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Signatures of the Mott transition in the antiferromagnetic state
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L. Fratino,1 P. Sémon,2,3 M. Charlebois,2 G. Sordi,1,* and A.-M. S. Tremblay2,4

1Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
2Département de physique and Regroupement québéquois sur les matériaux de pointe, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
3Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

4Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
(Received 6 February 2017; published 6 June 2017)

The properties of a phase with large correlation length can be strongly influenced by the underlying normal
phase. We illustrate this by studying the half-filled two-dimensional Hubbard model using cellular dynamical
mean-field theory with continuous-time quantum Monte Carlo. Sharp crossovers in the mechanism that favors
antiferromagnetic correlations and in the corresponding local density of states are observed. These crossovers
occur at values of the interaction strength U and temperature T that are controlled by the underlying normal-state
Mott transition.
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I. INTRODUCTION

A striking manifestation of strong interactions in quantum
materials is the Mott transition [1–3], a first-order transition
between a half-filled band metal and an insulator. The Mott
transition does not break spatial symmetries, but it is often
masked by, or is found in close proximity to, broken symmetry
states, notably the Néel antiferromagnetic state (AF) [1,2].
Indeed, in the Mott insulator the electrons are localized, so
local moments tend to order magnetically at low temperature
via the superexchange mechanism [4,5]. Experimentally, the
Mott transition accompanied by AF occurs in materials with
partially filled narrow orbitals, both with a three-dimensional
(3D) structure, such as V2O3 [2,6,7], CsC60 [8–10], and
with a quasi-two-dimensional (2D) layered structure, such
as superconducting copper oxides [3,11,12] and organics
[13–17]. Ultracold atoms in optical lattices [18,19] also offer
a platform to study the Mott transition [20–23] and, recently,
its interplay with AF correlations [24–28].

The Hubbard Hamiltonian, describing the competition
between nearest-neighbor hopping t and on-site screened
electron-electron interaction U , is the simplest model that
captures the Mott transition and its interplay with AF. It
is known [29,30] that the half-filled model in 3D shows a
single AF phase; namely at T = 0 one does not encounter a
phase transition as the ratio U/t is increased. Nevertheless,
the mechanism that makes the normal state unstable to AF
as T decreases is described differently in the two limits: at
small U/t , AF arises from cooling a metal, and thus stems
from nesting of the Fermi surface, whereas for large U/t , AF
originates from cooling a Mott insulator and thus stems from
superexchange between localized spins [29,30]. These mech-
anisms are referred to as Slater and Heisenberg, respectively.
In the Slater regime, increasing U/t leads to an increase in
the Néel temperature TN , whereas in the Heisenberg regime
increasing U/t leads to a decrease in TN . This is one of many
qualitative differences between AF at small and large U/t .
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Above TN , depending on the strength of lattice or hopping-
induced frustration, the Mott transition can be either apparent
or hidden by the Néel state. When the Mott transition is hidden,
one is left with a crossover from metallic to insulating state as
U/t is increased. In both cases one expects that the properties
of the AF depend on the normal state from which it emerges
[31].

The above results for the basic experimental phenomenol-
ogy of 3D systems as well as predictions (e.g., Refs. [31–34])
have been obtained from the dynamical mean-field theory
(DMFT) [31] solution of the Hubbard model. However, the
strong momentum dependence of the self-energy in 2D makes
DMFT inadequate in that case. Cluster extensions of DMFT
are a way to include some of this momentum dependence.
These methods and others have been used to study the AF
phase [35–44], but the influence of the normal-state Mott
transition, if any, on the AF phase has been less investigated
[45] and remains a challenge. Here, we contribute to decipher
the interplay between Mott transition and AF by studying the
finite temperature aspects of both normal and AF states of
the half-filled 2D Hubbard model using a cluster extension of
DMFT [32,40,46]. Our calculations reveal crisp differences
between weakly and strongly interacting AF that are linked to
the normal state Mott transition hidden beneath the AF dome.
Remarkably, the Mott transition controls the sharp crossover
that we observe between a potential-energy driven AF at small
U , and kinetic-energy driven AF at large U . This question
of the origin of the stability of the AF state relative to the
normal state has hitherto received little attention compared
with the same question for superconductivity [47–61]. Yet,
both questions are related to the role of the normal-state Mott
transition.

Note that, in 2D, thermal fluctuations preclude long-range
order so that the AF transition occurs at TN = 0, in accor-
dance with the Mermin-Wagner-Hohenberg theorem [62,63].
Nevertheless the AF correlation length ξ does begins to grow
exponentially at an onset temperature that can be quite sharply
defined. In the cluster extension of DMFT that we use, the
onset of exponential growth of ξ is replaced by long-range
order at a temperature that we call T d

N , where the d reminds us
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that this is the dynamical mean-field temperature. In Sec. IV
we provide benchmarks showing that the mostly local physical
properties that we study in the ordered state are close to those
one would obtain for large systems with large ξ .

We begin by a short description of the model and method
in Sec. II (that is further detailed in Appendix A) and we then
set the stage in Sec. III with the phase diagram. The main
results are in Secs. V and VI that discuss the crossovers in
the antiferromagnetic state of, respectively, the energetics and
the density of states. In Sec. VII we present the conclusions.
Appendix B contains further details on the order parameter,
Appendix C on the calculation of the energy, and Appendix D
on results for the density of states.

II. MODEL AND METHOD

We consider the single-band Hubbard model on the
square lattice in 2D, H = −∑

ijσ tij c
†
iσ cjσ + U

∑
i ni↑ni↓ −

μ
∑

iσ niσ , where c
†
iσ (ciσ ) create (destroy) an electron of spin

σ on site i, niσ = c
†
iσ ciσ is the number operator, μ is the

chemical potential, and U is the on-site Coulomb repulsion.
We take tij = t = 1 for nearest neighbor hopping. We aim to
study the local quantum fluctuation induced by U on the same
footing as the short-range correlations; hence we solve this
model using cellular dynamical mean-field theory (CDMFT)
[32,40,46]. CDMFT takes a cluster, here a 2×2 plaquette, out
of the lattice and replaces the missing lattice environment by a
self-consistent bath of noninteracting electrons. We solve the
impurity (plaquette in a bath) problem using the statistically
exact continuous time quantum Monte Carlo method [64]
based on the hybridization expansion of the impurity action,

best suited for the large values of U and low T that are mostly
considered here.

We consider normal and AF states. In the latter phase,
symmetry breaking is allowed only in the bath and not in the
cluster. We accelerate the calculation by taking advantage of
C2v group symmetry with mirrors along the diagonals of the
plaquette [65,66] (see also Appendix A). We consider only the
half-filled model.

III. PHASE DIAGRAM

Figure 1(a) shows T d
N versus interaction strength U . The

magnitude of the staggered magnetization mz is color coded.
T d

N (U ) has a dome shape. Similar to the 3D case, this behavior
alone already suggests that although there is a single AF phase,
there are qualitative differences as a function of U : the initial
rise of T d

N occurs because of nesting of the Fermi surface,
whereas at large U superexchange J = 4t2/U leads to the
decrease of T d

N with U [29,39]. Our results for T d
N are close

to the onset of exponential behavior [36,39,72–74] of ξ , i.e.,
close to the crossover to the renormalized-classical regime.
The line connecting the maximum of mz at fixed temperatures
(magenta line) approximately follows J (blue dashed line),
thereby indicating that superexchange drives the Néel ordering
at large U . As T → 0, mz saturates to its maximum value at
large U . Key indicator of the difference between weakly and
strongly interacting AF is the nature of the normal state just
above T d

N . At small U the Néel state arises from cooling a
metal, and at large U it arises from cooling a Mott insulator
[75]. The normal state metal-insulator crossover above T d

N

is controlled by the Mott metal-insulator transition (MIT)
that would occur at low T in the normal state if AF was not
permitted. That transition has first-order character and ends in a
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FIG. 1. (a) Néel temperature T d
N versus U at n = 1. Color corresponds to the magnitude of the staggered magnetization mz (raw data is in

Appendix B). Magenta line indicates the maximum of mz at fixed T . The AF phase is defined by the loci where mz �= 0 and is delimited by
T d

N . At low temperature the normal state shows a first-order transition between a metal and a Mott insulator (orange triangles lines) that ends
at a critical end point at (UMIT,TMIT) (orange filled circle). (b),(c) Double occupancy D versus T at U = 4,5 < UMIT and U = 8,12 > UMIT,
for both AF and normal states (filled and open circles, respectively). For benchmarks, we show data from alternative methods: diagrammatic
Monte Carlo from Ref. [67] (diamonds), DCA extrapolated to infinite lattice from Ref. [67] (squares), determinantal QMC on 102 lattice
from Ref. [42] (up triangles) and extrapolated to thermodynamic limit [38] (left triangles), dual boson scheme from Ref. [68] (down triangle),
diagrammatic determinant Monte Carlo extrapolated to thermodynamic limit from Ref. [69] (right triangles), and dual fermion scheme from
Ref. [69] (pentagons). (d) Difference in potential, kinetic, and total energies (red, blue, and green lines) between the AF and normal state
versus U at T = 1/20. (e) Phase diagram T − U with color map of �Epot. A change of sign in �Epot occurs along a line connecting UMIT

and T
d,max
N . It accompanies the loci of the largest condensation energy (green diamonds), which in turn correlates with the normal state Widom

line [60,70,71], emanating from the Mott end point, and determined by max dD/dU |T (open circles). See also Fig. 10 in Appendix C. For
benchmark, we show with a magenta circle the T = 0 variational QMC calculation of Ref. [45] for �Epot = 0.
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critical end point at (UMIT,TMIT): orange triangles in Fig. 1(a)
indicate the coexistence region between a metal and a Mott
insulator, as obtained by isothermal hysteresis loops in the
double occupancy as a function of U [75]. We show below
that even though this Mott transition is hidden beneath T d

N ,
it controls the striking differences in the energetics and in
the density of states (DOS) between AF at weak and strong
interaction.

IV. SOME BENCHMARKS

Double occupancy D = 〈ni↑ni↓〉 measures the degree of
electronic correlations. It is shown in Figs. 1(b) and 1(c) as a
function of T for values of U below and above UMIT, in both
the AF and normal states (filled and open circles, respectively).
The normal state is unstable but, as in any mean-field theory,
it can be continued for T < T d

N by simply forcing mz = 0.
As benchmarks, we also plot the values of D obtained from
alternative approaches [38,42,67–69]. For T � T d

N , AF results
are closer to these benchmarks than normal state results. This
is expected because, as far as local quantities are concerned, a
state with a finite but exponentially large ξ is closer to an AF
state than a normal state with ξ at most one lattice spacing.
The kink in our D(T ) at T d

N is replaced in the benchmarks by
a shallow crossover. These benchmarks confirm the validity
of our CDMFT approach, which, for local quantities such as
D, converges exponentially fast with cluster size [32,76]. As
expected, the agreement improves with increasing U , since
states are then more localized, and it also improves with
increasing temperature above T d

N where ξ is smaller.

V. ENERGETICS

In the normal state, D(T ) shows a minimum. This occurs
because increasing the local moment (decreasing D) increases
spin entropy upon heating from T = 0, while the noninter-
acting limit must be reached at very large T [31,77]. As
T is reduced below T d

N , the normal state becomes unstable
to AF. We find a sharp difference between weak and strong
interactions. For U < UMIT [Fig. 1(b)], the Néel state not only
suppresses D compared with D in the normal state, it also
reverses the slope of D(T ) (i.e., for T < T d

N , dD/dT > 0 in
the AF state and dD/dT < 0 in the normal state). On the other
hand, for U > UMIT [Fig. 1(c)], D is increased in the AF state.

The above contrasting results show that the AF state leads
to a potential energy Epot = UD decrease when U < UMIT

and to a potential-energy increase when U > UMIT. This goes
at the heart of the origin of the T = 0 stability of the AF state
relative to the normal state. At low U , the energetics agree
with the expectation of a Slater insulator and static mean-field
theory, where the order parameter mz corresponds to a larger
local moment or decrease in D. In contrast, at large U in
the Heisenberg limit, the kinetic energy is minus twice the
potential energy [5], and thus the AF state is stabilized by a
kinetic-energy gain. This is illustrated in Fig. 1(d) where the
difference in potential, kinetic, and total energies between the
AF and the normal state is plotted versus U for T < TMIT (see
also Appendix C). Crucially, the critical U at which �Epot and
�Ekin cross zero, and �Etot is largest, is determined by the
Mott transition. This is one of our main findings.

−4 −2 0 2 4
ω

(b)

−4 −2 0 2 4
ω

T=0.05

T=0.1

T=0.154

T=0.227 U= 4(a)

−10 −5 0 5 10
ω

(e)

−10 −5 0 5 10
ω

T=0.05

T=0.2

T=0.238

T=0.263

U= 12(d)

0 0.1 0.2 0.3
T

0

1

(c)
ΔAF
|mz|

FIG. 2. Temperature evolution of (a) N (ω) and (b) its spin pro-
jections for U = 4 < UMIT, as obtained from analytically continued
data [80]. AF (normal) state DOS are shown with color (dashed
gray) lines. (c) AF gap �AF versus T for U = 4, as measured by the
distance between the Bogoliubov peaks. The closure of �AF follows
the decrease of mz. (d),(e) Same as (a),(b) but for U = 12 > UMIT.

An even more remarkable finding is apparent from Fig. 1(e),
where �Epot is color coded for the AF region: the change
of sign in �Epot (see sharp white region) that signals the
crossover from weak to strong interactions occurs at the
normal state Mott transition for T < TMIT, and continues for
T > TMIT in a nontrivial crossover connecting the Mott end
point to approximately T

d,max
N . The region where �Epot(T )

crosses zero accompanies the loci of the largest condensation
energy (green diamonds), which in turn correlate with the
normal state Widom line [60,70,71] emanating out of the
end point (as determined by max dD/dU |T , and indicated
by open circles). Recent variational QMC calculations [45]
find that �Epot crosses zero between U = 6 and U = 7
[see magenta circle at T = 0 in Fig. 1(e)]. This benchmark
supports our results. A similar crossover from potential-energy
driven to kinetic-energy driven mechanisms is also observed
in studies of BCS-BEC crossover in the attractive Hubbard
model [29,34,58,78,79].

VI. DENSITY OF STATES

The underlying normal state Mott transition also leads
to qualitative differences in the AF state between the local
DOS N (ω) observed at weak and strong interaction. This is
illustrated in Figs. 2 and 3. In both figures, N (ω) (left panels)
is shown along with the two spin projections N↑(ω), N↓(ω)
(right panels). Spectra in the AF (normal) state are shown as
color full lines (gray dashed lines).

For U = 4 < UMIT, Figs. 2(a) and 2(b) show the DOS for
different T across T d

N . At low T , N (ω) [Fig. 2(a)] in the AF
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FIG. 3. (a) N (ω) in the AF state along with (b) its two spin
projections, for T = 1/20 and different values of U . Normal state
solutions are shown with gray lines. See also Fig. 11 in Appendix D.
(c) Difference between the AF gap �AF and the normal state Mott
gap �M, measured by the distance between the two Hubbard bands,
versus U for T = 1/20. (d) (�AF − �M)/�M versus U for T = 1/20.

state has a narrow gap between two prominent peaks, which
correspond to the Bogoliubov quasiparticles. The system
is an antiferromagnetic insulator (AFI). In the infinite-size
system, this would be a deep pseudogap [72]. U is not small
enough to be in the static mean-field limit, so one sees small
precursors of the Hubbard bands at higher energies [72,81,82].
Nevertheless, the behavior is close to that expected in static
mean field: as T increases, the Bogoliubov peaks broaden and
the distance between the two peaks decreases, reflecting the
closing of the AF gap [Fig. 2(c)]. Increasing T above T d

N , the
Bogoliubov peaks merge as the AF gap closes. The normal
state is metallic and the peak at the Fermi level is what is
left from the Van Hove singularity. Hence, for U < UMIT, the
AFI is born out of a metallic normal state. As expected from
mean field, the spectral weight rearranges itself mostly over
a frequency range on the scale of the gap. This is also the
case for the spin-projected spectra in Fig. 2(b): even though
at low T , Bogoliubov peaks are quite spin polarized, the
difference between the two spin projections becomes smaller
at frequencies above the gap.

For U = 12 > UMIT the behavior is qualitatively different.
The spin-projected spectra in Fig. 2(e) show that the difference
between N (ω) for the two spin projections survives for a huge
frequency scale, much larger than the gap size, especially at
low T . This is typical of strongly correlated systems. That
normal and AF states differ over large frequency scales is
also apparent in Fig. 2(d). The overall shape of N (ω) is also
different from the weakly correlated case. In the Néel state
in Fig. 2(d) there is a large gap surrounded by a four-peak
structure: two Hubbard bands separated by a gap of order
U , and two Bogoliubov peaks at the lower edges of the
Hubbard bands [72,81,82]. Hence the system is, as before,
an AF insulator, but it evolves differently with T . Similar to
U = 4, the Bogoliubov peaks broaden with increasing T , yet
the spectral weight shifts from Bogoliubov peaks to Hubbard
bands. For T < T d

N , N (ω) has the characteristics of an AFI.

Raising T above T d
N shows that the AFI is born out of a Mott

insulator. As observed previously [75], even above T d
N , the

normal-state N (ω) displays remnants of the Bogoliubov peaks
at the Hubbard band edges that reflect the short-range AF
correlations allowed by the CDMFT solution.

The contrast between weak and strong interactions is also
clear in Figs. 3(a) and 3(b) that display the evolution of N (ω)
with U at T < TMIT < T d

N . The Mott transition is visible
between U = 5 and U = 6 in the normal state N (ω). At
low U , only the two Bogoliubov peaks are present in N (ω)
while, at large U , only the two featureless Hubbard bands are
present. At intermediate U , N (ω) has a characteristic four-peak
structure: two Bogoliubov peaks, which flank two Hubbard
bands or their precursors [72,81,82]. These structures evolve
in a qualitatively different way with U : (i) the Bogoliubov
peaks are quite narrow below UMIT, progressively broaden with
increasing U , and dissolve into featureless Hubbard bands at
U 	 UMIT. Their maximum value occurs just below UMIT;
(ii) the precursors of the Hubbard bands appear for U � UMIT

and evolve into well defined Hubbard bands for U � UMIT.
A comparison between the AF and normal N (ω) reveals that,
for U > UMIT, the AF gap �AF is larger than the Mott gap
or its precursors �M , similar to the 3D case in Ref. [83]
[see Figs. 3(c) and 3(d)].

VII. CONCLUSIONS

The crossover between potential- and kinetic-energy driven
antiferromagnetism contains clues on the mechanism of
antiferromagnetism and, contrary to the superconducting case
[47–61], has been largely overlooked up to now. For the
2D Hubbard model, we addressed this problem and revealed
distinctive features of the double occupancy, potential, kinetic,
and total energies, and local DOS in two phases, normal
and antiferromagnetic. The underlying Mott transition and
its associated Widom line leave their mark on the AF phase
through sharp crossovers associated with them. Thus we
demonstrated that it is possible for the Mott transition to
determine complex changes in observables associated with
the AF phase.

Although a crossover between weakly and strongly corre-
lated antiferromagnetism is expected, our work goes beyond
simple expectations: our findings add depth and understanding
and could not have been anticipated on general grounds. Our
detailed mapping of the U -temperature phase diagram allowed
us to identify observable changes in behavior occurring along
a line that extends from zero temperature along the Mott
transition and the associated Widom line, demonstrating the
importance of the underlying normal state in determining
properties of the ordered state. Specifically we found the
following. (i) A rich behavior of the difference in kinetic,
potential, and total energy between the AF and normal state:
at low enough temperature, we found that the critical U at
which �Epot and �Ekin cross zero, and �Etot is largest, is
determined by the first-order Mott transition [cf. Fig. 1(d)]. For
T > TMIT, the change in energetics is even more surprising:
the region where �Epot(T ) crosses zero follows the loci of the
largest condensation energy, which in turn correlates with the
normal state Widom line emanating out of the Mott end point
[cf. Fig. 1(e)]. Note that there is no reason to expect they should
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be right on, as demonstrated by the behavior of the difference
in kinetic energy between normal and AF state, which departs
from it (see Fig. 10 in Appendix C). (ii) A distinctive behavior
of the double occupancy D versus temperature. As shown in
Figs. 1(b) and 1(c), the AF state for U < UMIT suppresses D

compared with D in the normal state, and reverses the slope
of D(T ). On the other hand, for U > UMIT, D is increased
in the AF state. Our benchmarks of double occupancy with
alternative methods [cf. Figs. 1(b) and 1(c)] also provide
insight into the meaning of such calculations. In particular, we
found that double occupancy in the low temperature ordered
state is closer to the correct result than if it had been computed
in the normal state. In fact, the temperature dependence is
qualitatively correct only if the CDMFT solution is in the AF
phase. (iii) Striking differences in the local DOS at small/large
U . As shown in Figs. 2 and 3, the frequency range over which
AF rearranges spectral weight and the frequency dependence
of spin polarized spectra are surprising. In particular, the
fact that the spectrum is rearranged over energy scales much
larger than the AF gap when U > UMIT, by contrast with
the U < UMIT case, is an important result, characteristic of
broken-symmetry gaps opening on strongly correlated states.
Also, the relation between the size of the AF gap and the Mott
gap as a function of U is seen in a new light when the full U

dependence is plotted, as in Fig. 3(a).
From a broader perspective, our findings open the road

to understanding sharp crossovers within other phases or
models by careful consideration of normal-state properties.
This may be especially fruitful away from half filling where
high-temperature superconductivity occurs. Note that at large
U and half filling, the kinetic energy gain makes the AF stable
[see Figs. 1(d) and 1(e)]. Similarly, at large U and finite hole
doping, it is again the kinetic energy gain that makes the
superconductivity stable [61]. Hence, in both cases, the normal
state has an excess of kinetic energy: antiferromagnetism and
superconductivity are two phases that reduce it.

Our findings on the behavior of the double occupancy
in the U -temperature space, and hence the specific link
between Slater/Heisenberg crossover and the underlying Mott
transition, could also be tested experimentally in ultracold
atoms in optical lattices, due to recent experimental advances
in quantum gas microscopy [24–28].
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APPENDIX A: METHOD

In this appendix we show some details of the method. The
effective action of the impurity (cluster in a bath) problem is
given by

Seff = Scl(c,c
†) +

∫ β

0
dτ dτ ′ c†(τ )�(τ − τ ′)c(τ ′). (A1)

To solve the impurity problem, i.e., to find Gcl = Gcl[�] =
〈cc†〉Seff , we use the continuous-time quantum Monte Carlo
method based on the expansion of Seff in the hybridization
function (CT-HYB) � [64]. In this section we shall show that,
especially in the antiferromagnetic (AF) phase, a judicious
analysis of the symmetries of the problem have important
consequences on choice of the single-particle basis in Eq. (A1),
on the ergodicity of the CT-HYB impurity solver, and on the
Monte Carlo sign problem. For details on convergence and
Monte Carlo error bars, see Ref. [65].

1. Symmetries

Two remarks about symmetries are in order. (a) The cel-
lular dynamical mean-field theory (CDMFT) self-consistent
mapping onto the impurity problem preserves the symmetries
of the lattice system compatible with the partitioning (here,
the symmetries of a 2×2 plaquette). In the normal phase,
the dynamical mean field � is constrained to satisfy these
symmetries, whereas in the Néel state, some of the above
symmetries are broken. (b) Using the symmetries of the
impurity Hamiltonian allows one to speed up the calculations
[84]. We thus choose a single-particle basis for c (or c+) that
transforms according to the irreducible representations of an
Abelian point group that represents the spatial symmetries of
the impurity Hamiltonian. The Abelian group chosen must be a
subgroup of the total point group of the impurity Hamiltonian.

These remarks suggest the following implementation.

a. Normal state

The normal state satisfies (i) charge conservation [U (1)]
symmetry, (ii) time-reversal symmetry, (iii) spin rotational
[SU (2)] symmetry, (iv) translational symmetry, and (v)
point group C4v symmetry of the plaquette. CDMFT breaks
translational symmetry but it is possible to satisfy all other
symmetries. To speed up calculations of the trace for operators
on the cluster [84], it is convenient to classify cluster states
using a point group with Abelian symmetry. We choose the
point group C2v with mirrors along horizontal and vertical
axes of the plaquette. The appropriate basis in the irreducible
representations A1, A2, B1, B2 of C2v is (see Fig. 4 for indices)

cA1σ = 1
2 (c1σ + c2σ + c3σ + c4σ ), (A2)

cA2σ = 1
2 (c1σ − c2σ + c3σ − c4σ ), (A3)

cB1σ = 1
2 (c1σ + c2σ − c3σ − c4σ ), (A4)

cB2σ = 1
2 (c1σ − c2σ − c3σ + c4σ ). (A5)

1 2

34

FIG. 4. 2×2 plaquette for the CDMFT.
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Such a choice gives, for each spin σ , a 4×4 diagonal
hybridization function matrix �,

�σ,σ =

⎛
⎜⎝

�A1σ,A1σ 0 0 0
0 �A2σ,A2σ 0 0
0 0 �B1σ,B1σ 0
0 0 0 �B2σ,B2σ

⎞
⎟⎠.

(A6)

To enforce time-reversal symmetry [i.e., to satisfy requirement
(ii)], we constrain up and down spins to take the same values.
While we limited ourselves to the Abelian C2v group in the
choice of the irreducible representations, we can still make use
of the C4 rotation symmetry, by imposing that

�B1σ,B1σ = �B2σ,B2σ . (A7)

There are thus only three independent hybridization functions
in the normal state.

0 5 10 15
U

0.0

0.2

0.4

0.6

0.8

1(a) .0

si
gn

T =0.05
T =0.1
T =0.2
T =0.25

0 5 10 15
U

0

π
16

π
8

3π
16

π
4

θ

T =0.05
T =0.1
T =0.2
T =0.25

(b)

FIG. 5. (a) Average sign in CTQMC AF simulations versus U .
(b) Angle θ in Eqs. (A21), (A22) versus U . Data are shown for
temperatures T = 1/20, 1/10, 1/5, and 1/4. The angle π/4 appears
only in the normal phase, namely when mz = 0.

b. Néel antiferromagnetic state

By contrast, on the 2×2 plaquette, the Néel antiferro-
magnetic phase breaks (i) time-reversal symmetry, (ii) spin
rotational symmetry, and (iii) C4 (π/2) rotation. However,
time reversal combined with C4 is still a symmetry of this
system. Even though spin-rotational symmetry is broken, the
total component of spin along the z direction is preserved in
both the normal and antiferromagnetic states. Since we are
not interested in expectation values in directions other than
the z direction, the breaking of spin-rotational symmetry is
inconsequential.

While AF does break spatial C2v symmetry with mirrors
along horizontal and vertical axes of the plaquette, C2v point-
group symmetry with mirrors along the diagonals is preserved.
This suggests working in the single-particle basis (see Fig. 4
for indices):

cA1σ = 1√
2
(c1σ + c3σ ), (A8)

cA′
1σ

= 1√
2
(c2σ + c4σ ), (A9)

cB1σ = 1√
2
(c1σ − c3σ ), (A10)

cB2σ = 1√
2
(c2σ − c4σ ). (A11)

This basis gives, for each spin, a 4×4 block-diagonal hy-
bridization function matrix �, with one 2×2 block (A1) and
two 1×1 blocks (B1 and B2). For spin σ it takes the form

�σ,σ =

⎛
⎜⎝

�A1σ,A1σ �A1σ,A′
1σ

0 0
�A′

1σ,A1σ �A′
1σ,A′

1σ
0 0

0 0 �B1σ,B1σ 0
0 0 0 �B2σ,B2σ

⎞
⎟⎠.

(A12)

There are five nonzero independent imaginary-time hy-
bridization functions in the above matrix. Indeed, since the

0 5 10 15
U

0.0

0.5

1.0

1.5

|m
z|

T =0.05
T =0.1
T =0.2
T =0.25

FIG. 6. Staggered magnetization mz versus U for different values
of T . T d

N is obtained from the mean of the two temperatures where
mz changes from finite to a small value (here mz = 0.045).
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U
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−0.20

−0.15

−0.10

−0.05

0.00
(b)

T= 0.1

0 4 8 12 16
U

0.00

0.02

0.04

0.06

0.08
(e)

T= 0.1

0 4 8 12 16
−0.20

−0.15

−0.10

−0.05

0.00
(c)

T= 0.25

0 4 8 12 16
U

0.00

0.02

0.04

0.06

0.08
(f)

T= 0.25

FIG. 7. Contributions to the difference in kinetic energy between AF and normal state, as a function of U . Top (bottom) panels show �E
(1)
kin

(�E
(2)
kin). Data are shown for T = 1/20 < TMIT, T = 1/10 > TMIT, and T = 1/4 (left, central, and right columns, respectively). For T < TMIT

two normal state solutions coexist at the Mott transition.

imaginary-time hybridization function is real, we have

�A1σ,A′
1σ

= �A′
1σ,A1σ . (A13)

There is no additional independent hybridization function
for spins σ̄ = −σ . Indeed, symmetry under rotation by
π/2 followed by a spin flip transforms the operators as

follows:

cA1σ → cA′
1σ̄

, (A14)

cA′
1σ

→ cA1σ̄ , (A15)

cB1σ → cB2σ̄ , (A16)

cB2σ → −cB1σ̄ , (A17)

0 4 8 12 16

−0.10

−0.05

0.00

0.05

ΔE
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t

(a)

T =0.05 met
T =0.05 ins
T =0 VQMC

0 4 8 12 16

−0.10

−0.05

0.00

0.05

ΔE
ki
n

(d)
T =0.05 met
T =0.05 ins
T =0 VQMC

0 4 8 12 16
U

−0.10

−0.05

0.00

ΔE
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t

(g)

T =0.05 met
T =0.05 ins
T =0 VQMC

0 4 8 12 16

−0.10

−0.05

0.00

0.05
(b)

T =0.1

0 4 8 12 16

−0.10

−0.05

0.00

0.05
(e)

T =0.1

0 4 8 12 16
U

−0.10

−0.05

0.00(h)

T =0.1

0 4 8 12 16

−0.10

−0.05

0.00

0.05
(c)

T =0.25

0 4 8 12 16

−0.10

−0.05

0.00

0.05
(f)

T =0.25

0 4 8 12 16
U

−0.10

−0.05

0.00(i)

T =0.25

FIG. 8. Difference in potential energy �Epot = EAF
pot − ENS

pot (top panels), in kinetic energy �Ekin (central panels), and in total energy �Etot

(bottom panels) as a function of U . As in Fig. 7, data are shown for T = 1/20 < TMIT, T = 1/10 > TMIT, and T = 1/4 (left, central, and
right columns, respectively). For benchmark, at our lowest temperature [panels (a),(d),(g)] we show the T = 0 variational QMC calculation
of Ref. [45].
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which in turn implies for the down-spin hybridization function

�σ̄,σ̄ =

⎛
⎜⎝

�A′
1σ,A′

1σ
�A′

1σ,A1σ 0 0
�A1σ,A′

1σ
�A1σ,A1σ 0 0

0 0 �B2σ,B2σ 0
0 0 0 �B1σ,B1σ

⎞
⎟⎠.

(A18)

In the normal state there are only three independent hybridiza-
tion functions, as in the previous section, since symmetry
implies the additional equalities for both spin species:

�A′
1σ,A′

1σ
= �A1σ,A1σ , (A19)

�B1σ,B1σ = �B2σ,B2σ . (A20)

2. Ergodicity

Reference [66] demonstrates that for several classes of
broken symmetries that involve spatial components, CT-HYB
impurity solver is not ergodic as a matter of principle if one fol-
lows the usual updating procedure that adds or removes a pair
of creation-annihilation operators (“two-operator updates”).
Quite generally, if the cluster has more symmetries than the
bath, it may be necessary to make updates with larger num-
bers of pairs of creation-annihilation operators (“n-operator
updates”) to cure the lack of ergodicity. As an example [66],
four-operator updates are necessary for ergodicity when one
considers d-wave superconductivity within 2×2 CDMFT. The
problem in that case is as follows. The expansion in powers of
the hybridization contains products of two symmetry-breaking
hybridization functions whose associated cluster operators,
four of them, recover the full symmetry and hence lead to
nonvanishing traces in the cluster, while a single pair of
operators associated with one of these hybridization functions
leads to a vanishing trace because of the broken symmetry.
Hence the four-operator nonvanishing contributions to the
trace cannot appear as a sequence of updates involving only
pairs of operators.

7 14 21
U

−3

−2

−1

ΔE
ki
n

ΔE
po
t

T= 0.05
T= 0.1

FIG. 9. Ratio between kinetic energy gain and potential energy
gain versus U , at T = 1/10 (red triangles) and T = 1/20 (black
circles). At large U , �Ekin is approaching minus twice �Epot.

Here, in the antiferromagnetic state, the choice of the C2v

group symmetry with mirrors along horizontal and vertical
axes does not leave the Hamiltonian of the bath invariant
in the AF state, but it leaves the Hamiltonian of the cluster
invariant. Hence more than two-operator updates would be
necessary to attain ergodicity if that choice was made. On
the other hand, the cluster and the bath have the same C2v

point-group symmetry with mirrors along the diagonals. That
is the point-group symmetry whose irreducible representations
we use as a basis. The usual updates that add or remove a
pair of creation-annihilation operators then do not couple to
point-group symmetries that exist only in the cluster and not
in the bath and they therefore suffice for ergodicity. Therefore,
with such a choice of point-group symmetry, the usual updates
that add or remove a pair of creation-annihilation operators are
ergodic. Note that the updates always preserve total Sz = 0,
which is a symmetry of both phases.

3. Sign problem and addendum on ergodicity

Generally, if we compare the sign problem for identical
values of U and T in the normal and antiferromagnetic phase,
the sign problem in the antiferromagnetic phase is worse. As

4 5 6 7 8
U

0.0

0.1

0.2

T

ΔEpot = 0
ΔEkin = 0
minΔEtot
Uc1
Uc2
TW

FIG. 10. Phase diagram T − U of the two-dimensional half-filled
Hubbard model solved with plaquette CDMFT. This figure extends
Fig. 1(e) of the main text. In the normal state, the first-order Mott
metal-insulator transition is delimited by the spinodal lines Uc1(T )
and Uc2(T ) (up and down triangles, respectively), and terminates
at the critical end point (filled orange circle). The Widom line TW

(open circles with dotted orange line) is a crossover that extends
the first-order transition in the supercritical region and is determined
by the inflection points along paths at constant temperature in the
double occupancy D (i.e., by max dD/dU |T ). At values of U and
T where the properties of the underlying normal state are governed
by the Mott transition we find sharp crossovers between weakly and
strongly correlated AF. The loci where the potential (kinetic) energy
changes sign are shown by red triangles (blue squares). The line
where �Epot changes sign extends up to the maximum of the AF
dome. It parallels the loci of the largest condensation energy (green
diamonds), which in turn correlates with the Widom line TW. The line
where �Ekin changes sign still emerges from the Mott end point, but
extends down to U ≈ 5 and up to T ≈ 1/5.
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FIG. 11. (a) N (ω) in the AF state along with (b) its two spin projections, N↑(ω) and N↓(ω), for T = 1/20 and different values of U . Normal
state solutions are shown with gray lines. This figure extends Figs. 3(a) and 3(b) of the main text, where fewer values of U are shown.

pointed out in Ref. [65], to mitigate the sign problem, one can
exploit the degeneracy in the A1 subspace by introducing an
angle θ in the choice of basis:

cA1σ = cos θ√
2

(c1σ + c3σ ) + sin θ√
2

(c2σ + c4σ ), (A21)

cA′
1σ

= sin θ√
2

(c1σ + c3σ ) − cos θ√
2

(c2σ + c4σ ). (A22)

Figure 5 shows the average sign [panel (a)] and angle θ [panel
(b)] as a function of U for different temperatures. The usual
basis, Eqs. (A8)–(A11), is recovered by setting θ = 0, but it
gives a bad sign problem. One can choose the appropriate θ in
order to minimize the sign problem [65]. θ must be corrected
at each iteration of the CDMFT self-consistency loop in order
to minimize the off-diagonal component of the 2×2 block (A1)
of the hybridization function matrix.

This procedure of changing θ to minimize the sign problem
was used in the AF state only. For the normal state, it is
θ = π/4 that minimizes the sign problem. Note that, for the
AF phase, the choice θ = π/4 corresponds to a change from
the A1 and A′

1 basis to the basis that transforms like the A1 and
A2 representations, Eqs. (A2) and (A3), of the C2v symmetry
with mirrors along horizontal and vertical axes. For that
particular angle then, one encounters the ergodicity problem
[66] mentioned above. Indeed, the hybridization functions
�A1σ,A2σ and �A2σ,A1σ do not vanish in the antiferromagnetic
state. When the product of these two functions appears in
the hybridization expansion, the corresponding product of
operators in the cluster, four of them, does not vanish.
However, the products of operators corresponding to an odd
number of �A1σ,A2σ or �A2σ,A1σ vanishes because the cluster
does not break the symmetry, while the product of A1 and A2

does. Therefore, ergodicity is not attained with two-operator
updates only, as explained in Appendix A 2. As shown in
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Fig. 5(b), we verified that, as long as the AF phase is
sustained by CDMFT equations, i.e., as long as the staggered
magnetization mz is nonzero (see Fig. 1 of main text and Fig. 6
in Appendix B), the angle θ differs from π/4 and there is no
ergodicity problem.

APPENDIX B: ORDER PARAMETER

In this appendix we present the raw data of the staggered
magnetization mz to complement the color map in Fig. 1(a)
of the main text. To determine the parameter space where AF
arises from the CDMFT equations, we determine where the
staggered magnetization

mz = 2

Nc

∑
i

(−1)i(ni↑ − ni↓) (B1)

is nonzero. Figure 6 shows mz as a function of U for different
temperatures. These scans lead to the color map in Fig. 1(a) of
the main text.

APPENDIX C: ENERGETICS

In this appendix we elaborate on the energetics of the
model. For CDMFT solved with CT-HYB, we demonstrated in
Ref. [61] that the kinetic energy is the sum of two contributions,
Ekin = E

(1)
kin + E

(2)
kin, where E

(1)
kin is a term related to the average

expansion order 〈k〉:

E
(1)
kin = − 〈k〉

Ncβ
(C1)

and E
(2)
kin is a term related to the cluster part:

E
(2)
kin = 2T

Nc

∑
n

e−iωn0− ∑
ij

[
t

imp
ij G

imp
ji (iωn)

]
, (C2)

where Nc is the cluster size (here Nc = 4), β is the inverse
temperature, and t

imp
ij and G

imp
ij are the hopping and the Green’s

function of the impurity problem, respectively.
Figure 7 shows these two contributions to the difference in

kinetic energy between AF and normal state as a function of
U and T = 1/20,1/10,1/4 (left, central, and right panels).
Figure 8 displays the difference in kinetic, potential, and
total energy between AF and normal state versus U and
T = 1/20,1/10,1/4 (left, central, and right panels). The data
at the lowest temperature (T = 1/20) are shown in Fig. 1(d)
of the main text. For benchmark, in Figs. 8(a), 8(d), and
8(g) we also show the T = 0 variational QMC calculation of
Ref. [45].

Figure 9 shows that the ratio between the kinetic-energy
gain and potential-energy gain is approaching −2 for large U ,
as expected [5] from the exchange energy proportional to J .

Finally, Fig. 10 sums up our results in the T − U phase
diagram.

APPENDIX D: DENSITY OF STATES

In this appendix we show the density of states for different
values of U , to extend data displayed in Figs. 3(a) and 3(b) of
the main text. (See also Fig. 11.)
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