, (A8)

where in the last step we have assumed that Im[χA(0] = 0.
Notice that ω has units of frequency, thus in order to compare
with NRG results one has to transform to energy units by
making ω = ε/h̄.
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APPENDIX B: EQUATION FOR THE
NONLINEAR CIRCUIT

Here we analyze the current through each branch of the
classical circuit of Fig. 2. We define the differential capacitance
from

Cσ

(
V σ

C

) = dqσ

dV σ
C

, (B1)

where qσ is the charge in the capacitor and V σ
C the potential

drop through it. The total potential drop is V = V σ
C + V σ

R ,
where V σ

R = RσIσ is the potential drop through the resistance
and Iσ is the current in the branch with spin σ . Using Iσ =
dqσ /dt = q̇σ and Eq. (B1) one has a differential equation for
the current,

Iσ = Cσ (V − RσIσ )

[
V̇ − d(RσIσ )

dt

]
. (B2)

The derivatives with respect to the time introduce a factor of
the order of the frequency �. We now assume small frequen-
cies, specifically �RσIσ 	 1. Then as a first approximation,
the last term of Eq. (B2) can be neglected. This limit also im-
plies V � RσIσ , and thus to the same order of approximation
one can take Cσ (V ) as the first factor of Eq. (B2) leading to

I 1
σ = Cσ (V )V̇ , (B3)

to first order in V̇ . Replacing this result in the second
member of Eq. (B2), expanding the first factor and using
dCσ /dt = V̇ dCσ /dV , we obtain the following expression
for the current to second order in V̇ ,

Iσ = Cσ V̇ − d(RσC2
σ V̇ )

dt
. (B4)

In order to map the classical circuit to our quantum problem,
we identify V = Vg as minus the gate voltage of the quantum
dot (the energy of electrons with negative charge in the
dot changes as the gate voltage increases) and according to
the definition Eq. (4) Iσ = dqσ /dt = −IC,σ . Performing the
corresponding replacements one obtains Eq. (12).

APPENDIX C: NUMERICS

In this work we use the known “NRG Ljubljana” free code
to calculate the observables of interest (and their correlations)
in the case where there is a local Coulomb interaction in the
dot (U > 0) and also for U = 0. There are some subtleties in
the NRG method, most of them described in the literature (see
for instance Ref. [37] and references therein). However, for
the sake of completeness, the main steps of the NRG approach
we have employed are described below.

(1) We first map the Anderson model onto a Wilson chain,
composed of an impurity site with its many body term plus
a linear chain of noninteracting sites. Upon this process,
the continuous Anderson model has been discretized in the
energy space. Here we used the known z-trick logarithmic
discretization scheme, in which the characteristic energy scale
is given by [27,38,39]

εN = 1 − λ−1

log λ
λ−(N−1)/2+1−z, (C1)

where here we have set λ = 2 and averaged the results for 32
values of z ∈ [0,1].

(2) We then diagonalize iteratively a series of Hamiltonians,
starting from an initial H−1 describing just the impurity
(containing the many-body term) and increasing it with a
noninteracting site of the Wilson chain at each iteration. Hence,
at a given iteration we need to diagonalize a Hamiltonian HN

describing the impurity plus N + 1 sites of the chain whose
dimension is (N + 2) × (N + 2). Because of the rapid increase
of the dimension of the Hilbert space along the iterating
process, we have to take advantage of the symmetries of
the Hamiltonians. Here, since HN commutes with both the
total charge (Q̂N ) of chain described by HN and with its
total spin operator squared (Ŝ2

N ), we exploit U(1) × SU(2)
symmetry. In this way, at the N th NRG iteration we diagonalize
an enlarged block-diagonal (N + 2) × (N + 2) Hamiltonian
matrix whose sectors are labeled by the quantum number
(QN,SN ), where QN and SN represents the eigenvalues of
Q̂N and Ŝ2

N , respectively.
Even though taking advantage of the U(1)× SU(2) is a great

improvement, it is not enough to allow us to diagonalize large
Wilson chains. To overcome this problem it is necessary to
truncate the Hilbert space by discarding states.

In the present calculations we retain states with energy
up to Ekeep = 2εN , a reasonably good choice to converge the
many-particle eigenenergies to the strong coupling fixed point,
i.e., it does not change upon reached the fixed point. At each
iteration we not only diagonalize the Hamiltonians but also
calculate all the physical quantities we are interested in.

(3) With the matrix elements of the relevant quantities
at each iteration, we can calculate the thermodynamic and
dynamic quantities, such as the static and dynamic suscepti-
bilities. For the dynamic quantities we have employed the full
density matrix (FDM) version of the NRG, which is known
to provide a better resolution of the spectral quantities. The
energy delta peaks appearing in the dynamic susceptibilities
are usually broadened by using various smooth distribution
functions [37]. In our case we use a modified broadening kernel
K(ε,εj ) defined piecewise by [40]

K(ε,εj ) =
{

L(ε,εj ) if |εj | � ε0,

G(ε,εj )[1 − h(ε)] if |εj | � ε0,
(C2)

with

G(ε,εj ) = θ (εεj )√
πα|ε|exp

[
− ln

( |ε/εj |
α

− γ

)2]
, (C3)

L(ε,εj ) = 1√
πε0

exp

[
− ln

( |ε/ε0|
α

)2]
, (C4)

h(ε) = exp

[
− ln

( |ε/ε0|
α

)2]
, (C5)

where α defines the broadening parameter, γ = α/4, and ω0 is
an energy threshold that changes the broadening distribution
function from a log Gaussian to a Gaussian at low energies. In
practice, smaller α diminishes NRG over broadening but leads
to nonphysical oscillations in the dynamic susceptibilities,
which can be reduced by averaging over a convenient number
of discretization meshes of the conduction band. The broad-
ening parameter is chosen to be α = 0.02 and ε0 = 10−99D.
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